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1. Introduction

Although they were just recently proposed, fractal-fractional differential and integral operators [1]
with the Dirac-delta, exponential [2], power law [3], and generalized Mittag-Leffler kernels [4] have
already caught the attention of several researchers working in both pure and applied mathematics [1—
7]. This is mainly due to their unique property that one will recover the classical fractional differential
operators when the fractal dimension is set to 1, but also when the fractional order is 1, we recover the
fractal differential operator. In addition to this, one can view these differential operators as fractional
differential operators within fractal geometry. However, when we treat both orders as one, we are
able to obtain the classical derivative. Thus, one would expect that these differential operators will
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replicate more complex physical behaviors than their corresponding fractional derivatives. The fractal
derivative [7] follows the same rules. Therefore, the defined fractal-fractional differential and integral
operators can be included in the mathematical models properties like power law, fading memory, and
crossover from stretched exponential to power law in fractal geometry. It is worth mentioning that
the definition of fractal used here refers to a non-Newtonian generalization of the derivative that deals
with the measurement of fractals, as described in fractal geometry, rather than a fractal sharp like the
Julia set. This idea was developed to address anomalous diffusion, a problem where existing methods
overlook the media’s fractal character. The inspiration came from the fact that fractal characteristics
are frequently seen in porous media, aquifers, turbulence and other types of media. Fractal media do
not follow conventional diffusion or dispersion principles that are based on random travels in empty
space [7]. Nonlocalities like power laws, memory loss, and crossover from stretched exponential to
power laws are considered via fractional formulations. Within the confines of theory and applications,
substantial findings have been obtained, but many more are still required. We will extend the Chaplygin
sequential approach [8—12] in this study to show the existence and uniqueness of certain classes of
nonlinear differential equations because the theory on existence and uniqueness is still being developed.

We now present some definitions for the fractional and fractal-fractional differential operators [1-4].
The Riemann-Liouville fractional derivative is defined by

RLDef (f) = ﬁ%fotﬂr)(z—r)‘“dﬁ (1.1)
The corresponding integral is as follows [5]:
o I f (1) = L f tf (0 @-1)""dr. (1.2)
I'(@) Jo
The Caputo fractional derivative [3] is as follows:
oDy f (1) = r(1 f —f (1) (t—1)dx, (1.3)
and the corresponding integral is defined by
GITf (1) = £(0)+ mf f@@-1)"dr. (1.4)
The Caputo-Fabrizio fractional derivative [2] is defined by
S Dif () = — f S @exp| - (-7 d, (1.5)
and the Caputo-Fabrizio integral [2] is as follows:
I f(n= —a)f(t)+afotf(r)dr. (1.6)
The Atangana-Baleanu fractional derivative [6] is given as
PO = fo @ E [ an (1.7)
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and the Atangana-Baleanu integral [6] is defined by

ABI“f(t)—(l—a)f(t)+mff(r)(t o dr. (1.8)

The definitions of fractal-fractional differentiation introduced in [1] will be now presented. A fractal-
fractional derivative with the power-law kernel is given as

FFP a8 _ 1 ift __\-a
o DO =ra—sae ) S@u-DTdn (1.9)

where the fractal derivative [7] is as follows

d . fO-f@)
—f () =lim ————. 1.10
dtﬁf( ) t1—>t1 B — zﬂ (1.10)
where 8 > 0. A fractal-fractional derivative with the exponential decay kernel [1] is given as
o0 = e [ p@en| -1 ool (1.11)
A fractal-fractional derivative with the Mittag-Leftler kernel [1] is given as
s = = [ @ [ - o ar (112)

Fractal-fractional integrals with the power law, exponential decay and the Mittag-Lefller kernels,
respectively are presented as follows:

FFPyafB _L t -1 _ a1
o 1 f(t)—r(a)jgfﬂ f@@-1)"" dr, (1.13)
SELF =B —a) P () + opp f ' f(Ddr, (1.14)
S () =1 - )P 1f(t)+quﬁ () (- dr (1.15)

Remark. It is worth noting for those who are not familiar with the theory of the concept of fractal-
fractional that, in terms of a derivative, we have fractional kernels, including power law, exponential
decay, and the generalized Mittag-Leffler function. However, when dealing with a fractal-fractional
integral, one will have ##~! in the case of the classical fractal integral and the fractal-fractional integral
obtained from the exponential decay case. In the case of the power law and the generalized Mittag-
Leffler kernels, we have the following kernel:

Pl -0t (1.16)

Indeed, one can then interpret a fractal-fractional derivative as a fractional derivative in fractal
geometry.
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2. Chaplygin method for classical fractal nonlinear differential equations

In this part, we will first look at a general nonlinear ordinary differential equation with the fractal
derivative as the differential operator. This class has been discovered to be suitable for simulating a
subset of diffusion and flow issues in complex porous media by using fractal geometry. The nonlinear
equation under consideration here is as follows:

{ EDy (1) = f(t.y(®) if 1€ (to,10+al, o
y (%) = Yo,
where ¢ € [ty, t) + a],|y — yo| < b and we also assume that |f (¢, y (¢))| < M,V t € [ty, 1o + a].
We shall show the existence of the lower and upper Chaplygin sequences {u,} and {v,}.

