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Abstract: In the present paper, we construct a set of multiscale orthonormal basis based on Legendre
polynomials. Using this orthonormal basis, a new algorithm is designed for solving the second-order
boundary value problems. This algorithm is to find numerical solution by seeking e-approximate
solution. Moreover, we prove that the order of convergence depends on the boundedness of u(x). In
addition, third numerical examples are provided to validate the efciency and accuracy of the proposed
method. Numerical results reveal that the present method yields extremely accurate approximation to
the exact solution. Meanwhile, compared with the other algorithms, the results obtained demonstrate
that our algorithm is remarkably effective and convenient.
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1. Introduction

The boundary value problems (BVPs) for differential equations have important applications in
space science and engineering technology. A large number of mathematical models in the fields of
engineering, astronomy, mechanics, economics, etc, are often described by differential BVPs [1-3].
Except for a few special types, the exact solution of the BVPs is difficult to express in analytical form.
It is especially important to find an approximate solution to obtain its numerical solution. In [4], Sinc
collocation method provided an exponential convergence rate for two-point BVPs. [5] constructed a
simple collocation method by the Haar wavelets for the numerical solution of linear and nonlinear
second-order BVPs with periodic boundary conditions. Erge [6] studied the quadratic/linear rational
spline collocation method for linear BVPs. In [7], based on B-spline wavelets, the numerical solutions
of nonlinear BVPs were derived. Pradip et al. used B-spline to Bratuis problem which is an important
nonlinear BVPs in [8-10]. [11-16] solved BVPs by the reproducing kernel method. Based on the idea
of least squares, Xu et al. [17-19] gave an effective algorithm in reproducing kernel space for solving
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fractional differential integral equations and interface problems.

It is a common technique to use orthogonal polynomials to solve differential equations. In [20-23],
the authors used Chebyshev-Galerkin scheme for the time-fractional diffusion equation. In [24], the
authors developed Jacobi rational operational approach for time-fractional sub-diffusion equation on
a semi-infinite domain. [25-28] developed multiscale orthonormal basis to solve BVPs with various
boundary conditions, and the stability and convergence order were also discussed. Legendre wavelet
is widely used in various fields, such as signal system, because of its good properties. In this paper, a
multiscale function is constructed by using Legendre polynomials to solve the approximate solution of
differential equations. We use the multiscale fine ability of Legendre wavelet to construct multiwavelet,
which has better approximation than single wavelet. In addition, we improve Legendre wavelet for
specific problems, and the improved one still has compact support. We know that for functions with
compact support, the better the tight support, the more concentrated the energy. Moreover, in the
calculation process, the calculation speed can be enhanced, and the error accumulation is low.

The purpose of this paper is to construct a set of multiscale orthonormal basis with compact support
based on Legendre wavelet to find the approximate solution of the boundary value problems:

u’(x) + p(0u' (x) + g(xu(x) = F(x,u), x€(0,1),
au(0) + biu(l) + i/ (0) + dij’' (1) = ay, (1.1)
au(0) + bou(1) + cou’' (0) + dou’ (1) = s,

where p(x) and g(x) are both smooth. a;,b;,c;,d;, i = 1,2 are constants. When F is just about the
function of x, F(x,u) = f(x), Eq (1.1) is linear boundary value problem. According to [21], the
nonlinear boundary value problem can be transformed into a linear boundary value problem by using
Quasi-Newton method. So this paper mainly studies the case of F(x,u) = f(x), that is, the linear
boundary value problem.

As we all know, if the basis function has good properties, the approximate solution of the boundary
value problem has good convergence, stability and so on. In [25], the orthonormal basis on [0,1] was
constructed by the compact support function to obtain the numerical solution of the boundary value
problem. But the basis function is not compactly supported at [0,1], and the approximating solution
is linearly convergent. In this paper, based on the idea of wavelet, a set of orthonormal bases with
compact support is constructed by using Legendre polynomials, and the approximate solution of the
boundary value problem is obtained by using these bases. Based on the constructed orthonormal basis,
the proposed algorithm has convergence and stability, and the convergence order of the algorithm is
more than 2 orders.

