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1. Introduction

Although they were just recently proposed, fractal-fractional differential and integral operators [1]
with the Dirac-delta, exponential [2], power law [3], and generalized Mittag-Leffler kernels [4] have
already caught the attention of several researchers working in both pure and applied mathematics [1–
7]. This is mainly due to their unique property that one will recover the classical fractional differential
operators when the fractal dimension is set to 1, but also when the fractional order is 1, we recover the
fractal differential operator. In addition to this, one can view these differential operators as fractional
differential operators within fractal geometry. However, when we treat both orders as one, we are
able to obtain the classical derivative. Thus, one would expect that these differential operators will
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replicate more complex physical behaviors than their corresponding fractional derivatives. The fractal
derivative [7] follows the same rules. Therefore, the defined fractal-fractional differential and integral
operators can be included in the mathematical models properties like power law, fading memory, and
crossover from stretched exponential to power law in fractal geometry. It is worth mentioning that
the definition of fractal used here refers to a non-Newtonian generalization of the derivative that deals
with the measurement of fractals, as described in fractal geometry, rather than a fractal sharp like the
Julia set. This idea was developed to address anomalous diffusion, a problem where existing methods
overlook the media’s fractal character. The inspiration came from the fact that fractal characteristics
are frequently seen in porous media, aquifers, turbulence and other types of media. Fractal media do
not follow conventional diffusion or dispersion principles that are based on random travels in empty
space [7]. Nonlocalities like power laws, memory loss, and crossover from stretched exponential to
power laws are considered via fractional formulations. Within the confines of theory and applications,
substantial findings have been obtained, but many more are still required. We will extend the Chaplygin
sequential approach [8–12] in this study to show the existence and uniqueness of certain classes of
nonlinear differential equations because the theory on existence and uniqueness is still being developed.

We now present some definitions for the fractional and fractal-fractional differential operators [1–4].
The Riemann-Liouville fractional derivative is defined by

RL
0 Dαt f (t) =

1
Γ (1 − α)

d
dt

∫ t

0
f (τ) (t − τ)−α dτ. (1.1)

The corresponding integral is as follows [5]:

RL
0 Iαt f (t) =

1
Γ (α)

∫ t

0
f (τ) (t − τ)α−1 dτ. (1.2)

The Caputo fractional derivative [3] is as follows:

C
0 Dαt f (t) =

1
Γ (1 − α)

∫ t

0

d
dτ

f (τ) (t − τ)−α dτ, (1.3)

and the corresponding integral is defined by

C
0 Iαt f (t) = f (0) +

1
Γ (α)

∫ t

0
f (τ) (t − τ)α−1 dτ. (1.4)

The Caputo-Fabrizio fractional derivative [2] is defined by

CF
0 Dαt f (t) =

1
1 − α

∫ t

0

d
dτ

f (τ) exp
[
−
α

1 − α
(t − τ)

]
dτ, (1.5)

and the Caputo-Fabrizio integral [2] is as follows:

CF
0 Iαt f (t) = (1 − α) f (t) + α

∫ t

0
f (τ) dτ. (1.6)

The Atangana-Baleanu fractional derivative [6] is given as

AB
0 Dαt f (t) =

1
1 − α

∫ t

0

d
dτ

f (τ) Eα
[
−
α

1 − α
(t − τ)α

]
dτ, (1.7)
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and the Atangana-Baleanu integral [6] is defined by

AB
0 Iαt f (t) = (1 − α) f (t) +

α

Γ (α)

∫ t

0
f (τ) (t − τ)α−1 dτ. (1.8)

The definitions of fractal-fractional differentiation introduced in [1] will be now presented. A fractal-
fractional derivative with the power-law kernel is given as

FFP
0 Dα,βt f (t) =

1
Γ (1 − α)

d
dtβ

∫ t

0
f (τ) (t − τ)−α dτ, (1.9)

where the fractal derivative [7] is as follows

d
dtβ

f (t) = lim
t→t1

f (t) − f (t1)

tβ − tβ1
. (1.10)

where β > 0. A fractal-fractional derivative with the exponential decay kernel [1] is given as

FFE
0 Dα,βt f (t) =

1
1 − α

d
dtβ

∫ t

0
f (τ) exp

[
−
α

1 − α
(t − τ)

]
dτ. (1.11)

A fractal-fractional derivative with the Mittag-Leffler kernel [1] is given as

FFM
0 Dα,βt f (t) =

1
1 − α

d
dtβ

∫ t

0
f (τ) Eα

[
−
α

1 − α
(t − τ)α

]
dτ. (1.12)

Fractal-fractional integrals with the power law, exponential decay and the Mittag-Leffler kernels,
respectively are presented as follows:

FFP
0 Iα,βt f (t) =

β

Γ (α)

∫ t

0
τβ−1 f (τ) (t − τ)α−1 dτ, (1.13)

FFE
0 Iα,βt f (t) = β (1 − α) tβ−1 f (t) + αβ

∫ t

0
τβ−1 f (τ) dτ, (1.14)

FFM
0 Iα,βt f (t) = β (1 − α) tβ−1 f (t) +

αβ

Γ (α)

∫ t

0
τβ−1 f (τ) (t − τ)α−1 dτ. (1.15)

Remark. It is worth noting for those who are not familiar with the theory of the concept of fractal-
fractional that, in terms of a derivative, we have fractional kernels, including power law, exponential
decay, and the generalized Mittag-Leffler function. However, when dealing with a fractal-fractional
integral, one will have tβ−1 in the case of the classical fractal integral and the fractal-fractional integral
obtained from the exponential decay case. In the case of the power law and the generalized Mittag-
Leffler kernels, we have the following kernel:

lβ−1 (t − l)α−1 . (1.16)

Indeed, one can then interpret a fractal-fractional derivative as a fractional derivative in fractal
geometry.
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2. Chaplygin method for classical fractal nonlinear differential equations

In this part, we will first look at a general nonlinear ordinary differential equation with the fractal
derivative as the differential operator. This class has been discovered to be suitable for simulating a
subset of diffusion and flow issues in complex porous media by using fractal geometry. The nonlinear
equation under consideration here is as follows:{

F
t0 Dβt y (t) = f (t, y (t)) if t ∈ (t0, t0 + a] ,

y (t0) = y0,
(2.1)

where t ∈ [t0, t0 + a] , |y − y0| < b and we also assume that | f (t, y (t))| < M,∀ t ∈ [t0, t0 + a] .
We shall show the existence of the lower and upper Chaplygin sequences {un} and {vn}.

Theorem 1. Let f (t, y (t)) ∈ C [R0,R], where

R0 = {(t, y) | t0 ≤ t ≤ t0 + a, |y − y0| < b} . (2.2)

We assume that
| f (t, y (t))| < M on R0, (2.3)

and

λ = min

a,
(

b
M

) 1
β

 . (2.4)

It is assumed that fy, fyy exist and fyy > 0 in R0. We consider u0 = u0 (t) and v0 = v0 (t) as two
differentiable functions on [t0, t0 + λ] with (t, u0 (t)) and (t, v0 (t)) ∈ R0 and

F
t0 Dβt u0 (t) < f (t, u0 (t)) , u0 (t0) = y0, (2.5)
F
t0 Dβt v0 (t) > f (t, v0 (t)) , v0 (t0) = y0.