Theorem 1. Let f (¢, y(¢)) € C [Ry, R], where

Roy={t,y)|to <t<ty+a,ly—yol <b}. 2.2)
We assume that

|f (2, y ()] < M on Ry, (2.3)

and

o b\
= min a,(ﬁ) . 2.4)

It is assumed that f,, f,, exist and f;, > 0 in R;. We consider uy = uo(¢) and vo = vy (1) as two
differentiable functions on [#y, g + A] with (z, u (¢)) and (¢, vy (¢)) € Ry and

PDfuo(t) < f(t,uo (1), uo (o) = yo, (2.5)
PDlvo ) > f(t,vo(®),vo (t0) = Yo

Then, we can find a Chaplygin sequence {u, (¢), v, (1)} such that

Uy (1) < Upyy (1) <y (@) < Vpyr (1) < v, (1), V1 € (1, 1 + 1], (2.6)
v (o) = y(to) = u, (1),

where the function y (7) is the solution of the following equation in [y, #y + A]:
t
y(0) =y () +B f 77 f(,y (1) dr. 2.7)
10

Additionally, u, (t) and v, () tends to y(¢) on [fy,t) + A],n — oo. For an appropriate y > 0, the
following is written:
0<vy(t)—uy(®) <. (2.8)

Then, Vn fixed and ¢ € [fy, fy + 4], the following is obtained:

2y
22

Vi (1) = u, (0)] < (2.9)
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Proof. From the hypothesis of Theorem 1, we have that
WDt (1) < f (t,ug (D) V1 € (10,1 + 1.

Then, we write

uo (1) < uo(to) + 8 f 7 (ruy (7)) dr
< y(to)+pB f 7 (ruy (1) dr

< y(to)+pB f Py @) dr

< y().
On the other hand, we have
FDvo () > f(t.vo (1), V1t € (0,10 + A] .

Then, we write

vo () > Vo(fo)+ﬁf7ﬁ_1f(T,V0(T))dT
> y(l0)+,3f7ﬂ_1f(T,Vo(T))dT

t
> y(to) +,3ffﬂ_1f(f,y(7))d7
Iy
> y(0).
We have now obtained that VYt € (¢, ty + 4]

uo (1) <y (1) <vo (7).

We now define the following functions

g1 (t,y;up,vo) = f(t,up (1) + £y (2, u0 (1)) (v — uo (1)),

and

f(tug () = f(t,v (1)
up (1) —vo (1)

& (t,ysup,vo) = f(t,up (1) +

AIMS Mathematics

O = uo (1)) .

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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Note that, when t = ¢,

S (to, uo (10)) + £ (£, ug (20)) (y (t0) — y (1))
S (o, uo (10)) = f (to,y0)

g1 (fo, y; uo, vo)

and
8> (to, y;uo, vo) = f (to, uo (t0)) = f (t0,¥0) -

Replacing in g;, y by u; and v; in g, respectively, we get

PDuy (1) = g1 (o uy () 510, vo) s 1y () = Yo,
Zval @) = g(to,vi(1);up,vo),vi (o) = Yo.

The above exists on [, fy + 4]. By the hypothesis of Theorem 1, we have that

up(t) < up (fo)+ﬁf7'ﬁ_1f(7'»uo (1)) dr
= )’(fo)“‘ﬁfTB_lf(fo,Mo(T))dT

t
< )’(fo)“‘ﬁfTB_lgl (1, uo (7) 5 up, vo) dt
To
< u(@®),Vte (@, to+1].

We have on the other hand,

vo(t) > y(to)+ﬁffﬁ‘1f(to,uo(7))df

t
>y (to) +,3ffﬂ‘lgz (7,v0 (7) 5 up, vo) dt
Ty
> vi(f),Vte(ty, tg+ A].
We now show that the defined u; (¢) and v, (¢) verified the differential inequality
v Dy (1) = g1 (fg,un () s g, vo) , V1 € [t, 19 + A1 ;

then

u (1 < wuy(to) +ﬂf7’8_1g1 (1, uy (1) s up, vo) dt

(2.17)

(2.18)

(2.19)

(2.20)

2.21)

(2.22)

(2.23)
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< u (to) + f U (u (7)) dr

< y()+p f 7 (1, uy (1)) dr.

Also, we have that

A

o (1) up (o) + 8 f P (g (1) dr

= Mo(to)+,3f“'ﬁ_182(7',uo(7);Mo,Vo)dT-

The above shows that
Uy (t) < up (t) ,Vf € (t(), to + /l] .

We have in addition that VYt € [#y, tg + A]

ftuy (@) — f(t,vo ()
up (1) — vo (1)

Jy (tup (1) <

b

and
f@&vi(@®) = f(tuy @)+ fo, t,uo () (vi (t) — up (¢))
1
5 o (60 01 () = uo (1) 5uo (1) < €< vy (1).

By a repetition of the mean value theorem and f,,,, (¢,€) > 0, we end up with

vi (D) vi () + 8 f’fﬁlgz (t,v1 (1) 5 up, vo) dt

\

vi () + 8 fTﬁlf(T’ vi (1) dt

y(to) + 8 f P f (@ y (D) dr.

Therefore, by maximal and minimal solutions, we have that V¢ € (¢, tp + 1]
u (1) <y@ <vi (0.

Therefore

ug(t) <uy (1) <y(@) <vy(t) <vy(t),Vt € (tg, 1o + 1] .

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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We then define a mapping A such that V¢ € [#, fH + 1]

A (ug (1) ,vo (1) = (uy (1), v1 (1))

By repetition, we have that

A(uy (1), v (1))

(uz (1), v2 (1))

A (uy (1), vy (1)) (Uns1 (1), Vni1 () .

These functions satisfy the following:

(1)
n (1) < uy (1) + B ft ™ f (7, u, (7)) dr,
Uy (1(3 = Yo
2) t
v (1) > v, (t0) + B [ 777 f (1, v, (7)) dt,
Vn (tot; = Yo.
3)
Uy (1) < Upy1 (1) <Y () < Vg1 (1) < v, (1) , YVt € (2,10 + 1] .
4) ,
e (1) = Uys1 (10) + B f g1 (Tt (1) 54y (7), v, (1) dT.
(5)

Vi1 (8) = Vi1 (t0) + B f g (1, V1 (1) s 4, (1), v, (7)) dT.

