AIMS Mathematics, 9(3): 5501-5522.
DOI: 10.3934/math.2024267
ATMS Mathematics Received: 21 November 2023
Revised: 14 January 2024

Accepted: 23 January 2024
http://www.aimspress.com/journal/Math Published: 29 January 2024

Research article

The uniqueness of meromorphic function shared values with meromorphic
solutions of a class of q-difference equations

Zhuo Wang'* and Weichuan Lin?

! School of Mathematics, Renmin University of China, Beijing 100872, China
2 Fujian Preschool Education College, Fuzhou 350007, China

* Correspondence: Email: zhuowangmaths@163.com.

Abstract: We first investigate the meromorphic solutions of a class of homogeneous second-order g-
difference equations and the uniqueness problem for a meromorphic function with three shared values;
then we discuss the uniqueness problem for the meromorphic solutions of a class of nonhomogeneous
g-difference equations and a meromorphic function with four shared values.

Keywords: difference equations; meromorphic function; shared values; uniqueness
Mathematics Subject Classification: 30D35, 30D30, 39A10

1. Introduction

Throughout this paper, a meromorphic function will always mean meromorphic in the whole
complex plane. In what follows, we assume that the reader is familiar with the fundamental concepts
of Nevanlinna’s value distribution theory [5, 8, 10].

Let f and g be meromorphic functions and a be a complex number. If f — a and g — a have the
same zeros with the same multiplicities, then we say that f(z) and g(z) share a counting multiplicity
(CM). If f — a and g — a have the same zeros (ignoring multiplicity), then f(z) and g(z) share a IM. If
f(z) and g(z) have the same poles (CM), then f(z) and g(z) share co CM. In this paper, we suppose that
f(z) shares the value a partially with g(z), and that N(m,n)(r, a) denotes the reduced counting function
of those zeros of f(z) — a with multiplicity &, and of g(z) — a with multiplicity /in {z : |z| < r}.

Definition 1. Let f(z) be a meromorphic function in the complex plane. The order p and lower order
u of f(z) are defined respectively by the order of T'(r, f), that is,

+T(r,f)‘

loe™ T 1
p(f) = limsup P& LD ) liminf %
r—o0 ogr

r—o0 logr
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Definition 2. If the meromorphic function a(z)(# oo) is satisfied, it follows that
T(r,a) = o(T(r, [),r = o,r ¢ E,
where E C [0, o) is a set of real numbers with finite measures, that is,

T(r,a) =S(r,f),
then, a is called a small function of f(z).

Definition 3. Let f(z) be meromorphic in the complex plane. If the order and the lower order of f(z)
are equal, then f(z) is called a function with normal growth.

In recent years, with the research and development of the theory of difference equations, the value
distribution and uniqueness of meromorphic solutions in complex domain difference equations (see [2,
3, 6]) has gradually became a hot research direction in the field of complex analysis. In 2017, Cui
Ning and Chen Zongxuan [4] considered the problem that meromorphic solutions of a class of linear
difference equations share values with arbitrary meromorphic function, and they obtained the following
results.

Theorem 1.1. (see [4]) Let ai(z), ap(z), and F(z) be non-constant polynomials satisfying that a,(z) +
ao(z) # 0; f(2) is the finite-order transcendental meromorphic solutions of the following difference
equation:

a1 f(z+ 1) +ag(2)f(z) = F(2).

If meromorphic functions g(z) and f(z) share 0, 1, co CM, then one of the following situations must
occur:

D f(2) = g(2);

(i) f(z) + 8(2) = f(2)8(2);

(iii) There is a polynomial 5(z) = az + by and a constant ay satisfying that e # e®; then, f(z) =

e = O
W and g(z) = T where a(# 0), by are constants.

Then, Yang Yin and Ye Yasheng [9] studied the problem for the solutions of g-difference equations
with shared values for any meromorphic function.

Theorem 1.2. (see [9]) Let a,(z), ao(z), and F(z) be non-zero meromorphic functions whose order is
less than 1; f(2) is a finite transcendental meromorphic solution of the following difference equation:

a1(2)f(gz + p) + a(2) f(2) = F(2),

where p, q are constants, n € N*, ¢" # x1, and q # 0. If g(z) is any meromorphic function that shares
0, 1, oo CM with f(z), then [ = g.

Based on the conclusion of the first-order g-difference equations of Theorems 1.1 and 1.2,
we naturally consider the existence of the meromorphic solutions of the second-order g-difference
equations with the meromorphic coefficients, as well as the uniqueness of the meromorphic solutions
with any non-constant meromorphic function with shared values; it is a difficult and interesting
problem. Therefore, we put forward the following question:
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Question 1. For the second order homogeneous q-difference equation:

£(q*2) + a1(2)f(g2) + an(2) f(z) = 0, (1.1)

with the meromorphic functions as coefficients. Are there uniqueness conclusions when meromorphic
solutions share values with a non-constant meromorphic function?

The following result is obtained.

Theorem 1.3. Let a,(z) and ay(z) be non-zero meromorphic functions whose order is less than 1; f is
a transcendental meromorphic solution of finite order of (1.1), where q ¢ E and the set E satisfies that
E = {qlAsg" + Asq”" + Axg™ + A1q" + Ao = 0, n e N*, A;(j = 0,1,2,3,4) € Zand |A4] <2, |As] < 4,
Azl <6, |A1] < 4, |Ao| < 2}. If g is any non-constant meromorphic function that shares 0, 1, co CM
with f, then f = g.

Furthermore, based on the above study of meromorphic solutions and meromorphic functions with
shared values, we naturally have the following question:

Question 2. Do meromorphic solutions and meromorphic functions of higher-order gq-difference
equations have the same uniqueness conclusions with shared values?

In 1998, Bergweiler et al. (see [1]) studied the meromorphic solution existence of a class of non-
homogeneous g-difference equations described by

n

D 4/@f@'D) = 0), (1.2)
=0
where 0 < |g| < 1 is a complex number, a;(z), j = 0,1,---,n; Q(z) denotes rational functions, and

ap(z) #0, a,(2) = 1.
For the study of Question 2, we obtain the following results.

Theorem 1.4. Let f be a meromorphic solution of (1.2). If g is any non-constant meromorphic function
that shares 0, 1, ¢ (¢ # 0, 1) IM and oo CM with f, then f = g.

