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Abstract: Accurate parameter estimation of extreme wind speed distribution is of great importance 

for the safe utilization and assessment of wind resources. This paper emphatically establishes a novel 

grey generalized extreme value method for parameter estimation of annual wind speed extremum 

distribution (AWSED). Considering the uncertainty and frequency characteristics of the parent wind 

speed, the generalized extreme value distribution (GEVD) is selected as the probability distribution, 

and the Weibull distribution is utilized as the first-order accumulation generating operator. Then, the 

GEVD differential equation is derived, and it is transformed into the grey GEVD model using the 

differential information principle. The least squares method is used to estimate the grey GEVD model 

parameters, and then a novel estimation method is proposed through grey parameters. A hybrid 

particle swarm optimization algorithm is used to optimize distribution parameters. The novel method 

is stable under different sample sizes according to Monte Carlo comparison simulation results, and 

the suitability for the novel method is confirmed by instance analysis in Wujiaba, Yunnan Province. 

The new method performs with high accuracy in various indicators, the hypothesis test results are 

above 95%, and the statistical errors such as MAPE and Wasserstein distance yield the lowest, which 

are 3.33% and 0.2556, respectively. 
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1. Introduction 

1.1 Background and motivation 

Extreme wind speed is of great significance in renewable energy [1] and construction 

engineering [2] fields. As a typical extreme climate, extreme wind speed has a prominent safety 

impact on wind turbines. Compared with the average wind speed, the change of extreme wind speed 

once a year will affect the life and safety performance of wind turbines more [3]. The 50-year 

maximum wind speed is one of the key indicators for unit selection and economic evaluation of wind 

farms [4]. In addition, extreme wind may also cause damage to engineering structures in civil 

engineering design. From the perspective of safety, we need to calculate the wind load in a certain 

period through the extreme wind speed [5]. With the improvement of wind power installed capacity 

and infrastructure construction, the study of extreme wind speed is particularly important. 

The annual wind speed extremum is not perfectly independent and identically distributed. It 

was originally believed to follow the extreme value type II distribution in the analysis of actual 

wind speeds [6]. In subsequent statistical analysis, there was a conclusion that it was more appropriate 

to fit the extreme wind speed using the extreme value type I distribution when the parent wind speed 

(PWS) distribution obeyed the Weibull distribution [7]. In the development of wind power projects, the 

National Wind Energy Resources Evaluation Technical Regulations [8] also employed the extreme 

value type I distribution to calculate the maximum wind speed in fifty years. However, recent studies 

have shown that the extreme value type III distribution may give the best extreme wind speed 

estimations [9,10]. Lu et al. [11] also indicate that when the PWS obeys different distributions, its 

extreme distribution converges to different extreme value types. Jenkinson [12] synthesized these 

three distributions into GEVD in 1955, and there are investigations showing that the annual wind speed 

extremum also obeys GEVD well when the wind speed varies with different timescales [13,14]. The 

GEVD is selected for estimating parameters of annual extreme wind speed in this paper. 

The main existing parameter estimation methods are Maximum Likelihood Estimation (MLE), 

Probability Weighted Moments (PWM) estimation and Maximum Product of Spacing (MPS) 

estimation. The nonlinear maximum likelihood function of MLE is usually difficult to solve, and its 

performance may be extremely erratic for small samples [3]. The PWM method is better than MLE 

(in terms of bias and mean square error) for parameter estimation in small samples, but it can only 

perform well for GEVD when the shape parameter is greater than 0 and less than 0.5 [15]. The MPS 

can be used as an alternative to the MLE in cases where the likelihood function fails to converge, but 

the MPS method has always been neglected in extreme value analysis [16]. The GEVD and limited 

sample sizes of annual wind speed extremum may restrict the use of these traditional parameter 

estimation methods in practice.  

Grey system theory [17] is introduced for incomplete information and scarce data. Compared 

with the aforementioned methods, the grey estimation method can deal with small sample problems 

well [18]. Many scholars have conducted in-depth research on the grey model based on its 

characteristics [19,20]. This paper mainly focuses on the study of the grey GEVD parameter 

estimation method and its stability under small samples, providing accurate parameter estimations for 
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annual wind speed extremum data. Next, this paper reviews the common methods of parameter 

estimation and related research status. 

1.2 Literature review 

The MLE method was proposed by Prescott and Walden [21] based on large sample theory, which 

provides inaccurate GEVD shape parameter estimation for small samples [22]. Papukdee et al. [23] 

analyzed the four-parameter kappa distribution, which is the generalized form of GEVD, and found that 

MLE with small sample sizes shows substantially poor performance in terms of a large variance. 

Cannon [24] explored rainfall extreme value estimates in Canada, and found that MLE performed the 

worst of the at-site GEVD estimations, especially for small sample sizes. Yang et al. [25] explored 

the parameter estimation of the three-parameter Weibull distribution, and concluded that the MLE 

results are insufficient in small samples. Meanwhile, Lin et al. [26] investigated the parameter 

estimation of generalized linear exponential distributions, and observed that the statistical errors of 

MLE increase as the sample size decreases in most situations. 