2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

Indeed, {«,} and {v,} are bounded in [y, #, + 4] and monotonic. They are also equicontinuous since
they constitute the solution of the linear equation. By the Arzela-Ascoli theorem, there exist two
subsequences {u,, } and {v,, } of {u,} and {v,} that converge uniformly toward y (f). To continue, we shall

let
Q = sup |f@y)
uo()<y<vo(?)
t€lty,to+A1]
Q, = sup | Sy (@, y)|.
uo(1)<y<vo(t)

t€lto,to+A1]

(2.37)
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We have that

vo () > Vo(lo)"‘ﬁfTﬂ_lf(T,Vo (1)) dr,

up (1) < Mo(l‘o)+ﬁf7’3_1f(7,uo(7))dT-

Substracting these two inequalities yields

vo@®) —uo () >
> c+p f P (o (D) = £ (ruo (7)) dr
> ‘9+:8f7ﬂ_1fy(7a77)[‘/0(7-)_MO(T)]dTa

B f L (50 (0) = f (5 g (7] dir

(2.38)

(2.39)

where uy (1) < < vy (1), Vt € [ty, t) + 4] and using the mean value theorem, the above is arranged as

follows
vo (D) —up () = s+,3521ffﬁ‘1 [vo (T) — up (7)1 dt
> gexp [Ql (15 - zﬁ)]

By the Gronwall inequality, we write
vo (1) — ug (2) > gexp [Ql/l’g] .

We therefore assume that
0<vy(t) —ug(t) <.

The assertion is correct when n = 0. We assume that for any fixed n, we have

2
ORTAGES="

We have the following from u,.; and v, and the mean value theorem

‘ F (1)~ Fra(0)
| P (Vg (T) — u, (7))
_ — 1 ity (T) =V (7)
Vst (D) =ty () = B f Tﬁ [ i O

(2.40)

(2.41)

(2.42)

(2.43)
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S @) (Wnir (T) = iy (7))

:ﬁftqﬁ—l

Applying the absolute value on both sides leads to

) il Qb (@ =t @)
e 0= 018 [ | g M S o |
But
=t O < () = v, O],
|un+1 (t) — Uy (t)l < Iun (t) — Vp (t)l .
Therefore

IA

Va1 (1) = tper (0) ﬁffﬁ‘l Q1 Wt (@) = thys1 @+ Qa luy () = v, (D] d

IA

t t
22 2
< ﬁglffﬁ_l Vae1 (T) =ty (Dl dT +ﬁszTﬂ_122Z1 dr.
o 1o
By inductive hypothesis, therefore
t
- 22,}/2
Vst () = s (O] < B f P st (0) = s (DI d7 + Q=5 (F - 1)
1o
t
2272
< By f P i (@) =t @l dr + Q5
4]

By the Gronwall inequality, we obtain

22,)/2
st (D) =t (D] < Q225 A exp [Q4°).

By then choosing
-1
y = (2 exp|Q¥])
we obtain 5
et (1) = Vet ()] < 22—7

+|4 @) = £ @ ()] @iy (@) = 1, (2)) ] ar

,Bglffﬁ_l Vi1 (T) = sy (Dl dT +ﬁszTﬂ‘1 lu, (7) = v, (D dt

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

AIMS Mathematics Volume 9, Issue 3, 5763-5793.



5773

which completes the proof. Therefore

2

V(@) —up (1) < 277 2.51)
2

yO-v @ < 5

We now consider the fractal nonlinear equation and show the lower and upper Chaplygin sequences {u,,}
and {v,}. This will be shown in Theorem 2.
Theorem 2. Let f (¢,y(?)) € C[Ry, R], where

Ry ={(t,y) 1o <t <1to+a,ly—yol <b}. (2.52)

It is assumed that f (¢, y (7)) is quasi-monotonically nondecreasing in y, V¢ € [ty, ty + a] ; additionally,
we assume that ‘;—f (¢,y) exists and is continuous on Ry. Consider u, (¢) as a continuous differentiable

function on [#y, ¢y + A] with
b \?
A =min{a, (—) , (2.53)
M

"Dy () < f (tuo (), uo (o) = Yo (2.54)

(t,up (1)) € Ry and

In addition, we consider

fan+ @y -2<f(tzify<z

Then, there exists a Chaplygin sequence {u,} such that

u, (t) = Yo, (2.55)
u, (1) < up (1) <y@),Vte (ty,to+ 1],
where t
y (@) < y(to) + f P (ny () dr, (2.56)
on [ty, to + 4] and
lim u, (1) = y(¢) (2.57)

uniformly on [#, fH + 1] .
Proof. By assumption, we have that g—’; (t,y) > O since f is quasi-monotone. Moreover,

PDfuo (1) < f (t,u0 (1)) . (2.58)
Then, we write
uo(t) < uo(ty) +p f ?7f (t,up (7)) dt (2.59)
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< y(to)"'ﬁf?'ﬁ_lf(T,uo(T))dT.

But, we have that

y () =y (to) +,6’f?ﬁ_1f(7,y(T)) dr. (2.60)
It follows therefore, that
up (1) < y (1), VYt e (ty, to + A]. (261)

From the maximal and minimal solution principle, the associated linear equation given by

0
f;Df z () = f(t,uo (1) + 6—]; (t,uo (1) (z — uo (1)) = g (1, z;uo (1)) , 2 (fo) = Yo. (2.62)
Replacing z by u, we first have that g (z, z; ug ()) is quasi-monotone on y since aa—’; > (. Thus, we write
t
u () = u (to) +,3ffﬁ“g (T, u1; up (7)) dt (2.63)
Ty
t
< Yo +ﬁffﬁ‘]f(f,u1 (1)) dr
fo
< y(@).
On the other hand, we have that
uo (t) < u, (1). (2.64)
Thus, we have established that
ug (1) <uy (1) <y(1). (2.65)
We can now define a mapping
Alug ()] = w (1), (2.66)
Aluy ] = ux (1),
Alus (D] = u3(1),
A [un (t)] = Up+i (t) s
where
up (1) < uy (1) <up (1) < ... <ty (1) <y(@). (2.67)

A similar routine can be used to obtain the upper sequence of Chaplygin.