Remark 1.5. The number of “3IM+1CM” shared values in Theorem 1.4 is accurate.

Example 1.6. For the meromorphic solution of g-difference equation (1.2) to f(z) = 1z, for
2
g(z) = rzz f and g share 1, —1 IM and 0 CM, but f(z) # g(2).
Z

2. Some lemmas

In order to prove our main results, we shall recall some lemmas as follows.

Lemma 2.1. (see [10], p. 65) Let h(z) be a non-constant entire function and f(z) = ¢"®. Let p and u
be the order and the lower order of f(z), respectively. We have the following:

(1) If h(z) is a polynomial of degree p, then p = u = p.

(i1) If h(z) is a transcendental entire function, then p = u = co.
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Lemma 2.2. (see [10], p. 75) Suppose that f1(2), [>(2),- -, fu(z) (n > 2) are meromorphic functions
and g1(2), g2(2), - - - , g.(2) are entire functions satisfying the following conditions:

(i) Y e = 0.
=1

(i1) g(2) — gk(z) are not constants for 1 < j <k < n.
(i) For1 < j<n 1 <h<k<n,

T(r,f)) =o{T(r,e¥ %)} (r— oo, r ¢ E).

Then fi(z) =0(j =1,2,--- ,n).

Lemma 2.3. (see [11], Theorem A) Suppose that f; (i = 1,2,--- ,n,n+1,n+2,--- ,n+ m) represents
meromorphic functions, where f; (j=1,2,--- ,n) is not constant, fy 0 (k=n+1,n+2,--- ,n+m),
and

n+m

Zfiz 1.
i=1

If
n+m 1 ntm
2N+ em=1) ) NG <t 0T [, (redij=1,200 o),
i=1 i i=1
where A < 1 and m is an arbitrary positive integer, then there is t; € {0,1} (i = 1,2, --- ,m) such that

m

Zfifmi = L.

i=1

Lemma 2.4. Let
fl (Z) = ella(qzz)+12(l(qz)+l3a/(Z)+mI,B(qzz)+m2ﬁ(qz)+m3'3(z)

f(z) = eul0(42Z)+uza(qz)+u3a(z)+v|ﬁ(q2z)+Vzﬁ(qz)+V3ﬂ(z)

where l;, m;, u;, v; € {—1,0,1}(i = 1,2, 3), q is a non-zero constant, and a(z), 5(z) are polynomials with
the degree n(> 1). If f1(2), f>(z) are constants, then q € E, where E = {qlA4q*" + A3q>" + Ayg®™ + A\ q" +
Ap=0,neN* A;(j=0,1,2,3,4) € Zand |A4] <2, |A3] <4, A2 <6, 1A1] <4, |Aol < 2}.

Proof. If fi(z), f»(z) are constant functions, then the polynomials of [;a(g*z) + La(gz) + Lha(z) +

mB(q*z) + mP(qz) + myB(2), uia(q’z) + ura(qz) + usa(z) + vif(g*z) + vB(qz) + v3B(z) have only
constant terms; then,
a,(lig”" + bq" + I3) + b,(mig™" + mag" + m3) = 0,

a, (U @*" + urg" + u3) + by(v1g*" + vagq" +v3) = 0,

where l,’, m;, U;, v; € {—1, 0, 1}
As a result of a(z), B(z) being polynomials, that is, a, # 0 and b, # 0, it holds that

L +bLq"+ 15 mi@™ +mq" +ms

u1g*" + L g" + u3 VG +vagt + vy
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so we have

(Lvy — mu)G™ + (Lvy + vy — uymy — uym)g™ + (Lvs + Ly + lvy — uym;
~uymy — uzm))g™ + (Lvs + lvy — upms — usmy)q" + (lsvy — mauz) = 0.
Namely
A4q4n + A3q3n + A2q2n + Alqn + AQ = 0,
where A, (j = 0,1,2,3,4) € Z and |A4| < 2, |As] < 4, |4;] < 6, |A|] < 4, |Ao| < 2.

This completes the proof of Lemma 2.4. O

Lemma 2.5. (see [10], p. 220) Let f and g be non-constant meromorphic functions that share four
distinct values aj (j = 1,2,3,4) IM. If f(z) # g(z), then the following holds:
Q) T(r,f)=T(r,g)+0(ogr), T(r,g) =T(r, f)+ O(logr);
4

(i) Y N, L) =27 ) + Ollog
=1

f—a
_ 1 — 1
(>iii) N(r, 7 b) =T(r f)+ O(ogr), N(r, —b) =T(r,g) + O(logr), where b # a; (j = 1,2,3,4);
— g —
1 1 1
@iv) Ny(r, ?) = O(logr), No(r, =) = O(logr), where Ny(r, ]7,) is the counting function of the zeros
8

1
of " but not the zeros of the f —a; (j = 1,2, 3,4); the notation No(r, —) can be similarly defined;
8
4
) Z N*(r,a;) = O(logr), where N*(r,a;) is the counting function of the multiple common zeros
=1
of f —ajand g — aj, which counts multiplicities according to minor one.
Lemma 2.6. (see [1], Theorems 1.1, 1.2) Let f be a meromorphic solution of the following g-difference

equation:
n

> 4(@f(@'D) = 0,

=0
where 0 < |q| < 1 is a complex number and aj(z), j = 0,1,--- ,n and Q(z) are rational functions with
ao(z) #0, a,(z) = 1. Then, the following holds:

(i) All meromorphic solutions of the equation satisfy that T(r, f) = O(log® r);

(ii) All transcendental meromorphic solutions of the equation satisfy that log” r = O(T(r, f)).

Lemma 2.7. (see [10], p. 110) Let f and g be non-constant rational functions. If f and g share distinct
ai, a, az and ay IM, then f = g.

Lemma 2.8. (see [10], p. 30) Suppose that f(z) and g(z) are two non-constant meromorphic functions
in the complex plane with p(f) and p(g) as their orders, respectively. Then

o(fg) < max{p(f), p(g)}

and
p(f + ) < max{p(f),p(g)}.
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Lemma 2.9. (see [10], p. 28) Let f(z) be a non-constant meromorphic function in the complex plane

and R(f) = m where

P(f) = i acf* and  Q(f) = i a;f’

k=0 =0

are two mutually prime polynomials in f. If the coefficients {ai(2)}, {b(z)} are small functions of f and
an(z) #0, by(z) £ 0, then

T (r,R(f)) = max{p,g}T(r, ) + S (1, f).
3. Proof of Theorem 1.3
The idea of proving this theorem is mainly derived from literature [4].

