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1. Introduction

Let P(«) be the class of analytic functions p of the form p(z) = 1 + ", p,Z" in the open unit disk
U=1{z€C: |z < 1}, with Rep(z) > a for z € U. The class P = $(0) is known as the Carathéodory
class or the class of functions with positive real part [2, 3], pioneered by Carathéodory. The theory
of Carathéodory functions plays a very important role in the geometric function theory. For recent
developments, the readers may refer to the works of Kim and Cho [5], Kwon and Sim [6], Nunokawa
et al. [16], Sim et al. [18] and Wang [22].

Let A denote the class of all functions f analytic in U with the usual normalization f(0) = f'(0)-1 =
0. If f and g are analytic in U, we say that f is subordinate to g, written f < g or f(z) < g(z), if there
exists a Schwarz function w(z) in U such that f(z) = g(w(z)).

A function f € A s said to be strongly starlike of order 7 (0 < n < 1) if, and only if,

2f"(2) 1+z
@ (1 —2

n
) (z€U). (1.1)
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We note that the conditions (1.1) can be written by

z2f'(2)
f(@)

We denote by S[n] the subclass of A consisting of all strongly starlike functions of order n (0 < 5 <
1). The class S[n] was introduced and studied by Brannan and Kirwan [1] and Stankiewicz [20, 21].
We also note that S[1] = S* is the well-known class of all normalized starlike functions in U. The
class S[n] and the related classes have been extensively studied by Mocanu [14] and Nunokawa [15].
It is worth noticing that f belongs to S[n] if it satisfies

n
<N (z €U).

o

1+

2f"(2) - (1 +2

a(n)
f/(Z) 1 _ Z) (Z € U)’

where

2
a(n) = — arctan{ tan Tr+ - A o .
T 2 (1-mp7 A+ cosin
Given a € [0, 1), let S*(@) be the subclass of A, which consists of all starlike functions of order «,

namely, f € A belongs to S*() if, and only if, it satisfies
z2f"(2) - 1+(1-2a)z

f@ l1-z
The class S*(a) was introduced by Robertson [17]. Clearly, it holds that S*(0) = S[1] = §*. A

typical sufficient condition for starlike functions of order « is given by Wilken and Feng [23], which
states that if f € A, then

(z € U).

1+zf”(z)<1+(1—2,6’)z zel)

@ -z

implies f € 8*(a), where

1 -2a
22—120(1 _ 22(1—1)’

if @ #1/2,
B=p) =

, ifa = 1/2.
210g2 ifa=1/

Given i € (0, 1], let 7 [n] be the class of f € A such that
1+z\"
1@ (—Z) (z € U).
Z -z
The class 7 = 7[1] plays an important role in the theory of univalent functions, although all
elements in 7 are functions that are not necessarily univalent. In [7], several sufficient conditions for
functions in 7 7] were introduced.

If y is analytic in a domain D c C2, h is univalent in U and p is analytic in U with (p(z), zp’(z)) € D
for z € U, then p is said to satisfy the first-order differential subordination if

Y(p(2),zp'(2)) < h(z) (z €. (1.2)
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The univalent function g is said to be a dominant of the differential subordination (1.2) if p < ¢ for
all p satisfying (1.2). If g is a dominant of (1.2) and § < ¢ for all dominants of (1.2), then g is said
to be the best dominant of the differential subordination (1.2). The general theory of the first-order
differential subordinations, with many interesting applications, especially in the theory of univalent
functions, was developed by Miller and Mocanu [10] (also see [4,8,9, 11-13]).

In this paper, by applying the result obtained by Miller and Mocanu [10], we will investigate
conditions to be in the class of Carathéodory functions. We will also find new sufficient conditions for
f € A to belong to the classes S[n], S*(a), and 7 [nn] as some applications of the main results
presented here. A differential subordination of the Briot-Bouquet type [12] (also see [13, Section 3])
will be considered for conditions for f € S*(a) and f € 7[1], and an integral operator related to the
differential subordination of this type will be discussed as our additional results. Moreover, more
conditions for f € S[n] and f € 7 [n] will be introduced by using a nonlinear first-order differential
subordination.