AIMS Mathematics Volume 9, Issue 3, 5763-5793.



5775

3. Chaplygin method for fractal-fractional nonlinear differential equations with the exponential

kernel

In this section, we shall present a detailed analysis of an extended version of the Chaplygin method
for nonlinear differential equations with a fractal-fractional derivative with the exponential decay

kernel. The nonlinear equation under investigation here is as follows:

{ gFED;YvBy )= f@y@), if te(tyto+al,
y(to) =yo, if t=1o.

Applying the corresponding integral yields

y®) =1 -a)p " ft,y(1) +aB f P (@ y () dr.

We can find A. We wish to have that ¢ € [#, t) + a] and |y (¢)| < b; thus

ly () (1) |f 1,y (D))

IA

+ap f 1 f (ny ()] dr

IA

(L-a)BPIf (t,y @)
+(ZﬁMfTB_1dT

IA

(1 - )M + aM (¥ - 15)
(1 — @) Bd®M + aMd® < b.

IA

Then, we get

b 5
@< (((1 —a),B+a)M) '

. b :
A = min a’(((l—a/)/j+a/)M) .

PEED™uy (1) < f (t,uo (1)) .

Therefore, we have

On one hand, we have that

Thus, we write

up () < (=)' f(t,uo (1) + ap f 7 (ruy (1) dr

AIMS Mathematics
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(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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< (I1-a)BtF ' g (t,uo () ug, vo) + o f g (r,u0 (1) s ug, vo) dt

< u (@), Vte (ty,to+A].

On the other hand, we have
WFEDvo (1) > f (tvo (1) -

Thus, we have
(@) > 1—a)plf ' ft,v (D)) +aB f (v (1) dr

> (1-a)pf'g (t,vO(t);uo,vO)+aﬁfTB‘1g1 (1, vo () 3 g, vo) dt

> v (),VYte(ty, o+ 1].
But also, we have to show that

FEEDTPu (6) = g1 (o, w1 () 3 9, vo) , 1 (10) = Yo,

gFED?’BW (1) g2 (to, v1 (1) 5 uo, vo) , v1 (t0) = Yo-

Then, we have that

u; (1)

(1 —a) B gy (t,uy () 5 up, vo) + a3 f e (r,uy (1) s ug, vo) dt

A

(1= ) f(t,u; (1)) + aB f #f (ru (7)) dr.
But also

up () < (1=a)Bt f(t,uo (1) + af f 7 (rup (1) dr

(L= @) BP g1 (b to (1) 0, v0) + f g1 ( ty (1) s g, v0) T

< u (@),Vte (ty,to+].

On the other hand, we have that

u (1) = (1 =) B gy (t,uy () 519, o) + aff f g (r,uy (1) 3 ug, vo) dr.

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

AIMS Mathematics Volume 9, Issue 3, 5763-5793.



5777

Notice that F oo () = F (vo (1)
s Uo - » V0
Sy @ ug (1) < NOEENT) : (3.14)
Therefore, given the above, we have
w@ < (1-a)ph {f (g () + LI 2T O) iy (r))} (3.15)
uo (1) —vo (1)
+ap f # {f (rottg (1)) + L TH =T @V @) oy (r))} dr
t uo (1) = vo (1)
< (I-a)ff g t,vi () s up,vo) + Olﬁf‘l'ﬁ_lgl (t,v1 (7) 5 U, vo) dt
< vi(t),Vte(ty, tg+ 1],
On the other hand, we have
vi () = (1 =) B g2 (t,v1 (1) 3 ug, vo) + aﬁffﬁ_lgz (7,1 (1) ; ug, o) dr. (3.16)
Then, we write
v = (1-a)pf! {f (g () + LI 2T C 0 O) (g <r))} (3.17)
uo (1) — vo (1)

uo (1) = vo (1)

+ap3 f 7! {f (rup (7)) + S (@t (7)) = J T, vo (1)) (V1 (1) — ug (T))} dr.

Using the mean value theorem and the monotonic property of f, (-, -) with respect to the second variable
leads to

vi@® > (A=) fi,vi@)+ afﬁffﬁ_lf(T, vy (7)) drt (3.18)
> (1-a)pFf ' ft,y®) +aB f Py (@) dr
= y(@.
We have in general that
ug(t) <uy (1) <y () <vi(t) <vo(t),Vt e (to, o + 1] . (3.19)

From here, as presented before, we can now have the transformation operator A such that
(un+1’ vn+1) =A (un’ Vn)
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for the function with the following relations

u, () < (=)' f(t,u, 1) + ap f U (1w, (7)) dr, () = Yo, (3.20)

v > (L= f(t,v, )+ op f 7 f (v, (1) dr, v, () = Yo.

We have that
U (1) <ty (1) <Y () <V (1) < vy (1), V1 € (9,10 + A] . (3.21)

Then, we write

Un+1 (t)

(1= @) B g1 (1, thnsr (8) 5 1, (D), v (D)) (3.22)

+afs f P71 (Tt (1) 5 1, (7) v, (D) diT,

and

Vi1 (1) (1 =) B g3 (t, vuer (1) 51, (1), v, (1) (3.23)

+afs f 780 (1, V1 (1) 3, (1), v (D) diT.

Within [#y, ty + 4], u,+1 and v, ; are monotonic, bounded uniformly and equicontinuous. For the second
part, we will have Q; and Q, as before

vo() > (1—a)BP f(t,vy () + apf f 27 (1, v (1) d, (3.24)

uo (1) < (L—a)Br" f(t,up (1) + aﬁffg_lf(ﬂ uy (1)) dr.
Therefore,

vo (1) = uo (1) (3.25)
(1 =) B (f (t,v0 (D) = f (8,10 (1))

IAIA

+a:3f7ﬁ_1 [f (z,v0 (7)) = f (7, u0 (7))] d.

