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Abstract: Integrating Green Renewable Energy Sources (GRES) as substitutes for fossil fuel-based 
energy sources is essential for reducing harmful emissions. The GRES are intermittent and their 
integration into the conventional IEEE 30 bus configuration increases the complexity and nonlinearity 
of the system. The Grey Wolf optimizer (GWO) has excellent exploration capability but needs 
exploitation capability to enhance its convergence speed. Adding particle swarm optimization (PSO) 
with excellent convergence capability to GWO leads to the development of a novel algorithm, namely 
a Grey Wolf particle swarm optimization (GWPSO) algorithm with excellent exploration and 
exploitation capabilities. This study utilizes the advantages of the GWPSO algorithm to solve the 
optimal power flow (OPF) problem for adaptive IEEE 30 bus systems, including thermal, solar 
photovoltaic (SP), wind turbine (WT), and small hydropower (SHP) sources. Weibull, Lognormal, and 
Gumbel probability density functions (PDFs) are employed to forecast the output power of WT, SP, 
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and SHP power sources after evaluating 8000 Monte Carlo possibilities, respectively. The multi-
objective green economic optimal solution consisted of 11 control variables to reduce the cost, power 
losses, and harmful emissions. The proposed method to address the OPF problem is validated using an 
adaptive IEEE bus system. The proposed GWPSO algorithm is evaluated by comparing it with PSO 
and GWO optimization algorithms in terms of achieving an optimal green economic solution for the 
adaptive IEEE 30 bus system. This evaluation is conducted within the confines of the same test system 
using identical system constraints and control variables. The integration of a small SHP with WT and 
SP sources, along with the proposed GWPSO algorithm, led to a yearly cost reduction ranging from 
$19,368 to $30,081. Simulation findings endorsed that the proposed GWPSO algorithm executes 
fruitfully compared to alternative algorithms regarding a consistent convergence curve and robustness, 
proving its potential as a viable choice for achieving cost-effective solutions in power systems 
incorporating GRES. 

Keywords: power system; green distributed generation; photovoltaic; wind; hydropower; optimal 
power flow 
Mathematics Subject Classification: 68T20 
 

1. Introduction  

The intensifying demand for several industries has led the world to a concerning upsurge in the 
production of injurious gases, which openly damage the environment. This mounting demand is mostly 
driven by population increase, development, and user needs, putting tension on energy resources. To 
deal with the huge demand for energy, the energy production sector and other industries are releasing 
greenhouse gases and other toxins into the atmosphere, escalating worldwide environmental issues 
such as climate change and air pollution. 

The energy production sector and industries deeply depend on fossil fuels, like petroleum, 
methane, and coal, utilized for generating energy and manufacturing processes. The energy produced 
through the burning of fossil fuels leads to the emission of substantial quantities of carbon dioxide 
(CO2), which is accountable for trapping heat in the atmosphere, triggering global warming. The 
drastic changes in climate change, the significant increase in energy demand and an upsurge in fossil 
fuel prices compel the world on the road to the addition of green renewable energy sources (GRES) 
along with fossil fuel-based conventional sources [1]. The incorporation of solar, wind, and 
hydropower sources into energy systems is a transformative strategy that aligns industrial growth with 
environmental stewardship [2]. The study explores the impact of clean energy and carbon markets on 
environmental sustainability, investigating interdependencies and spillover effects between global 
carbon and GRES like wind, solar, biofuel and geothermal [3]. This approach not only caters to the 
escalating energy requirements but also paves the way for a cleaner, more sustainable future, fostering 
a harmonious coexistence between industrial progress and ecological preservation [4]. Optimal Power 
Flow (OPF) emerges as a pivotal optimization challenge within power systems, seeking to minimize 
generation expenses while upholding operational limitations. With the rising integration of GRES like 
wind, solar, and hydropower sources, the complication and non-linearity of the OPF problem further 
intensify [5]. However, to address this intermittent and fluctuating nature of GRES, batteries are 
required [6].  
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Over the past few years, numerous optimization algorithms and approaches have been created 
and applied to address the optimization challenges associated with the OPF problem. These include 
traditional techniques, evolutionary strategies, and sophisticated metaheuristic algorithms. Linear 
programming (LP) is a conventional method applied to solve OPF problems, as cited in [7]. Non-linear 
programming (NLP) technique presented in [8] has been employed for addressing OPF problems. 
Quadratic programming (QP) has been utilized in solving OPF problems by the researchers in [9]. 
Dynamic programming (DP) represented in [10] is another traditional approach applied to address 
OPF problems. The interior point (IP) method, as outlined in [11], has been employed in tackling of 
OPF problems. Nevertheless, these classical approaches encounter limitations when dealing with 
large-scale problems due to their complex and intensive computations, as well as their prominent 
reliance on initial estimation values. Algorithms derived from the principles of evolution mimic the 
evolutionary process, generating successive generations through mating to achieve optimal solutions. 
The authors in [12] have utilized the genetic optimization algorithm (GOA) to tackle the OPF in 
distribution systems. Enhanced genetic algorithm (GA) has been used in [13] for the solution of multi 
objective OPF problem. Another notable contender in this category is the Differential Evolution (DE) 
algorithm, which has demonstrated efficacy in handling constraints while optimizing diverse 
objectives within the OPF context [14]. In order to prevail over the limitations of conventional and 
evolutionary-driven approaches, a number of heuristic algorithms were adeptly employed to address 
the OPF challenge. Particle swarm optimization (PSO), as cited in [15], stands out as a prominently 
used metaheuristic algorithm for solving OPF problems. Moth-flame optimization (MFO) algorithm 
discussed in [16], is another metaheuristic algorithm widely employed in the context of OPF solution. 
The multi-verse optimization (MVO) algorithm, as introduced in [17], is recognized as a prominent 
metaheuristic approach for addressing OPF challenges. Moth-swarm algorithm (MSA), described in [18], 
is among the widely used metaheuristic algorithms in the field of OPF solution. The elephant herding 
algorithm (EHA), outlined in [19], is acknowledged as a notable metaheuristic approach for optimizing 
OPF problems. Gravitational search algorithm (GSA), detailed in [20], is recognized as a key 
metaheuristic algorithm applied in the resolution of OPF issues. The whale optimization algorithm 
(WOA), discussed in [21], is a notable metaheuristic approach frequently utilized for solving OPF 
problems. Grey wolf optimization (GWO), highlighted in [22], is a metaheuristic algorithm extensively 
used in the domain of OPF solution. The ant lion algorithm (ALA), introduced in [23], is recognized as a 
significant metaheuristic approach for OPF optimization. The grasshopper algorithm (GA), as cited in [24], 
is recognized as a noteworthy metaheuristic algorithm employed for OPF solution.  