2. Main results

In proving our results, we shall need the following lemma due to Miller and Mocanu [10].

Lemma 1. Let g be univalent in U and let 6 and ¢ be analytic in a domain D containing q(U) with
q(w) # 0 when w € q(U). Set Q(2) = zq'(2)p(¢(2)), h(z) = 0(q(2)) + Q(z) and suppose that
(1) O is starlike in U,

i W@\ _ 0 (q(2)) 20'(2)
(ii) Re {Q(z) } =Re {¢<q<z>> * 00 } >0 (zel).

If p is analytic in U with p(0) = g(0), p(U) Cc D, and
0(p(2)) + zp"(2)p(p(2)) < 0(q(2)) + 24’ (D)¢(q(2)), 2.1)

then p < q and q is the best dominant of (2.1).

With the help of Lemma 1, we now derive the following Theorem 1.

Theorem 1. Let p be analytic in U with p(0) =1 and >0, +7vy > 0. If

W@ L Y w el 2.2)

PRt Dy B

forall k (k| > 2B +7) + 1/B), then
p(2)

LL1+d +(2Z7/,3))z zeU).

1 -

Proof. First, we note that p(z) # —(y/p) for z € U under the condition (2.2). In fact, if B8p(z) + y has a
zero 7o € U of order n (n > 1) at a point z; € U\{0}, then we may write

Bp@)+vy=(z-2)"q(zx) (meN:={l, 2, 3,---}),
where p is analytic in U with g(z) # 0, then it follows that

Ber'@) 4@ nmz
Br@+y 9@ z-z20

(2.3)
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Therefore,
lim(z — z9) P& Bzp'(z )
o UBp@)
Letting z approach zy in the direction of arg zo, the righthand side of (2.3) takes infinite pure
imaginary value. This contradicts the assumption (2.2).
Letg(z) = (1+(1+2y/B)z) /(1 -2), 8(w) = w, and p(w) = 1/(Bw + ) in Lemma 1, then 6 and ¢
are analytic in ¢(U) and ¢(w) # O for ¢ € g(U). Setting

=nzy # 0.

27

02) = zq'(2)¢(q(2)) = Bl-2)

and

h(z) = 6(q(2)) + Q(z)
1+7 2z
,3{('3 7)— - 2—7},

<

the conditions (i) and (ii) of Lemma 1 can be verified. Therefore, Lemma 1 gives that if

zp'(2)
@ +—-——"—<h(z) (z€l)
P Bp(z) +vy
with
1+ z 27
hz) = — S e S
(2) = ,8{('8 N1z 7},
then
p(@) <q(z) (z€l).
Noting that
, 1 1 + e 2%
0N _
we obtain
Re h(e'®) = — Y
and
sin @ 1

+ —
1—-cosf sind

Im h(e"?) = é {(ﬁ +7v)

Meanwhile, since the imaginary part of 4(e™) is an odd function, we consider only the case 0 < <
n. Putting tan (6/2) = ¢ (0 < 6 < 7), we have

mnm%=é{w+wlfw +.1}

cos® sind
_PH2B+y)+1
B 28t

} 0 < |6 < m).

= g(?).
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Here, the function g(¢) has a minimum value at #, = +/2(8 + v) + 1. Hence we have

V2B +y)+ 1

[lm (e™)] > 1g(10)] = g

Applying Lemma 1 and the assumption (2.2), we conclude that

zp'(2)

P+ Bp(2) +y

<h(z) (ze).

This completes the proof of Theorem 1. O

Taking p(z) = zf'(@)/f(2), B = l,and y = (I1/a) =1 (0 < @ < 1) in Theorem 1, we have the
following result.

Corollary 1. Let f e Aand 0 < a < 1. If

az(zf'(2)) + (1 —a)zf'(2)
azf'(2) + (1 —a)f(z)

forall k (k| > V2 + a)/a/B), then

zf'(2) - 1+ +2(1-a)/a)
f(@) 1-z

#a—-1+ik (z€DU)

(z € U).