Then, we can find a Chaplygin sequence {un (t) , vn (t)} such that

un (t) < un+1 (t) < y (t) < vn+1 (t) < vn (t) ,∀t ∈ (t0, t0 + λ] , (2.6)
vn (t0) = y (t0) = un (t0) ,

where the function y (t) is the solution of the following equation in [t0, t0 + λ]:

y (t) = y (t0) + β

t∫
t0

τβ−1 f (τ, y (τ)) dτ. (2.7)

Additionally, un (t) and vn (t) tends to y (t) on [t0, t0 + λ] , n → ∞. For an appropriate γ > 0, the
following is written:

0 ≤ v0 (t) − u0 (t) ≤ γ. (2.8)

Then, ∀n fixed and t ∈ [t0, t0 + λ], the following is obtained:

|vn (t) − un (t)| <
2γ
22n . (2.9)
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Proof. From the hypothesis of Theorem 1, we have that

F
t0 Dβt u0 (t) < f (t, u0 (t)) ,∀t ∈ (t0, t0 + λ] . (2.10)

Then, we write

u0 (t) < u0 (t0) + β

t∫
t0

τβ−1 f (τ, u0 (τ)) dτ (2.11)

< y (t0) + β

t∫
t0

τβ−1 f (τ, u0 (τ)) dτ

< y (t0) + β

t∫
t0

τβ−1 f (τ, y (τ)) dτ

< y (t) .

On the other hand, we have

F
t0 Dβt v0 (t) > f (t, v0 (t)) ,∀t ∈ (t0, t0 + λ] . (2.12)

Then, we write

v0 (t) > v0 (t0) + β

t∫
t0

τβ−1 f (τ, v0 (τ)) dτ (2.13)

> y (t0) + β

t∫
t0

τβ−1 f (τ, v0 (τ)) dτ

> y (t0) + β

t∫
t0

τβ−1 f (τ, y (τ)) dτ

> y (t) .

We have now obtained that ∀t ∈ (t0, t0 + λ]

u0 (t) < y (t) < v0 (t) . (2.14)

We now define the following functions

g1 (t, y; u0, v0) = f (t, u0 (t)) + fy (t, u0 (t)) (y − u0 (t)) , (2.15)

and

g2 (t, y; u0, v0) = f (t, u0 (t)) +
f (t, u0 (t)) − f (t, v0 (t))

u0 (t) − v0 (t)
(y − u0 (t)) . (2.16)
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Note that, when t = t0

g1 (t0, y; u0, v0) = f (t0, u0 (t0)) + fy (t, u0 (t0)) (y (t0) − y (t0)) (2.17)
= f (t0, u0 (t0)) = f (t0, y0) ,

and
g2 (t0, y; u0, v0) = f (t0, u0 (t0)) = f (t0, y0) . (2.18)

Replacing in g1, y by u1 and v1 in g2 respectively, we get

F
t0 Dβt u1 (t) = g1 (t0, u1 (t) ; u0, v0) , u1 (t0) = y0, (2.19)
F
t0 Dβt v1 (t) = g2 (t0, v1 (t) ; u0, v0) , v1 (t0) = y0.

The above exists on [t0, t0 + λ]. By the hypothesis of Theorem 1, we have that

u0 (t) < u0 (t0) + β

t∫
t0

τβ−1 f (τ, u0 (τ)) dτ (2.20)

= y (t0) + β

t∫
t0

τβ−1 f (t0, u0 (τ)) dτ

< y (t0) + β

t∫
t0

τβ−1g1 (τ, u0 (τ) ; u0, v0) dτ

< u1 (t) ,∀t ∈ (t0, t0 + λ] .

We have on the other hand,

v0 (t) > y (t0) + β

t∫
t0

τβ−1 f (t0, u0 (τ)) dτ (2.21)

> y (t0) + β

t∫
t0

τβ−1g2 (τ, v0 (τ) ; u0, v0) dτ

> v1 (t) ,∀t ∈ (t0, t0 + λ] .

We now show that the defined u1 (t) and v1 (t) verified the differential inequality

F
t0 Dβt u1 (t) = g1 (t0, u1 (t) ; u0, v0) ,∀t ∈ [t0, t0 + λ] ; (2.22)

then

u1 (t) < u1 (t0) + β

t∫
t0

τβ−1g1 (τ, u1 (τ) ; u0, v0) dτ (2.23)
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< u1 (t0) + β

t∫
t0

τβ−1 f (τ, u1 (τ)) dτ

< y (t0) + β

t∫
t0

τβ−1 f (τ, u1 (τ)) dτ.

Also, we have that

u0 (t) < u0 (t0) + β

t∫
t0

τβ−1 f (τ, u0 (τ)) dτ (2.24)

= u0 (t0) + β

t∫
t0

τβ−1g2 (τ, u0 (τ) ; u0, v0) dτ.

The above shows that
u0 (t) < u1 (t) ,∀t ∈ (t0, t0 + λ] . (2.25)

We have in addition that ∀t ∈ [t0, t0 + λ]

fy (t, u0 (t)) <
f (t, u0 (t)) − f (t, v0 (t))

u0 (t) − v0 (t)
, (2.26)

and

f (t, v1 (t)) = f (t, u0 (t)) + fv1 (t, u0 (t)) (v1 (t) − u0 (t)) (2.27)

+
1
2

fv1v1 (t, ξ) (v1 (t) − u0 (t))2 ; u0 (t) < ξ < v1 (t) .

By a repetition of the mean value theorem and fv1v1 (t, ξ) > 0, we end up with

v1 (t) = v1 (t0) + β

t∫
t0

τβ−1g2 (τ, v1 (τ) ; u0, v0) dτ (2.28)

> v1 (t0) + β

t∫
t0

τβ−1 f (τ, v1 (τ)) dτ

= y (t0) + β

t∫
t0

τβ−1 f (τ, y (τ)) dτ.

Therefore, by maximal and minimal solutions, we have that ∀t ∈ (t0, t0 + λ]

u1 (t) < y (t) < v1 (t) . (2.29)

Therefore
u0 (t) < u1 (t) < y (t) < v1 (t) < v0 (t) ,∀t ∈ (t0, t0 + λ] . (2.30)
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We then define a mapping Λ such that ∀t ∈ [t0, t0 + λ]

Λ (u0 (t) , v0 (t)) = (u1 (t) , v1 (t)) .

By repetition, we have that

Λ (u1 (t) , v1 (t)) = (u2 (t) , v2 (t)) (2.31)
...

Λ (un (t) , vn (t)) = (un+1 (t) , vn+1 (t)) .

These functions satisfy the following:

(1)  un (t) < un (t0) + β
t∫

t0

τβ−1 f (τ, un (τ)) dτ,

un (t0) = y0.

(2.32)

(2)  vn (t) > vn (t0) + β
t∫

t0

τβ−1 f (τ, vn (τ)) dτ,

vn (t0) = y0.