In the struggle of enhancing the global search competences of metaheuristic algorithms, the 
combination of two algorithms has been undertaken to attain globally optimal results. One of the 
algorithms used for OPF is the fusion of dragonfly and PSO (DA-PSO), as proposed in reference [25]. 
This hybridization of both algorithms harnesses the strengths of both, augmenting their abilities in both 
exploitation and exploration. The efficacy of the selected DA-PSO algorithm has been substantiated 
through testing on systems involving IEEE 30 and 57 buses, encompassing various objective functions. 
PSO-GSA, as referenced in [26], is an optimization algorithm distinctively applied to address OPF 
problems. Harris hawk optimization combined with DE (HHODE), introduced in [27], represents an 
innovative approach for OPF optimization. Hybridizing cuckoo search with GWO (HCSGWO), 
detailed in [28], is a unique optimization algorithm employed in solving OPF challenges. The 
combination of cross entropy with CSA (CE-CSA), as discussed in [29], offers a novel strategy for 
addressing OPF optimization concerns. A hybrid PSO-GWO algorithm has been employed in [30], to 
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address the OPF problem for IEEE modified 30-bus systems including solar and wind energy sources. 
The researchers in [31] employed the enhanced computational optimizer of the social network search 
technique (ESNST) to find multidimensional OPF solutions for IEEE-30, 57, and 118 bus systems, 
without taking into account the integration of GRES. The gorilla troops optimization technique 
(GTOT), inspired by the collective behaviors of gorilla groups, has been successfully applied to 
optimize fuel costs, emissions, and power losses in IEEE-30 bus systems [32]. 

The IEEE 30 bus system is a well-known benchmark system employed for assessing the 
usefulness of optimization algorithms in power systems. This study proposes a GWPSO algorithm to 
alleviate generation costs, power losses and pollution emissions for a system integrated with GRES 
such as wind turbine (WT), solar photovoltaic (SP) and small hydropower (SHP) sources. The GWPSO 
algorithm merges the exploration competence of the GWO algorithm with the exploitation competence 
of the PSO algorithm. The usefulness and proficiency of the proposed algorithm are assessed by 
comparing it with other optimization techniques such as PSO and GWO. This work is a continuation 
of the earlier works [5,30], where OPF problem is solved for IEEE modified 30 bus systems integrated 
with solar and wind energy sources using HPS-GWO and PSO-GWO algorithms, respectively. 
Validation is endorsed via comparison with SHADE-SF, GWO, and PSO.  

The rest of the paper is organized as follows. Section 2 presents the OPF formulation for IEEE 30 bus 
system integrated with WT, SP and SHP sources. Section 3 describes the uncertainty modeling and 
probability density functions (PDFs) for WT, SP and SHP sources. Section 4 presents the proposed 
GWPSO algorithm. Section 5 provides details of the simulation outcomes and analysis. Finally, in 
Section 6 the paper concludes by providing a concise over-view of the findings and offering 
suggestions for potential avenues of future research.  

2. Formulation OPF and determination of cost functions 

The methodology involves the formulation of OPF with GRES, formulation of the Objective/Cost 
Function, modeling the uncertainty of GRES, hybridization of the GWO with PSO algorithm, setting 
initialization and termination criteria, and conducting performance evaluation and result validations. The 
IEEE 30-bus system in its standard form comprises twenty-four buses for load distribution and six buses 
for generators, where thermal generators (TGs) are linked. In the suggested altered system, three TGs have 
been substituted with two WTs sources (at buses 5 and 11) and a SP source combined with a SHP source 
(at bus 13). This replacement aims to formulate an OPF as an optimization challenge characterized by both 
inequality and equality constraints to reduce emissions and generation costs [30]. The essentials of the 
system being examined, as outlined in Table 1, include TGs, WTs and SP combined with SHP sources. 
Moreover, Figure 1 illustrates the composition of the test system under study. 
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Table 1. Adopted modified IEEE 30 bus system details. 