We shall use the differentiation of f and the mean value theorem to obtain
(f&vo D) = f(tug (D) = f,(8,8) (vo () —uo (1)), (3.26)
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M()(l') < éf < V()(l).
Therefore,

vo () — uo (1) (3.27)
(1 =) B f,(1,6) (vo (1) = up ()

vV v

+afs f P (16 (o (1) = up (1) dT

\%

(A=)pl min |f, 1] (0 (1)~ o (1))

+af f @ min |y (1.E)| o () = uo (7)) dT

v

(1 —a)Ba’ M (v (1) — uo (1))
+afMy, ffﬁ_l (vo (1) — up (1)) dr.

Under the condition that
1+ (a—1)pd’M; > 0, (3.28)

then

&
vo (1) —up(t) > T+ (@= DM, (3.29)

af 1
1+(a—1)ﬁaﬁM f?’ﬁ (o (7) — ug (7)) dr.

By the Gronwall inequality, we have

&
I+ (- )M, ©

&
1+ (a—1)BaPM;

vo (1) =g (1) > M (# - zﬁ)] (3.30)

I T+ @-DpaM;

aM
f &
1+ (a—1)BaPM; ]

exp
On the other hand, we assume that
vo (1) —ug (2) < y. (3.31)

Therefore, when n = 0, we have the inequality (3.31), we assume that such inequality (3.31) is true for
any fixed n that is

2
(1) = v (0] < 3. (3.32)

AIMS Mathematics Volume 9, Issue 3, 5763-5793.



5780

Then,

[Eu )= f(tva (1))
_ — _ -1 U (D —v(t (vn+l (t)_un (t))
Vart () =ty () = (1= ) B’ [ f o) s @) — 1, (1) ] (3.33)

g f@un(0)=f(7va(7))
| e (Vi (T) =y, (7))
#1 U (T)=vy (7) d
mﬁf [ — 1y (t, uy (7)) (Ups1 (7) — u, (7)) ] ’

Again, using the mean value theorem and the monotonic property of f; and f,,, we have

| £, (0.8 (st (O) = s ()
bt @ =t @ < (- )BF [+[fy<r,f)—mt,un<t>)] o <r>—un<r))l 639
o £, (0 8) pt (T) =t () ]
top f . [ @8) = £, @ty )] s (@) = 10, (7))
] A GO Gt () =ty 1) ]
< (=B e = tal Gt () — 1y ()
1 H@E W (T) — Uy (7))
tap f T () € — ] s (5) — (7)) ]‘”‘
Ql |Vn+1 (t) — Up+1 (l)|
< ““”ﬁ"ﬁ[ £ v () =ty () }
C i Qe (@) =ty (]
*ap f P (0) — (D ]‘”
By the induction formula, we have
Q 1 (F) — Uy (£
st (6) =ttt (0] < (1—a),8aﬁl Y }ggi M} (3.35)
92n +1

+aﬁffﬁ 1[ Q Ivn+1(T) un+1 () ldT

22 +]

22,)/2

< (1= @BEQ s () =ty O]+ (1= ) Q5
22 2
+0’391f‘fﬂ Vi1 (T) = Upa (T)|dT+CY,392fTﬂ 'Q, 2+]d
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2272

22n+l

@

< (1= @) BaPQ per (1) =ty ()] + (1 — @) BdPQy

22,),2
22n+]

t
+aBCY ffﬂ’l Vi1 (T) = tpse1 (DI AT + )y
0]

(1 -+ @) P2
1+ (@ —1)BaPQ,

ap fﬁ”mﬂw—meMr

_I_
1+ (a—1)BafQ,

With the help of the Gronwall inequality, we obtain

(1 - @)+ a)dPQ2L

g2ntl anaﬁ
el (1) = Upey (D] < . 3.36
Vi1 (1) = Uy ()] T+ @-Dpa, P 1+(a—1),8aﬁQl] (3.36)
To obtain the expected inequality, we get to choose
(2% (1 -a)B+a)d aQ,d - 337
1T+ (a-1)BaPQ, 1+ (a - 1)BaPQ, '
Then 5
g1 (1) = Vo (O] < 505, (338)

which completes the proof. The conclusion can be reached as previously shown that the following
equation has a unique solution:

{ [I;FED;%,By ) =f@y@), if te(tty+al,

) 3.39
v (t) = yo, if t=1. ( )

4. Chaplygin method for fractal-fractional nonlinear differential equations with the power law
kernel

In this section, we extend Chaplygin’s method to derive conditions for its applicability to the
general nonlinear differential equation with the fractal-fractional differential operator with the
power-law kernel. The equation under investigation is given by

{ gFPD;’ﬁy ) =fy@), if te(ty,ty+al,

i 4.1
y(t) =yo, if t=1. 4.1)

We assume that all hypothesis of the Theorem 1 is satisfied, however, we first determine A in this case
t
B _ o
ol < =— [ ' ¢-0" " If ny@)ldr 4.2)
I'(@)
]
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< % ffﬁ_l (t-1)*'dr
< %t‘”ﬁ_l [B B a) - B(%O,,B, a/)]
< ﬂa‘”ﬁ sup |B(B,a)— B (%(),ﬁ, oz)] < b.