Since f(z) and g(z) share 0, 1, co CM, by using the Nevanlinna second fundamental theorem, we
have

— — 1. = 1
T(r,g) = N(r,g)+ N(r,—)+ N(r, l)+S(r,g)
8 8~
— - 1. = 1
= N f)+N@r, =)+ Nr,—)+ S, 9)
f f-1
< 3T(r,f)+S(r,g).
Similarly, we can get that 7(r, f) < 3T (r, g) + S(r, f).
By the definition of order, we arrive at
log" T log" T
o (g) = lim sup log' T(r.8) < limsup —Ogl (r,.f) =p(f).
r—o00 r—00 Og r

Similarly, we have that p (f) < p(g), thatis p(f) = p(g).
Since f(z) is a finite-order meromorphic function, g(z) is also a finite-order meromorphic function.
Suppose that

8Q) _ e 8@ -1 _ s

- ’ - ’ (3' 1)
f(2) f@-1
where a(z) and 5(z) are two polynomials.
If e2@ = /@ from (3.1), we have that f(z) = g(z).
Suppose, on the contrary, that e*@ # ¢%9; then from (3.1) we have
1 —
fl»= (3.2)

e(l/(Z) - eﬁ(Z) ’

If a(z) and B(z) are both constants, by (3.2), we have that f(z) is a constant, which is a contradiction
with f(z) being a transcendental function.

Now, assume that at least one of the functions among @(z) and S(z) is not a constant, and discuss it
in three cases:

AIMS Mathematics Volume 9, Issue 3, 5501-5522.
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Case 1. Let a(z) be a constant and S(z) be a non-constant polynomial. Sign e¢* = c;(# 0) is a
constant; thus (3.2) can be rewritten as

1 — 5@
If ¢; = 1, from (3.1), we have that f(z) = g(2).
If ¢; # 1, substituting (3.3) into (1.1), we have
1 — P’ 1 — £Pd 1 — &A@
c) — @D * al(Z)q — ePlar) - aO(Z)Cl — PO 0.
therefore,
(1= (e = ey = &) + a1 Q)1 = W) = P (e, — &)
+ay()(1 = &)(er = PN (e =) = 0,
hence,
~(1+ a1(2) + ap(@)ePTIFDBD 4 () + 1a1(2) + ag(2)) TP
+(c1 + a1(2) + c1ap(2)P TP + (1 + ¢1a1(2) + €1a0(2))eP WP
~(e” + (@) + (@)’ ~ (e1 + ¢’ar(2) + crag(2)e
—(c1 + c1a1(2) + ¢12ap(2)eP? + ¢1*(1 + a1(2) + ap(2) = 0.
That is,

B3(2)fCIP@IBQ 4 B (PTG | B (1) PAIPR 4 B (7)ef@IHBE)
+B1@e" 7 + Biy(0)"® + Bio(2)? + Bu(@)e = 0, (3.4)

where hy(z) = 0 and

Big(z) =-1-a1(2) —ao(2),
Bi7(z) =ci +ciai1(z) + ap(2),
Bis(z) =ci+a1(2) + crap(2),
Bi5(z) =1+ cia1(z) + c1ao(2),
Biu(z) =-ci* = ci1a1(2) — cra0(2),
Bi5(z) = —c1 —ai*ai(2) — cra0(2),
Bia(z) =—c1 —aa1(z) — c1*ao(2),
Bii(z) =ci* +cifai(2) + ¢1’ao(2).

Since we have ¢’@ with normal growth, and by Lemma 2.1 we have that p(¢?@) is the degree of
B(z). Because B(z) is a non-constant polynomial; hence, p(¢?®) = deg5(z) > 1, which holds for other
exponential function terms.

On the other hand, we have that p(a,(z)) < 1, p(a¢(z)) < 1 and ¢, is a constant. So for j = 1,2,---,8,

AIMS Mathematics Volume 9, Issue 3, 5501-5522.
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we have
T(r,Bi;(2) = o{T(r,P@IPaHR))
T(r,B,j(z)) =o{T(r, P AP
T(r,Bij(z)) =ofT(r, eﬁ(‘izZ)Jrﬁ(Z)—ﬁ(qz))}’
T(r, B1;(z) = o{T(r, P4IFO-Ha )}
T(r,Bij(z)) =olT(r, eﬁ(QZZ)—ﬁ(qz))}’
T(r,Bj(z)) =olT(r, eﬁ(qzz)—ﬁ(z))}’
T(r, Blj(Z)) = o{T(r, eﬁ(%)—ﬂ(z))}’
T(r,Bi;(z) = o{T(r,PTIPa))
T(r,Bj(z)) =olT(r, gﬂ(qzz)+ﬁ(z))}’
T(r,Bj(z)) = o{T(r, eﬁ(qZ)Jr,B(z))},
T(r,Bj(z)) =olT(r, eﬁ(qzz))}’
T(r,Bij(z)) = ofT(r,e? %)},
T(r,B1j(z)) = o{T(r,e!?)}.

Thus, applying Lemma 2.2 to (3.4), we get that B;(z) =0 (j = 1,2,---,8). So,
Bis(z) =0, Bjs(z) =0,
we have that ¢; = 1, which is a contradiction.