The purpose of this work is to deduce the numerical solutions of Eq (1.1). In Section 2, using
wavelet theory, a set of multiscale orthonormal basis is presented by Legendre polynomials in W3[0, 1].
The constructed basis is compactly supported. It is well known that the compact support performance
generates sparse matrices during calculation, thus improving the convergence rate . The numerical
method of g-approximate solution is presented in Section 3. And Section 4 proves the convergence
order of e-approximate solution and stability. In Section 5, the proposed algorithm has been applied to
some numerical experiments. Finally, we end with some conclusions in Section 6.
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2. Basis functions in W;[0, 1]

Wu and Lin introduced the reproducing kernel space Wé [0,1] and Wg [0, 1] [29]. Let
W3[0, 1] = {ulu(0) = u'(0) = u”(0) = 0, u € W5[0, 1]}.

Clearly, W3[0, 1] is the closed subspace of W3[0, 1].
Legendre polynomials are mathematically important functions. This section constructs the
orthonormal basis in W;[0, 1] by Legendre polynomials. Legendre polynomials are known to be

orthogonal on L?[-1, 1]. For convenience, we first compress Legendre’s polynomials to [0, 1], and get
the following four functions:

o (x) =1 ©'(x) = V3(-1+2x);
@) = V5(1 —6x+6x%); @3 (x) = V(=1 + 12x — 30x> + 20x°).

By translating and weighting the above four functions, we can construct

3
W) = > (' 2x) + b @x = 1), 1=0,1,2,3. 2.1)

Jj=0

In application, we hope //(x) has good properties, for example, as many coefficients as zero and
orthogonality, so /(x) needs to meet the following conditions

1
f xjwl(x)dx = Oa ] = Oa 19 2’ T, l + 35 (22)
0
1 . "
f VW Wdx = 85, iy j=0,1,2,3. (2.3)
0
The coeflicients a,;, b;; can be get by Eqs (2.2) and (2.3), immediately W' (x) is as follows:
15 ( =3 +56x — 216x> + 224x° xe[0,1]
0 _ -~ b) b 2 b
V=N { 61 — 296x + 456x7 — 2247, x €[z 1. .
1 =11+ 270x — 1320x% + 1680x° x€[0,4]
1 _ = 9 > 21>
Yr(x) = V721 { —619 + 2670x — 3720x> + 1680x°, x €[4, 1]. -
35 ( =1+ 30x — 17422 + 25613 x €[0,1]
2 _ o ) > 21>
V) =17 { 111 — 450x + 594x — 25627, x €[5, 1] 20
[5 ( 1-36x+246x% — 420x° x€[0,1]
3 — =~ 9 s 21>
v (x) 21 { 209 — 804x + 1014x2 — 420, xel[L1]. @.7)

Through the ideas of the wavelet, scale transformation of the functions ¢/(x) gets Legendre wavelet
Yhx) =27y 2x—k), 1=0,1,2,3; i=1,2,---; k=0,1,---,27" — 1.
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Clearly, ¢/}, (x) has compactly support in [55, 551 Let

W; = span{y! ()Y g, i=1,2,---; k=0,1,---,27" —1.

Then,
200,11 = Vo (P W
i=1
where
Vo = {¢"(x), ¢! (1), *(1), ¢’ (1)},
According to the above analysis, we can get the following theorem.

Theorem 2.1.

10,2 = {€°(x), 0" (), @7 (%), @ (0), Y0 (1), Y1 (), Y (0), Ui (), - -+ s (), Y (), W3 (), Y (), - -+ )
is the orthonormal basis in L*[0, 1].

Now we generate the orthonormal basis in WZS’O[O, 1] from the basis in L*[0, 1]. Note

1 X
Ju(x) = 3 f (x — ) *u(t)dt. (2.8)
0
Theorem 2.2. {J°p j(x)};‘;l is the orthonormal basis in WS’O[O, 1].

Proof. Only need to prove completeness and orthogonality. For u € WS’O[O, 1], if

3
<u,Jtp; >w3, = 0,

[Se]

you can deduce u = 0, then {J°p j(x)}j:1 are complete. In fact,

1
<u, J3pj >W§0:< l/t”',pj >2= f u"'pjdx =0. (2.9)
’ 0

From Theorem 2.1, ¥’ = 0. Due tou € W23,o[0’ 1], u(0) = u’(0) = u”(0) = 0, then, u = 0.
According to Theorem 2.1 and Eq (2.9), orthonormal is obvious. O

Because of W3[0, 1] ¢ W3[0, 1] and three more conditions for W3[0, 1] than W3[0, 1]. So the
orthonormal basis for W23 [0, 1] as follows:

Theorem 2.3.

