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1. Introduction

Let P(α) be the class of analytic functions p of the form p(z) = 1 +
∑∞

n=1 pnzn in the open unit disk
U = {z ∈ C : |z| < 1}, with Rep(z) > α for z ∈ U. The class P ≡ P(0) is known as the Carathéodory
class or the class of functions with positive real part [2, 3], pioneered by Carathéodory. The theory
of Carathéodory functions plays a very important role in the geometric function theory. For recent
developments, the readers may refer to the works of Kim and Cho [5], Kwon and Sim [6], Nunokawa
et al. [16], Sim et al. [18] and Wang [22].

LetA denote the class of all functions f analytic inUwith the usual normalization f (0) = f ′(0)−1 =

0. If f and g are analytic in U, we say that f is subordinate to g, written f ≺ g or f (z) ≺ g(z), if there
exists a Schwarz function w(z) in U such that f (z) = g(w(z)).

A function f ∈ A is said to be strongly starlike of order η (0 < η ≤ 1) if, and only if,

z f ′(z)
f (z)

≺

(
1 + z
1 − z

)η
(z ∈ U). (1.1)
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We note that the conditions (1.1) can be written by∣∣∣∣∣arg
z f ′(z)
f (z)

∣∣∣∣∣ < π

2
η (z ∈ U).

We denote by S[η] the subclass ofA consisting of all strongly starlike functions of order η (0 < η ≤
1). The class S[η] was introduced and studied by Brannan and Kirwan [1] and Stankiewicz [20, 21].
We also note that S[1] ≡ S∗ is the well-known class of all normalized starlike functions in U. The
class S[η] and the related classes have been extensively studied by Mocanu [14] and Nunokawa [15].
It is worth noticing that f belongs to S[η] if it satisfies

1 +
z f ′′(z)
f ′(z)

≺

(
1 + z
1 − z

)α(η)

(z ∈ U),

where

α(η) =
2
π

arctan

tan
η

2
π +

β

(1 − η)
1−η

2 (1 + η)
1+η

2 cos η

2π

 .
Given α ∈ [0, 1), let S∗(α) be the subclass of A, which consists of all starlike functions of order α,

namely, f ∈ A belongs to S∗(α) if, and only if, it satisfies

z f ′(z)
f (z)

≺
1 + (1 − 2α)z

1 − z
(z ∈ U).

The class S∗(α) was introduced by Robertson [17]. Clearly, it holds that S∗(0) ≡ S[1] ≡ S∗. A
typical sufficient condition for starlike functions of order α is given by Wilken and Feng [23], which
states that if f ∈ A, then

1 +
z f ′′(z)
f ′(z)

≺
1 + (1 − 2β)z

1 − z
(z ∈ U)

implies f ∈ S∗(α), where

β = β(α) :=


1 − 2α

22−2α(1 − 22α−1)
, if α , 1/2,

1
2 log 2

, if α = 1/2.

Given η ∈ (0, 1], let T [η] be the class of f ∈ A such that

f (z)
z
≺

(
1 + z
1 − z

)η
(z ∈ U).

The class T ≡ T [1] plays an important role in the theory of univalent functions, although all
elements in T are functions that are not necessarily univalent. In [7], several sufficient conditions for
functions in T [η] were introduced.

If ψ is analytic in a domain D ⊂ C2, h is univalent in U and p is analytic in U with (p(z), zp′(z)) ∈ D
for z ∈ U, then p is said to satisfy the first-order differential subordination if

ψ(p(z), zp′(z)) ≺ h(z) (z ∈ U). (1.2)
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The univalent function q is said to be a dominant of the differential subordination (1.2) if p ≺ q for
all p satisfying (1.2). If q̃ is a dominant of (1.2) and q̃ ≺ q for all dominants of (1.2), then q̃ is said
to be the best dominant of the differential subordination (1.2). The general theory of the first-order
differential subordinations, with many interesting applications, especially in the theory of univalent
functions, was developed by Miller and Mocanu [10] (also see [4, 8, 9, 11–13]).

In this paper, by applying the result obtained by Miller and Mocanu [10], we will investigate
conditions to be in the class of Carathéodory functions. We will also find new sufficient conditions for
f ∈ A to belong to the classes S[η], S∗(α), and T [η] as some applications of the main results
presented here. A differential subordination of the Briot-Bouquet type [12] (also see [13, Section 3])
will be considered for conditions for f ∈ S∗(α) and f ∈ T [1], and an integral operator related to the
differential subordination of this type will be discussed as our additional results. Moreover, more
conditions for f ∈ S[η] and f ∈ T [η] will be introduced by using a nonlinear first-order differential
subordination.

2. Main results

In proving our results, we shall need the following lemma due to Miller and Mocanu [10].

Lemma 1. Let q be univalent in U and let θ and ϕ be analytic in a domain D containing q(U) with
q(ω) , 0 when ω ∈ q(U). Set Q(z) = zq′(z)ϕ(q(z)), h(z) = θ(q(z)) + Q(z) and suppose that

(i) Q is starlike in U,
(ii) Re

{
zh′(z)
Q(z)

}
= Re

{
θ′(q(z))
ϕ(q(z)) +

zQ′(z)
Q(z)

}
> 0 (z ∈ U).

