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Abstract: Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear
system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE
(QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This
brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural
network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-
varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order
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ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower
iterative techniques. As a result, a novel HZNN model, called HZ-QNARE, is presented for solving
the TQNARE. The model functions fairly well, as demonstrated by two simulation tests. Additionally,
the results demonstrated that, while both approaches function remarkably well, the HZNN architecture
works better than the ZNN architecture.

Keywords: zeroing neural networks; nonsymmetric algebraic Riccati equations; quaternions;
dynamical system
Mathematics Subject Classification: 65F20, 68T05

1. Introduction

Since Kalman demonstrated how common algebraic Riccati equations (ARE) are in the theory of
filtering and optimal control [1], AREs have drawn a great deal of interest in applied mathematics and
a variety of engineering tasks. Among these topics are wheeled inverted pendulums [2], multi-agent
linear systems [3], and managing wind generators [4]. The linear-quadratic regulator [5], Kalman
filtering [6], linear-quadratic-Gaussian and H2/H∞ control [7,8], coprime and spectral factorizations [9,
10] all depend on ARE. Furthermore, several issues like losing controllability and numerical precision
in direct and iterative methods are resolved through closed-form solutions of ARE [11]. In this paper,
taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying
QNARE (TQNARE) is introduced and solved.

Recently, there has been a greater focus in the study of dynamic topics using time-varying
quaternion matrices (TQM). These include the constrained TQM least-squares problem [12], the
inversion of TQM [13], and the pseudoinversion of TQM [14]. Moreover, practical applications
of TQMs contain synchronization of chaotic systems [15], kinematic control of redundant
manipulators [16], mobile manipulator control [17], and tracking acoustic sources [18]. All of these
research topics have one thing in common: they use the zeroing neural network (ZNN) approach
to determine the appropriate response. Remarkably, Zhang et al. presented the ZNN approach
in [19] for real-time handling of time-varying problems. Particularly, ZNNs are recurrent neural
networks with remarkable parallel processing performance. Among its applications are dynamical
systems for computing the time-varying Moore-Penrose inverse [20, 21]. Linear/nonlinear equations
systems [22–26], quadratic/linear programming [27–29], and generalized inversion [30,31] are among
the issues that they are presently employed for.

In 1843, Hamilton [32] made the first proposal regarding quaternions. They are very important in
many fields, including mathematical physics [33], computer modeling [34], quantum mechanics [35],
navigation [36], electromagnetism [37], and robotics [38, 39], because they are useful in computations
associated with 3-dimensional rotations in applied and theoretical mathematics [40]. Keep in mind that
quaternions are an extension of complex numbers into a non-commutative number system. Let

H = {β1 + β2ı + β3  + β4k | ı2 = 2 = k2 = ı k = −1, β1, β2, β3, β4 ∈ R}

be the quaternions set and Hm×n be the set of m× n matrices on H [41]. In this work, a recurrent neural
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network, named high-order ZNN (HZNN), is used to solve the next TQNARE:

D̃(t)X̃(t) + X̃(t)Ã(t) − X̃(t)B̃(t)X̃(t) + C̃(t) = 0m×n, (1.1)

where D̃(t) ∈ Hm×m, Ã(t) ∈ Hn×n, B̃(t) ∈ Hn×m, C̃(t) ∈ Hm×n are the block coefficients, X̃(t) ∈ Hm×n

is the unknown matrix to be obtained, and 0m×n represents a zero m × n matrix. It is significant
to mention that (1.1) is in its standard form without assumption on the symmetry of the coefficient
matrices, as indicated by the incorrect use of the word “nonsymmetric”. The all ones and all zeros u×1
matrices, respectively, will be denoted by 1u and 0u, while the identity u × u matrix will be denoted by
Iu throughout this work. Additionally, ⊗ and � will denote the Kronecker and Hadamard products,
respectively, and vec(·) will denote the vectorization procedure. Finally, the matrix transposition,
inversion, and pseudoinversion, respectively, will be denoted by the superscripts ()T, ()−1, and ()†,
while ‖·‖F will denote the matrix Frobenius norm.

From one perspective, a ZNN model is usually built in two main processes. First, the error matrix
equation (EME), E(t), needs to be declared. Second, the ZNN architecture that follows should be
applied:

Ė(t) = −λE(t). (1.2)

Notice that t ∈ [0, t f ) ⊆ [0,+∞) denotes the time, and ( ˙ ) is the derivative operator in terms of time.
In addition, the model’s convergence speed can be adjusted by changing the parameter λ ∈ R+. For
instance, any ZNN model converges even faster at larger values of λ [42]. The ZNN design is based on
setting E(t) to 0, where t → ∞. This is achieved by utilizing the real-time learning rule that emerges
from the building of the EME in (1.2). Thus, the EME can be thought of as a tracking tool for ZNN
model learning.