X2

(Vg0 = {15, S UL/ pi(0)3

are the orthonormal basis in W23 [0, 1].
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3. A multiscale algorithm for Eq (1.1)

Put L: W3[0, 1] — L*[0, 1],
Lu = u"(x) + p(x)u'(x) + g(x)u(x).
L is a linear bounded operator in [27]. Let B;: W23 [0,1] - R, and
Biu = au(0) + bju(1) + c;’ (0) + di’ (1), i=1,2.

The Quasi-Newton method is used to transform Eq (1.1) into a linear boundary value problem, and
its operator equation is as follows:

Bll/t =, szl = 7.

{ Lu = fx), 3.1)

Definition 3.1. u® is named e-approximate solution for Eq (3.1), Ve > 0, if
2
ILu® = I3, + > (B = a)? < &2,
i=1

In [27], it is shown that e-approximate solution for Eq (3.1) exists by the following theorem.

Theorem 3.1. Equation (3.1) exists e-approximate solution

n

THOEIRACE

k=1

where n is a natural number determined by &, and c} satisfies

n 2 n n 2 n
| ) Ll g = Lulffy + ) (3 i g~ By’ = min{ll ) euLS g — Lully, + » () cul’gi = Buoy).
k=1 =

=1 k=1 =1 k=1

To seek the e-approximate solution, we just need c;. Let G be quadratic form about

c = (Cla e ’Cn)Ta
n 2 n
Gler, -+ e =11 ) el Pgi— Lully + Y () cul’gi — Buy’, (3.2)
k=1 =1 k=1
From Theorem 3.1,
¢ =(c, )
is the minimum point of G(cy, - - - , ¢,). If L is reversible, the minimum point of G exists and is unique.
In fact, the partial derivative of G(cy,- - , ¢,) with respect to c;:
aG n 2 n
o =2 elLl g LIg ) = ALP g Ly +2 ) () gl g = g Bu)
J k=1 =1 k=1
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Let
iG(q ) =0
e T
SO
n n 2
> alLPg LIPghe +2 ) el gl’g; = (LI gj Luyz + " Pg;Bu. (3.3)

k=1 k=1 =1

Let A, be the n-order matrix and b,, be the n-dimensional vector, i.e.,

Ay = ((LPgoLPgpp +2 gl )

nxn

2
b, = ( (LPg, Luyj2 + J3ng,u ) .
=1

n

Then Eq (3.3) changes to
A,c=b,. (3.4

If L is invertible, Eq (3.4) has only one solution ¢*, and ¢* is minimum point of G. Equation (3.4)
has an unique solution is proved as follows.

Theorem 3.2. If L is invertible, Eq (3.3) has only one solution.

Proof. The homogeneous linear equation of Eq (3.4) is

n

Z cilL g, LJ3gj)Lz +2 Z CkJ3ng3gj =0.
k=1 k=1

Just prove that the above equation has an unique solution. Let ¢;(j = 1,2, -+, n) multiply to both sides
of the equation, and add all equations together so that

n

<i CkLJ3gk, i CjLJ3gj>L2 +2 i CkJ3gk Z CjJ3gj =0.
k=1

J=1 k=1 j=1

That is
1) el Pgille +20) ) cil’g0?* = 0.
k=1 k=1
Clearly,
1D alPgdl =0, (O el’g)? =0.
k=1 k=1
Because J3g; is orthonormal basis, if L is invertible, ¢, = 0. So Eq (3.3) has only one solution. O

4. Analysis of convergence and stability

Convergence and stability are important properties of algorithms. This section deals with the
convergence and stability.
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4.1. Analysis of convergence

In order to discuss the convergence, Theorem 4.1 is given as follows:

Theorem 4.1. J3 fk(x) is compactly supported in [zi—’f,, ’2”—,} .

Proof. When

k
x < F, J3lﬂfk(X) =0

When x > ’;,.*—_}, because of /! (x) with compact support, then,

k+1

Py (x) = %j;x(x — 0’Yy(ndr = %f:l (x — ) (Ddt

2i—1

k+1
i—1

=27 f T = 0 - k)d

2i-1

- 1 . i
=277 f (s=27x - kY (s)ds, s=2""1-k.
0

According to Eq (2.2), J*y/}, (x) = 0. So J*y, (x) has compactly support in [55, 55].

Note
(PYi () = Ty, (Pyi(x) = ' ().