Proof. Putting
_zf'(@)
Cf@

p(2)
we have

az(zf'(2)) + (1 —a)zf'(2)
= azf(2)p'(2) + azp(2) f'(2) + (1 = a)p(2) f(2)
= (azp' (@) + p)(ap) + 1 — @) f(2)

and
azf'(2) + (1 —a)f(z) = (@p(2) + 1 — ) f(2).
Hence,
az(zf' @) + (1 —a)zf'(2) _ azp'(2) + p(2)(ap) + 1 - @)

azf'@+(-a)f(z) ap@)+1 -«
p(@) +zp'(2)

p@+(L-1)

Therefore, applying Theorem 1, we have Corollary 1. O
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Corollary 2. Let f € A and let

1-1

F(z) = % f t2f(tdt (0 <a < 1)
0

If
az(zf"(2)) + (1 —@)zf"(2)

azf' )+ —-a)f(2)
forallk (k| > V2 + a)/a/B), then

azZF' @) +(1—-a)zF'(z) 1+ +2(1 -a)/a)z

#a—-1+ik (ze€U)

wzF'@)+(1-FG) -2 (el
Proof. Differentiating F' with respect to z and multiplying by z, we have
az(zF'(2)) + (1~ )2F'(2) _ 2f'(2)
azF'(2) + (1 - @)F(2) f@
Therefore, the result follows from Corollary 1. m]

Letting 8 = 1/a (@ > 0), v =0, and p(z) = zf'(z)/f(z) in Theorem 1, we have the following result.
Corollary 3. Let f € Aand a > 0. If

'@ (1 2f"(2)
f(@) f'(@)
forall k (k| > Va(2 + @)), then f is starlike in U.

Taking 8 =1, v =0, and p(z) = zf'(z)/ f(z) in Theorem 1, we have the following result.
Corollary 4. Let f € A. If

(1-a)

)ik (zeU)

L@
f )
for all k (k| > V3), then f is a starlike in U.

Example 1. Consider a function f : U — C defined by

ik (z€U)

f@ = \r_ —=— (@,

Then we have

DBy

f’(z)
and
f "(2)
f (2)
Therefore, by Corollary 4, f is starlike in U (see also the left side of Figure 1). In fact, we can check
that Re {zf'(z)/ f(2)} > 0 holds for all z € U, as shown in the right side of Figure 1.

\/5, zeU.
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Figure 1. The images of f(z) and zf"(z)/ f(z) in U.

. .
03 o.

Letting 8 =1, ¥ = 0 and p(z) = f(z)/z in Theorem 1, we have the following result.

Corollary 5. Let f € A. If

fQ '@

. I #1+ik (zeU)

for all k with |k| > V3, then
AAC (z € U).
Z

Further, we derive the following corollary.

Corollary 6. Let f € A and let

1

F(z) = {ﬁZ# fo Z ! fﬁ(t)dt}ﬁ B>0, B+y>0).

If

@) +-L 4k (z€ 1)

f(@ B
for all k (|k| = \2(B +v) + 1/B), then

ZF,(Z) . 1+ (1 + %)Z

FQ) T (z € U).

Proof. From the definition of F', we have

zF’(z)+z:,3+7fﬁ(Z)
Fz B B F2)

Let
_ W@

p(2) FQ)

(2.4)
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Taking logarithmic derivatives in (2.4) and multiplying by z, we obtain, after some simple
calculations,

'@ _ @)
Br@+y  f@)

Therefore, applying Theorem 1, we have the result. O

p(z) +

Next, we prove the following theorem.

Theorem 2. Let p be nonzero analytic in U with p(0) = 1 and 0 <n < 1. If

1 7’
‘Im (1 - ﬂ?) <Cap) (zeD) 2.5)
p@)  p()
where x x
Cp) = 1" sin = + (7" + 1) cos 2y (2.6)
2773 2
and
—sinfn+ /1 —n?cos? In
to = s
0 (I +n)cosin
then

n
larg p2)l < 51 (zel).