On the other hand, the family of hyperpower iterations has been the subject of extensive research
and development in the last few years [43]. Nevertheless, many HZNN models were introduced and
investigated in [23] because iterative approaches can be applied to discrete-time models and these
methods usually require initial conditions that are approximated and sometimes can not be easily
provided. An HZNN model is typically constructed through a pair of primary steps. First, we need to
define the function of the high-order error matrix equation (HEME), Ep

H(t), as follows:

Ep
H(t) =

p−1∑
i=1

Ei(t), (1.3)

where Ei(t) ∈ Rn×n. Second, the HZNN architecture:

Ė(t) ≈ −λEp
H(t) (1.4)

should be applied for finding the online solution to a time-varying issue. In addition, the model’s
convergence rate can be adjusted by changing the λ ∈ R+ parameter and the order p ≥ 2. For example,
any HZNN model converges even faster at larger values of p [23]. It is significant to note that every
HZNN model reduces to a ZNN model in the case where p = 2 since the ZNN dynamical system
of (1.2) and the HZNN dynamical system of (1.4) will match.

In this work, a new HZNN model, termed HZ-QNARE, is introduced for solving the TQNARE.
Two simulation trials demonstrate the excellent performance of the model. It is important to mention
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that the HZ-QNARE model has the advantage of being able to solve any equation that arises from
TQNARE. Additionally, the results demonstrate that, while both approaches function remarkably well,
the HZNN architecture works better than the ZNN architecture. Notice that, by theoretical examination
of the HZ-QNARE model, this work adds to the corpus of literature. Finally, the list below displays
the contributions made to the paper:

• A new HZNN model, named HZ-QNARE, for solving the TQNARE is introduced.
• The HZ-QNARE model is validated by a theoretical examination.
• Simulation trials are carried out to supplement the theoretical study.

The paper is formatted as follows: Section 2 presents the preliminary results of the quaternion
and the TQNARE reformulation. The HZ-QNARE model is presented in Section 3 and its theoretical
examination is provided in Section 4. Observe that Section 3 contains information on the computational
complexity of the HZ-QNARE model. Section 5 displays simulation trials. Finally, some remarks and
closing comments are included in Section 6.

2. The TQNARE reformulation

In this section, the TQNARE is reformulated, and the fundamentals of TQM are described. Observe
that the TQNARE (1.1) is being reformulated to reduce the computational complexity of the HZNN
method.

Employing the coefficients Du(t) ∈ Rm×m for u = 1, . . . , 4, let

D̃(t) = D1(t) + D2(t)ı + D3(t)  + D4(t)k ∈ Hm×m

to be a TQM. Similarly, employing the coefficients Au(t) ∈ Rn×n, Bu(t) ∈ Rn×m, and Cu(t), Xu(t) ∈ Rm×n

for u = 1, . . . , 4, let Ã(t) ∈ Hn×n, B̃(t) ∈ Hn×m, and C̃(t), X̃(t) ∈ Hm×n. The result of multiplying B̃(t) by
X̃(t) is:

B̃(t)X̃(t) = B̃X(t) = BX1(t) + BX2(t)ı + BX3(t)  + BX4(t)k ∈ Hn×n, (2.1)

where
BX1(t)=−B3(t)X3(t)+B1(t)X1(t)−B2(t)X2(t)−B4(t)X4(t),
BX2(t)=B1(t)X2(t)+B3(t)X4(t)+B2(t)X1(t)−B4(t)X3(t),
BX3(t)=B1(t)X3(t)+B3(t)X1(t)−B2(t)X4(t)+B4(t)X2(t),
BX4(t)=B4(t)X1(t)+B1(t)X4(t)−B3(t)X2(t)+B2(t)X3(t).

(2.2)

Notice that BXu(t) ∈ Rn×n for u = 1, . . . , 4. The products D̃X(t) = D̃(t)X̃(t), X̃A(t) = X̃(t)Ã(t) and
X̃BX(t) = X̃(t)B̃X(t) can be produced in a manner similar to that of (2.1).