(2.33)

(3)
un (t) < un+1 (t) < y (t) < vn+1 (t) < vn (t) ,∀t ∈ (t0, t0 + λ] . (2.34)

(4)

un+1 (t) = un+1 (t0) + β

t∫
t0

τβ−1g1 (τ, un+1 (τ) ; un (τ) , vn (τ)) dτ. (2.35)

(5)

vn+1 (t) = vn+1 (t0) + β

t∫
t0

τβ−1g2 (τ, vn+1 (τ) ; un (τ) , vn (τ)) dτ. (2.36)

Indeed, {un} and {vn} are bounded in [t0, t0 + λ] and monotonic. They are also equicontinuous since
they constitute the solution of the linear equation. By the Arzela-Ascoli theorem, there exist two
subsequences

{
unk

}
and

{
vnk

}
of {un} and {vn} that converge uniformly toward y (t). To continue, we shall

let

Ω1 = sup
u0(t)≤y≤v0(t)

t∈[t0,t0+λ]

∣∣∣ fy (t, y)
∣∣∣ , (2.37)

Ω2 = sup
u0(t)≤y≤v0(t)

t∈[t0,t0+λ]

∣∣∣ fyy (t, y)
∣∣∣ .
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We have that

v0 (t) > v0 (t0) + β

t∫
t0

τβ−1 f (τ, v0 (τ)) dτ, (2.38)

u0 (t) < u0 (t0) + β

t∫
t0

τβ−1 f (τ, u0 (τ)) dτ.

Substracting these two inequalities yields

v0 (t) − u0 (t) > β

t∫
t0

τβ−1 [
f (τ, v0 (τ)) − f (τ, u0 (τ))

]
dτ (2.39)

≥ ε + β

t∫
t0

τβ−1 [
f (τ, v0 (τ)) − f (τ, u0 (τ))

]
dτ

≥ ε + β

t∫
t0

τβ−1 fy (τ, η) [v0 (τ) − u0 (τ)] dτ,

where u0 (τ) < η < v0 (τ) ,∀t ∈ [t0, t0 + λ] and using the mean value theorem, the above is arranged as
follows

v0 (t) − u0 (t) ≥ ε + βΩ1

t∫
t0

τβ−1 [v0 (τ) − u0 (τ)] dτ (2.40)

≥ ε exp
[
Ω1

(
tβ − tβ0

)]
.

By the Gronwall inequality, we write

v0 (t) − u0 (t) ≥ ε exp
[
Ω1λ

β
]
. (2.41)

We therefore assume that
0 ≤ v0 (t) − u0 (t) ≤ γ.

The assertion is correct when n = 0. We assume that for any fixed n, we have

|vn (t) − un (t)| ≤
2γ
22n . (2.42)

We have the following from un+1 and vn+1 and the mean value theorem

vn+1 (t) − un+1 (t) = β

t∫
t0

τβ−1
[ f (τ,un(τ))− f (τ,vn(τ))

un(τ)−vn(τ) (vn+1 (τ) − un (τ))
− fy (τ, un (τ)) (un+1 (τ) − un (τ))

]
dτ (2.43)
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= β

t∫
t0

τβ−1

 fy (τ, η) (vn+1 (τ) − un+1 (τ))
+

[
fy (τ, η) − fy (τ, un (τ))

]
(un+1 (τ) − un (τ))

 dτ.

Applying the absolute value on both sides leads to

|vn+1 (t) − un+1 (t)| ≤ β

t∫
t0

τβ−1
[

Ω1 |vn+1 (τ) − un+1 (τ)|
+Ω2 |η − un (τ)| |un+1 (τ) − un (τ)|

]
dτ. (2.44)

But

|η − un (t)| ≤ |un (t) − vn (t)| , (2.45)
|un+1 (t) − un (t)| ≤ |un (t) − vn (t)| .

Therefore

|vn+1 (t) − un+1 (t)| ≤ β

t∫
t0

τβ−1
[
Ω1 |vn+1 (τ) − un+1 (τ)| + Ω2 |un (τ) − vn (τ)|2

]
dτ (2.46)

≤ βΩ1

t∫
t0

τβ−1 |vn+1 (τ) − un+1 (τ)| dτ + βΩ2

t∫
t0

τβ−1 |un (τ) − vn (τ)|2 dτ

≤ βΩ1

t∫
t0

τβ−1 |vn+1 (τ) − un+1 (τ)| dτ + βΩ2

t∫
t0

τβ−1 22γ2

22n+1 dτ.

By inductive hypothesis, therefore

|vn+1 (t) − un+1 (t)| ≤ βΩ1

t∫
t0

τβ−1 |vn+1 (τ) − un+1 (τ)| dτ + Ω2
22γ2

22n+1

(
tβ − tβ0

)
(2.47)

≤ βΩ1

t∫
t0

τβ−1 |vn+1 (τ) − un+1 (τ)| dτ + Ω2
22γ2

22n+1 λ
β.

By the Gronwall inequality, we obtain

|vn+1 (t) − un+1 (t)| ≤ Ω2
22γ2

22n+1 λ
β exp

[
Ω1λ

β
]
. (2.48)

By then choosing
γ =

(
2Ω2λ

β exp
[
Ω1λ

β
])−1
, (2.49)

we obtain
|un+1 (t) − vn+1 (t)| ≤

2γ
22n+1 , (2.50)
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which completes the proof. Therefore

|y (t) − un (t)| ≤
2γ
22n , (2.51)

|y (t) − vn (t)| ≤
2γ
22n .

We now consider the fractal nonlinear equation and show the lower and upper Chaplygin sequences {un}

and {vn}. This will be shown in Theorem 2.
Theorem 2. Let f (t, y (t)) ∈ C [R0,R], where

R0 = {(t, y) | t0 ≤ t ≤ t0 + a, |y − y0| < b} . (2.52)

It is assumed that f (t, y (t)) is quasi-monotonically nondecreasing in y,∀t ∈ [t0, t0 + a] ; additionally,
we assume that ∂ f

∂y (t, y) exists and is continuous on R0. Consider u0 (t) as a continuous differentiable
function on [t0, t0 + λ] with

λ = min

a,
(

b
M

) 1
β

 , (2.53)

(t, u0 (t)) ∈ R0 and
F
t0 Dβt y (t) < f (t, u0 (t)) , u0 (t0) = y0. (2.54)

In addition, we consider
f (t, y) + fy (t, y) (y − z) < f (t, z) if y < z.

Then, there exists a Chaplygin sequence {un} such that

un (t0) = y0, (2.55)
un (t) < un+1 (t) < y (t) ,∀t ∈ (t0, t0 + λ] ,

where

y (t) ≤ y (t0) + β

t∫
t0

τβ−1 f (τ, y (τ)) dτ, (2.56)

on [t0, t0 + λ] and
lim
n→∞

un (t) = y (t) (2.57)

uniformly on [t0, t0 + λ] .
Proof. By assumption, we have that ∂ f

∂y (t, y) > 0 since f is quasi-monotone. Moreover,

F
t0 Dβt u0 (t) < f (t, u0 (t)) . (2.58)

Then, we write

u0 (t) < u0 (t0) + β

t∫
t0

τβ−1 f (τ, u0 (τ)) dτ (2.59)
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< y (t0) + β

t∫
t0

τβ−1 f (τ, u0 (τ)) dτ.