By referring to the proof of Theorem 4.1, J'y/, (x) and J2y/, (x) are compactly supported in [557, 5],

The order of convergence will proceed below. Assume

2 i 3 o 2711 3
u) =y et ) AP+ Y 3 Y ()
= A= i=1 k=0 1=0
where
x/
cj =< u, — >ys, dj =<u,@’(x) >y
J!
and
c(l,z =< u, J%ﬁik(x) >3
And
2 o 3 . n 2-1-1 3
W= Y e e Y arew Y Y S ()
= S i=1 k=0 =0

(4.1)

k+1

4.2)

Theorem 4.2. Assume u’(x) is the e-approximate solution of Eq (3.1). If u™(x) is bounded in [0, 1],

meN,3 <m<7, then,
|u(x) — uf(x)| < 272" M,

here M is a constant.

AIMS Mathematics Volume 9, Issue 3, 5810-5826.



5817

Proof. From Definition 3.1 and Theorem 3.1, we get

Ju(x) = (0] < Mollu = upllys < MollL™ LG — )2
< MollL™"I(IL G = up)liz + 1B1(u = wp)l + [Ba(u — u)))
< MolIL™"I(ILGut = up)llzz + 1B (e = )| + 1Bo(u = )

Obviously,
IB1(u — up)ll =0, |[[Ba(u—u,)|| =0

That is

1
) — w50l < MollL™ ML Gs = )z < MollZ I f (L(u = u,))*dx)?
0
< MollL™ (I max (1L = )}

-1
< ML 1My max (e — ) W =), = i)

where
M, = max {1, Ip(x)l,lg()}
x€[0,1]
We know
o 211 3 o 2711 3
-l =1 > > Py < Y Z| APAE!
i=n+1 k=0 [=0 i=n+1 k=0

By the compactly support of JPy!, (x), p = 1,2,3, fixed i, then J?¢/,(x) # 0 only in [55, &

2:19211
00 3
[ 3
U~ ] < ZZ SRITANE!
i=n+1 =0

Similarly,
3
u —u| < ZZ ||J2 ,k(X)|
i=n+1 [=0
and
" - Z Z|c“>||J Y.
i=n+1 [=0

Through J'y! ,(x), J2¢!,(x) and J*y!, (x), you can get

lu(x) = s (0)l < 3MoMIL™ llu” = u)|.

n

As [u’ —ul, |C(l)| and |J'y! (x)| will be discussed below. We can get that |c(l)| is related to u"(x).
In fact,

el =1 < u, P () >y | = | f W (W, (x)dx| = | f " (X! (x)dx]. (4.3)

AIMS Mathematics Volume 9, Issue 3, 5810-5826.
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Taylor’s expansion of u”(x) at 5 is

m=1 ()¢ _k_ m
. u (21'—1) k -3 ut )(5) k ns k k+1
Equation (4.3) is changed to
kL (mel () _k (m)
) 271 u (21—1) k j-3 u (é:) k m=3 l
Y= - —) - = L (x0)d
lci il fz"l [,-:3 G- (x=sp) (m_3)!(x o) |Yir(xdx
C UG k 2T U (E) k
_ 2T _ j-3.,1 _ m=3y,,1
- ]Z; T R R f i T ) W
=3 9i—1 2i=1

where

k+1 k+1

= k . i- = k . . i1y —3-2j)(i- ro
[ gt =2% [T - 5w x - bay S 05 [yl
k k 0

According to Eq (2.2),
m—1 u(j)(ZLl) zkltl] k. L
i— - — J= d d — 0,
; (-3 e (x 21—1) Yy (x)dx
SO
k-tl (m)
M _ T y"(€) ~ ks
ial = fk (m—3)!(x 2i—1) i (x)dx
2=
< | LI K mdil (old
- |m=3)! e * 2i-1 ¥ (X)ldx
u™(€) . T
< —-(m-3)(i-1) I
~(m=3)! 2 ka I 1 (0l x
2i=1
< u(m)(f) 2—(m—3)(i—1)2_%.
= |(m=3)!
Because u™(x) is bounded,
")
|(m—3)!| < Ms,
then,
2m-5)(i—1
|C§l;)(| < 2_%1\43. )

By the compactly support of J lwfk(x),

k+1

Ulwf”‘(x)lz‘f ‘”ik(”d"ﬁ f Wl old <27
0 k

2i—1
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According to the above analysis,

[ee)
_@m=5)i-D) __ (=) o
W) < Y AMETT T =AM

i=n+1

That is
lu(x) — u;(x)| < 2-m=2npp

where M is a constant. O

4.2. Analysis of stability

Stability analysis is conducted below. According to the third section, the stability of the algorithm
is related to the stability of Eq (3.4). By the following Property 4.1, the stability of the algorithm can
be discussed by the number of conditions of the matrix A.