Using the previously provided information, (1.1) can be rewritten as:

D̃X(t) + X̃A(t) − X̃BX(t) + C̃(t) = 0m×n, (2.3)

where 
DX1(t) + XA1(t) − XBX1(t) + C1(t) = 0m×n,

DX2(t) + XA2(t) − XBX2(t) + C2(t) = 0m×n,

DX3(t) + XA3(t) − XBX3(t) + C3(t) = 0m×n,

DX4(t) + XA4(t) − XBX4(t) + C4(t) = 0m×n.

(2.4)
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Then, setting

Q(t)=


X1(t) −X2(t) −X3(t) −X4(t)
X2(t) X1(t) −X4(t) X3(t)
X3(t) X4(t) X1(t) −X2(t)
X4(t) −X3(t) X2(t) X1(t)

 , A(t)=


A1(t)
A2(t)
A3(t)
A4(t)

 , C(t)=


C1(t)
C2(t)
C3(t)
C4(t)

 ,

M(t)=


B1(t) −B2(t) −B3(t) −B4(t)
B2(t) B1(t) −B4(t) B3(t)
B3(t) B4(t) B1(t) −B2(t)
B4(t) −B3(t) B2(t) B1(t)

 , B(t)=


B1(t)
B2(t)
B3(t)
B4(t)

 , X(t)=


X1(t)
X2(t)
X3(t)
X4(t)

 ,

K(t)=


D1(t) −D2(t) −D3(t) −D4(t)
D2(t) D1(t) −D4(t) D3(t)
D3(t) D4(t) D1(t) −D2(t)
D4(t) −D3(t) D2(t) D1(t)

 , D(t)=


D1(t)
D2(t)
D3(t)
D4(t)

 ,

(2.5)

where Q(t) ∈ R4m×4n,M(t) ∈ R4n×4m,K(t) ∈ R4m×4m,D(t) ∈ R4m×m, A(t) ∈ R4n×n, B(t) ∈ R4n×m, and
X(t),C(t) ∈ R4m×n, (2.3) might be reshuffled as below:

K(t)X(t) + Q(t)A(t) − Q(t)M(t)X(t) + C(t) = 04m×n, (2.6)

where the coefficients Xu(t), u = 1, . . . , 4, are included both in X(t) and Q(t). Recall that the anticipated
solution to the TQNARE (1.1) is X̃(t). Furthermore, take note of the fact that (2.6) gives four TQMs,
whereas (1.1) yields only one TQM.

3. HZNN adaptation for the TQNARE system

To address the TQNARE, we shall construct a HZNN model in this section named HZ-QNARE.
Let D̃(t) ∈ Hm×m, Ã(t) ∈ Hn×n, B̃(t) ∈ Hn×m, and C̃(t), X̃(t) ∈ Hm×n be differentiable TQMs. According to
the analysis of Section 2, (2.6) is a reformulation of (1.1). Following (2.5), we formulate the matrices
Q(t) ∈ R4m×4n,M(t) ∈ R4n×4m,K(t) ∈ R4m×4m,D(t) ∈ R4m×m, A(t) ∈ R4n×n, B(t) ∈ R4n×m, and C(t) ∈
R4m×n to construct the next EME:

E(t) = Q(t)A(t) + K(t)X(t) − Q(t)M(t)X(t) + C(t), (3.1)

where Q(t) ∈ R4m×4n and X(t) ∈ R4m×n are unknown matrices. Because the HZNN design requires
powers of E(t), it is applicable only to square input matrices M(t), A(t), and C(t). In order to satisfy
this requirement, we right multiply (3.1) with Ī =

[
In, 0n×(4m−n)

]
∈ Rn×4m. Therefore, without loss of

generality, we convert (3.1) as follows:

EZ(t) = (Q(t)A(t) + K(t)X(t) − Q(t)M(t)X(t) + C(t))Ī
= Q(t)A(t)Ī + K(t)X(t)Ī − Q(t)M(t)X(t)Ī + C(t)Ī.

(3.2)

The following is (3.2)’s first derivative:

ĖZ(t) =Q(t)Ȧ(t)Ī + Q̇(t)A(t)Ī + K̇(t)X(t)Ī + K(t)Ẋ(t)Ī − Q̇(t)M(t)X(t)Ī
− Q(t)Ṁ(t)X(t)Ī − Q(t)M(t)Ẋ(t)Ī + Ċ(t)Ī.

(3.3)
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Further, the following HEME is defined:

Ep
H(t) =

p−1∑
i=1

Ei
Z(t), (3.4)

while its derivative is Ėp
H(t) ≈ ĖZ(t) according to the HZNN design.