The PWM estimation [27] is a promotion of the common moments of probability distributions, 

and Landwehr et al. [28] investigated the characteristics of PWM estimation based on the parameters 

and quantile of the Gumbel distribution and concluded that they performed better than traditional 

moment estimation and MLE in small sample sizes. However, Lu et al. [11] proposed that the 

parameter estimation using PWM estimation for GEVD is less stable, especially for extreme value 

type II and type III. Guan et al. [29] explored the best linear unbiased estimation of the location-scale 

parameters of the Beta-Exponential distribution, and found that PWM is not suitable for estimation 

under small samples. Shakeel et al. [30] explored the estimation of a flexible power function 

distribution, and they found that PWM performs better in the case of large sample size. Mahdia and 

Ashkar [31] used PWM to estimate the two-parameter Weibull distribution parameters, and also found 

that the RMSE would rise with the decrease in sample size, regardless of whether the shape parameter 

exceeds zero. 

The MPS estimation is a new method proposed by Cheng and Amin [32], which compensates 

for the shortcomings of MLE that may fail in some cases, and it can provide better statistical 

estimators of robustness, consistency, and validity. El Gazar et al. [33] studied the statistical 

properties of the inverse power Ailamujia distribution, and found that the method of MPS gave the 

smallest MSE values followed by the MLE method in general for the majority of the cases. However, 

it is also known that the traditional numerical MPS method gives inefficient estimations when the 

sample size is less than 250 [34]. Yalçınkaya et al. [35] studied the parameter estimation of skew-

normal distribution under doubly type II censoring, and found that all DEF and MSE values of the 

MPS method increase with the reduction of sample size. Similarly, Anis et al. [36] estimated the 

parameters of the Rayleigh distribution considering seven different methods, finding that the SE of 

the MPS method kept increasing as the sample size decreased and the bias and the MSE approached 

zero with the increase in sample size. 

The current grey parameter estimation methods are mostly based on the Weibull distribution. 

Zheng et al. [37] used the GM (1,1) model to obtain parameters of the Weibull distribution, which 

applies to different sample sizes, especially for the case of small and medium samples. Zhao et al. [38] 
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organically combined the GM (1,1) model with Weibull to estimate the loss failure probability of 

chemical machinery and equipment, and found that the grey model had higher accuracy for limited 

failure data. Li [39] proposed a two-step approach for the parameter estimation of three-parameter 

Weibull distribution data combined with GM (1,1) and the MLE method, and found that the proposed 

method still performs well in small samples. Liu and Xie [40] proposed a two-stage hybrid method 

for the discrete grey Weibull model combined with the genetic algorithm, and the results showed that 

the proposed grey estimation method performs better than the modified MLE when the parameters 

and the sample size are all small. Gao et al. [41] estimated Weibull parameters by combining the grey 

model with the support vector machine. The simulation results showed that this model has obvious 

advantages in small samples, and can accurately obtain the three parameters of the Weibull 

distribution.  

These parameter estimation methods combined with the grey model showed great adaptability 

for small samples, which is appropriate for the limited sample sizes of annual wind speed extremum. 

From the perspective of the limited annual wind speed extremum, this paper mainly focuses on the 

grey parameter estimation method based on GEVD. 

1.3 Contributions 

The main contributions are presented as follows: 

1) A novel grey GEVD parameter estimation (G-GEVDPE) method is established for the small 

sample size of AWSED. The GEVD is selected considering the inaccurate parent wind speed 

distribution, and the Weibull distribution is introduced as the first-order accumulation operator 

to capture the distribution characteristic of wind.  

2) The method is demonstrated to be stable through stability analysis of the GEVD differential 

equation and disturbance analysis of the grey GEVD model. The Monte Carlo comparison 

experiments are also used in verifying the compatibility under different sample sizes for the novel 

method compared with the traditional parameter estimation method. 

3) The data set in Wujiaba, Yunnan province is used to demonstrate the validity of the G-GEVDPE 

method. The statistical errors and hypothesis testing are analyzed compared with MLE, PWM, and 

MPS, which shows the performance of parameter estimation and goodness of fitting distribution. 

The remaining part of the paper proceeds as follows: A grey GEVD model is established for the 

parameter estimation in Section 2. Section 3 proposes a novel G-GEVDPE method for AWSED. The 

simulation verification and practical application are enumerated in Section 4. Section 5 is the 

summary and conclusion of the paper. Figure 1 provides the structural representation of the entire 

paper. 
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Figure 1. Entire paper structure. 

2. The grey model for extreme wind speed 

In this section, the GEVD and the Weibull accumulation generating operator are introduced to 

construct the GEVD differential equation, then translate it into the grey GEVD model, which provides 

a theoretical basis for the grey parameter estimation method for AWSED. 

2.1. The generalized extreme value distribution 

Extracting n  extreme samples from wind speed samples with the same distribution ( )F v  in 

a period T, which n   are independent of each other and follow the same distribution, then nv  

satisfies the distribution 

 ( ) ( )
n

nP v v F v = . 