Parameters Quantity Details 
Buses 30 [5] 
Branches 41 [5] 
TGs 3 at bus# 1, 2 and 8 (bus 1: swing) 
WTs 2 at bus# 5 and 11 
SP 1 at bus# 13 
SHP 1 at bus# 13 
Load connected - P=283.4 MW, Q=126.3 MVAr 
Shunt compensators 2 Q=0.19MVAr at bus 5 and Q=0.04 MVAr at bus 24 
Load buses voltage (p.u.) 24 [0.95-1.05] 
Generation buses voltage (p.u.) 6 [0.95-1.10] 
Controlling parameters 11 Real power (MW) for all generation buses except 

slack and voltages (p.u.) for all generation buses 

 

Figure 1. An adaptive IEEE 30 bus system employed for OPF evaluation. 
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2.1 The cost functions for thermal generators (TGs) 

The detailed mathematical modeling of the system can be found in [5], where two WT and a SP source 
are connected. The output power of TG relies on fossil fuels. The correlation between the produced power 
(MW) and the cost of fuel ($/hr) can be determined using the subsequent quadratic equation: 

2

1

nT

TG i i i TGi
i

C a b c P


   .         (1) 

CTG denotes the overall cost where the parameters ai, bi, and ci signify the fuel cost coefficients for the 
ith TGs, and their specific values are detailed in Table 2. 

Table 2. The numerical values of cost and emission coefficients for TGs used in Eqs (1)–(4). 

TG 
at 
Bus # 

min

( )
TGiP

MW
 

max

( )
TGiP

MW
 a  b  c  d  e          T

  

1 50 200 0 2 0.00375 18 0.037 4.091 −5.554 6.49 6.667 0.0002 
2 20 80 0 1.75 0.0175 16 0.038 2.543 −6.047 5.638 3.333 0.0005 
8 10 35 0 3.25 0.00834 12 0.045 5.326 −3.55 3.38 2 0.002 

For accurate modeling of the cost function for TGs, the valve point effect needs to be considered. 

  2 min

1

sin
nT

TG V i i i TGi i i TGi TGi
i

C a b c P d e P P


       .     (2)  

In Eq (2) ei and di denote the valve point effect coefficients of steam turbines.  
The amount of emission (ton) released from each TG is computed through Eq (3).  

  )2

1

0.01
T

i TGi

nT
P

i i i TGi i
i

em TGiE eP P 



         .     (3) 

The emission coefficient i and   specific values are provided in Table 2. 

In order to diminish the release of detrimental emissions and promote the incorporation of eco-
friendly and economically viable GRES like SP, WT, and SHP sources, a carbon tax is implemented 
based on the amount of emissions produced per unit [33]. The cost associated with emissions ($/hr) 
for TGs is outlined as follows [5]: 

em t emC C E  .           (4) 

The numerical values of cost and emission coefficients for TGs employed in Eqs (1)–(4) are 
provided in Table 2 and these values are in accordance with reference [5]. 
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2.2 The cost functions for wind turbines (WTs) sources 

Unlike TGs, GRES do not involve any ongoing costs of fossil fuel, as they do not need fossil fuel 
for power generation, a price per unit production may be assigned for considering the initial investment 
compensation, renovation and maintenance costs to GRES. The direct, reserve (due to overestimation) 
and penalty (due to underestimation) costs linked with each WT source, are formulated as follows [5]: 

, , ,w j w j w sch jC g P             (5) 

,

Rw, j , , ,

, , , , ,0

C ( )

( ) ( )
wsch j

Rw j wsch j wac j

P

Rw j wsch j wac j w j w j

K P P

K P P f p dp

 

 
     (6) 

wr, j

,

Pw, j , , ,

P

, , , , ,

C ( )

( ) ( )
wsch j

Pw j wac j wsch j

Pw j w j wsch j w w j w jP

K P P

K P P f p dp

 

 
.     (7) 

Equations (5)–(7), ,w sch jP  depicts the scheduled output power and ,wac jP denotes the actual output 

power from thj WT source. The ,w jg , ,Rw jK , and ,Pw jK  represents direct, reserve and penalty cost 

coefficient of thj WT sources, respectively, there numerical values are mentioned in Table 3. 

Table 3. Numerical values of cost coefficients and pdf parameters for WTs. 

Bus 
No. 

Wind 
Farm 
No. 