Next, we treat the HZNN dynamical system with regard to Ẋ(t) and Q̇(t). This is accomplished by
superseding the aforementioned Ep

H(t) and Ėp
H(t) in (1.4). The outcome is as follows:

K(t)Ẋ(t)Ī + Q̇(t)A(t)Ī − Q̇(t)M(t)X(t)Ī − Q(t)M(t)Ẋ(t)Ī

= −λ

p−1∑
i=1

Ei
Z(t) − K̇(t)X(t)Ī − Q(t)Ȧ(t)Ī + Q(t)Ṁ(t)X(t)Ī − Ċ(t)Ī.

(3.5)

Afterwards, we simplify the dynamics of (3.5) by using the Kronecker product and vectorization:(
ĪT⊗K(t)− ĪT⊗(Q(t)M(t))

)
vec(Ẋ(t))+

(
(A(t)Ī)T⊗I4m−(M(t)X(t)Ī)T⊗I4m

)
vec(Q̇(t))

=vec(−λ
p−1∑
i=1

Ei
Z(t)−K̇(t)X(t)Ī−Q(t)Ȧ(t)Ī+Q(t)Ṁ(t)X(t)Ī−Ċ(t)Ī).

(3.6)

It is important to note that the components of vec(Q̇(t)) and vec(Ẋ(t)) are the same, but they are
located differently. Stated differently, (3.6) can be further reduced by stating vec(Q̇(t)) in relation to
vec(Ẋ(t)). Because of this, vec(Q̇(t)) can be substituted in (3.6) to obtain the following equation:

vec(Q̇(t)) = Rvec(Ẋ(t)). (3.7)

Note that the algorithmic process outlined in Algorithm 1 can be used to compute the operational matrix
R ∈ R16mn×4mn. Take into account that the pseudocode in Algorithm 1 adhere to standard MATLAB
practices [44].

Algorithm 1 Algorithmic process for calculating the operational matrix.
Input: The matrix X(t) dimensions, m × n.

1: procedure OM R(m, n)
2: Put R =zeros(nm16, nm4), c = (1 : nm4)′, Z =reshape(c,m4, n)
3: Put V1 = Z(1 : m, :), V2 = Z(1 + m : m2, :), V3 = Z(1 + m2 : m3, :), V4 = Z(1 + m3 : end, :)
4: Put V = [V1,−V2,−V3,−V4; V2,V1,−V4,V3; V3,V4,V1,−V2; V4,−V3,V2,V1]
5: Set F = reshape(V, [], 1)
6: for u = 1 : nm16 do
7: R(u,abs(F(u))) =sign(F(u))
8: end for
9: end procedure

Output: R

The (3.6) may be simplified even more by utilizing (3.7):(
ĪT⊗K(t)− ĪT⊗(Q(t)M(t))+

(
(A(t)Ī)T⊗I4m−(M(t)X(t)Ī)T⊗I4m

)
R
)

vec(Ẋ(t))

=vec(−λ
p−1∑
i=1

Ei
Z(t)−K̇(t)X(t)Ī−Q(t)Ȧ(t)Ī+Q(t)Ṁ(t)X(t)Ī−Ċ(t)Ī).

(3.8)

AIMS Mathematics Volume 9, Issue 3, 5794–5809.



5800

Additionally, upon the establishment of:

U(t)= ĪT⊗K(t)− ĪT⊗(Q(t)M(t))+
(
(A(t)Ī)T⊗I4m−(M(t)X(t)Ī)T⊗I4m

)
R∈R16m2×4mn,

g(t)=vec(−λ
p−1∑
i=1

Ei
Z(t)−K̇(t)X(t)Ī−Q(t)Ȧ(t)Ī+Q(t)Ṁ(t)X(t)Ī−Ċ(t)Ī)∈R16m2

,

ẋ(t)=vec(Ẋ(t))∈R4mn, x(t)=vec(X(t))∈R4mn,

(3.9)

we arrive at the HZNN model below:
ẋ(t) = U†(t)g(t). (3.10)

The recommended HZNN model to be used in solving the TQNARE of (1.1) is Eq (3.10)’s dynamic
model, also known as HZ-QNARE. Note that the algorithmic process of the HZ-QNARE model
outlined in Algorithm 2 can be used for solving the TQNARE.

Algorithm 2 Algorithmic process of the HZ-QNARE model for solving the TQNARE.