In the 1930s, Fisher and Tippett conducted a theoretical study that if n→ , the distribution 

essentially belongs to the independent and identically distributed maximum asymptotic distribution, 

which is called the GEVD. The GEVD unifies three types of extreme value distributions and can be 

represented as 
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(1 )

( )
x

TP v v e





−
− −

 = , 

where  ,  , and   are the position, scale, and shape parameters. 

This paper mainly studies the extreme wind speed over a one-year period T. The GEVD unifies 

these three distributions even when the parent distribution is ambiguous and the sample size is limited 

in accordance with the asymptotic theory. 

2.2. Weibull accumulation generating operator 

It is believed that the winds follow a Weibull distribution [7]. The Weibull distribution is 

introduced as the accumulation generating operator. Assuming ( )(0) (0) (0) (0)(1), (2), , ( )v v v v n=   is 

the original series, the first-order accumulation (1)v  can be expressed as [42] 

1

(1) (0)

1

( ) ( ), 1, 2, ,

m im

i

m i
v m e v i m n






 

−  −
− 
 

=

 −
= = 

 
 , (1) 

In particular, when 1 = , the Weibull distribution is an exponential distribution. Letting 
1

u


= , then 

Eq (1) can be simplified as 

(1) ( ) (0)

1

( ) ( )
m

u m i

i

v m ue v i− −

=

= . 

Definition 1. The first-order Weibull accumulation is 

(1) ( ) (0)

1

( ) ( )
m

u m i

i

v m ue v i− −

=

= , (2) 

where u  is the Weibull accumulation parameter, which is used to adjust the accumulation values of 

the series. Next, we explore the cumulative reduction and the stability of the reduction error of this 

operator. 

Theorem 1. The accumulative reduction of the first-order Weibull accumulation generator is 

1
(0) (1) ( ) (0)

1

1
( ) ( ) ( )

m
u m i

i

v m v m ue v i
u

−
− −

=

 
= − 

 
 . (3) 

Proof: In accordance with Eq (2), the first-order Weibull accumulation can be written as 
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We can conclude that 
(1) (1) (0)( ) ( 1) ( )uv m e v m uv m−− − = , and the accumulative reduction is 

(0) (1)

(0) (1) (0)

1
(0) (1) ( ) (0)

1

1
(1) (1)

1
(2) (2) (1)

1
( ) ( ) ( ) .

u

m
m i u

i

v v
u

v v ue v
u

v m v m ue v i
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−

−
− −

=

=

 = − 

 
= − 

 


 

Theorem 2. If (1) (1)ˆ( ) ( ) , 1,2, ,v m v m m n−  =  , then (0) (0) 1
ˆ( ) ( )

ue
v m v m

u


−+
−   , where (1)v   is 

the first-order accumulation of (0)v , (1)v̂  is the fitted value of (1)v , and (0)v̂  is the fitted value of 
(0)v . 

Proof: As demonstrated in the proof of Theorem 1, we hold that 

(1) (1)
(0) ( ) ( 1)

( )
uv m e v m

v m
u

−− −
= , (4) 

Therefore, 

( )(1) (1)(1) (1)
(0) (0)

(1) (1) (1) (1)

ˆ( 1) ( 1)ˆ( ) ( )
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e

u
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−

−

−
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Theorem 2 shows that the first-order Weibull accumulation parameter u  can not only be used 

to adjust the accumulative values of the series but also to adjust the reduction error. 

2.3. Establishment of the grey GEVD model 

According to subsection 2.1, the cumulative distribution function of GEVD is 
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1

(1 )

( )
v

F v e
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


−
− −

= . 
(5) 

Transforming Eq (5), we can obtain the inverse function of the distribution that 

( )( )( )
1

In InF v
v e






−
= − + . (6) 

Generally, the median rank is utilized to calculate the empirical distribution function of small 

samples. We can conclude from the calculation formula of some known approximate median rank [43] 

that the general expression for the median rank can be predicted as 

( )n t

t s
F v

n q

+
=

+
, (7) 

where t  is the rank of the original series, n  is the total number, tv  refers to the tth wind speed 

extremum, and p and q are the median rank parameters to be determined. Then, Eq (6) can be 

expressed as 

( )

( ) 1

t s
In In

n q
v t e






 +
− 

+ 
 
 = − +
 
 

. (8) 

Letting ( ) ( )
t s

R t In In
n q

 +
= − 

+ 
, it can be simplified in the actual study according to the annual 

wind speed extreme data, the wind data is selected from the National Environmental Information 

Centre (https://www.ncei.noaa.gov/data). The fitting results are presented in Figure 2.  

 

Figure 2. ( )R t  fitting result. 

https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive
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The specific values of   and   in ( )R t  are determined from historical wind speed data. 