( )
rwP

MW
 

Direct cost 
Coefficient 

( wg ) 

Reserve cost 
Coefficient 

( RwK ) 

Penalty cost 
coefficient 

( PwK ) 

Scale 
factor 
( c ) 

Shape 
factor  
( k ) 

5 1 75 1.6 3 1.5 9 2 
11 2 60 1.75 3 1.5 10 2 

The entire cost of WT sources is computed as: 

, , ,
1

C
wN

t WT w j Rw j Pw j
j

C C C


   .         (8)  

2.3 The cost functions for solar photovoltaic (SP) and small hydropower (SHP) sources 

This work is using a SP and a SHP source as the third GRES. The SHP source output contributes 
to a small proportion of the total system capacity [34]. As a result, it is combined with the SP source at 
bus 13 and is supposed to be owned by a sole private operator. The direct, reserve (due to overestimation) 
and penalty (due to underestimation) of the combined SP and SHP sources are calculated using the 
subsequent equations, respectively.  

, , , , ,( ) ( ) ( )D sh k k s sch k l hp sch k d sh s sch k hp sch kC h P h P h P P               (9) 
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R-sh,k , , ,

, , , , , ,

C ( )

( ) [ ( )]
R sh k sh sch k sh ac k

R sh k sh sh ac k sh sch k sh sch k sh ac k sh sch k

K P P

K f P P P E P P
  

     

 

     
   (10) 

P-sh,k , , ,

, , , , , ,

C ( )

( ) [ ( ) ]
P sh k sh ac k sh sch k

P sh k sh sh ac k sh sch k sh ac k sh sch k sh sch k

K P P

K f P P E P P P
  

     

 
     

   (11) 

In Eq (9), ,s sch kP  , ,hp sch kP  , kh , and lh  depicts the scheduled power and the coefficients for direct costs of 

SP and SHP sources, respectively. R shK   and P shK   represents the coefficients for reserve and penalty 

costs relating to thk combined SP and SHP sources, respectively. ,sh sch kP   and ,sh ac kP  represent scheduled 

and actual available output power from combined SP and SHP source, respectively. The total cost of the 
combined SP and SHP source is calculated as follows: 

, , ,
1

C [ ]
sN

t sh D sh k R sh k P sh k
k

C C C   


   .       (12) 

2.4 The Formulation of main objective function for optimization 

In this research work, three objective functions have been formulated to optimize the overall 
generation cost. The first objective function is modeled to calculate overall generation cost, disregarding 
the valve point effect of TGs. It is expressed as follows: 

1Fobj TG t WT t shC C C     .        (13) 

The second objective function considers the valve point effect of TGs and is formulated for the total 
generation cost as follows: 

2Fobj TG V t WT t shC C C      .        (14) 

The third objective function considers a carbon tax (20$/ton) on emissions from TGs and is formulated 
as follows: 

2Fobj TG V t WT t sh emiC C C C       .       (15) 

In Eqs (13)–(15), the individual cost of each source, TGC , TG VC  , emiC , t WTC   and t shC   are calculated 

using Eqs (1), (2), (4), (8) and (12), respectively.  
Several equality, inequality, and security constraints are present, with their modeling details and 

mathematical equations as presented in [5,30]. The power loss (MW) and voltage deviation (p.u.) are the 
two other important parameters that can be calculated using the subsequent equations. 

2 2

1 1

2 cos( )
nl nl

loss ij i j i j ij
i j

P G V V VV 
 

          (16) 
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1

1
nl

lp
p

VD V


  .          (17) 

The ij i j    represents the voltage angle difference between two buses, ijG denotes transfer 

conductance, and nl signifies the overall count of lines within the network.  

3. The formulation of stochastic power of green renewable energy sources  

The output power of GRES is of stochastic nature due to their dependency on weather conditions, 
which are characteristically variable and indeterminate. The output power of GRES is altered by 
factors like haze, temperature, wind speed and river flow rate. To formulate the stochastic power output 
of GRES, it is necessary to consider probabilistic models that illustrate the inconsistency and 
unpredictability linked to their power output.  

a) The formulation of stochastic power of wind turbine (WT) sources 

The wind speed distribution exhibits a similar distribution like Weibull PDF and is mostly 
employed for modeling wind speed distribution [5]. Utilizing a Weibull PDF characterized by a shape 
factor ( k ) and a scale factor ( c ), the probability of wind speed ( )vf w (m/s) as a function of wind speed 

( v ) can be derive using the subsequent expression:  

1 ( / )( ) ( )( )
kk v c

v

k v
f w e

c c
   for 0 < v < ∞.     (18) 

The values of shape ( k ) and scale ( c ) parameters have been extracted from the references [5] and are 
provided in Table 3. Figures 2 and 3 showcase the Weibull fitted curve and frequency distribution 
curves for wind speed of WTs sources at bus 5 and 11, respectively. These graphs are generated 
through the execution of 8000 Monte Carlo scenarios in the simulation. 

 

Figure 2. Distribution of wind speed for WTs sources connected at bus 5. 
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Figure 3. Distribution of wind speed for WTs sources connected at bus 11. 