I'(@) t€[to,to+al

Thus, we have

br “*
A = min a,[ (@) , ) . (4.3)
ﬁM SuPlE[l‘(),l‘o+a] [B (ﬁ’ a) - B(T(J’ﬁa a)]
Following the procedure presented earlier ¢ € (¢, ty + 1]; we have
uy (1) < y() <vo (). 4.4)

Then, by hypothesis, we have

uy () < B f P -0 f(r,u (7)) dr, (4.5)
()

< % f (=1 f(ny (0) dr

< y().
On the other hand, we have
vo (1) > B f Pt -0 (v (7)) dr, (4.6)
I'(a)

S % f # (t = f(ny (D) dr

> y(@).
The linear differential equations

ZFPD?"BM (0 = g (o, u1 (t) ; uo, vo) , us (to) = Yo, 4.7)
;FPD?’BW (1) = g2 (o, vi (1) ;u0,v0),v1 (f0) = Yo

are considered; they exist due to the definitions of g; and g, that are based on f u (¢) and v, (¢). From
the inequality (4.5), we have that

u () < B f Pt -1 (1, uy (1)) dT (4.8)
I'(@)
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= u (),Vte (ty,to+ A].

Therefore, Yt € (¢, tg + A]
up () < uy (7). 4.9)

On the other hand, we have

\Y

vo (1) ri f P -0 f(r,v (1) dT (4.10)
(@)

g % ffﬁ_l (1 =) g2 (7, uo (7) s o, vo) dT

= (t),Vte (t(),t()+/l].

Therefore, Yt € (¢, tg + A]

vo (1) > vy (7). “4.11)
Following the routine presented earlier, we established that V¢ € (#y, t) + 4]
up (1) <uy (1) <y() <vi () <vo(1). (4.12)

The mapping used before yields
(Unt15 Vasr1) = A (uy, vy)

with
u, (1) < P f -0 f (o, (1) dr,u, (k) = Yo, (4.13)
I'(a)
Ve () > ri f -0 f (v, (1) dr, v, (f) = Yo
(@)
We have that
Uy (1) < g1 () <y () < Vpy1 (1) < v, (1), V1 € (29, 19 + 1] 4.14)
Then, we write
Upi1 (1) = l“i fTﬂl (t—1)"" g1 (7, tns1 (7) 31, (7),v, (7)) dT, (4.15)
(@)
and t
Va1 (1) = l“i fTﬁ_l t—1)"" g (1, V1 (031, (1), v, (7)) dT. (4.16)
(@)
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These functions are also monotonic, equicontinuous and uniformly bounded. For the next part of the

proof, we consider ; and Q, as before; then, we evaluate the following:

vo (t) —ug (t) > ri f Pt -0 f (v (1) = £ (up (7)) dr
(@)

> % f P —-0 (1O [vo (1) — up (D] dr.

We apply the mean value theorem and we have
Mo(l) < g < vo(t),Vte (t(),[() +/l]

Therefore,

vo (1) —up (1) > % f L (t—T)“_llgggf;] |, (1O [vo () — uo ()] dT

>IWM@f#WIﬁ“Mﬁ%%@WT

By the Gronwall inequality, we have
a+f-1 t
vo (1) — up () < gexp 'Bf— (B(,B, ) — B(—O,ﬁ, a/)) .
I' (@) t
We assume that
vo (1) —up (1) < y.

We have the following for a fixed n,

|un (t) Vn (t)l < o

We apply

e B [ty e | L 4, () -, (1)
Va1 (0 ”““”‘I%mbf# ¢ [—ﬁ@uJﬁ»wmwﬂ—uAﬂ>

Following the routine presented before, we get

[Vpir (1) — u 1(t)|<—frﬁ L — ! 5 (@8 (net (T) = Uy (7))
" " T()

+| 4 @O = £ (it ()| Wy (@) = 1, (1)

4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

l dr (4.24)
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1 a—1 f; (T’ f) (Vn+l (T) — Up4q (T))
B F(a) fTﬂ (-7 [ +fyy (T, M) 1€ = | (U1 (7) — uy (7)) ]dT

1 al
r()fTﬁ ¢-

By the induction formula, we have

Qi Vpr1 (T) = ttyey (7)] d
+Q2 |un (T) — Uy (T)lz

P ()= e 0] < f P~ “[Q‘ e (T)']df 425)
22n+1

t
B - a- B, 2 p
@ = I () =ty (e + LS (B gy - B(2.pua))
BE: f I | 2 229 fy
< Pt =) W () = ey (0)| dT + — Z " su (B ,a)—B(—, ,a)).
I (@) " " @27 by PP 7
By the Gronwall inequality, we get
et B — s O] < PR2ZY s (B(ﬁ @) B(to B a)) (4.26)
n+1 — Un+l = Aol s - P .
’ " I (@) 22! t€lto,to+A] t
:3 1 _a+8-1 (
X ex I BB, a) - B( a/))
PIT)’ B, B
Then, we arrange the inequality (4.26) as
2 72 a+ﬁ
Wt O =t O] < =La™ sup (BB, - B(2L.p.0)) 4.27)
2 t€lty,to+A1]

X exp [ﬁQla“+ﬁ sup (B B,a)— B (%O,ﬂ, a))] .

I'(a) t€lfo.f0+A]

We choose
[, A s 00~ B(3 8] )‘1 29
X eXp [ﬁ%‘(‘;) supte[,o,tow (B B, ) - ( ° B, a))] '
such that
s (0= v O] < 20 (4.29)

which the completes the proof.
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5. Chaplygin method for fractal-fractional nonlinear differential equations with the generalized
Mittag-Leffler kernel

In this section, we shall present a detailed analysis of the extension of Chaplygin’s method to derive
conditions under which a general nonlinear ordinary differential equation has a unique solution. We
assume that all hypothesis of the Theorem 1 is satisfied. The equation under investigation is given by