The model’s regression coefficients are significant (p value is below 0.01), and the fitting accuracy is 

high ( 2R  is higher than 0.90). Therefore, the original wind speed data can be simplified as 

( )( )(0) ( ) 1
t

v t e
  




+
= − + . (9) 

According to Eq (4) about the Weibull accumulation reduction and the simplified original series 

Eq (9), then 

( )( )

( )( )

( )( )
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( 1)(1) (1)
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( 1) ( 2) 1
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  

  
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









+−

− +−

+−

− − = − +

− − − = − +

− = − +

, 

Iterating the intermediate items, we hold that 

( )( ) ( )( )

( )( ) ( )( )

( )( )

( 1)(1) 2 (1)

1
( ) ( 2)(1) 3 (1) 2

0

( )(1) (1)

0

( ) ( 2) 1 1

( ) ( 3) 1 1

( ) (0) 1
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i
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i
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v t e v t e u e e u
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u
v t e v e e u
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     

  

 
 

 

 
 

 






+ − +− −

− + − +− − −

=

− +− −

=

 
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   
− − = − + + − +   

   

 
− = − + 

 



1t−



, 

For a given starting point 
(1) (0)(0) (0)v v= , the first-order Weibull accumulation 

(1) ( )v t  can be 

solved as 

( )(1) 1 1 (0)( ) (1 ) ( )(1 ) (1 ) ( ) (0)
tu ut u ut utu

v t u e e e e e e v
    


 

+− − − − − − − −= − + − − − − + . (10) 

Facilitating Eq (10), we hold that 

( )(1) 1 1

1 2( ) ( )(1 (1 ) )(1 ) ( )(1 )
tut u ut uu

v t u c e e e c e e
    


 

+− − − − − − −= + − + − − + − , (11) 

where 1c  and 2c  are the constants. 

Substituting Eq (11) into the differential equation, we can get 
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1 2
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 
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 
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 

1( )(1 ) .ut uu e
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 
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Definition 2. The GEVD differential equation is defined as 

(1)
(1)( )

( ) utdv t
av t be c

dt

−+ = + , (12) 

where 

a = − , 1 12
1( )(1 )(1 ) (1 ) ( )u uc u

b u c e e u
 

 

− − − − − 
= + + − + − + 
 

, 1( )(1 )uc u e


 


− −= − + − . 

The annual wind speed extremum is discrete with limited uncertain information or so-called grey 

information. According to the differential information principle, the grey GEVD model can be 

constructed as follows: 

The change rate about 
(1) ( )v t  within  1,t t−  can be approximated as 

(1) (1) (1)
(0)( ) ( ) ( 1)

( )
( 1)

i t

dv i v t v t
v t

di t t
=

− −
 =

− −
. (13) 

In addition, the background values of the grey derivatives (1) ( )z m  can be replaced by the values 

on the interval according to the trapezoidal formula (1) (1) (1)1
( ) ( ) ( 1)

2
z m v m v m = + −  , and we can 

define the following grey model. 

Definition 3. Suppose ( )(0) (0) (0) (0)(1), (2), , ( )v v v v n=  is the original series and (1)v  is a first-order 

Weibull accumulation generation of (0)v , then the grey GEVD model can be expressed as 

(0) (1)( ) ( ) , 1, 2, , .umv m az m be c m n−+ = + =  (14) 

Here, a refers to the development coefficient, and b and c are control coefficients. , ,a b c  are 

grey parameters about the GEVD parameters  , and u   is the parameter for the first-order 

Weibull accumulation. 

 

 

, ,  
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3. Grey parameter estimation method 

In this section, the grey GEVD model parameters are estimated using the least squares method 

(LSM), and the G-GEVDPE method is proposed by analyzing the grey parameters. Then, the optimal 

parameter estimation is obtained by the hybrid particle swarm optimization with breeding (BreedPSO) 

algorithm combined with the optimization model. 

3.1. Estimation of the grey GEVD model 

To facilitate the calculation, this subsection treats u   as a known parameter, which can be 

calculated through an algorithm. Then, the grey parameters , ,a b c  of the grey GEVD model can be 

estimated using LSM. 

Theorem 3. Assuming  
T

P a b c= , the grey parameters satisfy that 

1ˆ ( )T TP G G G D−= , (15) 

where 

(1) 2 (0)

(1) 3 (0)

(1) (0)

(2) 1 (2)

(3) 1 (3)
,

( ) 1 ( )

u
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z e v

z e v
G D

z n e v n
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−

−

   −
   
−   = =
   
   
−   

. 

Proof: The grey GEVD model can be expressed as D GP= . The goal is to minimize 
2

D GP− . 

The error sequence is expressed as D SP = − . Let 

2
(0) (1)

2
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( ) ( )
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n
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m
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 

−

=
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Then, 
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
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=
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=


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


 = − + − − =  


 = − + − − =  







. 

We can obtain 
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( ) 0TG D GP− = , 

and therefore 

1( )T TP G G G P−= . 

In accordance with Theorem 3, the parameter sequence  
T

P a b c=  can be estimated if the 

original sequence (0)v   is known. Then, the GEVD parameters   can be estimated by 

analyzing the grey parameters , ,a b c . 