Property 4.1. If the matrix A is symmetric and reversible, then

/lmax
cond(A) =

b

min
where Ay and Ay, are the largest and smallest eigenvalues of A respectively.

In this paper,
A, =(ay) =((LPgLP gy +2 g%, )

nxn
Clearly, A, is symmetric. From Theorem 3.2, A, is reversible. In order to discuss the stability of the
algorithm, only the eigenvalues of matrix A, need to be discussed.

Theorem 4.3. Assume u € WS and ||u||W§ = 1. If L is an invertible differential operator, then,

I Lutl| 2 >

L=
Proof. Since L is an invertible, assume Lu = v, then u = L~'v. Moreover

1= llullys = 1L Vllys < L7V
2 2

Then,
1
Vllz2 = Sk
That is,
i > —
ullp2 > .
T
O
Theorem 4.4. Let A be the eigenvalues of matrix A of Eq (3.4), x = (x1,+ -+, x,)" is related eigenvalue
of A and ||x|| = 1, then,
A <L +2.
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Proof. By Ax = Ax,

n

Ax; = Zaijxj = ((LJ3g,-, LJ3gj>L2 + 2J3giJ3gj)Xj

J=1 J=1

N

n

=(LPgi, Y xLPgp +2Pg Y (Pgix), i=1---,n. 4.5)

=1 =1

Let x; multiply to both sides of Eq (4.5), and then add the equations from j = 1 to j = n together so
that

n

=23 = () xLPg. Y xLPge +2 Y (FPgm) Y (FPg;x)
i=1 i=1 Jj=1

J=1

=|| Z xiLJ3gi||iz +2( Z(J3gixi))2 (4.6)
i=1 i=1
<ILIP Y 2 +2) 2
i=1 i=1
= (ILIP + 2kl

Since
x|l =1, A<|ILIP+2.

From Theorem 4.3 and Eq (4.6), we can get

n n 1
Az || st Pl = L Pl 2
i=1

i=1
Then,
/lmax
/lmin

ILIP +2
<
=T
1T

cond(A) = | = (ILIP + 2Ll

That is the condition number of A is bounded, so the presented method is stable.
5. Numerical examples

This section discusses numerical examples to reveal the accuracy of the proposed algorithm.
Examples 5.1 and 5.3 are linear and nonlinear BVPs respectively. Example 5.2 shows that our method
also applies to Eq (1.1) with other linear boundary value conditions. In this paper, N is the number of

bases, and
N=7+4«2"-1), n=1,2,---.

en(x) is the absolute errors. C.R. and cond represent the convergence order and the condition number
respectively. For convenience, we denote

en(x) = [u(x) — uy(x)|

AIMS Mathematics Volume 9, Issue 3, 5810-5826.
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and
C'R’ — 10g2 M.
max |ey.1(x)|

Example 5.1. Consider the test problem suggested in [28, 30]

uw =u +2u+4x-2¢*, x€(0,1),
u0) =2, u(l)y=e—-1,

where the exact solution is u(x) = e¢* — 2x + 1. The numerical results are shown in Table 1. It is clear
from Table 1 that the present method produces a converging solution for different values. In addition,
the results of the proposed algorithm in Table 1 are compared with those in [28, 30]. Obviously, the
proposed algorithm is better. Table 2 shows en(x), C.R., cond and CPU time. The unit of CPU time is
second, expressed as s.

Table 1. ey(x) of Example 5.1.

x en(x) of [30] eg6(x) of [28] e3s(x) e67(x)

0 0 5.67e-9 9.94e-14 8.88e-16
0.1 1.19e-5 3.35e-9 2.04e-13 2.22e-16
0.2 4.18e-5 3.93e-10 2.16e-13 1.55e-15
0.3 4.96e-5 1.33e-9 1.42e-13 8.88e-16
0.4 6.04e-5 1.40e-9 1.68e-14 1.33e-15
0.5 6.33e-5 1.82e-9 1.82e-13 4.44e-16
0.6 6.23e-5 5.96e-9 1.52e-13 2.66e-15
0.7 5.76e-5 1.14e-8 1.66e-13 8.88e-16
0.8 4.23e-5 1.52e-8 4.36e-13 4.44e-15
0.9 2.15e-5 1.66e-8 4.93e-13 4.44e-16
1.0 0 1.90e-8 2.67e-13 4.44e-15

Table 2. ey(x), C.R. and cond of Example 5.1.

n N max ey(x) C.R. cond CPU(s)
1 11 1.66e-8 274.262 2.57

2 19 6.85¢e-11 7.92 274.262 7.89

3 35 6.55e-13 6.71 274.262 24.42
4 67 7.93e-15 6.40 274.262 82.73

Example 5.2. Consider the problem suggested in [25,28].

u' +u +xu=f(x), xe(0,1),
u0)=2, u(l)+ u(%) = sin% +sin 1.