{ PEMDIPy (1) = £ (6y @), if 1€ (0,10 + a]
0 . (5.1
y(t) =yo, if t=1o.
Applying the corresponding integral yields
yO == f @y @)+ m f -0 fay@)dr (5.2)
Let us find 4. We wish to have that ¢ € [1, fy + a] and |y (¢)| < b; thus,
@l < (- a)ﬁlﬁ_l lf 2,y ()] (5.3)
ot ffﬂ L= I (ny ()] dr
< (1-ao ﬁaﬁM
GPBM i _p(h
T@" i (B 6.0~ B(Z.pr0)) <
ol - apM
< a {(l a)BM + F'@ te[tsolgla] (B(ﬁ ) — B( .5, a/))}
where
a® = sup {aﬁ , a“+ﬁ} (54)
implies that
a <[ br'(@) ] : (5.5)
BM ((1 - a) + asup,, ... | BB.@) - B(2.5.)|)
Therefore, we have
A=min!a, { br'(e) ) . (5.6)
BM ((1 =)+ asup, .. |BB.a)- B(2.5.2)|)
From the hypothesis, we have that
uo () < (L—a)Br" f (t,uo (1) + mff” Y- f(ruo (1) dr (5.7)
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< (1-a)B ' ft,y®))+aB f P e-07 fry()dr

< y(t),VtE (to,l‘o+/l].

Then, we get
uo(t) < y(t),Vt € (to,to +/l] .

On the other hand, we have

v () > (1-a)pF " ft,v @) +ap f 7 (10 (7)) dr

> (1-a)B ' ft,y (1) +aB f Py () dr

> y(t),Vte (ty,tp+ 1].

Thus, we get
vo (1) > y(t),Vt € (ty, 1o+ 1].

From the inequality (5.7), we have that

—up (1) > = (1 —a) B f (tuo (1) — —— f -0 f(ru () dr.

F( )
Therefore,

vo (t) —up () > (1—cv),3tﬁ‘l [f (2,0 (1) = f (t,up ()]

oo f (=D [ (v () — f (5 o ()] d

Using the mean value theorem, we can obtain
ug (1) <& <v(t),Vt € (to, 10 + 1],

such that
Iy (@8 (o (1) —uo (1)) = f (v (1)) — f (2, up (1)) .
Putting (5.14) into (5.12) yields

vo(H) —up () > (I - a)ﬁfg_]fy(l &) [vo (1) — up ()]

T )ffﬁ Lo =0 (@8 (0 (1) = ug (1) dir,

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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> (- min (£ @O} 0 = uo ()]

Jfo+A]

frﬁ Y-t min |fy(l O|vo (1) — up (] dr

F( )
_ M,
> (1 —a)BMy [vo (1) — uo ()] + af (a;‘ f Pt =) o (1) — up ()] dr.
Under the condition that
1+ (@-1BMy >0, (5.16)
then
vo (£) — g (1) 2 cE .
1+ (@—-1)BM,;
+ @p f P =0 (0o (1) —up (D) dr. (5.17)
(1+(@-1M)T (@)

&
> ex

1+ (@-1DBM,,

P (1+ - Siﬁﬁ)r(a)aﬁﬂ (B (6. ) B(%O"B’ “))} '

o () < y(2) < vo (£). (5.18)

The functions g, (t, z; ug, vo) and g, (t, z; ug, vo) are defined as before. Notice that

This shows that V¢ € (ty, ty + A]

g1 (t,uy (1) sup,vo) = f(t,ug (D) + fu, (t,uo (1) (uy (1) — up (1)), V1 € [to, 10 + 4], (5.19)

where f (¢, up (¢)) exists and also by hypothesis f,, (z, uo (¢)) exists on R,. Therefore, we can conclude
that gy (¢, u; (¢); ug, vo) exists on [fy,%) + A]. The same holds for g, (¢, v (¢);up,vo). We have by
hypothesis that

uo(t) < (1 —a)BP ' f(t,u (t))+mfrﬁ Y= f(tup (1) dr (5.20)

< (- g (o () uo,vO)+m f B (=1 g1 (7o (7)o, vo)

< (-w)pF g (G () uo,vO)+m f B (=1 g1 (s (7)o, vo) d

< wu (@),Vte(ty,to+ A].
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Thus, we get
ug (1) < uy (1), vVt € (tg, ty + 1] .

On the other hand, we have that

up (1) = (1—0),3?8_181 (t, u; (f);uo,vo)'i'meﬂ l(f )" 181 (t,uy (7) 5 U0, vo) dt (5.21)
< A-a)Bfftu <r>>+—frﬁ L= f (o () dr
< U-a)ph 1f<ry<z)>+mffﬂl<r 9 f(ay () dr

< y(f),VlE(to,lo'i'/l].

We have that V¢ € (¢, ty + 1]
ug(t) <uy (1) <y(). (5.22)

Similarly, we establish that V¢ € (¢, ty + 1]
y(0) <vi (@) <vo () (5.23)
for g, (ty, v () ; up, vo). Therefore, also for this case, we have that, VYt € (¢, t) + 1]
w, (1) <uy (1) <y@) <vi(t) <vy(t). (5.24)
Again the transformation for A, i.e.,
(Un+15 Vir1) = A (o, Vi)

helps us to obtain Chaplygin’s sequences verifying

(1 < (=) f(t,u, (D) + m ffﬂ L= f (@, () dr,u, (1) = yo,  (5.25)

v () > (1—a)BF ' ft,v, @)+ meﬂ Lt =0 f (v, (D) dT, v, (t) = Yo

We have that
Uy (1) < U1 () <Y (&) < Vgt (1) < v, (1), V2 € (20,80 + A] . (5.26)

Then, we write
i () = (1=a) B gy (1, sy (1) 31, (£) , v, () (5.27)
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I,@I)L]“rﬁ Lt =0 gy (5t (7)1 (7) vy (D) i,

and

vrr (1) = (1 —a)ﬁtﬁ_lgz (Vi1 (O) 3 (1), v (1)) (5.28)

T )ffﬁ L= 1) 82 (4 vt (@) 5y (1), vy (D)) d.