The generated power output of WTs sources relies on wind speed and can be computed in the 
following manner: 

𝑃௪(𝑣) = ቐ

0,           𝑓𝑜𝑟  𝑣  𝑣௜௡ 𝑎𝑛𝑑 𝑣  𝑣௢௨௧

𝑃௪௥ ,                       𝑓𝑜𝑟 𝑣௜௡  𝑣   𝑣௥

𝑃௪௥ ,                    𝑓𝑜𝑟 𝑣௥  𝑣   𝑣௢௨௧  
        (19) 

where vin, vr and vout denote the cut-in, rated, and cut-out wind speeds, respectively. 

b) The formulation of stochastic power of solar photovoltaic (SP) source 

The power output from the SP source depends on solar irradiance (G), which obeys lognormal 
PDF [5]. This lognormal PDF is characterized by a mean value (  ) and a standard deviation ( ) and 

it can be employed to determine the statistical distribution of solar irradiance ( ) using the subsequent 
equation: 

2

2

1 (ln )
( ) exp

22
G

x
f S

G


 

  
  

 
 for G  > 0.     (20) 

The variables associated with lognormal PDF are provided in Table 4, kept the same as cited in the 
source [5]. Upon execution of 8,000 Monte Carlo simulations, Figure 4 displays both the frequency 
distribution of solar irradiance and the lognormal fitting curve. 

Table 4. Numerical values of cost coefficients and PDF parameters for SP and SHP source. 

Bus 
No. 13 

( )ratedP MW lognormal& Gumbel 
PDF parameters 

Direct cost 
coefficient 

Reserve cost 
coefficient 

Penalty cost 
coefficient 

SP 50  = 6  = 0.6 kh  = 1.6 

R shK  = 3 R shK  = 1.4 
SHP 5 hp =15 hp = 1.2 lh = 1.5 
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Figure 4. Distribution of solar irradiance for SP source connected at bus 13. 

The mathematical representation of the generated power from the SP source, which depends on 
solar irradiance (G), is presented in Eq (21). 

𝑃ௌ௉(𝐺) = ቐ
𝑃௦௥(

ீమ

ீೞ೟೏ோ௖
) 𝑓𝑜𝑟 0 < 𝐺 < 𝑅𝑐

𝑃௦௥(
ீమ

ீೞ೟೏ோ௖
) 𝑓𝑜𝑟 𝐺 ≥ 𝑅𝑐.

     (21) 

The particular irradiance value is represented by Rc and is set at a value of 120 W/m².  

The formulation of stochastic power of small hydropower (SHP) source 

In the adapted IEEE 30-bus network, the traditional TG source at bus 13 is substituted with a 50 
MW SP and a 5 MW small SHP source. It is widely recognized that the river flow rate conforms to the 
Gumbel distribution [34]. The probable dissemination of the river flow rate hpG  , adhering to the 

Gumbel distribution ( )hp hpf G  characterized by the location parameter hp  and scale parameter hp , 

can be formulated as: 

1
( ) exp exp exphp hp hp hp

hp hp hp hp hp

G G
f G

 
  

      
     

    
.     (22)  

The associated PDF values for these adjustments are detailed in Table 4, with numerous selections 
made in accordance with a comprehensive investigation cited in Reference [34]. Figures 5–8 depict 
the real power availability and river flow rate distribution for both SP and SHP sources.  

The amount of power generated by a SHP source relies on both the rate of water flow ( hpG ) and 

the actual pressure head ( h ). The output power from SHP can be formalized as follows [34]: 

) ( hp hp
hp hp hpP G gG h           (23)  

where hp  and hp  denotes the efficiency of the SHP and water density, respectively.  
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The numerical values involved in the calculation of the SHP source output are kept the same as 
in reference [34], which are: hp  = 0.85, hp  = 1000kg/m3, h = 25m, and g = 9.81m/s2. 

 

Figure 5. Real power (MW) available from SP source connected at bus 13. 

 

Figure 6. Distribution of river flow rate for SHP source connected at bus 13. 
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Figure 7. Real power (MW) available from SHP source connected at bus 13. 

 

Figure 8. Real power (MW) available from the combined SP and SHP source connected at bus 13. 

4. The proposed grey wolf particle swarm optimization (GWPSO) algorithm  

In this study, the GWPSO algorithm was employed to optimize the three objective functions discussed 
earlier. The GWO algorithm replicates the hierarchical hunting and leadership patterns of gray wolves, 
whereas the PSO algorithm takes inspiration from the collective behaviors exhibited by flocking birds. The 
GWO algorithm outperforms in exploring the entire exploration area, but exhibits slower convergence and 
limited local search capability, whereas the PSO algorithm excels in exploitation but can become trapped 
in local optima [35]. In this study, an algorithm named GWPSO is proposed, which improves GWO's 
exploration with PSO's exploitation competence to make a collaborative algorithm. The flowchart 
depicting the chosen GWPSO algorithm is presented in Figure 9. 
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Figure 9. Flowchart of the selected GWPSO algorithm. 