3.2. The G-GEVDPE method 

According to Definition 2, the grey parameters , ,a b c are represented by the GEVD parameters 

, and therefore the grey GEVD estimation method can be derived as follows: 

Theorem 4. The GEVD parameters  are solved as 

 

 

1

2

2

1

2

(1 )( ) (1 )
, 0

( )

(1 )( ) (1 )(1 )

( )

a u

a uu

a

c c u a ab e
c

c u u a

c c u a ab ee c

au ac u u a









−

−−


= −


 + − − −

= − 
−

 + − − −−
 = −

−

. (16) 

Proof: From the expression for the grey parameter in Definition 2, we can obtain 

1 12
1

1

( )(1 )(1 ) (1 ) ( )

( )(1 )

u u

u

a

c u
b u c e e u

c u e






 

 


 



− − − − −

− −


 = −

  

= + + − + − +  
 


= − + −



. 

Solving the system of cubic equations about , it can be shown that 

, ,  

, ,  

, ,  

, ,  
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 

 

1

2

2

1

2

(1 )( ) (1 )
, 0

( )

(1 )( ) (1 )(1 )

( )

a u

a uu

a

c c u a ab e
c

c u u a

c c u a ab ee c

au ac u u a









−

−−


= −


 + − − −

= − 
−

 + − − −−
 = −

−

. 

Theorem 4 is also called the grey GEVD parameter estimation (G-GEVDPE) method. This 

theorem establishes the estimation method through the relationship between the grey GEVD model 

and GEVD. The stability of the G-GEVDPE method under disturbance is further explored as follows: 

Definition 4. Equation (9) is said to be Hyers-Ulam stable if there exists a constant 0   for every

0    and every solution ( )t   of the inequality
0

( )
( ) , [ , ]utd t

a t be c t t T
dt


 −+ − −    , such that

(1)

0( ) ( ) , [ , ]t v t t t T −   . 

Theorem 5. The GEVD differential equation 
(1)

(1)( )
( ) utdv t

av t be c
dt

−+ = +  is Hyers-Ulam stable. 

Proof: If ( )v k  satisfies 
(1)

(1)
( )

( ) ut
dv t

av t be c
dt



 −+ − −  , which is also means that 

( )
( )ut ut

dv t
be c av t be c

dt



 − −+ −  +  + + , 

and if 
( )

( ) ( )ut
dv t

av t be c h t
dt





−+ = + + , then ( )h k  . 

The solution can be expressed as 

( )

0
( ) ( )

t
at a u t at asb c

v t e e e h s e ds C
a u a

 

− − 
= + + + − 

 , 

where C  is any constant. 

According to Eq (11), taking the initial condition that (1)(0) (0)v v = , we can get 

1(1 )uu e
C e










− − −= − − , 

The solution of the GEVD differential equation is 

( )(1) 1 1

1 2( ) ( )(1 (1 ) )(1 ) ( )(1 )
tut u ut uu

v t u c e e e c e e
    


 

+− − − − − − −= + − + − − + − . 
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Therefore, 

(1) ( ) ( )

0

0 0

( ) ( ) ( )

( )

1 .

t
at a u t at as at a u t at

t t
ak as at as

at

b c b c
v t v t e e e h s e ds C e e e const

a u a a u a

e h s e ds e e ds

e
a a

 



 

− − − −

− −

−

   
− = + + + − + +   − −   

= 

= − 



   

Letting 
1

a
 = , we then have (1)( ) ( )v t v t −  . 

Theorem 5 shows that the GEVD differential equation is Hyers-Ulam stable, which means there 

always exists a function that is infinitely close to the original model. The property proved in Theorem 

5 ensures the existence of an approximate solution of the grey GEVD model, and we can conclude 

that the novel method is also stable for the parameter estimation of AWSED according to the 

derivation process of the parameter estimation method above. 

3.3. Parameter optimization 

According to Definition 2, the GEVD parameters  of the wind speed extremum are in 

accordance with linearly fitting parameters  ,  , accumulation parameter u , and parameters 1c , 

2c . To enhance the estimation accuracy of the G-GEVDPE method, MAPE is taken as the optimal 

function, and the optimization model is constructed as follows: 

(0) (0)

1 2 (0)
2

(1) (1) (1)

(1) 2 (0)

(1) 3 (0)

(1) (0)

1

ˆ ( ) ( )1
min ( , , , , ) 100%

1 ( )

1
( ) ( ) ( 1)

2

(2) 1 (2)

(3) 1 (3)
,

. .

( ) 1 ( )

ˆ ( )

n

m

u

u

nu

T T

v m v m
MAPE u c c

n v m

z m v m v m

z e v

z e v
G D

s t

z n e v n

P G G G D

 



=

−

−

−

−

−
= 

−

 = + − 

   −
   
−   = =
   
   
−   

=



   1 1

2 2

(1 )( ) (1 ) (1 )( ) (1 )(1 )
, ,

( ) ( )

a u a uuc c u a ab e c c u a ab ea e c

c u u a au ac u u a
 

 

− −−














+ − − − + − − −− = − = = +
 − −

 (17) 

The optimization model is solved using the BreedPSO algorithm in this paper, which draws on 

the concept of hybridization in genetic algorithms. The detailed process of this algorithm can be 

illustrated with the pseudocode in Figure 3. 