Proof. We choose ¢(2) = (1 +2)/(1 = 2)) (0 <7 < 1), 6(w) = 1~ 1/w, and () = 1/w? in Lemma 1,
then we see that 6 and ¢ are analytic in g(U) and ¢(w) # 0 for w € g(U). Further,

2z (1 —z\"
0@) = 20 (Dp(q(z) = —L (—Z)

1-22\1+¢
is starlike, and for the function

h(z) = 6(q(2)) + O(z)
:1—(1_Z)n+ 2112 (I_Z)n,
14z 1-22\1+¢

W) 20'(2)
Re {Q(Z)}_Re {1+ 0@ }>0 (z € 0).

we have

Note that #(0) = 0 and

) o\ n o\
=1t et
(") ico 7 +lsin9 ico >

=1- cotg K (cos 7—T77 —isin En) +1i 1 cotg K (cos 7—T77 - isin(izn))
2 2 2 sin 2 2 2
= (1 - tang ncos En + — tang ! sin(izn))
2 2 sin 0 2 2
+ i( tang ! sin(izn) + 1 tang ncos En) ,
2 2 sin 6 2 2

AIMS Mathematics Volume 9, Issue 3, 5466-5479.



5474

where we take “ + 7 for 0 < § < m, and “ - for -7 < 6 < 0. Since the imaginary part of h(e) is an
odd function of 6, we consider only the case 0 < 8 < &. If we put tan (6/2) = ¢ (¢ > 0), then we have

i LS e +1 T
Im h(e?) = £"sin =+ ("' + ") cos =
(e") inZn+5( ) €os 51

= g(1).
It is easy to see that the function g(7) has the minimum value at the point

—sinZn+ /1 —n*cos?3n

In =
0 (I +m)cosin

Therefore, we conclude that
ITm h(e™)| > 1,7 sin gn + g(z‘o”_1 + 1) cos gn,

and so, by assumption (2.5),

1 zp'(2)
p@)  p2)
Hence, from Lemma 1, we have p(z) < ¢(z) (z € U), and this completes the proof of Theorem 2. O

< h(z) (z € U).

From Theorem 2, we have the following result.

Corollary 7. Let f € Awith f(2)f' (2)/z# 0forze Uand0<n < 1. If

’Im —f( (;)é ))(f) <Cp) (ze),
where C(n) is given by (2.6), then
’arg Z;(S) < gn (z € U).
Proof. Setting
po) = LY
f(2)

in Theorem 2, we see that p is regular in U, p(0) = 1, and p(z) # 0 in U. It can be derived that

fQf@ 1 @
(f(2))? p@@  (p@)*

Thus, from Theorem 2, we immediately have the result. O

Example 2. Letting n = 1/2 in Corollary 7, we have C(1/2) = 0.72674. Therefore, if

f@f" (@)
Im 152 =2 1/2
m 2D <cany cem),
then )
Z Z T
‘arg Q) <Z (z € U).

AIMS Mathematics Volume 9, Issue 3, 5466-5479.



5475

Taking p(z) = f(z)/z in Theorem 2, we have the following corollary.
Corollary 8. Let f € Awith f(z)/z# 0forz€ Uand 0 <n < 1. If

2z zzf’(z))
1 1-—
" ( @ T GFoP

<C@ (zel),

where C(n) is given by (2.6), then

arg —| < =n (ze€ ).

Finally, by using a similar method of the proofs of Theorems 1 and 2, we have Theorem 3 below.

Theorem 3. Let a, B, and n be real numbers satisfying « > 0,0 <n <1, and

Cla, B, m) > |1 -4, (2.7)
where
Cla. B. 1) = B 51r21 n 2 02177 cos 7n, zf B cos %n > an s?n %n, (2.8)
VB + a’n?, if BcosIn < amsin 3.
Let p be analytic in U with p(0) = 1. If
zp'(2)
‘P(z) -p+a z(z) <Ca, B, (zel), (2.9)

then x
larg p(2)| < X (z€ D).