In the formulated GWPSO algorithm, the coordinates of alpha ( d ), beta ( d  ) and delta ( d ) 

within the exploration space are progressively adjusted using the subsequent sequential equations [5]: 

1

2

3

. *

. *

. *

d c x x

d c x x

d c x x

 

 

 







 

 

 

.          (24) 

In the aforementioned expression, the abilities of gray wolves are synchronized within the search 
region through the use of a momentum constant (ci) and inertia weight ( ). The modified equations 
for position ( 1k

ix  ) and ( 1k
iv  ) velocity undergo the following changes [5]: 

1 1

1
1 1 1 2 2 2 3 3 3* ( ( ) ( ) ( ))

k k k
i i i

k k k k k
i i i i i

x x v

v v c r x x c r x x c r x x
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

 

      
 .   (25)  
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5. The simulation results and analysis 

This study focuses on integrating a SHP source into the modified IEEE 30 bus system, along with 
integrated WT and SP sources. The main contribution lies in the development of a GWPSO algorithm, 
aiming to minimize the total generation cost in this hybrid energy system. The optimization of the 
overall generation cost has been categorized into three scenarios: One without including the valve 
point effect, one with the valve point effect, and another involving a carbon tax on TGs emissions. 
Every optimization algorithm is executed five times, for an accumulated sum of 500 iterations in each 
execution. In each case the results of GWPSO are compared with GWO, PSO and with the previous 
research as cited in reference [5], where only WTs and SP sources were integrated. In each case, results 
indicate a decrease in the range of 2.211 to 3.434 $/h has been observed after incorporating the SHP 
source into the system. The success of the proposed GWPSO algorithm can be attributed to its effective 
combination of the exploration capabilities of GWO and the strong convergence abilities of PSO 
algorithms. The major shortcoming of the proposed algorithm is that its execution time is longer than 
that of individual algorithms. The study under research provides a solution to the IEEE 30 bus system 
with integrated GRES while considering static loads. The dynamic nature of load and storage batteries 
as a backup source to mitigate the uncertain nature of GRES is left for future research work. 

5.1 Case 1: Variations in different types of cost as a function of PDF parameters 

This scenario examines the interdependencies among reserve cost, penalty cost, direct cost, and 
total cost for SP and WTs sources in relation to lognormal and Weibull PDF variables, respectively. 
Maintaining a constant shape parameter (k=2) while varying the scale parameter (c) within the range 
of 2 to 16. The corresponding cost changes are then observed at fixed scheduled power outputs of 25 
MW for WT1 and 20 MW for WT2. These selected power levels represent approximately one third of 
the overall deployed set up, which aligns with typical practical WT capacity percentages ranging from 
30% to 45% [5]. Figures 10 and 11 illustrate the cost curves for WT1 and WT2 sources respectively. 
Notably, the minimum total cost occurs when the scale parameter (c) is around 9. 

 

Figure 10. Variations in cost vs scale parameter c (k=2) for WTs connected at bus 5. 
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Figure 11. Variations in cost vs scale parameter c (k=2) for WTs connected at bus 11. 

Similarly, the SP costs are examined against lognormal mean (µ) spanning from 2 to 7, while 
maintaining the value of standard deviation σ at 0.6 and a scheduled power output of 20 MW from the 
SP source. The analysis reveals that the minimum total cost is achieved when the lognormal mean 
value is set at 6. After µ reaches 6, the penalty and reserve costs converge, but beyond this point, the 
penalty cost sharply increases, leading to an escalation in total cost. The output power of the SP source 
is particularly sensitive to the lognormal µ, with higher values of µ requiring greater reserve capacity 
and vice versa. Figure 12 visualizes the variations in SP cost in relation to the lognormal µ. 

 

Figure 12. Variations in cost vs lognormal mean µ (σ = 0.6) for SP source connected at bus 13. 
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5.2 Case 2: Variations in different types of cost as a function of scheduled output power 

This scenario examines the impact of varying the planned wind power for two WT sources linked 
to buses 5 and 11. The scheduled wind power ranges from zero to the WT's rated power has been 
examined how the reserve cost, penalty cost, direct cost and total cost change accordingly, as illustrated 
in Figures 13 and 14. The simulation findings indicate that the reserve cost decreases with an increase 
in the scheduled WT power, indicating an inverse relationship. Conversely, the penalty cost increases 
with higher scheduled power levels. Interestingly, there exists a direct relationship between the planned 
wind power and direct cost. The total cost demonstrates an upward trend as the scheduled power 
increases, as it includes the combination of reserve cost, penalty cost and direct cost elements. 

 

Figure 13. Variations in cost vs schedule power output of WTs sources connected at bus 5. 

 

Figure 14. Variations in cost vs schedule power output of WTs sources connected at bus 11. 
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In a similar manner, the performance of the SP source connected to bus 13 in terms of reserve 
cost, penalty cost, direct cost and total cost relative to the SP schedule power has been analyzed, as 
illustrated in Figure 15. The various parameters and cost coefficients can be found in Tables 3 and 4 
for reference. Unlike the wind scenario, the total cost for the SP source attains its minimum value at 
approximately 15 MW. 

 

Figure 15. Variations in cost vs schedule power output of a SP source connected at bus 13. 

5.3 Case 3: Minimizing the overall generation cost ignoring the valve positioning influence for TGs 

In this case, the overall generation cost has been optimized ignoring the valve positioning 
influence for TGs as formulated in the first objective function in Eq (13). The numerical values of 
control and constraints parameters obtained from GWO, PSO, and GWPSO, along with the respective 
values of our previous research work [5], have been considered in Table 5 for the purpose of 
comparison. The graphs illustrating the convergence trends of GWO, PSO, and the GWPSO 
algorithms in Figure 16 reveal that the GWPSO approach displays a rapid and consistent curve. The 
lowest generation cost achieved through GWPSO is 769.302 $/h, which is 3.434 $/h less than that 
reported in [5], and this difference becomes a significant amount of (3.434×24×365) 30081 $/Y. 
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Figure 16. Convergence curves of GWO, PSO and GWPSO algorithms for Case 3. 