Case 2. (z) is a constant and a(z) is a non-constant polynomial. Let €# = c,(# 0) be a constant;
thus (3.2) can be rewritten as

1- (&)
f(z) = Q(Z) . (3-5)
e —C
If ¢; = 1, from (3.1), we have that f(z) = g(2).
If ¢, # 1, substituting (3.5) into (1.1), we have
! + + =0
ea(qzz) —C al(Z) e(l(qz) - C aO(Z) eQ(Z) —C -
therefore,
("% = &)(€" = 2) + (@ — e2)(e" = ¢2) + AR T = )" ~ ) = 0,
hence,
ao(z)ea(qZZ)m(qZ) + al(z)ea(qZZ)m(z) + ®@+a@) _ ¢ (q,(7) + ao(z))e"(‘IZZ)
—ca(ap(z) + 1)e™® — c5(1 + a1(2))e*@ + ¢2*(1 + a;(z) + ap(2)) = 0,
that is,
327(Z)ea(qzz)+a(42) +B, 6(Z)ea(qzz)+a(z) + Bos(7)e?@+e@ 4 B, 4(z)e“(q22)
+B23(2)e”® + By (2)e®@ + Byi(z)e™@ = 0, (3.6)
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where hy(z) = 0 and

By(z) = ap(2),

By(z) = ai(2),

Bys(z) =1,

Bu(z) = —ca(ai(z) + ao(2)),
Bx(z) = —calao(z) + 1),

By (z) = —c(1 + ai(2)),
Bi(2) = (1 +ai(z) + ap(2)).

Since we have ¢*@ with normal growth, and by Lemma 2.1, we have that p(e??) is the degree
of a(z). Because a(z) is a non-constant polynomial, p(e®®) = dega(z) > 1, which holds for other
exponential function terms.

On the other hand, we have that p(a,(z)) < 1, p(ap(z)) < 1, and ¢, is a constant. So, for j =
1,2,---,7, we have

T(r, sz(Z)) = o{T(r, ea(‘izz)w(qZ)—a(z))}’
T(r,Byi(z)) = olT(r, ea(qzz)m(ﬁ—a(qz))}’
T(r,B2;(2)) = o{T(r, e @@t}
T(r,Byi(z)) = ol{T(r, ea(qzz)—a(qz))}’
T(r, B,j(2)) = o{T(r,e™@9=0)},
T(r,Byj(z)) = ofT(r,e @)},
T(r,Byj(z)) = ol{T(r, PRGNS
T(r,Byj(2)) = o{T(r,e" @)},
T(r,Bj(2)) = ofT(r,e"@)}.

Thus, applying Lemma 2.2 to (3.6), we get that B,;(z) =0 (j = 1,2,---,7). Clearly, for Bys(z) = 1,
this is a contradiction.
Case 3. a(z) and S(z) are non-constant polynomials. Substituting (3.2) into (1.2), we have

1 — B@*D 1 — eBao) 1 — £P@

+ai(z) + ao(@m =0, (3.7)

e¥(@*D) — pB(g*2) e(q2) — pB(q2)

therefore,

e(q+a@) _ pa(q)HR) _ Plad+a@) 4 BB 4 4 1(Z)ea(qzz)m(z) —a 1(Z)eoz(thHﬁ(z)

_al(z)eﬁ(qzz)w(z) + al(Z)eﬁ(qzzHﬁ(z) + ao(z)ea(qzz)wwz) _ ao(z)ea(qzz)wwz)
_ao(z)eﬁ(qzz)w(qz) + ao(z)eﬁ(qzz)w(qz) — eﬁ(qzz)+a(11Z)+a(z) + (1 + ao(2)) eﬁ(qzz)+a/(qz)+ﬁ(z)

+(1 + a1 (2))ePCIBaI @) _ (1 4 gy(2) + ag(z))ePTIPEIPBR) _ g, (7)e? @ IBa2)+a)
+a,(2) + ao(z))ea(421>+ﬁ(q1)+ﬁ(z) _ aO(Z)ea(qZZ)m(qZHﬁ(z) =0. (3.8)

Thus, by the degree relationship between a(z) and S(z), there are three subcases:
Case 3.1. deg a(z) > degB(z) > 1; (3.8) can be rewritten as

337(Z)ea(qzz)+a(qZ) + Bs 6(Z)ea(qzz)+a(z) + Bss(7)e?@e@ 4 B, 4(z)e“(q22)
+B33(2)e”® + B3,(2)e®@ + Byi(z)e™@ = 0, (3.9)

AIMS Mathematics Volume 9, Issue 3, 5501-5522.
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where hy(z) = 0 and

B37(2)
B3(2)
B3s5(2)
B34(2)
B33(2)
B3(2)
B31(2)

= ap(2)(1 — €9,
= ai(2)(1 = &),

=1- eﬁ(qzz)’

= —al(z)eﬂ(z) _ ao(z)eﬁ(‘”) + (a;1(2) + ao(z))e'g(qmﬁ(z),

= —ePD — ()P + (1 + ay(z))ef T IR,
= —eP@) — q,(2)eP T + (1 + a,(z))P TP,
= PB4 al(z)eﬁ(qzz)w(z) + ao(z)eﬁ(qzz)%(qz)

—(1 + a,(2) + ay(z))PLCIBaIBE)

We have 2@, ¢#@ with normal growth and dega(z) > degf(z) > 1. Then, p(a;(z)) < 1 and
plap(z)) < 1; hence, T(r, &’?) = o{T(r, ¢*?)} and

T(r, eﬁ(qzz)+ﬁ(q2)+ﬁ(z)) = o{T(r, e},
T(r, POIBG)Y = ofT(r, @)},
T(r, eﬁ(qzz)w(z)) = o{T(r, e},
T(r, e/o’(qZ)+ﬁ(z)) = o{T(r, e“(Z))},
T(r,e?4?) = o{T(r,e*@)),
T(r,#P) = ofT(r, e*@)}.

Similarly, the above formulas have similar expressions for the other exponential terms of Bs;j(z)
(G=12,---,70of (3.9);s0,for j=1,2,---,7, we have

T(r, B3j(2))
T(r, B3j(z))
T(r, B3j(2))
T(r, B3j(z))
T(r, B3j(2))
T(r, B3j(2))
T(r, B3;(2))
T(r, B3j(2))
T(r, B3j(2))

= o{T(r, @@ +alg)=a())}y
T(r, e @ I+e)-alq2))

o

0 T(r, ea(qz)+a(z)—a(qzz))},
T(r, ea(qZZ)—a(qZ))}’

{
{
{
{
(T(r, ea(qzz)—a(z))},
{
{
{
{

([l
S O

0 T(r, ea(qz)—a(z))},
o{T(r, e @)},

o(T (7, ")),
o{T(r, e*)}.