Proof. We note that the inequality (2.9) is well-defined by (2.7). Applying the same method of the

proof in Theorem 1, we can see that p(z) # O for z € U. Let g(z) = ((1 +2)/(1 - Z))n 0 <nc<
1), 8(w) = w— B, and p(w) = @/w in Lemma 1, then

2amz
1 -22

02) = 29" (D)p(q(2)) =

and

h(z) = 0(q(z)) + O(z)
(1 + z)n 2anz
=|—| -+ :
-z 1-22

Also, the other conditions (i) and (ii) of Lemma 1 can be checked to be satisfied. Note that

. 6\"
h(e'®) = (icot—) B+i Y 0<o <),
2 sin 6
and
.6 |ercotd, if0<6<m,
1cot - = o PR
2 —ecots, if —m<0<0.
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Setting = cot (6/2) (0 < 8 < m) without loss of generality, we obtain

- 2 1+
e = (#1cos Sy ) + (1sin Ty 4 HLED)
|h(e™)] 1 cos 217 B t sm2n o

2 T n 2 2.2
2t"+2(ansm§n—ﬁcos§n)t’7+[3 +an
=g, t>0.

We first consider the case S cos(mn/2) > an sin(zn/2), then the function g(¢) has the minimum value
at

f ( cos7r s'nﬂ )ﬁ
= —_— —_— 1 —
0o=1|8 1= ansimzn

so that )
Ih(e®)? > g(ty) = (,8 sin gn + ancos gr]) .

Hence we see that

, . r
|h(e™)| > Bsin 577 + an cos 517 = C(a, B, n).

Therefore, by the assumption (2.9), we have
zp'(2)
p(z)

Next, we consider the case 8 cos(nn/2) < ansin(rn/2), then the function g is increasing on (0, o)
and it follows that

p(2)-p+a <h(z) (ze). (2.10)

() > g(0) = B* + o’

(e = B2 + a1 = C(a, B, ).

Therefore, by the assumption (2.9), we have (2.10) again. Finally, with the aid of Lemma 1, we
obtain p(z) < q(z) (z € U), that is, [arg p(2)| < 7. O

Hence, we get

Taking 8 = a in Theorem 3, we have the following result.

Corollary 9. Let a and n be real numbers such that « > 0,0 <n < 1, and

sinz + cosj—r >1—a
S+ 1C0S 517
Let x* = 0.638 ... be the unique root of the equation x = cot(nx/2). If f € A satisfies
zf"(2) zf'(@)
a + (1 -a) <C(a, n) (ze€l),
‘ F@ F@ !
where
a(sin 3n + ncos 3n), if 0<np<x',
Cla, n) = 2 2
(@ m) {a/\/l+772, if x*<n<l,
then )
2f'(z n
ar <=n (z€l).
’gf@ 2"
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Example 3. Choosing @ = 1 and n = 1/2 in Corollary 9, we have C(1, 1/2) = 3 V2/4. Therefore, we
obtain that if

2f"(2)|  3V2
then o
] Z T
f(z) < Z (Z S U)

Making p(z) = f(z)/z in Theorem 3, we have the following result.

Corollary 10. Let a, B, and n be real numbers satisfying (2.7). If f € A satisfies

‘@ -B+1)+ a/Zf/(Z) <C(a, B, n) (ze€),
z @)
where C(a, B, n) is given by (2.8), then
arg @ < En (z € U).
Z 2

We remark that, for the case n = 1 in Theorem 3, we have C(a, B, 1) = +/a? + 5%>. We end this
paper with showing that this quantity can be improved as follows:

Corollary 11. Let « and B be real numbers such that « > 0 and Ja(a +2) + B2 > |1 — B|. Let p be
analytic in U with p(0) = 1. If

zp'(2)
p(2)

< Val@a+2)+p*> (zel),

p(@)-p+a

then Re p(z) > 0 for all z € U.

Proof. By defining the same functions ¢, 6, ¢, Q, and h with n = 1, as in the proof of Theorem 3, we
will reach the following equality:

. 1+2)\
In(e™)[* = g + (z + “(2—:)) : @.11)
where ¢ = cot(6/2) with 0 < 6 < n. Furthermore, since ¢ > 0, we get
1+72) 1
+% = E[a-t_l +(a+2)t] > \/()’((14'2) (212)

Hence, combining (2.11) and (2.12) leads us to get

()| > Va@+2)+p2 (0<6<n).

Thus, it follows from the same proof of Theorem 3 that | arg p(z)| < n/2 (z € U), or Re p(z) > 0
(z € U). O
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