 

, ,  
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Figure 3. Pseudocode of BreedPSO. 
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4. Algorithm verification and case analysis 

In this section, the properties of the proposed G-GEVDPE method are analyzed theoretically 

through disturbance analysis, and then it is verified experimentally by Monte Carlo simulation. The 

efficacy of the method is also tested by estimating AWSED in Wujiaba, Yunnan Province. 

4.1. Disturbance analysis and Monte Carlo simulation 

Lemma 1. [44] Assume n nG C   , nG C   , n nD C   , nD C   , and vector parametrization 

 is compatible with matrix parameterization . If there exists 1 1G G−    for some matrix 

parametrization   on n nC   , then the solution of the non-simultaneous linear equation Gx D=  

and ( )( )G G x x D D+  +  = +   satisfies 

x G D

x G D





   
 +  

 

, 

where 1G G −= , 1 0
G

G
 


= −  . 

Theorem 6. If 
(0) (0)ˆ ( ) ( ) , 2,3, ,v m v m m n= + =  is perturbed separately, the corresponding D and 

G will both change, and the perturbation bound for  P a b c=  can be noted as 

 
( )

1
2

( 1)

0 1

2

n m
iu i u

i

m

ue ue

L P
G D





− −
− − +

=

 
+ 

 = +
 
  
 


. (18) 

Proof: We can know from Definition 3 that 

(1) (0)

(1) (0)

2(1) (0)

( 1) ( 2) ( 3)(1) (0)

1 1
0 0 0 0 0 0(2) (1)2 2

0 0(3) (2)1 1
0 0 0

0(4) (3)2 2

0

1 1( ) ( )0 0 0 0
2 2

u

u u

n u n u n u

uz v

ue uz v

ue ue uz v

ue ue ue uz n v n

−

− −

− − − − − −

 
     
     
     
     =
     
     
         

 

 
 
 
 
 
 
 
 

 

1) Adding a perturbation   into 
(0) (2)v , then 
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( )

( )

( )

2
2

( 1) ( 2) ( 3)

( 3) ( 2)

1 1 2
0 0 0 0 0 0 02 2

0 01 1 2
0 0 0

0 02 2

20

1 1 0
0 0 0 0

2 2

2

u
u

u u
u u

n u n u n u

n u n u

u

u
u ue

ue u

z ue ue u
ue ue

ue ue ue u

ue ue










−
−

− −
− −

− − − − − −

− − − −


 
     
 +     

     
      = =

+     
     
        
 
 

+







 
 
 
 
 
 
 
 

Therefore, 

( )

( )

( )

2

( 3) ( 2)

0 0
2

0 0
2

ˆ
0 0

2

0 0
2

u

u u

n u n u

u

u ue

G G G G
ue ue

ue ue









−

− −

− − − −

 
− 

 
 − +
 
 

= +  = +
 − +
 
 
 
 
− +
  

, 

0

ˆ 0

0

D D D D

 
 
 
 = +  = +
 
 
  

, 

( )
2 3

2
( 1)

0

0 0
4

0 0 0

0 0 0

n
iu i u

i

T

ue ue

G G

 −
− − +

=

 
+ 

 
   =
 
 
  



, 
2TD D   = . 

The maximum characteristic roots are ( )
2 3

2
( 1)

04

n
iu i u

i

ue ue
 −

− − +

=

+  and 
2 , respectively, so that 

( ) ( )
3

2
( 1)

max2
02

n
T iu i u

i

G G G ue ue



−

− − +

=

 =   = + , ( )max2

TD D D  =   = , and GP D= . 

In accordance with Lemma 1, we have 

 
( )

1
2

( 1)

0 1

2

n m
iu i u

i

m

ue ue

L P
G D





− −
− − +

=

 
+ 

 = +
 
  
 


. 

2) Analogously, adding a perturbation   into 
(0) ( ), 2,3, ,v m m n= , then 
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( )

( )( 1) ( )
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u

n k u n k u

u
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u ue

ue ue
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 
 
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 
 
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D 

 
 
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 
 

 =  
 
 
 
 
 
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( )
2 1

2
( 1)

0

0 0
4

0 0 0

0 0 0

n k
iu i u

i

T

ue ue

G G

 − −
− − +

=

 
+ 

 
   =
 
 
  



, and
2TD D   = . 

The perturbation bound for its solution is 

 
( )

1
2

( 1)

0 1

2

n m
iu i u

i

m

ue ue

L P
G D





− −
− − +

=

 
+ 

 = +
 
  
 


. 