Table 5. Results from the simulation refer to Case 3. 

 
parameters 

Min. 
Value 

Max. 
Value 

GWO PSO GWPSO [5] 

Swing 
generator 

PTG1(MW) 50 140 137.711 137.147 136.774 133.046 

C
on

tr
ol

 v
ar

ia
bl

es
 

PTG2(MW) 20 80 38.575 39.068 39.628 38.418 
PWT5(MW) 0 75 39.312 39.809 39.401 39.344 
PTG8(MW) 10 35 10.060 10.000 10.000 10.000 
PWT11(MW) 0 60 33.860 33.837 33.888 33.257 
PSH13(MW) 0 55 29.865 29.426 29.330 35.174* 
V1(p.u.) 0.95 1.10 1.10 1.10 1.10 1.10 
V2(p.u.) 0.95 1.10 1.09 1.09 1.09 1.090 
V5(p.u.) 0.95 1.10 1.07 1.07 1.07 1.068 
V8(p.u.) 0.95 1.10 1.08 1.10 1.10 1.098 
V11(p.u) 0.95 1.10 1.10 1.10 1.10 1.10 
V13(p.u.) 0.95 1.10 1.08 1.09 1.10 1.094 

G
en

er
at

or
 r

ea
ct

iv
e 

po
w

er
  

QTG1(MVAr) -20 150 -10.364 -11.665 -17.146 -6.721 
QTG2(MVAr) -20 60 19.105 19.033 25.064 4.773 
QWT5(MVAr) -30 35 27.695 25.528 26.544 35.000 
QTG8(MVAr) -15 40 40.000 40.000 40.000 40.000 
QWT11(MVAr) -25 30 21.019 19.230 18.643 17.862 
QSH13(MVAr) -20 25 16.832 21.621 20.507 22.235 

O
bj

ec
ti

ve
  

fu
nc

ti
on

s Gen cost($/h) - - 769.311 769.599 769.302 772.736 

Ploss (MW) - - 5.950 5.887 5.898 5.763 
Emission(t/h) - - 2.095 2.022 1.976 1.570 
V.D (p.u.) - - 0.891 1.027 1.041 1.047 

* PSP (Max) = 50MW. 
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5.4 Case 4: Minimizing the total generation cost excluding a carbon tax on emissions from TGs 

In this case, the total generation cost has been optimized with consideration of the valve 
positioning influence for TGs, excluding the incorporation of a carbon tax on TGs emissions as 
formulated in the second objective function in Eq (14). The numerical values of control and constraints 
parameters obtained from GWO, PSO, and GWPSO, along with the respective values of our previous 
research as cited in [5], have been compiled in Table 6 for the purpose of comparison. Figure 17 depicts 
the convergence curves for the GWO, PSO, and GWPSO algorithms. The achieved minimum 
generation cost by GWPSO is 778.171 $/h, which is 2.416 $/h less than that reported in [5], and this 
difference becomes a significant amount of (2.416×24×365) 21164 $/Y. 

Table 6. Results from the simulation refer to Case 4. 

 
parameters 

Min. 
Value 

Max. 
Value 

GWO PSO GWPSO [5] 

Swing 
generator 

PTG1 (MW) 50 140 135.096 134.908 135.128 135.053 

C
on

tr
ol

 v
ar

ia
bl

es
 

PTG2 (MW) 20 80 30.566 30.156 30.106 27.630 
PWT5 (MW) 0 75 44.209 43.782 44.324 43.290 
PTG8 (MW) 10 35 10.010 10.000 10.000 10.000 
PWT11 (MW) 0 60 37.861 37.291 36.974 37.224 
PSH13 (MW) 0 50 31.331 32.761 32.574 35.845* 
V1 (p.u.) 0.95 1.10 1.10 1.10 1.10 1.099 
V2 (p.u.) 0.95 1.10 1.09 1.09 1.09 1.088 
V5 (p.u.) 0.95 1.10 1.07 1.07 1.07 1.072 
V8 (p.u.) 0.95 1.10 1.09 1.09 1.08 1.099 
V11 (p.u) 0.95 1.10 1.10 1.10 1.10 1.099 
V13 (p.u.) 0.95 1.10 30.566 1.09 1.10 1.095 

G
en

er
at

or
 r

ea
ct

iv
e 

po
w

er
s 

 

QTG1(MVAr) -20 150 -4.408 -10.837 14.154 -13.645 
QTG2(MVAr) -20 60 16.137 17.944 -20.000 22.185 
QWT5(MVAr) -30 35 20.534 24.911 35.000 25.071 
QTG8(MVAr) -15 40 40.000 40.000 40.000 40.000 
QWT11(MVAr) -25 30 20.571 19.288 19.552 20.023 
QSH13(MVAr) -20 25 20.287 21.425 25.000 19.259 

O
bj

ec
ti

ve
 

fu
nc

ti
on

s Gen. cost ($/h) - - 778.174 778.255 778.171 780.587 
Ploss (MW) - - 5.505 5.498 5.654 5.532 
Emission (t/h) - - 1.782 1.762 1.785 1.778 
V.D (p.u.) - - 0.954 1.039 0.976 0.978 

* PSP (Max) = 50MW. 
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Figure 17. Convergence curves of GWO, PSO and GWPSO algorithms for Case 4. 