But, we have that

y (t) = y (t0) + β

t∫
t0

τβ−1 f (τ, y (τ)) dτ. (2.60)

It follows therefore, that
u0 (t) < y (t) ,∀t ∈ (t0, t0 + λ] . (2.61)

From the maximal and minimal solution principle, the associated linear equation given by

F
t0 Dβt z (t) = f (t, u0 (t)) +

∂ f
∂z

(t, u0 (t)) (z − u0 (t)) = g (t, z; u0 (t)) , z (t0) = y0. (2.62)

Replacing z by u, we first have that g (t, z; u0 (t)) is quasi-monotone on y since ∂ f
∂z > 0. Thus, we write

u1 (t) = u1 (t0) + β

t∫
t0

τβ−1g (τ, u1; u0 (τ)) dτ (2.63)

< y0 + β

t∫
t0

τβ−1 f (τ, u1 (τ)) dτ

< y (t) .

On the other hand, we have that
u0 (t) < un (t) . (2.64)

Thus, we have established that
u0 (t) < u1 (t) < y (t) . (2.65)

We can now define a mapping

Λ [u0 (t)] = u1 (t) , (2.66)
Λ [u1 (t)] = u2 (t) ,
Λ [u2 (t)] = u3 (t) ,

...

Λ [un (t)] = un+1 (t) ,

where
u0 (t) < u1 (t) < u2 (t) < ... < un+1 (t) < y (t) . (2.67)

A similar routine can be used to obtain the upper sequence of Chaplygin.
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3. Chaplygin method for fractal-fractional nonlinear differential equations with the exponential
kernel

In this section, we shall present a detailed analysis of an extended version of the Chaplygin method
for nonlinear differential equations with a fractal-fractional derivative with the exponential decay
kernel. The nonlinear equation under investigation here is as follows:{

FFE
t0 Dα,βt y (t) = f (t, y (t)) , if t ∈ (t0, t0 + a] ,

y (t0) = y0, if t = t0.
(3.1)

Applying the corresponding integral yields

y (t) = (1 − α) βtβ−1 f (t, y (t)) + αβ

t∫
t0

τβ−1 f (τ, y (τ)) dτ. (3.2)

We can find λ.We wish to have that t ∈ [t0, t0 + a] and |y (t)| < b; thus

|y (t)| ≤ (1 − α) βtβ−1 | f (t, y (t))| (3.3)

+αβ

t∫
t0

τβ−1 | f (τ, y (τ))| dτ

≤ (1 − α) βtβ | f (t, y (t))|

+αβM

t∫
t0

τβ−1dτ

≤ (1 − α) βaβM + αM
(
tβ − tβ0

)
≤ (1 − α) βaβM + αMaβ < b.

Then, we get

a <
(

b
((1 − α) β + α) M

) 1
β

. (3.4)

Therefore, we have

λ = min

a,
(

b
((1 − α) β + α) M

) 1
β

 . (3.5)

On one hand, we have that
FFE
t0 Dα,βt u0 (t) < f (t, u0 (t)) . (3.6)

Thus, we write

u0 (t) < (1 − α) βtβ−1 f (t, u0 (t)) + αβ

t∫
t0

τβ−1 f (τ, u0 (τ)) dτ (3.7)
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< (1 − α) βtβ−1g1 (t, u0 (t) ; u0, v0) + αβ

t∫
t0

τβ−1g1 (τ, u0 (τ) ; u0, v0) dτ

< u1 (t) ,∀t ∈ (t0, t0 + λ] .

On the other hand, we have
FFE
t0 Dα,βt v0 (t) > f (t, v0 (t)) . (3.8)

Thus, we have

v0 (t) > (1 − α) βtβ−1 f (t, v0 (t)) + αβ

t∫
t0

τβ−1 f (τ, v0 (τ)) dτ (3.9)

> (1 − α) βtβ−1g2 (t, v0 (t) ; u0, v0) + αβ

t∫
t0

τβ−1g1 (τ, v0 (τ) ; u0, v0) dτ

> v1 (t) ,∀t ∈ (t0, t0 + λ] .

But also, we have to show that

FFE
t0 Dα,βt u1 (t) = g1 (t0, u1 (t) ; u0, v0) , u1 (t0) = y0, (3.10)
FFE
t0 Dα,βt v1 (t) = g2 (t0, v1 (t) ; u0, v0) , v1 (t0) = y0.

Then, we have that

u1 (t) = (1 − α) βtβ−1g1 (t, u1 (t) ; u0, v0) + αβ

t∫
t0

τβ−1g1 (τ, u1 (τ) ; u0, v0) dτ (3.11)

< (1 − α) βtβ−1 f (t, u1 (t)) + αβ

t∫
t0

τβ−1 f (τ, u1 (τ)) dτ.

But also

u0 (t) < (1 − α) βtβ−1 f (t, u0 (t)) + αβ

t∫
t0

τβ−1 f (τ, u0 (τ)) dτ (3.12)

= (1 − α) βtβ−1g1 (t, u0 (t) ; u0, v0) + αβ

t∫
t0

τβ−1g1 (τ, u0 (τ) ; u0, v0) dτ

< u1 (t) ,∀t ∈ (t0, t0 + λ] .

On the other hand, we have that

u1 (t) = (1 − α) βtβ−1g1 (t, u1 (t) ; u0, v0) + αβ

t∫
t0

τβ−1g1 (τ, u1 (τ) ; u0, v0) dτ. (3.13)
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Notice that
fy (t, u0 (t)) <

f (t, u0 (t)) − f (t, v0 (t))
u0 (t) − v0 (t)

. (3.14)

Therefore, given the above, we have

u1 (t) < (1 − α) βtβ−1
{

f (t, u0 (t)) +
f (t, u0 (t)) − f (t, v0 (t))

u0 (t) − v0 (t)
(v1 (t) − u0 (t))

}
(3.15)

+αβ

t∫
t0

τβ−1
{

f (τ, u0 (τ)) +
f (τ, u0 (τ)) − f (τ, v0 (τ))

u0 (τ) − v0 (τ)
(v1 (τ) − u0 (τ))

}
dτ

< (1 − α) βtβ−1g1 (t, v1 (t) ; u0, v0) + αβ

t∫
t0

τβ−1g1 (τ, v1 (τ) ; u0, v0) dτ

< v1 (t) ,∀t ∈ (t0, t0 + λ] ,

On the other hand, we have

v1 (t) = (1 − α) βtβ−1g2 (t, v1 (t) ; u0, v0) + αβ

t∫
t0

τβ−1g2 (τ, v1 (τ) ; u0, v0) dτ. (3.16)

Then, we write

v1 (t) = (1 − α) βtβ−1
{

f (t, u0 (t)) +
f (t, u0 (t)) − f (t, v0 (t))

u0 (t) − v0 (t)
(v1 (t) − u0 (t))

}
(3.17)

+αβ

t∫
t0

τβ−1
{

f (τ, u0 (τ)) +
f (τ, u0 (τ)) − f (τ, v0 (τ))

u0 (τ) − v0 (τ)
(v1 (τ) − u0 (τ))

}
dτ.

Using the mean value theorem and the monotonic property of fy (·, ·) with respect to the second variable
leads to

v1 (t) > (1 − α) βtβ−1 f (t, v1 (t)) + αβ

t∫
t0

τβ−1 f (τ, v1 (τ)) dτ (3.18)

> (1 − α) βtβ−1 f (t, y (t)) + αβ

t∫
t0

τβ−1 f (τ, y (τ)) dτ

= y (t) .