Input: The coefficient matrices D̃(t), Ã(t), B̃(t), and C̃(t) of the TQNARE (1.1).
1: procedure HZ QNARE(D̃(t), Ã(t), B̃(t), C̃(t))
2: Create Q(t), A(t),C(t),M(t), B(t), X(t),K(t), and D(t) based on (2.5)
3: Create EZ(t) according to (3.2)
4: Create Ep

H(t) according to (3.4)
5: Using Alg. 1, create U(t) and g(t) based on (3.9)
6: Set ẋ(t) = U†(t)g(t) and use the ode15s solver of MATLAB to find x(t)
7: end procedure

Output: The TQNARE’s solution x(t).

Creating and solving (3.10) is computationally demanding in addition to the HZ-QNARE itself. In
this regard, the complexity of formulating (3.10) is O((4nm)2) operations since, at each iteration, we
do (4nm)2 multiplications and 4nm additions/subtractions. Besides, the ode15s solver of MATLAB
is used to solve the linear system of equations step-by-step. A 4nm × 4nm matrix is needed to
address (3.10), adding O((4nm)3) to the complexity. As a result, O((4nm)3) is the HZ-QNARE’s
computational complexity.

4. Theoretical analysis

This section presents the stability analysis and convergence of the HZ-QNARE (3.10) model.

Theorem 4.1. Let M(t) ∈ R4n×4m,K(t) ∈ R4m×4m, A(t) ∈ R4n×n, and C(t) ∈ R4m×n be differentiable.
According to Lyapunov, the dynamics of (3.5) in accordance with the HZNN method (1.4) lead to the
theoretical solution (TSOL) XTH (t), which is stable.

Proof. The supersession XB(t) := −X(t) + XTH (t) yields X(t) = XTH (t) − XB(t), while the TSOL is
XTH (t). The components of X(t) are reshuffled in Q(t), according to (2.5). Consequently, since QTH (t)
and QB(t) represent a reshuffling of the components of XTH (t) and XB(t), Q(t) = QTH (t)−QB(t). Also,
the 1st derivatives of Q(t) and X(t) are Q̇(t) = ˙QTH (t) − Q̇B(t) and Ẋ(t) = ˙XTH (t) − ẊB(t), respectively.
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Let
K(t)XTH (t)Ī + QTH (t)A(t)Ī − QTH (t)M(t)XTH (t)Ī + C(t)Ī = 04m×4m, (4.1)

and its 1st derivative

K(t) ˙XTH (t)Ī+K̇(t)XTH (t)Ī+ ˙QTH (t)A(t)Ī+QTH (t)Ȧ(t)Ī− ˙QTH (t)M(t)XTH (t)Ī
−QTH (t)Ṁ(t)XTH (t)Ī−QTH (t)M(t) ˙XTH (t)Ī+Ċ(t)Ī=04m×4m.

(4.2)

After substituting (3.4) for X(t) = XTH (t) − XB(t) and Q(t) = QTH (t) − QB(t), the following holds:

ETH (t)=K(t)XTH (t)Ī−K(t)XB(t)Ī+QTH (t)A(t)Ī−QB(t)A(t)Ī−QTH (t)M(t)XTH (t)Ī
+QB(t)M(t)XTH (t)Ī+QTH (t)M(t)XB(t)Ī−QB(t)M(t)XB(t)Ī+C(t)Ī,

(4.3)

and

Ep
TH

(t) =

p−1∑
i=1

Ei
TH

(t), (4.4)

with the following results from (1.4):

ĖTH (t)=K(t) ˙XTH (t)Ī+K̇(t)XTH (t)Ī−K(t)ẊB(t)Ī−K̇(t)XB(t)Ī+ ˙QTH (t)A(t)Ī+QTH (t)Ȧ(t)Ī
−Q̇B(t)A(t)Ī−QB(t)Ȧ(t)Ī+Ċ(t)Ī− ˙QTH (t)M(t)XTH (t)Ī−QTH (t)Ṁ(t)XTH (t)Ī
−QTH (t)M(t) ˙XTH (t)Ī+Q̇B(t)M(t)XTH (t)Ī+QB(t)Ṁ(t)XTH (t)Ī+QB(t)M(t) ˙XTH (t)Ī
+ ˙QTH (t)M(t)XB(t)Ī+QTH (t)Ṁ(t)XB(t)Ī+QTH (t)M(t)ẊB(t)Ī
−Q̇B(t)M(t)XB(t)Ī−QB(t)Ṁ(t)XB(t)Ī−QB(t)M(t)ẊB(t)Ī

≈−λEp
TH

(t).