These functions are also monotonic, bounded uniformly and equicontinuous; therefore, they converge
toward y (1) as n — oo. For the second part of the Theorem 1, we have by hypothesis that

vo (1) — ug (1) <. (5.29)

Q, and Q, are the same as before. The assertion is correct for n = 0. We assume for any fixed » that

2
(1) = v (0] < 7. (5.30)
Using the mean value theorem and following the routine presented earlier, we get
| Qv (0 - Mn 1 (D)l
Wit (O =ttt D] < (1= a) B! [ ' ' } (5.31)
QQ, 22n+1
t
af _ 2 Qv (T) — sy (7)]
Tﬁ 1 f—1)° 1 d
Tl | 70D L0, 22 i
to
22,)/2
< (1-a)pd [Ql Vi1 (1) = 1 (D] + Qo —= o ]
Q [Vs1 (T) = Uty (7)]
1 (1 — )] 11Vat1 J
r(a) f ( +Q, luy (1) —u, ()P |7
22,)/2
< (1= @)BdQ vuet () = iy (D] + (1 — @) B’y S
+__Qif#1“ O Nt (1) = 1 (7 d
I'(@)
a’ﬁ 2272 +3 (
————=a""Q, sup (BB, a)— B( a))
r (Q’) 22" : : ze[to,t(ga] (ﬂ ﬁ
Rearranging (5.31), we get
Vet (1) = thpsr D1 < (1= @) BaPQy a1 (1) =ty (0)] (5.32)
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LB g f (= 1 Wt (T) =ty (D) dT

I'(@)
+§?jﬁ {(1 ) + ‘ff’(af o tqtzm] (BB.a)-B(2.p a))}

2272
ﬁ22n+1

1+ (a—1)BaBQ,

{(1 00+ Y0, sup (BB -B(2.8 a))}

I'(@) t€lto,to+al

B
F(a)(l + (a - 1) BaPQ

[ e (0=t (D
1

By the Gronwall inequality, we get

2.2
Wt () =t ()] < i (1 -a)dQ; + §50, (533)
m NS T4 (@ - DBAPQ; | x sup,e[to wial (B(B.@) = B(2.8.)) '
afQa*P (
X ex su BB, a) — B( a/))]
PIF @1 + (@ Dpa) P, B b
We then choose
gy _1
2% (1-a)dQ, + %=,
y=| TR xsupy i (B(B.@) - B(2.8.2)) , (5.34)
aBQa**P
X exp F(a)(l+(al Dpaay) WPl +al (B B,) - B (tTO'B 0‘))
such that 5
it () = Vo (0] < 33 (5.35)
Therefore, the assertion is correct for n > 0; thus, we have
2
O -uOl < 3 (5.36)
2
yO-v @ < o

This completes the proof.
6. Conclusions

This study has incorporated Chaplygin’s method for fractal-fractional nonlinear ordinary
differential equations, which is an existence and uniqueness method that involves creating lower and
uppersequences that converge toward the unique solution of a nonlinear differential equation. The
case with the Dirac-delta, exponential, power law, and generalized Mittag-Lefller kernels. There were
four categories that were taken into consideration.

AIMS Mathematics Volume 9, Issue 3, 5763-5793.



5792

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (Al) tools in the creation of this
article.

Acknowledgments
This study was supported by the National Research Foundation of South Africa.
Conflict of interest

Abdon Atangana is an editorial board member for AIMS Mathematics and was not involved in the
editorial review or the decision to publish this article.
The authors declare that there is no conflict of interests regarding the publication of this paper.

References

1. A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and
fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396-406.
https://doi.org/10.1016/j.chaos.2017.04.027

2. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr.
Fract. Differ. Appl., 1 (2015), 73-85. https://doi.org/10.12785/pfda/010201

3. M. Caputo, Linear model of dissipation whose Q is almost frequency independent-11, Geophys. J.
R. Astron. Soc., 13 (1967), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

4. G. M. Mittag-Leffler, Sur la nouvelle fonction Ea(x), C. R. Acad. Sci., 137 (1903), 554-558.

5. L Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional
differential equations, to methods of their solution and some of their applications, Elsevier, 1998.

6. A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular
kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
https://doi.org/10.2298/TSCI160111018A

7. W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Soliton. Fract., 28 (2006)
923-929. https://doi.org/10.1016/j.chaos.2005.08.199

8. G. Julia, Mémoire sur I’iteration des fonctions rationnelles, J. Math. Pure. Appl., 8 (1918), 47-245.
9. S. A. Chaplygin, New method of approximate integration of differential equations, Moscow, 1950.

10. N. S. Kurpel’, V. I. Grechko, On some modifications of Chaplygin’s method for equations in
partially ordered spaces, Ukr. Math. J., 25 (1973), 30-36. https://doi.org/10.1007/BF01085389

11. M. Kumari, Y. S. Valaulikar, On Chaplygin’s method for first order neutral differential equation,
Appl. Appl. Math., 13 (2018), 764-780.

AIMS Mathematics Volume 9, Issue 3, 5763-5793.


http://dx.doi.org/https://doi.org/10.1016/j.chaos.2017.04.027
http://dx.doi.org/https://doi.org/10.12785/pfda/010201
http://dx.doi.org/https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/https://doi.org/10.2298/TSCI160111018A
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2005.08.199
http://dx.doi.org/https://doi.org/10.1007/BF01085389

5793

12. V. Lakshmikantham, S. Leela, Differential and integral inequalities: Theory and applications,

Academic Press, 1969.

@ AIMS Press

AIMS Mathematics

©2024 the Author(s), licensee AIMS Press. This
i1s an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Volume 9, Issue 3, 5763-5793.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Chaplygin method for classical fractal nonlinear differential equations
	Chaplygin method for fractal-fractional nonlinear differential equations with the exponential kernel
	Chaplygin method for fractal-fractional nonlinear differential equations with the power law kernel
	Chaplygin method for fractal-fractional nonlinear differential equations with the generalized Mittag-Leffler kernel
	Conclusions