We have in general that

u0 (t) < u1 (t) < y (t) < v1 (t) < v0 (t) ,∀t ∈ (t0, t0 + λ] . (3.19)

From here, as presented before, we can now have the transformation operator Λ such that

(un+1, vn+1) = Λ (un, vn)
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for the function with the following relations

un (t) < (1 − α) βtβ−1 f (t, un (t)) + αβ

t∫
t0

τβ−1 f (τ, un (τ)) dτ, un (t0) = y0, (3.20)

vn (t) > (1 − α) βtβ−1 f (t, vn (t)) + αβ

t∫
t0

τβ−1 f (τ, vn (τ)) dτ, vn (t0) = y0.

We have that
un (t) < un+1 (t) < y (t) < vn+1 (t) < v1 (t) ,∀t ∈ (t0, t0 + λ] . (3.21)

Then, we write

un+1 (t) = (1 − α) βtβ−1g1 (t, un+1 (t) ; un (t) , vn (t)) (3.22)

+αβ

t∫
t0

τβ−1g1 (τ, un+1 (τ) ; un (τ) , vn (τ)) dτ,

and

vn+1 (t) = (1 − α) βtβ−1g2 (t, vn+1 (t) ; un (t) , vn (t)) (3.23)

+αβ

t∫
t0

τβ−1g2 (τ, vn+1 (τ) ; un (τ) , vn (τ)) dτ.

Within [t0, t0 + λ], un+1 and vn+1 are monotonic, bounded uniformly and equicontinuous. For the second
part, we will have Ω1 and Ω2 as before

v0 (t) > (1 − α) βtβ−1 f (t, v0 (t)) + αβ

t∫
t0

τβ−1 f (τ, v0 (τ)) dτ, (3.24)

u0 (t) < (1 − α) βtβ−1 f (t, u0 (t)) + αβ

t∫
t0

τβ−1 f (τ, u0 (τ)) dτ.

Therefore,

0 ≤ v0 (t) − u0 (t) (3.25)
≤ (1 − α) βtβ−1 ( f (t, v0 (t)) − f (t, u0 (t)))

+αβ

t∫
t0

τβ−1 [
f (τ, v0 (τ)) − f (τ, u0 (τ))

]
dτ.

We shall use the differentiation of f and the mean value theorem to obtain

( f (t, v0 (t)) − f (t, u0 (t))) = fy (t, ξ) (v0 (t) − u0 (t)) , (3.26)
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u0 (t) < ξ < v0 (t) .

Therefore,

0 ≥ v0 (t) − u0 (t) (3.27)
≥ (1 − α) βtβ−1 fy (t, ξ) (v0 (t) − u0 (t))

+αβ

t∫
t0

τβ−1 fy (τ, ξ) (v0 (τ) − u0 (τ)) dτ

≥ (1 − α) βtβ min
t∈[t0,t0+λ]

∣∣∣ fy (t, ξ)
∣∣∣ (v0 (t) − u0 (t))

+αβ

t∫
t0

τβ−1 min
l∈[t0,τ]

∣∣∣ fy (l, ξ)
∣∣∣ (v0 (τ) − u0 (τ)) dτ

≥ (1 − α) βaβM f (v0 (t) − u0 (t))

+αβM fy

t∫
t0

τβ−1 (v0 (τ) − u0 (τ)) dτ.

Under the condition that
1 + (α − 1) βaβM f > 0, (3.28)

then

v0 (t) − u0 (t) ≥
ξ

1 + (α − 1) βaβM f
(3.29)

+
αβξ

1 + (α − 1) βaβM f

t∫
t0

τβ−1 (v0 (τ) − u0 (τ)) dτ.

By the Gronwall inequality, we have

v0 (t) − u0 (t) ≥
ξ

1 + (α − 1) βaβM f
exp

[
αM f

1 + (α − 1) βaβM f

(
tβ − tβ0

)]
(3.30)

≥
ξ

1 + (α − 1) βaβM f
exp

[
αM f

1 + (α − 1) βaβM f
aβ

]
.

On the other hand, we assume that
v0 (t) − u0 (t) ≤ γ. (3.31)

Therefore, when n = 0, we have the inequality (3.31), we assume that such inequality (3.31) is true for
any fixed n that is

|un (t) − vn (t)| ≤
2γ
22n . (3.32)
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Then,

vn+1 (t) − un+1 (t) = (1 − α) βtβ−1
[ f (t,un(t))− f (t,vn(t))

un(t)−vn(t) (vn+1 (t) − un (t))
− fy (t, un (t)) (un+1 (t) − un (t))

]
(3.33)

+αβ

t∫
t0

τβ−1
[ f (τ,un(τ))− f (τ,vn(τ))

un(τ)−vn(τ) (vn+1 (τ) − un (τ))
− fy (τ, un (τ)) (un+1 (τ) − un (τ))

]
dτ.

Again, using the mean value theorem and the monotonic property of fy and fyy, we have

|vn+1 (t) − un+1 (t)| ≤ (1 − α) βtβ−1

 fy (t, ξ) (vn+1 (t) − un+1 (t))
+

[
fy (t, ξ) − fy (t, un (t))

]
(un+1 (t) − un (t))

 (3.34)

+αβ

t∫
t0

τβ−1

 fy (τ, ξ) (vn+1 (τ) − un+1 (τ))
+

[
fy (τ, ξ) − fy (τ, un (τ))

]
(un+1 (τ) − un (τ))

 dτ

≤ (1 − α) βtβ−1
[

fy (t, ξ) (vn+1 (t) − un+1 (t))
+ fyy (t, η) |ξ − un| (un+1 (t) − un (t))

]

+αβ

t∫
t0

τβ−1
[

fy (τ, ξ) (vn+1 (τ) − un+1 (τ))
+ fyy (τ, η) |ξ − un| (un+1 (τ) − un (τ))

]
dτ.

≤ (1 − α) βaβ
[
Ω1 |vn+1 (t) − un+1 (t)|
+Ω2 |vn (t) − un (t)|2

]

+αβ

t∫
t0

τβ−1
[
Ω1 |vn+1 (τ) − un+1 (τ)|
+Ω2 |un (τ) − un (τ)|2

]
dτ.

By the induction formula, we have

|vn+1 (t) − un+1 (t)| ≤ (1 − α) βaβ
 Ω1 |vn+1 (t) − un+1 (t)|

+Ω2
22γ2

22n+1

 (3.35)

+αβ

t∫
t0

τβ−1

 Ω1 |vn+1 (τ) − un+1 (τ)|
+Ω2

22γ2

22n+1

 dτ

≤ (1 − α) βaβΩ1 |vn+1 (t) − un+1 (t)| + (1 − α) βaβΩ2
22γ2

22n+1

+αβΩ1

t∫
t0

τβ−1 |vn+1 (τ) − un+1 (τ)| dτ + αβΩ2

t∫
t0

τβ−1Ω2
22γ2

22n+1 dτ
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≤ (1 − α) βaβΩ1 |vn+1 (t) − un+1 (t)| + (1 − α) βaβΩ2
22γ2

22n+1

+αβΩ1

t∫
t0

τβ−1 |vn+1 (τ) − un+1 (τ)| dτ + αΩ2
22γ2

22n+1 aβ

≤
((1 − α) β + α) aβΩ2

22γ2

22n+1

1 + (α − 1) βaβΩ1

+
αβΩ1

1 + (α − 1) βaβΩ1

t∫
t0

τβ−1 |vn+1 (τ) − un+1 (τ)| dτ.