(4.5)

Afterwards, we pick the Lyapunov function indicated below to verify convergence:

R(t) =
1
2

∥∥∥Ep
TH

(t)
∥∥∥2

F
=

1
2

tr
(
Ep
TH

(t)
(
Ep
TH

(t)
)T

)
. (4.6)

The following can then be verified:

Ṙ(t) =

2tr
((

Ep
TH

(t)
)T

Ėp
TH

(t)
)

2
= tr

((
Ep
TH

(t)
)T

Ėp
TH

(t)
)

= −λtr
((

Ep
TH

(t)
)T

Ep
TH

(t)
)
. (4.7)

Consequently, the following holds true:

Ṙ(t)

< 0, Ep
TH

(t) , 0

= 0, Ep
TH

(t) = 0,

⇔Ṙ(t)


< 0, K(t)XTH (t)Ī − K(t)XB(t)Ī + QTH (t)A(t)Ī − QB(t)A(t)Ī − QTH (t)M(t)XTH (t)Ī

+QB(t)M(t)XTH (t)Ī + QTH (t)M(t)XB(t)Ī − QB(t)M(t)XB(t)Ī + C(t)Ī , 0

= 0, K(t)XTH (t)Ī − K(t)XB(t)Ī + QTH (t)A(t)Ī − QB(t)A(t)Ī − QTH (t)M(t)XTH (t)Ī

+QB(t)M(t)XTH (t)Ī + QTH (t)M(t)XB(t)Ī − QB(t)M(t)XB(t)Ī + C(t)Ī = 0,

⇔Ṙ(t)

< 0, XB(t) , 0 & QB(t) , 0

= 0, XB(t) = 0 & QB(t) = 0,
⇔ Ṙ(t)

< 0, XB(t) , 0

= 0, XB(t) = 0.

(4.8)
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Seeing that Q(t) is a components’ regrouping of X(t), QB(t) , 0 in the case XB(t) , 0 and QB(t) = 0 in
the case XB(t) = 0. Furthermore, because Ep

H(0) = 0 and XB(t) are the equilibrium points of (4.5), the
following holds:

∀ XB(t) , 0, Ṙ(t) ≤ 0. (4.9)

It is found that the state of equilibrium XB(t) = −X(t) + XTH (t) = 0 is stable according to the theory
of Lyapunov. Afterwards, X(t) → XTH (t) as t → ∞. Notice that, because Q(t) is a components’
regrouping of X(t), Q(t)→ QTH (t) as t → ∞. �

Theorem 4.2. Let D̃(t) ∈ Hm×m, Ã(t) ∈ Hn×n, B̃(t) ∈ Hn×m, and C̃(t) ∈ Hm×n be differentiable. For each
t ∈ [0, t f ) ⊆ [0,+∞), the HZ-QNARE model (3.10) converges exponentially to TSOL xTH (t) under any
selection of initial value x(0).

Proof. First, the TQNARE of (1.1) is converted into (2.6) using the analysis given in Section 2. In
particular, we utilize (2.5) to construct the matrices M(t) ∈ R4n×4m,K(t) ∈ R4m×4m, A(t) ∈ R4n×n,
and C(t) ∈ R4m×n employing the TQMs D̃(t), Ã(t), B̃(t), and C̃(t). Consequently, we substitute (1.1)
for (2.6). Second, in order to solve (2.6), the HEME of (3.4) is declared. Model (3.5) is applied in
compliance with the HZNN technique (1.4) for zeroing (3.4). In line with Theorem 4.1, Q(t)→ QTH (t)
and X(t) → XTH (t) when t → ∞ for any selection of initial value. Remember that Q(t) is created
by rearranging the X(t) parts. Model (3.5) converges to the TSOL equation (1.1) since (2.6) is a
reorganization of the TQNARE of (1.1). Third, (3.5) is simplified to construct the HZ-QNARE model
of (3.10) using the operation matrix of (3.7), Kronecker product, and vectorization. The HZ-QNARE
is an alternative formulation of (3.5); for any beginning value x(0), it converges to TSOL xTH (t) when
t → ∞. At that point, the proof is finished. �

5. Experiments

This section exhibits two simulation trials (STs). A few significant arguments should be mentioned.
For simplicity, we allocated both η(t) = cos(t) and ζ(t) = sin(t) in the STs. Additionally, all
calculations are performed employing the ode15s solver of MATLAB, with a time interval set
to [0, 10]. Employing the ode15s and its regular double precision arithmetic, you will notice that
most errors have minimum values that are close to 10−5 in this section’s figures. Last, the associated
TQNARE error, i.e., ||D̃(t)X̃(t) + X̃(t)Ã(t) − X̃(t)B̃(t)X̃(t) + C̃(t)||F, is displayed as ||TQNARE||F in the
figures of this section.