Applying Lemma 2.2 to (3.9), we get that B3;(z) =0 (j = 1,2,---,7). Therefore,

B3s(z) = 0,

we have that @9 = 1, where B(q%z) = 2kni, k € Z.
Since S(z) is a polynomial, which is a contradiction.
Case 3.2. deg (z) > deg a(z) > 1; (3.8) can be rewritten as

Bug(2)P@BGBE) 4 B (7)PAIBG) 4 B (7)PTIHPE) 4 Bys(7)ePaBE)
2
+B44(Z)€ﬁ(q 2 + B43(Z)€ﬁ(qz) + B42(Z)€ﬁ(z) + B41(z)eh°(Z) = O, (310)
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where hy(z) = 0 and

Bug(z) =-1-a1(z) — aop(2),
Bi(z) = ap(2) + (1 + a1(2))e"®,
Buis(z) = ai(2) + (1 + ap(z))e™®,
Bis(2) =1+ (ai(2) + ap(2))e”@,

B44(Z) = —al(z)ea(z) _ ao(Z) ea(qz) _ ea'(qz)+a/(z),
Biy(2) = —e"@ — ay(2)e" T — a,(z)e” @I+,
Bi(z) = —e® 9 — g,(2)e® ) — go(z)e? @),

Bu(2) = ™94 4 g ()¢ @0 4 ()l

We have 2@, ¢#@ with normal growth and degf(z) > dega(z) > 1. Then, p(a;(z)) < 1 and
plag(z)) < 1; thus, T(r, e*®) = o{T(r, &)} and

T, ea(qzz)m(qz)) = o{T(r, eﬂ@)},
T(r, ea/(qzz)ﬂl(z)) = o{T(r, eﬁ(z))}’
T(r, ea(qz)w(z)) — 0{ T(r, eﬂ(z))}’
T(r,e"?) = o{T(r, ")),

T(r, ") = o{T(r, e’?)).

Similarly, for the other exponential terms of By;(z) (j = 1,2,---,8), we have similar expressions;
so, for j=1,2,---,8, we have

T(r, B4j(z)) = o{T(r, P4 IR},
T(r,B4j(z)) = ofT(r, P AP}
T(r,B4;2)) = o{T(r, PTGy}
T(r, B4j(z)) = o{T(r,P@PQ-Ba)}
T(r,B4j(z)) = of{T(r, P A By
T(r,Bs4j(z)) = olT(r, PLCICNY
T(r,B4j(2)) = o{T(r, PaIBRYy
T(r,B4j(z)) = o{T(r, gﬂ(qZZ)"'ﬁ(qZ))}’
T(r, B4j(Z)) = of{T(r, eﬁ(’lzz)+ﬁ(z))},

T(r, B4j(z)) = o{T(r, ! ®P@)},
T(r,B4j(z)) = olT(r, eﬁ(qzz))}’
T(r,B4j(z)) = o{T(r, Py
T(r,B4j(z)) = ofT(r, ).

Applying Lemma 2.2 to (3.10) we get that B4;(z) =0 (j = 1,2,---,8), we have
Bus(z) =0, Bus(z) = 0.

hence,
2
1+ (a1(2) + ap(2)e™? = 0,  ai(z) + ao(z) = —1.

That is, 1 — @9 = (), where a(z) is a non-constant polynomial, which is a contradiction.
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Case 3.3. deg B(z) = dega(z) = n > 1. Set
(@) = @y + a7+ -+ ag, BR) = b + b+ + by,

where a,(# 0), a,_1,--- , a9, b,(¥ 0), b,_1,- -+ , by are constants.

Let us consider the relationship between the highest coefficients of the polynomial number of each
exponential function term in (3.8), and the items with the same coeflicients are merged. Therefore, we
discuss the following two situations according to whether a, is equal to b,:

Subcase 3.3.1. If a,, = b,, (3.8) can be rewritten as

Bsy(2)eP @) 4 B (2)e® @A) 4 B, (7)ePD @)
+Bs, (Z)eﬁ(qZZ)M(qZ)w(z) =0, (3.11)

where
Bsi(z) = al(Z)(eoz(qzz)—ﬁ(qZZ) — @B )-a) _ | + PRy

2 2 2 2
Bss(Z) = ao(z)(ea(ﬂ)—ﬁ(qz) — Pl dralgn-alg )-plqz) _ | 4 oPla2)-alq z)),
Bsy(z) = e?a0-Bqz) _ oa(q)+f)-Flgr)-al®) _ 1 4 eﬁ(z)—oz(z)’
Bsi() = —(1+a1(2) + ap(2)e? e + (ay(2) + 1)l +0-0ta4

+ap(2) + 1 + (ag(2) + a(2))e? @I Ba-Fa*)-a) _ a@)-pR)
—ap(2) e @IBG) _ 1(2) (@ DBqR)+a(@)-Bq ) -a(g2)—B@)

For a, = b,,, we have
a(2) = B2) = (an-1 = by-)Z"" + (Anoz = by2)Z" > + -+ + (ag — by),

hence deg(a(z) — B(z)) <n - 1.
Similarly, we can get the following formulas:

deg(a(q*2) + Blqz) + a(2) — B(¢*2) — algz) — B()) <n—1,
deg(a(q’z) + Blgz) — B(g*z) —a(g2)) <n—1,
deg(B(¢’2) + alqz) — a(q’z) — Bgz)) <n—1,
deg(a(q’2) + (@) — B(g*2) — a(z)) < n—1,
deg(a(gz) + B(z) — B(gz) — a(z)) < n -1,
deg(B(qz) + a(z) — al(qz) - B(2)) <n -1,
deg(a(q’z) - B(¢*2)) < n—1,

deg(B(¢’z) — a(q’2)) <n -1,

deg(a(qz) — pB(gz)) <n—1,

deg(B(qz) — a(gz)) <n -1,

deg(B(z) — a(z)) <n—1.