The exact solution is u(x) = sin x, and f(x) = cos x—sin x+ x sin x. This problem is the boundary value
problem with the multipoint boundary value conditions. Table 3 shows maximum absolute error ME,,
C.R. and cond., which compared with the other algorithms, the results obtained demonstrate that our
algorithm is remarkably effective. The numerical errors are provided in Figures 1 and 2, also show a
good accuracy.
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Table 3. ME,, C.R. and cond of Example 5.2.

The present method [25] [28]

n ME, C.R. cond n ME, CR. cond n ME, CR. cond
11 3.73e-9 195.05 10 6.34e-6 3.96 182.06 11 1.88e-4
19 297e-11 6.97 195.05 18 4.04e-7 398 182.06 19 5995 1.65 1.49x10°
35 2.13e-13  7.12  195.05 34 2.54e-8 4.06 182.06 35 1.84e-5 1.70 3.74x108
67 2.77e-15 6.27 195.05 66 1.59¢e-9 3.95 182.06 67 4.62¢-6 199 8.87x10'

25210712

2.x10712 ¢

15x10715 §

1.x10°13

5.x 10718 H

02 0.4 05 02 10
Figure 1. ey(x) of Example 5.3 (n=35).

2.x10713} ﬂ

15x10°1

11073 ¢

5.x10°1

02 04 05 03 10
Figure 2. ey(x) of Example 5.3 (n=67).
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Example 5.3. Consider a nonlinear problem suggested in [7,9]

u' +e* =0, xe(0,1)
u(0) =0,u(l) =0,

where

u(x) = —2In(cosh((x — %)(0/2))/ cosh(6/4)),

and 0 satisfies
6 — V2Acosh(6/4) = 0.

This is the second-order nonlinear Bratu problem. Bratu equation is widely used in engineering fields,
such as spark discharge, semiconductor manufacturing, etc. In the field of physics, the Bratu equation
is used to describe the physical properties of microcrystalline silica gel solar energy. In the biological
field, the Bratu equation is used to describe the kinetic model of some biochemical reactions in living
organisms. To this problem, taking uy(x) = x(1 — x), k = 3, where k is the number of iterations of the
algorithm mentioned in [27]. when A = 1,1 = 2, ey(x) are listed in Tables 4 and 5, respectively.

Table 4. ey(x) of Example 5.3 (1 =1).

x en(x) of [8] en(x) of [9] en(x)

0 0 0 4.4959¢ — 11
0.2 1.4958¢ - 9 2.4390e — 5 4.1096e — 11
0.4 2.7218¢ -9 4.2096¢ — 5 7.1502¢ — 12
0.6 2.7218¢ -9 4.2096e — 5 7.1483¢ — 12
0.8 1.4958¢ -9 2.4390e — 5 4.1104e — 11

Table 5. ey(x) of Example 5.3 (1 = 2).

x en(x) of [7] en(x) of [9] en(x)

0 5.8988e — 26 0 1.1801e — 12
0.2 1.3070e — 7 6.9297e - 5 2.5646¢ — 10
04 1.4681e -7 1.0775¢ - 4 1.6666¢ — 9
0.6 1.4681e -7 1.0775¢ — 4 1.6666¢ — 9
0.8 1.3070e — 7 6.9297¢ -5 2.5646¢ — 10

6. Conclusions

In this paper, based on Legendre’s polynomials, we construct orthonormal basis in L?[0, 1] and
W3[0, 1], respectively. It proves that this group of bases is orthonormal and compactly supported.
According to the orthogonality of the basis, we present an algorithm to obtain the approximate solution
of the boundary value problems. Using the compact support of the basis, we prove that the convergence
order of the presented method related to the boundedness of #™(x). Finally, three numerical examples
show that the absolute error and convergence order of the algorithm are better than other methods.
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