While other information is known, the larger the overall sample size, the larger the perturbation 

bound. Therefore, the G-GEVDPE method is more suitable for the smaller sample size data according 

to Theorem 6. In addition, a Monte Carlo simulation is used to verify the stability of the G-GEVDPE 

method, and the accuracy of the G-GEVDPE method can also be tested through it. 

Taking 1 = , 6 = , 12 =  as an example and generating different sizes of random original 

series that follow the GEVD, a comparative Monte Carlo simulation is designed. Each simulation is 

repeated 200 times for a given sample size N, and then the average estimated results are calculated in 

Table 1. The optimal results are highlighted in bold. All the computations in this paper are 

implemented by MATLAB 2017. 

Table 1． Monte Carlo simulation results of parameter estimation.

        MAPE RMSE Wasserstein distance 

N=10 

G-GEVDPE 0.9115 6.004 12.028 4.57% 0.0657 19.3353 

MLE 1.301 5.324 12.087 21.04% 0.5269 271.8563 

PWM 0.556 9.298 12.893 53.40% 2.436 62.9466 

MPS 0.848 7.108 12.474 18.81% 0.8589 35.4661 

Continued on next page 
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It can be seen from Table 1 that the accuracy of MLE, PWM, and MPS decreases with the 

increase of sample size, and the estimation results perform poorly in small samples, while the G-

GEVDPE method shows high accuracy in different samples specifically in small sample sizes. The 

Wasserstein distance [45] of 200 simulations is shown in Figure 4. Simulations show that the 

Wasserstein distance of traditional parameter estimation methods varies greatly in small samples, 

while the G-GEVDPE method varies moderately, which shows strong stability of the proposed 

method. The Monte Carlo simulation further demonstrates the G-GEVDPE method is stable and 

suitable for small samples, as is analyzed in Theorem 6, which is compatible with the size of the 

annual wind speed extremum completely. 

 

Figure 4. Wasserstein distances for 200 experiments with different sample sizes. 

        MAPE RMSE Wasserstein distance 

N=50 

G-GEVDPE 0.9458 6.0053 11.984 2.82% 0.0401 12.7810 

MLE 0.9679 5.833 12.085 3.35% 0.0693 9.2841 

PWM 0.709 9.123 12.478 42.57% 2.2434 34.9576 

MPS 0.768 6.514 12.177 16.62% 0.4179 35.5273 

N=100 

G-GEVDPE 0.8494 6.031 11.998 7.79% 0.1087 28.6548 

MLE 1.004 5.813 11.937 2.04% 0.1399 0.7439 

PWM 0.754 7.867 12.419 29.56% 1.3639 33.1273 

MPS 0.995 6.173 12.039 1.843% 0.1260 0.6638 
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4.2. Case analysis 

To further test the effectiveness of the method, the extreme wind speed in Wujiaba, Yunnan 

province is utilized as the case of empirical analysis in this subsection. The original monthly, seasonal, 

and annual wind speed extremum and distributions are shown in Figure 5, We can see from Figure 5 

that the change of wind speed extremum has a strong random uncertainty with time, while the 

distributions of them show obvious regularity. The annual wind speed extremum is selected for the 

parameter estimation to explore the distribution law of wind speed extreme value in this paper. The 

validity of the method is verified compared with the MLE method, the PWM estimation, and the MPS 

estimation through statistical error, Wasserstein distance, and hypothesis testing of the parameter 

distributions [46]. 

 

Figure 5. The original wind speed extremum and distributions. 

Except for mean absolute percentage error (MAPE), four other metrics are selected for statistical 

error, namely absolute percentage error (APE), root mean square error (RMSE), coefficient of 

determination (R2), and standard deviation (STD). These indicators for assessing model validity are 

presented below. The criterion of these metrics is that the smaller the value of MAPE, APE, RMSE, 

and STD, the more valid the model, and the larger the value of R2, the more accurate the model. 
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ˆ ( )
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v m v
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=
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−




, (22) 

2
(0) (0)

(0)
1

ˆ ( ) ( )1
STD MAPE

( )

n

m

v m v m

n v m
. (23) 

Table 2 shows the estimation results, and Figure 6 visualizes the fitness of the four contrastive 

methods. The results show that the G-GEVDPE method has optimal values for the MAPE metrics of 

3.33%, 3.96%, 3.34%, and 3.50%, and the RMSE metrics of 2.092, 2.883, 2.171, and 2.377 for MLE, 

PWM, and MPS, respectively. Although R2 and STD are not the best, they only differed from the 

optimal value by 0.0171 and 0.0256, respectively. Meanwhile, the correlation metrics of R2 reached 

over 95%, and STD metrics were controlled within 10%, showing strong correlation and high 

accuracy, which also indicated that the annual extreme wind speed in the region obeyed the GEVD. 

The Wasserstein distance of 0.2556, 0.3522, 0.2652, and 0.2904 for these parameter estimations also 

indicate that the G-GEVDPE method has the best advantage in parameter estimation. 

Table 2. Parameter estimation and comparative indicator results. 