With the help of the Gronwall inequality, we obtain

|vn+1 (t) − un+1 (t)| ≤
((1 − α) β + α) aβΩ2

22γ2

22n+1

1 + (α − 1) βaβΩ1
exp

[
αΩ1aβ

1 + (α − 1) βaβΩ1

]
. (3.36)

To obtain the expected inequality, we get to choose

γ =

(
2Ω2 ((1 − α) β + α) aβ

1 + (α − 1) βaβΩ1
exp

[
αΩ1aβ

1 + (α − 1) βaβΩ1

])−1

. (3.37)

Then
|un+1 (t) − vn+1 (t)| ≤

2γ
22n+1 , (3.38)

which completes the proof. The conclusion can be reached as previously shown that the following
equation has a unique solution:{

FFE
t0 Dα,βt y (t) = f (t, y (t)) , if t ∈ (t0, t0 + a] ,

y (t0) = y0, if t = t0.
(3.39)

4. Chaplygin method for fractal-fractional nonlinear differential equations with the power law
kernel

In this section, we extend Chaplygin’s method to derive conditions for its applicability to the
general nonlinear differential equation with the fractal-fractional differential operator with the
power-law kernel. The equation under investigation is given by{

FFP
t0 Dα,βt y (t) = f (t, y (t)) , if t ∈ (t0, t0 + a] ,

y (t0) = y0, if t = t0.
(4.1)

We assume that all hypothesis of the Theorem 1 is satisfied, however, we first determine λ in this case

|y (t)| ≤
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
| f (τ, y (τ))| dτ (4.2)
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≤
Mβ
Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 dτ

≤
Mβ
Γ (α)

tα+β−1
[
B (β, α) − B

( t0

t
, β, α

)]
≤

Mβ
Γ (α)

aα+β sup
t∈[t0,t0+a]

[
B (β, α) − B

( t0

t
, β, α

)]
< b.

Thus, we have

λ = min

a,

 bΓ (α)

βM supt∈[t0,t0+a]

[
B (β, α) − B

(
t0
t , β, α

)]
1
α+β

 . (4.3)

Following the procedure presented earlier t ∈ (t0, t0 + λ]; we have

u0 (t) < y (t) < v0 (t) . (4.4)

Then, by hypothesis, we have

u0 (t) <
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, u0 (τ)) dτ, (4.5)

<
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, y (τ)) dτ

< y (t) .

On the other hand, we have

v0 (t) >
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, v0 (τ)) dτ, (4.6)

>
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, y (τ)) dτ

> y (t) .

The linear differential equations

FFP
t0 Dα,βt u1 (t) = g1 (t0, u1 (t) ; u0, v0) , u1 (t0) = y0, (4.7)
FFP
t0 Dα,βt v1 (t) = g2 (t0, v1 (t) ; u0, v0) , v1 (t0) = y0

are considered; they exist due to the definitions of g1 and g2 that are based on f u0 (t) and v0 (t). From
the inequality (4.5), we have that

u0 (t) <
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, u0 (τ)) dτ (4.8)
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<
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 g1 (τ, u0 (τ) ; u0, v0) dτ

= u1 (t) ,∀t ∈ (t0, t0 + λ] .

Therefore, ∀t ∈ (t0, t0 + λ]
u0 (t) < u1 (t) . (4.9)

On the other hand, we have

v0 (t) >
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, v0 (τ)) dτ (4.10)

>
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 g2 (τ, u0 (τ) ; u0, v0) dτ

= v1 (t) ,∀t ∈ (t0, t0 + λ] .

Therefore, ∀t ∈ (t0, t0 + λ]
v0 (t) > v1 (t) . (4.11)

Following the routine presented earlier, we established that ∀t ∈ (t0, t0 + λ]

u0 (t) < u1 (t) < y (t) < v1 (t) < v0 (t) . (4.12)

The mapping used before yields
(un+1, vn+1) = Λ (un, vn)

with

un (t) <
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, un (τ)) dτ, un (t0) = y0, (4.13)

vn (t) >
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, vn (τ)) dτ, vn (t0) = y0.

We have that
un (t) < un+1 (t) < y (t) < vn+1 (t) < vn (t) ,∀t ∈ (t0, t0 + λ] . (4.14)

Then, we write

un+1 (t) =
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 g1 (τ, un+1 (τ) ; un (τ) , vn (τ)) dτ, (4.15)

and

vn+1 (t) =
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 g2 (τ, vn+1 (τ) ; un (τ) , vn (τ)) dτ. (4.16)
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These functions are also monotonic, equicontinuous and uniformly bounded. For the next part of the
proof, we consider Ω1 and Ω2 as before; then, we evaluate the following:

v0 (t) − u0 (t) >
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 [
f (τ, v0 (τ)) − f (τ, u0 (τ))

]
dτ (4.17)

>
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 fy (τ, ξ) [v0 (τ) − u0 (τ)] dτ.

We apply the mean value theorem and we have

u0 (t) < ξ < v0 (t) ,∀t ∈ (t0, t0 + λ] . (4.18)

Therefore,

v0 (t) − u0 (t) >
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 min
l∈[t0,τ]

∣∣∣ fy (l, ξ)
∣∣∣ [v0 (τ) − u0 (τ)] dτ (4.19)

>
β

Γ (α)
M f

t∫
t0

τβ−1 (t − τ)α−1 [v0 (τ) − u0 (τ)] dτ.

By the Gronwall inequality, we have

v0 (t) − u0 (t) ≤ ε exp
[
βM f tα+β−1

Γ (α)

(
B (β, α) − B

( t0

t
, β, α

))]
. (4.20)

We assume that
v0 (t) − u0 (t) ≤ γ. (4.21)

We have the following for a fixed n,

|un (t) − vn (t)| ≤
2γ
22n . (4.22)

We apply

vn+1 (t) − un+1 (t) =
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
[ f (τ,un(τ))− f (τ,vn(τ))

un(τ)−vn(τ) (vn+1 (τ) − un (τ))
− fy (τ, un (τ)) (un+1 (τ) − un (τ))

]
dτ. (4.23)

Following the routine presented before, we get

|vn+1 (t) − un+1 (t)| ≤
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1

 fy (τ, ξ) (vn+1 (τ) − un+1 (τ))
+

[
fy (τ, ξ) − fy (τ, un (τ))

]
(un+1 (τ) − un (τ))

 dτ (4.24)
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≤
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
[

fy (τ, ξ) (vn+1 (τ) − un+1 (τ))
+ fyy (τ, η) |ξ − un| (un+1 (τ) − un (τ))

]
dτ

≤
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
[
Ω1 |vn+1 (τ) − un+1 (τ)|
+Ω2 |un (τ) − un (τ)|2

]
dτ.