5.1. Walkthrough trials

Example 5.1. In this ST, the D̃(t) coefficients are set up as below:

D1(t) = I4(1 + η(t)), D2(t) =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 , D3(t) =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , D4(t) =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ,
the Ã(t) coefficients are set up as below:

A1(t) =

[
6ζ(t) + 1 4
5η(t) + 2 6

]
, A2(t) =

[
0 2ζ(t) + 2

4ζ(t) − 2 0

]
, A3(t) =

[
0 5

5ζ(t) + 1 0

]
, A4(t) =

[
0 2ζ(t) + 3
2 0

]
,
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the B̃(t) coefficients are set up as below:

B1(t) =

 η(t) ζ(t) + 3 0 1
ζ(t) + 3 ζ(t) + 2 0 0

 , B2(t) =

 0 6 −1 0
−6 0 1 1

 ,
B3(t) =

 0 5 + η(t) 0 0
−5 − η(t) 0 0 0

 , B4(t) =

 0 η(t) 4 1
−η(t) 0 0 0

 ,
and C̃(t) coefficients are set up as below:

C1(t) =


ζ(t) + 5 η(t)
η(t) η(t) + 2
0 1
1 0

 , C2(t) =


0 5 + ζ(t)

−5 − ζ(t) 0
5 1
3 0

 , C3(t) =


0 6
−6 0
0 1
1 1

 , C4(t) =


0 ζ(t)
−ζ(t) 0

0 3
−1 0

 .

Hence, D̃(t) ∈ H4×4, Ã(t) ∈ H2×2, B̃(t) ∈ H2×4, and C̃(t) ∈ H4×2. Furthermore, the HZ-QNARE model’s
λ parameter is used, with values of 10 and 100, and the beginning conditions (BCs) are established as
below:

• BC1: x(0) = 032,
• BC2: x(0) = 100 � 132.

You will see that we employ two BCs to confirm Theorem 4.2’s findings. The results of the HZ-
QNARE model are shown in Figure 1.
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Figure 1. (1.1) error, solutions trajectories, and HEMEs of HZ-QNARE in ST 5.1.
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Example 5.2. Assume the next 10 × 10 real matrix:

M =


3 + η(t) 1 + ζ(t)/2 . . . 1 + ζ(t)/10

1 + ζ(t)/2 3 + η(t) . . . 1 + ζ(t)/9
...

...
. . .

...

1 + ζ(t)/10 1 + ζ(t)/9 . . . 3 + η(t)

 .
In this ST, the coefficients of Ã(t) are set up as below:

A1(t) = M + I10ζ(t), A2(t) = 2M + I10η(t),

A3(t) = 3M + I10
ζ(t)
2
, A4(t) = 4M + I10

η(t)
2
,

and matrices D̃(t), B̃(t), and C̃(t) are set up as below:

D̃(t) = B̃(t) = 010×10, C̃(t) = −I10.

Therefore, D̃(t), Ã(t), B̃(t), C̃(t) ∈ H10×10. In order to confirm the convergence characteristics of the
HZNN method, the beginning state of the HZ-QNARE model is set to x(0) = 100 � 1400. Also, the λ
parameter of the HZ-QNARE model is employed with values 10 and 100, and the order p is employed
with prices 2 and 4. The results of the HZ-QNARE model are shown in Figure 2.
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Figure 2. (1.1) error, solutions trajectories, and HEMEs of HZ-QNARE in ST 5.2.
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5.2. Discussion of the ST findings

Throughout Examples 5.1 and 5.2, the effectiveness of the HZ-QNARE (3.10) model in solving
the TQNARE of (1.1) is tested. Each ST has a unique TQNARE due to the suitable matrices
D̃(t), B̃(t), C̃(t), and Ã(t).

It is noticeable that C̃(t) ∈ H4×2 in ST 5.1. In other words, m = 4 and n = 2 in (1.1)’s TQNARE.
Under λ = 10, λ = 100, p = 2, and p = 4, we have gathered the following findings regarding the
HZ-QNARE model: Figure 1a exhibits the HZ-QNARE model’s HEMEs. The two BC’s instances
in this exhibition begin at t = 0 from a high error value. Notably, the beginning error value of BC2
is substantially higher than BC1’s. Nevertheless, when λ = 10, the HEMEs attain a negligible error
value within the [10−4, 10−2] interval in the BC1 paradigm at t = 1 and in the BC2 paradigm at t = 2.
Additionally, when λ = 100, the HEMEs attain a negligible error value within the [10−6, 10−3] interval
in the BC1 paradigm at t = 0.1 and in the BC2 paradigm at t = 0.2. Put another way, the HZ-QNARE
model, which converges to a low value for two different BCs, validates Theorem 4.2. Figure 1b exhibits
the HZ-QNARE model’s (1.1) error. The outcomes shown there support those found in Figure 1a,
showing that there is no difference in the solutions to (2.6) and (1.1). Trajectories representing the
model’s solutions are displayed in Figure 1c–1f. The three imaginary and real components of the
solutions are shown in these figures. It is shown that the models offer distinct solutions for a range
of BCs and that their convergence to TSOL is in line with the convergence trend of the associated
HEMEs.