By Lemma 2.4, we have that g ¢ E; then,

deg(B(q°z) + a(qz) + B(z) — Blgz) — a(2)) = n,
deg(B(¢*2) + alqz) + B(2) — aq’z) — B(g2)) = n,
deg(B(¢*2) + alqz) + B() — B(¢*2) — a(2)) = n,
deg(B(¢*2) + a(z) — a(q’z) — B(qz)) = n,
deg(a(q’z) + B(gz) — B(gz) — a(2)) = n,
deg(B(q*z) + (2) — B(qz) — () = n.
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We have e*@, ¢#% with normal growth. Then, p(a;(z)) < 1 and p(ag(z)) < 1; so, for Bsj(z) (j =
1,2,3,4), we have
T(r, Bs;(z)) = o{T(r, e[o’(qzz)+oz(qz)+ﬁ(z)—ﬂ(qz)—a(z))},
T(r, Bsj(z)) = olT(r, eﬁ(qzz)+a(qz)+ﬂ(z)—a(q2z)—ﬂ(qz))},
T(r, Bs;(z)) = o{T(r, 6,6’(qzz)+a(qz)+ﬁ(z)—ﬁ(q2z)—a(z))}’
T(r,Bs;(z)) = o{T(r, V@I -PlaR)-a@)))
T(r, Bs;(z)) = o{T(r, eﬁ(qzz)m(z)—ﬁ(qz)—a(z))}_

Thus, applying Lemma 2.2 to (3.11), we get that Bs;(z) =0 (j = 1,2,3,4). By

B52(Z) =0.

that is,
eM9-Bq2) _ pa(q)+B(0)-plgr)-a(d) _ | 4 Pl)-ad) _ 0,

it follows that
(1 _ eﬁ(z)—a(z))(ea(qz)—ﬁ(qz) -1 ) =0,

since e?@ # P9 1 — PO £ (0 and e*@F@ — 1 % 0, thus, the above formula is obviously not
equal to 0, which is a contradiction.
Subcase 3.3.2. If a, # b, dividing (3.8) by ¢* 4@ we have

MDD _ g ra()-ag)PQ) 4 Pl 4 g (7)e @) +Q-0alg)HE)
—a1(2)e?TI=U@) _ g ()@ D+e@-alq)BC) 1 g, (7)ePAI~U@) 4 g (7)e? @B
—ay(z)e™ @ IPa-a@)BE) _ g ()PUIBC) 4 gy (7)eP I BE)-a(g2)pE)
—PAITDBR 4 (1 + qy(2))ePCD + (1 + a(z))eP TP +a@)-alg2)-HE)
+(-1-a;(z) - ao(Z))eﬁ(qzz)w(qz)—a(qz) - al(Z)ea(qzz)+ﬁ(qz)+a(z)—a(qz)—,8(z)

+(a,(2) + ao(Z))ea(qZZ)+B(qz)—a(qZ) _ ao(z)e“(qZZ) =1. (3.12)

For the convenience of the following description, we use f;(z) and gj(z) (j = 1,2,...,18) to
represent the coefficient functions and exponential functions, that is,

18
D F@eO = 1.
j=1

By Lemma 2.4, we deduce that —ef4d+0@-0@-6)  o0@-Q) g (7)e* @I~ _q) (7)),
—ay(2)eP TP (1 + ay(2))eP @9 and P4~ these are not constant functions in (3.12) for ¢ ¢ E;
then applying Lemma 2.3 to (3.12), there exists ¢; € {0, 1} (i = 1,2, ---, 11) for the following equation:

110y (2)e™ @ +@-0@BRD _ ¢ 4 (7)f@I+@-a@R) 4 g (7)eP @ D-0aD
+1a0(2)e?TIPE) — tqi(7)e® @ IPUI~GIPBE) 4 1 g0 (7)ePa D HPEI-a(@2)BE)
_ PGB 4 (1 + ay(2)) PV @0l
—to(1 + a1(z) + aO(Z))eﬁ(q21)+ﬁ(qZ)—a(qZ) -t Oal(Z)ea(qzz)+B(qz)+a(z)—a(qz)—B(z)

+111(a1(2) + ay(2))e” @IPE ) = 1 (3.13)
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we assume that there are at least two values of t; (i = 1,2,---,11) that are equal to 1; without loss of

generality, set #; = t; = 1 and the rest are equal to O; then,

a,(2)e® @I+ aQ-alq)pR) _ B )ra@-pQ) — |

from (3.13), we see that
84(2) = a(g’2) + a(2) - a(g2) — B@),  812(2) = B(q’2) + a(2) — B(2).
If e8*® = ¢ is a constant, then, considering (3.14), we have
€529 = q,(2)e%*? - 1 = ¢1a(2) - 1.
If g12(z) is a non-constant polynomial, we get contradiction from the following equation:

1 < p(e?) = p(ai(2)) < 1.
If g1,(2) is a constant, since g4(z), g12(2) are constants, it follows that

an(qzn - f]n + 1) - bn =0,
bn(q2n - 1) +a, = Oa

we get that g € E, which is a contradiction.
So, e%* and e'? are not constants; considering (3.14) we have

al(Z)€g4 + a1g4eg4 _ ngeglz — O,

, , - a(z , ,
if a,(z) + a;g, = 0, we obtain that % = —g,(2), thatis
a (g

a(2) = e 84(+C

where C is an arbitrary constant.
Since g4(z) 1s a non-constant polynomial, we have that p(a;(z)) < 1, which is a contradiction.
So, a|(z) + a, g, # 0; then, there is

/’
812

ga—gr2 — ___©12
e ) ,?
a; +a1g4

if g4 — g12 is not a constant, since p(a;) < 1, we have

1 < p(e®812) = p(#) <1,
a, +a g,
which is a contradiction.

If g4 — g12 = ¢, is a constant function, g4 = g1» + ¢»; then, also applying (3.14) we have

1

8120 —
a;()e2 — 1

(3.14)
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since g1, 1s a non-constant polynomial, by

1
1< 212(2)y — <1,
<p(e) = o)

which is a contradiction.