Methods of 

estimation 
      MAPE RMSE 2R  STD 

Wasserstein 

distance 

G-GEVDPE 0.03134 2.2863 10.801 3.33% 2.092 0.95287 7.63% 0.2556 

MLE 0.2685 2.7701 10.954 3.96% 2.883 0.96726 5.07% 0.3522 

PWM 0.1357 2.5272 10.789 3.34% 2.171 0.96889 6.27% 0.2652 

MPS 0.2007 2.6328 10.8703 3.50% 2.377 0.96995 5.71% 0.2904 
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Figure 6. Comparison of four parameter estimation results and indicators. 

The original and the estimated extreme wind speed distribution are displayed in Figure 7. The 

MAPE, RMSE, and STD are shown in the right side of the figure, and the scatter plots of four different 

methods are shown in the bottom. The G-GEVDPE method shows a competitive result among the 

four estimation methods. 

 

Figure 7. Fitting performance of four parameter estimation models. 
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Hypothesis testing is performed to test the significance of the four different parameter estimation 

methods using the K-S test [47], the 
2  test [48], and the PPCC test [49]. The hypothesis testing 

results are shown in Table 3. 

Table 3. Hypothesis testing results. 

Methods of estimation 

K-S (Kolmogorov-Smirnov) test 
2 test 

PPCC test 

p k h p s h 

G-GEVDPE 0.99536 0.0488 0 0.99643 0.3571 0 0.97799 

MLE 0.23863 0.1244 0 0.44889 3.6947 0 0.98427 

PWM 0.80114 0.0769 0 0.92092 1.4307 0 0.98514 

MPS 0.50463 0.0991 0 0.77567 2.5055 0 0.98596 

p is the probability that the original hypothesis holds. k and s are the test statistics of the K-S test 

and the 
2   test, respectively. h is the test result: 0 indicates that the original data follows the 

estimated distribution whereas 1 indicates it does not. As is shown in Table 3, these four methods all 

passed the K-S test and 
2   test at 5% significance. The G-GEVDPE method shows the highest 

significance for accepting the original hypothesis, which means the distribution estimated by the G-

GEVDPE method is closest to the AWSED. The PPCC test results also show a strong correlation at 

coefficients that all the significance of the PPCC test reach above 95% (the maximum is 1), further 

confirming that the AWSED obeys the GEVD and the G-GEVDPE method has higher accuracy than 

other methods. 

5. Conclusions 

Wind energy is subject to fluctuations in wind speed and has great randomness, intermittency, 

and uncontrollability. Therefore, it is essential to select an appropriate wind speed extremum 

probability distribution model and estimate distributional parameters accurately for the rational 

utilization of clean wind resources. This paper focuses on establishing the AWSED model and the 

estimation algorithm of model parameters. The analysis leads to the following conclusions: 

1) A novel G-GEVDPE method for AWSED is proposed through the GEVD differential 

equation and the grey GEVD model. The GEVD is selected considering the uncertainty of the PWS 

distribution, and the first-order Weibull accumulation operator is used to capture the characteristics 

of wind distribution. The GEVD differential equation is then established and transformed into the 

grey GEVD model. The G-GEVDPE method is specially designed for the uncertainty and distribution 

characteristics of short-term wind speed data. 

2) The G-GEVDPE method is stable in parameter estimation and it is adaptive to the size 

characteristic of short-term wind speed data. The stability of the G-GEVDPE method is demonstrated 

through stability analysis of the GEVD differential equation and perturbation bound of the grey 

GEVD model. The Monte Carlo simulation was designed to further verify that it is compatible under 
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different sample sizes and it is suitable for the novel G-GEVDPE method to estimate the GEVD for 

annual wind speed extremum data. 

3) The G-GEVDPE method still performs with high accuracy in the application of Wujiaba 

compared with MLE, PWM, and MPS. The statistical errors and hypothesis testing results show that 

it is reasonable to select the GEVD in estimating AWSED, and the G-GEVDPE method has a strong 

advantage over traditional methods. The novel G-GEVDPE method proposed in this paper provides 

an effective way of estimating the extreme value distribution for short-term wind speed data. 

Although the G-GEVDPE method is adaptive to the characteristics of annual wind speed 

extremum and has strong theoretical significance, the application of the novel method requires further 

discussion. 

1) The safety of wind power projects and the design of engineering structures are also closely 

related to the wind direction. With the improvement of wind speed measurement and recording tools, 

the techniques used to measure and record wind speed and direction are becoming increasingly 

advanced, resulting in a more comprehensive set of data for wind resource estimation. In subsequent 

work, it will be necessary to analyze extreme wind in combination with direction. 

2) The novel method is applied to the parameter estimation of AWSED in this paper. It is 

suitable to describe extreme wind speed with the GEVD; meanwhile, it can also be applied to other 

extreme events, such as floods and earthquakes. The occurrence of these events has a certain 

complexity, and the reliability of estimating their distribution using the GEVD needs to be further 

studied. A more scientific parameter estimation method should be conducted by considering the 

description of mixed and multivariate extreme distributions to extreme events in subsequent work. 
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