By the induction formula, we have

|vn+1 (t) − un+1 (t)| ≤
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1

 Ω1 |vn+1 (τ) − un+1 (τ)|
+Ω2

22γ2

22n+1

 dτ (4.25)

≤
β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
|vn+1 (τ) − un+1 (τ)| dτ +

β

Γ (α)
Ω2

22γ2

22n+1 tα+β−1
(
B (β, α) − B

( t0

t
, β, α

))

≤
βΩ1

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
|vn+1 (τ) − un+1 (τ)| dτ +

βΩ2

Γ (α)
22γ2

22n+1 aα+β sup
t∈[t0,t0+λ]

(
B (β, α) − B

( t0

t
, β, α

))
.

By the Gronwall inequality, we get

|vn+1 (t) − un+1 (t)| ≤
βΩ2

Γ (α)
22γ2

22n+1 aα+β sup
t∈[t0,t0+λ]

(
B (β, α) − B

( t0

t
, β, α

))
(4.26)

× exp
[
βΩ1

Γ (α)
tα+β−1

(
B (β, α) − B

( t0

t
, β, α

))]
.

Then, we arrange the inequality (4.26) as

|vn+1 (t) − un+1 (t)| ≤ βΩ2
22γ2

22n+1 aα+β sup
t∈[t0,t0+λ]

(
B (β, α) − B

( t0

t
, β, α

))
(4.27)

× exp
[
βΩ1aα+β

Γ (α)
sup

t∈[t0,t0+λ]

(
B (β, α) − B

( t0

t
, β, α

))]
.

We choose

γ =

 2βΩ2aα+β

Γ(α) supt∈[t0,t0+λ]

(
B (β, α) − B

(
t0
t , β, α

))
× exp

[
βΩ1aα+β

Γ(α) supt∈[t0,t0+λ]

(
B (β, α) − B

(
t0
t , β, α

))] −1

(4.28)

such that

|un+1 (t) − vn+1 (t)| ≤
2γ

22n+1 , (4.29)

which the completes the proof.
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5. Chaplygin method for fractal-fractional nonlinear differential equations with the generalized
Mittag-Leffler kernel

In this section, we shall present a detailed analysis of the extension of Chaplygin’s method to derive
conditions under which a general nonlinear ordinary differential equation has a unique solution. We
assume that all hypothesis of the Theorem 1 is satisfied. The equation under investigation is given by{

FFM
t0 Dα,βt y (t) = f (t, y (t)) , if t ∈ (t0, t0 + a]

y (t0) = y0, if t = t0.
(5.1)

Applying the corresponding integral yields

y (t) = (1 − α) βtβ−1 f (t, y (t)) +
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, y (τ)) dτ. (5.2)

Let us find λ.We wish to have that t ∈ [t0, t0 + a] and |y (t)| < b; thus,

|y (t)| ≤ (1 − α) βtβ−1 | f (t, y (t))| (5.3)

+
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
| f (τ, y (τ))| dτ

≤ (1 − α) βaβM

+
αβM
Γ (α)

aα+β sup
t∈[t0,t0+a]

(
B (β, α) − B

( t0

t
, β, α

))
< b

≤ aδ
{

(1 − α) βM +
αβM
Γ (α)

sup
t∈[t0,t0+a]

(
B (β, α) − B

( t0

t
, β, α

))}
,

where
aδ = sup

{
aβ, aα+β

}
(5.4)

implies that

a <

 bΓ (α)

βM
(
(1 − α) + α supt∈[t0,t0+λ]

[
B (β, α) − B

(
t0
t , β, α

)])
1
δ

. (5.5)

Therefore, we have

λ = min

a,

 bΓ (α)

βM
(
(1 − α) + α supt∈[t0,t0+λ]

[
B (β, α) − B

(
t0
t , β, α

)])
1
δ

 . (5.6)

From the hypothesis, we have that

u0 (t) < (1 − α) βtβ−1 f (t, u0 (t)) +
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, u0 (τ)) dτ (5.7)
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< (1 − α) βtβ−1 f (t, y (t)) + αβ

t∫
t0

τβ−1 (t − τ)α−1 f (τ, y (τ)) dτ

< y (t) ,∀t ∈ (t0, t0 + λ] .

Then, we get
u0 (t) < y (t) ,∀t ∈ (t0, t0 + λ] . (5.8)

On the other hand, we have

v0 (t) > (1 − α) βtβ−1 f (t, v0 (t)) + αβ

t∫
t0

τβ−1 f (τ, v0 (τ)) dτ (5.9)

> (1 − α) βtβ−1 f (t, y (t)) + αβ

t∫
t0

τβ−1 f (τ, y (τ)) dτ

> y (t) ,∀t ∈ (t0, t0 + λ] .

Thus, we get
v0 (t) > y (t) ,∀t ∈ (t0, t0 + λ] . (5.10)

From the inequality (5.7), we have that

−u0 (t) > − (1 − α) βtβ−1 f (t, u0 (t)) −
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, u0 (τ)) dτ. (5.11)

Therefore,

v0 (t) − u0 (t) > (1 − α) βtβ−1 [
f (t, v0 (t)) − f (t, u0 (t))

]
+
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 [
f (τ, v0 (τ)) − f (τ, u0 (τ))

]
dτ. (5.12)

Using the mean value theorem, we can obtain

u0 (t) < ξ < v0 (t) ,∀t ∈ (t0, t0 + λ] , (5.13)

such that
fy (t, ξ) (v0 (t) − u0 (t)) = f (t, v0 (t)) − f (t, u0 (t)) . (5.14)

Putting (5.14) into (5.12) yields

v0 (t) − u0 (t) > (1 − α) βtβ−1 fy (t, ξ) [v0 (t) − u0 (t)]

+
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 fy (τ, ξ) (v0 (τ) − u0 (τ)) dτ, (5.15)
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> (1 − α) βtβ−1
0 min

t∈[t0,t0+λ]

{
fy (t, ξ)

}
[v0 (t) − u0 (t)]

+
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 min
l∈[t0,τ]

∣∣∣ fy (l, ξ)
∣∣∣ [v0 (τ) − u0 (τ)] dτ

> (1 − α) βM fy [v0 (t) − u0 (t)] +
αβM fy

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 [v0 (τ) − u0 (τ)] dτ.

Under the condition that
1 + (α − 1) βM fy ≥ 0, (5.16)

then

v0 (t) − u0 (t) ≥
ε

1 + (α − 1) βM fy

+

+
αβ(

1 + (α − 1) βM fy

)
Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 (v0 (τ) − u0 (τ)) dτ. (5.17)

≥
ε

1 + (α − 1) βM fy

exp

 αβ(
1 + (α − 1) βM fy

)
Γ (α)

aα+β
(
B (β, α) − B

( t0

t
, β, α

)) .
This shows that ∀t ∈ (t0, t0 + λ]

u0 (t) < y (t) < v0 (t) . (5.18)

The functions g1 (t, z; u0, v0) and g2 (t, z; u0, v0) are defined as before. Notice that

g1 (t, u1 (t) ; u0, v0) = f (t, u0 (t)) + fu1 (t, u0 (t)) (u1 (t) − u0 (t)) ,∀t ∈ [t0, t0 + λ] , (5.19)

where f (t, u0 (t)) exists and also by hypothesis fu1 (t, u0 (t)) exists on R0. Therefore, we can conclude
that g1 (t, u1 (t) ; u0, v0) exists on [t0, t0 + λ]. The same holds for g2 (t, v1 (t) ; u0, v0). We have by
hypothesis that

u0 (t) < (1 − α) βtβ−1 f (t, u0 (t)) +
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, u0 (τ)) dτ (5.20)

< (1 − α) βtβ−1g1 (t, u0 (t) ; u0, v0) +
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 g1 (τ, u0 (τ) ; u0, v0) dτ

< (1 − α) βtβ−1g1 (t, u1 (t) ; u0, v0) +
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 g1 (τ, u1 (τ) ; u0, v0) dτ

< u1 (t) ,∀t ∈ (t0, t0 + λ] .
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Thus, we get
u0 (t) < u1 (t) ,∀t ∈ (t0, t0 + λ] .