Therefore, for (3.13), there is only one #; (i = 1,2,---,11) that is equal to 1, and the rest are all

zeros. Without loss of generality, we assume that ¢; = 1; then,

a,(2) @+l —pR) _ |

if g4(2) = a(q*2) + a(z) — a(gz) — B(z) is a non-constant polynomial, then

NP +aD)-alg)p) 1 ’
a(z)
also consider the order of the following equation
(€] !
1 <p(e*™) = p(—=) < 1,
a(z)

which is a contradiction.
Therefore, we deduce that g4(z) is a constant; thus, we have

a(g" —q"+1)—b, =0.
On the other hand, together with (3.12) and (3.15), we have

DB _ Blg+a@)-alq)-B) 4 Blg2)-algz) _ al(z)ea(qzz)—d(qz)

—a,(2)P @ ITD=a@)Q) 1 g, ()P T 4 go(7)e?dIBE)
2 _ _ 2 N_ 2 _ —
_aO(Z)ew(q 2)+B(q2)—a(qz)—p(z) _ ao(z)eﬁ(q PR 4 ao(z)eﬁ(q 2)+B(q2)—a(qz)—P(2)

—PAITDBR 4 (1 4+ qy(2))eP D + (1 + a,(7))eP TP +a@)-alg2)-AE)
+(=1 = a;(2) — ap(2))eP @B~ _ g (7)o@ DB a()-alg2)-p()

+(a,(2) + ao(Z))ea(q22)+ﬁ(q1)—a(qZ) _ ao(z)e“(qZZ) =0,

that is,

18

Z fiet = 0.

Jj=1,j#4

(3.15)

(3.16)

(3.17)

(3.18)

We assert that g, g« — g; (1 < k < j < 18,k, j # 4) in (3.18) are not constants. If g;(z) (1 < j <
18,j # 4) is a constant, we take j = 6; then 8(g*z) + a(z) — a(gz) — B(z) is a constant; taking into

considering with (3.16), we have the following:

an(qzn - ‘]n + 1) - bn =0,
an(=q"+ 1) + b(g* — 1) = 0,

we get that g € E, which is a contradiction.
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Similarly, if g, — g; (1 < k < j < 18,k, j # 4) is a constant, we can take k = 1 and j = 6; then,
a(qz) — B(q*z) is a constant; incorporating (3.16), we have the following:

an(qzn - ‘]n + 1) - bn =0,
anq" — bug™ =0,

we have that g € E, which is contradictory.
Above all, for (3.18), we have g, gx — g; (1 < k < j < 18,k, j # 4) are polynomials. Given that
p(f)) <1(1 <k < j<18), wecan deduce that when 1 <k < j < 18,k, j # 4, we have

T(r, f;) = o{T(r,e* %)}, (r = oco,r ¢ E),

where E is a set of finite logarithmic measures.

So, the formula (3.18) satisfies all conditions of Lemma 2.2; then, we have that f(z) = 0 (j =
1,2,---,18). It follows that fi(z) = 1, f>(z) = —1, f3(z) = 1 and fj»(z) = —1 are non-zero constants,
which is a contradiction.

Hence, f(z) = g(z). This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.4

The idea of proving this theorem is mainly derived from literature [7].
Since f(z) and g(z) are non-constant meromorphic functions, assume that f(z) # g(z); we have

_ /@@~ D@ ~ o) @
§OIOU@ - D@ - o) |

H(z) :

By (4.1), we deduce the following.
1
Assertion 1: N(r, H) = O(log r) and N(r, E) = O(logr).
The possible poles of H(z) are derived from the zeros of g'(z), f(z), f(z) — 1, f(z) — ¢ and the poles

of f(z) and g(z).
We first prove that the poles of f(z) and g(z) are not zeros or poles of H(z). Since f(z) and g(z) share
oo CM, suppose that z, represents k(> 1) multiplicities of f(z) and g(z); then,

f@) = == (1 + 0(z - ),
(z—20)
b_
8(2) = ———(1 + 0z - 20)),
(z—20)
where a_;, b_; are non-zero constants.
So, we have
f'@  ax
= — + 0(z — 20),
g by TOET®
then,
S _ a (4.2)
g (20) “k
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Similarly,

8zo) _ by g1 _ by glo)—c _ by 43)
fzo) as’ f)-1 ax’  fl)—c axy '

substituting (4.2) and (4.3) into (4.1), we have

2
) = (2
a_g

Since a_y, b_; is not 0, z = zy 1s not the zero or pole of H(z); that is, the poles of f(z) and g(z) are
not zeros or poles of H(z).

Next, we prove that the same zeros of the zeros, 1—value points, c—value points of f(z) and the
zeros, 1—value points, c—value points of g(z) are not the zeros or poles of H(z). Assume that z; is
the public zero of f(z) — a and g(z) — a, and that the multiplicities of f(z) and g(z) are s(> 0), #(> 0)
respectively, where a € {0, 1, c}. For the two sides of the above formula with the following Laurent
expansion in the neighborhood of z;, assume that

f@=G-z2)' i), filz1)#0,

22 =(@-z21)'g1@), gi(z1)#0.

Hence,
FQ _ sG-a)T it @) sh+@-f wa
f@ (z—z21)h z-z0h .
8(2) _ (z—21)'g _ (z—zD& 4.5)
g (@) z—z) g1+ @ -z’ g+ @—z)8" .
substituting (4.4) and (4.5) into (4.1), we have
sfi(zi)gi(z1)
H ="
&)= e
Since fi(z;) and g;(z;) are not zero, then
H(zy) = 2 4.6)

l‘ b
then, the public zeros of f(z) and g(z) are not zeros or poles of H(z).
Similarly, the 1—value points of f(z) and the 1—value points of g(z) are not zeros or poles of H(z).
Moreover, the c—value points of f(z) and the c—value points of g(z) are not zeros or poles of H(z). So

the poles of H(z) can only come from the zero points of g’(z) but not the zero points of g(z), g(z) — 1
and g(z) — ¢; by Lemma 2.5(iv), we have

1
N(raH) < NO(’”, _/) = O(IOgr)’
8

1
where Ny(r, —) denotes the zero points of g’ but not the counting function of the zero points of g — a;
(i=1,2,3).
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Above all, we can draw a conclusion that assertion 1 is established. Therefore

H@ _ oo
R = 4.7)

where R(z) is a rational function and a(z) is a polynomial.
By Lemma 2.6 for the meromorphic solution f of (1.2), we have

kilog’r < T(r, f) < kylog’ r, (4.8)
where k|, k, are non-zero constants.
Since
log" T (r, log* k, log?
p (f) = limsup log T(r./) < limsup ~2- 298 " _
r—o0 10g r r—o0 log r
log" T (r, log* k; log?
u(f) = liminf & L) iy g log RilogTr
F—0o0 log r r—00 log r
we have that u(f) = p(f) = 0.
By Lemma 2.5(1),
T(r,f)=T(r,g)+O(ogr), T(r,g)=T(r,f)+ O(logr),
hence,

p(f) = p(g) = u(f) = ug =0,
thus, for H(z), we have that p(H(z)) = 0. Therefore, a(z) is a constant. Otherwise,