5.5 Case 5: Minimizing the overall generation cost including a carbon tax applied to emissions from TGs 

In this scenario, the total generation cost has been optimized with the inclusion of both the valve 
positioning influence and a carbon tax applied to emissions from TGs, as formulated in the third 
objective function in equation 15. The numerical values of control and constraints parameters obtained 
from GWO, PSO, and GWPSO, along with the respective values of our previous research work [5], 
have been consolidated in Table 7 for the purpose of comparison. Figure 18 depicts the convergence 
patterns of the GWO, PSO, and GWPSO algorithms. The achieved minimum generation cost by 
GWPSO is 807.066 $/h, which is 2.211 $/h less than that reported in [5], and this difference becomes 
a significant amount of (2.211×24×365) 19368 $/Y. Following the implementation of a carbon tax 
(20$/ton) on emissions, a reduction of 0.847 ton/h has been observed, this becomes a significant 
amount of (0.847x24x365) 7420 ton/Y as depicted in Tables 6 and 7. 

 

Figure 18. Convergence curves of GWO, PSO and GWPSO algorithms for Case 5. 
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Table 7. Results from the simulation refer to Case 5. 

 
parameters 

Min. 
Value 

Max. 
Value 

GWO PSO GWPSO [5] 

Swing 
generator 

PTG1(MW) 50 140 124.521 123.855 124.400 123.956 

C
on

tr
ol

 v
ar

ia
bl

es
 

PTG2(MW) 20 80 33.995 34.464 33.713 33.605 
PWT5(MW) 0 75 47.210 46.492 46.761 46.226 
PTG8(MW) 10 35 10.032 39.216 10.002 10.000 
PWT11(MW) 0 60 39.427 34.385 39.326 39.033 
PSH13(MW) 0 50 33.425 1.10 34.215 35.785* 
V1(p.u.) 0.95 1.10 1.10 1.09 1.10 1.100 
V2(p.u.) 0.95 1.10 1.09 1.07 1.09 1.090 
V5(p.u.) 0.95 1.10 1.07 1.10 1.07 1.071 
V8(p.u.) 0.95 1.10 1.08 1.10 1.10 1.088 
V11(p.u) 0.95 1.10 1.10 1.09 1.10 1.100 
V13(p.u.) 0.95 1.10 1.10 34.464 1.10 1.095 

G
en

er
at

or
 r

ea
ct

iv
e 

po
w

er
s 

QTG1(MVAr) -20 150 -18.912 -10.339 -9.453 12.264 
QTG2(MVAr) -20 60 26.553 16.847 14.816 -20.000 
QWT5(MVAr) -30 35 22.547 24.578 25.090 35.000 
QTG8(MVAr) -15 40 40.000 40.000 40.000 40.000 
QWT11(MVAr) -25 30 18.938 19.103 18.786 19.916 
QSH13(MVAr) -20 25 22.302 21.124 22.102 24.979 

O
bj

ec
ti

ve
 

fu
nc

ti
on

s 

Gen. cost ($/h) - - 807.476 807.201 807.066 809.277 

Ploss (MW) - - 5.0406 5.012 5.0130 5.132 
Emission (t/h) - - 0.944 0.908 0.938 0.914 
Carbon tax - - 18.881 18.160 18.750 18.28 
V.D (p.u.) - - 1.074 1.059 1.06418 1.027 

* PSP (Max) = 50MW. 

6. Conclusions  

This study offers a green and economic approach for solving the OPF problem, combining 
conventional TGs with WTs, SP, and SHP sources by utilizing a GWPSO algorithm. The intermittent 
nature of WTs, SP, and SHP sources is modeled with Weibull, Lognormal, and Gumbel PDF, 
respectively. The total generation cost has been optimized while considering the constraints of the 
system, including equality, inequality, and line capacity constraints. The effectiveness and flexibility 
of the GWPSO algorithm have been evaluated using a test system that incorporates GRES. The 
superiority of the GWPSO algorithm has been validated through comparison with the outcomes of the 
PSO and GWO algorithms. The addition of SHP source along with WTs and SP source has been 
proven fruitful in the reduction of overall generation cost. The inclusion of a carbon tax led to a 
decrease in emissions by 7420 tons/Y, leading to a higher penetration from GRES. The main drawback 
of the suggested algorithm is its longer execution time compared to individual algorithms. The study 
focuses on addressing the IEEE 30 bus system with integrated GRES, taking static loads into account. 
However, the dynamic aspects of load and the utilization of storage batteries as a backup to manage 
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the uncertainty of GRES are designated for future research. In the future, the GWPSO algorithm will 
find effective applications in higher bus systems such as IEEE 57 and IEEE 118 bus systems 
expansions and planning studies. 
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