Further, it is noticeable that D̃(t), Ã(t), B̃(t), C̃(t) ∈ H10×10 in ST 5.2. That is, m = n = 10 in (1.1)’s
TQNARE. It is crucial to notice that by setting B̃(t) = D̃(t) = 010×10 and C̃(t) = −I10, the TQNARE
is reduced into a TQM inversion problem. As a result, the TSOL of the TQNARE is the inverse of
Ã(t), i.e., Ã−1(t). Under BC1 and BC2 for λ = 10, we have gathered the next findings regarding the
HZ-QNARE model. Figure 2a exhibits the HZ-QNARE model’s HEMEs. The four instances in this
exhibition begin at t = 0 from a high error value and end up with a negligible value. Notably, in the
paradigm of λ = 10, they end up in the interval [10−5, 10−3] with a negligible error value when p = 2
at t = 2, and at t = 1.5 when p = 4. In the paradigm of λ = 100, they end up in the interval [10−7, 10−4]
with a negligible error value when p = 2 at t = 0.2, and at t = 0.15 when p = 4. Put another way, the
HEME of the HZ-QNARE model, which is affected by the values of λ and p, verifies the convergence
qualities of the HZNN method. Figure 2b exhibits the HZ-QNARE model’s (1.1) error. The outcomes
shown there support those found in Figure 2a, showing that there is no difference in the solutions
to (2.6) and (1.1). Trajectories representing the model’s solutions are displayed in Figure 2c–2f. The
three imaginary and real components of the solutions are shown in these figures. It is shown that the
models offer distinct solutions for a range of BCs, and that their convergence to TSOL is in line with
the convergence trend of the associated HEMEs.

After all is said and done, the HZ-QNARE model handles two different TQNAREs fairly well.
Notably, the above explanation validates the convergence properties of the HZNN approach and the
conclusions of Theorem 4.2. It should be noted that the ZNN model is the HZNN under p = 2 since the
HZNN dynamical system of (1.4) and the ZNN dynamical system of (1.4) match for p = 2. Therefore,
the HZNN architecture performs better than the ZNN architecture because, at p = 2, the HZ-QNARE
model turns into a ZNN model, while at p > 2, the HZ-QNARE model achieves better convergence.
Additionally, the HZ-QNARE computational complexity is O((4nm)3), which is comparable to other
ZNN models that tackle different TQM equations (see [14, 15, 17, 18, 45]).
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6. Conclusions

In this work, a new HZNN model, named HZ-QNARE, is introduced for solving the TQNARE.
In order to validate the accuracy and effectiveness of the HZ-QNARE model, theoretical research and
simulation experiments were carried out. These experiments’ outcomes demonstrate that the HZNN
design outperforms the ZNN architecture in terms of effectiveness.

It must be noted that the recommended HZNN model has the disadvantage of being noise-intolerant
because noise of any kind has a major impact on the accuracy of the suggested HZNN approach. Thus,
the primary goal of future research may be to convert this model to a noise-tolerant HZNN architecture.
Other than that, the suggested HZNN model may be used for a variety of additional technology-related
issues in the future, such as network and power systems [46, 47] and secure communications [48].
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40. M. Joldeş, J. M. Muller, Algorithms for manipulating quaternions in floating-point
arithmetic, 2020 IEEE 27th Symposium on Computer Arithmetic (ARITH), 2020, 48–55.
https://doi.org/10.1109/ARITH48897.2020.00016

41. F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), 21–57.
https://doi.org/10.1016/0024-3795(95)00543-9

42. J. Dai, P. Tan, X. Yang, L. Xiao, L. Jia, Y. He, A fuzzy adaptive zeroing neural network with
superior finite-time convergence for solving time-variant linear matrix equations, Knowl.-Based
Syst., 242 (2022), 108405. https://doi.org/10.1016/j.knosys.2022.108405
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