P(H(2)) = p(R(2)e"?) > 0,

which is a contradiction. So, H(z) is a rational function.
Since f(z), g(z) share 0, 1, c¢(# 0,1) IM and co CM and f(z) # g(z), by Lemma 2.7 for the
transcendental functions f(z), we have

T(r,H(z)) =S, [).
Thus, given (4.1), we have
/(@ _ H(z)g'(z)
f@(f) - D(fx)—c)  g)(gk) - D(g) —o)

For the convenience of the proof, suppose that f(z) shares the value a partially with g(z), and that
N(m,n)(r, a) denotes the reduced counting function of those zeros of f(z) — a with multiplicity m, and of
g(z) — a with multiplicity n in {z : |z| < r}. We make the following assumption:

Assertion 2. For any positive integer pair (m, n), we have

4.9)

Noww(r,a) = S(r, ), a€l{0,1,c}.

Suppose, on the contrary, that Nw,n)(r, a) # S(r, f), a € {0,1,c}. Next, we consider the following
two cases.
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Case 1. Suppose that m = n.

Let z; € {z : |z] < r} be the public zeros of f(z) — a and g(z) — a for m multiplicities; applying this in
consideration with (4.6), we have that H(z,) = 1.

If H(z) # 1, combining (4.7) with the first fundamental Nevanlinna theorem, we have

N (1, @) < N(r, Hl 1) <T@, H) =S, f),

which is a contradiction.
If H(z) = 1, by (4.9), we have

/(@ _ g'(2)
fR(f() - D(f(z) —¢) gk - 1(gk) -

(4.10)

forall z € C.
Since f(z) and g(z) share 0, 1, c¢(# 0, 1) IM, taking into consideration (4.10), we arrive at f(z) and
g(z) sharing 0, 1, ¢, co CM. Then, there is

@ — @ f(Z) -1 — eﬁ(z)
@ ° 7 g1 ’

given that p(f) = p(g) = 0, we have that a(z) and (z) are constants. Thus, f(z) is a constant, which is
a contradiction.

Case 2. Suppose that m # n.

Let z3 be the public zeros of f(z) — a and g(z) — a for m and n multiplicities respectively, where

a€10,1,c}. Also, by (4.6), we have that H(z) = .
n

If H(z3) # @, combining (4.7) with the first fundamental Nevanlinna theorem, we have
n

— 1
N(m,n)(raa)SN r, ST(r5H):S(r’f)’
H

which is a con’t%adiction.
If H(z3) = —, then
n

nf’(z) _ mg'(z)
f@Q(f@) - D(fx)—c)  g)(gk) - 1(gk) —c)

(4.11)

for all z € C.
Let z3 be the public zeros of f(z) —a and g(z) — a and the corresponding multiplicities be p and g,
where a € {0, 1, ¢}. Combining (4.6) with (4.11) on both sides with Laurent expansion of z3, then, for
all a € {0, 1, ¢} we have
ng = mp.
Set
__ e mg@
J(f-1) gk -1)

L(z) (4.12)
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from the above we get that L(z) is analytic in z3. Thus,

1 1 1
L = —_nf — _
© GG T Fm =) e () 2@ -1
f’(z) @ g (@) g
— ) 4.13
e T Fo-1""0 Tso-1 “4.13)

)

4

Given that m # n and m(r, f7) = O(log r), we deduce that

m(r, L(z)) = O(log r),

that is, L(z) is a polynomial.
Then for, (4.13), we have

/4 1 _ 1 —_— 1
fL(z)dz —nff(Z)(f() o= 4z fg(Z)(g() 2@ = 7z

- ‘"J% - ff() (fgo fg(z)l—ldg)

= —n(n f(z) - ln(f(z)—l))+m(1ng(z) In(g(z) — 1))
f(2) ol g(2)

= e oo
3 f@-1, 8@ .,
= e G -7

therefore, @ -1y D1y
7) - 7) —
() = (5

since L(z) is a polynomial, by Lemma 2.9, we get

mT(r,g) = nT(r, f) + S(r, f),

then, by m # n and Lemma 2.5(i), we have

I(r,f) =S 1)

which is a contradiction.
In summary, for any positive integer pair (m, n), we have

Noww(r,a) =S(r, f), a€l{0,1,c},

this completes the proof of Assertion 2.
Above all, we give the rest of the proof of the theorem.

N(}", %) = Zle anl N(m,n)(r, O)

= Zl§in§9 Zl§n§9 N(M,n)(r’ O) + Zmzlo ZlSnS9 N(m,n)(r’ O)
+ D1<m<0 2an=10 Nonm(1:0) + X510 2ins10 Ny (1, 0), (4.14)
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the first item on the right sides of (4.14) is equivalent to S (r, f); the second item, the third item and
the fourth item can be estimated by applying the upper bound as GN(r, 7), 15N(r, ) and [ N(r, $) (or

10
%N (r, é)). Combining Lemma 2.5(i) with (4.14), we have

N(r, Jl[) < %T(r, )+ liOT(r, g)+ %T(r, H+Sr )< 13—OT(r, H+S 1.

Similarly,

N(r,fi 1) < %T(r,f)JrS(r,f),

N(r, 7 i C) < 13—0T(r, H+S 1.

Combining this with the above estimates and Lemma 2.5(ii), we have

2T(r, f) = N(r, f) + N(r, ]lc) + I\_J(r, ]%1) + N(r, %) +8(r 1)

<N )+ TG )+ S ) < 1T )+ S0,

we get T(r, f) = S(r, ), which is a contradiction.
This completes the proof of Theorem 1.4.

5. Conclusions

In this paper, we have investigated the meromorphic solutions of a class of homogeneous second-
order g-difference equations and the uniqueness problem of a meromorphic function with three shared
values. We have also discussed the uniqueness problem of the meromorphic solutions of a class of
nonhomogeneous g-difference equations and a meromorphic function with four shared values.
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