On the other hand, we have that

u0 (t) = (1 − α) βtβ−1g1 (t, u1 (t) ; u0, v0) +
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 g1 (τ, u1 (τ) ; u0, v0) dτ (5.21)

< (1 − α) βtβ−1 f (t, u1 (t)) +
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, u1 (τ)) dτ

< (1 − α) βtβ−1 f (t, y (t)) +
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, y (τ)) dτ

< y (t) ,∀t ∈ (t0, t0 + λ] .

We have that ∀t ∈ (t0, t0 + λ]
u0 (t) < u1 (t) < y (t) . (5.22)

Similarly, we establish that ∀t ∈ (t0, t0 + λ]

y (t) < v1 (t) < v0 (t) (5.23)

for g2 (t0, v1 (t) ; u0, v0). Therefore, also for this case, we have that, ∀t ∈ (t0, t0 + λ]

un (t) < u1 (t) < y (t) < v1 (t) < v0 (t) . (5.24)

Again the transformation for Λ, i.e.,

(un+1, vn+1) = Λ (un, vn) ,

helps us to obtain Chaplygin’s sequences verifying

un (t) < (1 − α) βtβ−1 f (t, un (t)) +
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, un (τ)) dτ, un (t0) = y0, (5.25)

vn (t) > (1 − α) βtβ−1 f (t, vn (t)) +
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 f (τ, vn (τ)) dτ, vn (t0) = y0.

We have that
un (t) < un+1 (t) < y (t) < vn+1 (t) < vn (t) ,∀t ∈ (t0, t0 + λ] . (5.26)

Then, we write

un+1 (t) = (1 − α) βtβ−1g1 (t, un+1 (t) ; un (t) , vn (t)) (5.27)
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+
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 g1 (τ, un+1 (τ) ; un (τ) , vn (τ)) dτ,

and

vn+1 (t) = (1 − α) βtβ−1g2 (t, vn+1 (t) ; un (t) , vn (t)) (5.28)

+
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 g2 (τ, vn+1 (τ) ; un (τ) , vn (τ)) dτ.

These functions are also monotonic, bounded uniformly and equicontinuous; therefore, they converge
toward y (t) as n→ ∞. For the second part of the Theorem 1, we have by hypothesis that

v0 (t) − u0 (t) ≤ γ. (5.29)

Ω1 and Ω2 are the same as before. The assertion is correct for n = 0. We assume for any fixed n that

|un (t) − vn (t)| ≤
2γ
22n . (5.30)

Using the mean value theorem and following the routine presented earlier, we get

|vn+1 (t) − un+1 (t)| ≤ (1 − α) βtβ−1

 Ω1 |vn+1 (t) − un+1 (t)|
+Ω2

22γ2

22n+1

 (5.31)

+
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1

 Ω1 |vn+1 (τ) − un+1 (τ)|
+Ω2

22γ2

22n+1

 dτ

≤ (1 − α) βaβ
[
Ω1 |vn+1 (t) − un+1 (t)| + Ω2

22γ2

22n+1

]

+
αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
[
Ω1 |vn+1 (τ) − un+1 (τ)|
+Ω2 |un (τ) − un (τ)|2

]
dτ

≤ (1 − α) βaβΩ1 |vn+1 (t) − un+1 (t)| + (1 − α) βaβΩ2
22γ2

22n+1

+
αβ

Γ (α)
Ω1

t∫
t0

τβ−1 (t − τ)α−1
|vn+1 (τ) − un+1 (τ)| dτ

+
αβ

Γ (α)
22γ2

22n+1 aα+βΩ1 sup
t∈[t0,t0+a]

(
B (β, α) − B

( t0

t
, β, α

))
.

Rearranging (5.31), we get

|vn+1 (t) − un+1 (t)| ≤ (1 − α) βaβΩ1 |vn+1 (t) − un+1 (t)| (5.32)
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+
αβ

Γ (α)
Ω1

t∫
t0

τβ−1 (t − τ)α−1
|vn+1 (τ) − un+1 (τ)| dτ

+
22γ2

22n+1 β

(1 − α) aβΩ2 +
αaα+β

Γ (α)
Ω1

∑
t∈[t0,t0+a]

(
B (β, α) − B

( t0

t
, β, α

))
≤

β 22γ2

22n+1

1 + (α − 1) βaβΩ1

{
(1 − α) aβΩ2 +

αaα+β

Γ (α)
Ω1 sup

t∈[t0,t0+a]

(
B (β, α) − B

( t0

t
, β, α

))}

+
αβΩ1

Γ (α) (1 + (α − 1) βaβΩ1)

t∫
t0

τβ−1 |vn+1 (τ) − un+1 (τ)| dτ.

By the Gronwall inequality, we get

|vn+1 (t) − un+1 (t)| ≤
β 22γ2

22n+1

1 + (α − 1) βaβΩ1

 (1 − α) aβΩ2 +
αaα+β
Γ(α) Ω1

× supt∈[t0,t0+a]

(
B (β, α) − B

(
t0
t , β, α

))  (5.33)

× exp
[

αβΩ1aα+β

Γ (α) (1 + (α − 1) βaβΩ1)
sup

t∈[t0,t0+a]

(
B (β, α) − B

( t0

t
, β, α

))]
.

We then choose

γ =


2β

1+(α−1)βaβΩ1

 (1 − α) aβΩ2 +
αaα+β
Γ(α) Ω1

× supt∈[t0,t0+a]

(
B (β, α) − B

(
t0
t , β, α

)) 
× exp

[
αβΩ1aα+β

Γ(α)(1+(α−1)βaβΩ1) supt∈[t0,t0+a]

(
B (β, α) − B

(
t0
t , β, α

))]

−1

, (5.34)

such that
|un+1 (t) − vn+1 (t)| ≤

2γ
22n . (5.35)

Therefore, the assertion is correct for n ≥ 0; thus, we have

|y (t) − un (t)| ≤
2γ
22n , (5.36)

|y (t) − vn (t)| ≤
2γ
22n .

This completes the proof.

6. Conclusions

This study has incorporated Chaplygin’s method for fractal-fractional nonlinear ordinary
differential equations, which is an existence and uniqueness method that involves creating lower and
uppersequences that converge toward the unique solution of a nonlinear differential equation. The
case with the Dirac-delta, exponential, power law, and generalized Mittag-Leffler kernels. There were
four categories that were taken into consideration.
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