If p is analytic in U with p(0) = q(0), p(U) ⊂ D, and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)), (2.1)

then p ≺ q and q is the best dominant of (2.1).

With the help of Lemma 1, we now derive the following Theorem 1.

Theorem 1. Let p be analytic in U with p(0) = 1 and β > 0, β + γ > 0. If

p(z) +
zp′(z)

βp(z) + γ
, −

γ

β
+ ik (z ∈ U) (2.2)

for all k (|k| ≥
√

2(β + γ) + 1/β), then

p(z) ≺
1 + (1 + (2γ/β)) z

1 − z
(z ∈ U).

Proof. First, we note that p(z) , −(γ/β) for z ∈ U under the condition (2.2). In fact, if βp(z) + γ has a
zero z0 ∈ U of order n (n ≥ 1) at a point z0 ∈ U\{0}, then we may write

βp(z) + γ = (z − z0)nq(z) (n ∈ N := {1, 2, 3, · · · }),

where p is analytic in U with q(z0) , 0, then it follows that

βzp′(z)
βp(z) + γ

=
zq′(z)
q(z)

+
nz

z − z0
. (2.3)
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Therefore,

lim
z→z0

(z − z0)
βzp′(z)
βp(z) + γ

= nz0 , 0.

Letting z approach z0 in the direction of arg z0, the righthand side of (2.3) takes infinite pure
imaginary value. This contradicts the assumption (2.2).

Let q(z) = (1 + (1 + 2γ/β)z) /(1 − z), θ(ω) = ω, and ϕ(ω) = 1/(βω + γ) in Lemma 1, then θ and ϕ
are analytic in q(U) and ϕ(ω) , 0 for ϕ ∈ q(U). Setting

Q(z) = zq′(z)ϕ(q(z)) =
2z

β(1 − z2)

and

h(z) = θ(q(z)) + Q(z)

=
1
β

{
(β + γ)

1 + z
1 − z

+
2z

1 − z2 − γ

}
,

the conditions (i) and (ii) of Lemma 1 can be verified. Therefore, Lemma 1 gives that if

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) (z ∈ U)

with

h(z) =
1
β

{
(β + γ)

1 + z
1 − z

+
2z

1 − z2 − γ

}
,

then
p(z) ≺ q(z) (z ∈ U).

Noting that

h(eiθ) =
1
β

{
(β + γ)

1 + eiθ

1 − eiθ +
2eiθ

1 − ei2θ − γ

}
(0 < |θ| < π),

we obtain
Re h(eiθ) = −

γ

β

and

Im h(eiθ) =
1
β

{
(β + γ)

sin θ
1 − cos θ

+
1

sin θ

}
(0 < |θ| < π).

Meanwhile, since the imaginary part of h(eiθ) is an odd function, we consider only the case 0 < θ <
π. Putting tan (θ/2) = t (0 < θ < π), we have

Im h(eiθ) =
1
β

{
(β + γ)

sin θ
1 − cos θ

+
1

sin θ

}
=

t2 + 2(β + γ) + 1
2βt

= g(t).
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Here, the function g(t) has a minimum value at t0 =
√

2(β + γ) + 1. Hence we have

|Im h(eiθ)| ≥ |g(t0)| =

√
2(β + γ) + 1

β
.

Applying Lemma 1 and the assumption (2.2), we conclude that

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) (z ∈ U).

This completes the proof of Theorem 1. �

Taking p(z) = z f ′(z)/ f (z), β = 1, and γ = (1/α) − 1 (0 < α ≤ 1) in Theorem 1, we have the
following result.

Corollary 1. Let f ∈ A and 0 < α ≤ 1. If

αz(z f ′(z))′ + (1 − α)z f ′(z)
αz f ′(z) + (1 − α) f (z)

, α − 1 + ik (z ∈ U)

for all k (|k| ≥
√

(2 + α)/α/β), then

z f ′(z)
f (z)

≺
1 + (1 + 2(1 − α)/α)z

1 − z
(z ∈ U).

Proof. Putting

p(z) =
z f ′(z)
f (z)

,

we have

αz(z f ′(z))′ + (1 − α)z f ′(z)
= αz f (z)p′(z) + αzp(z) f ′(z) + (1 − α)p(z) f (z)
=

(
αzp′(z) + p(z)(αp(z) + 1 − α)

)
f (z)

and
αz f ′(z) + (1 − α) f (z) = (αp(z) + 1 − α) f (z).

Hence,

αz(z f ′(z))′ + (1 − α)z f ′(z)
αz f ′(z) + (1 − α) f (z)

=
αzp′(z) + p(z)(αp(z) + 1 − α)

αp(z) + 1 − α

=
p(z) + zp′(z)

p(z) +
(

1
α
− 1

) .
Therefore, applying Theorem 1, we have Corollary 1. �
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Corollary 2. Let f ∈ A and let

F(z) =
z1− 1

α

α

∫ z

0
t

1
α−2 f (t)dt (0 < α ≤ 1).

If
αz(z f ′(z))′ + (1 − α)z f ′(z)
αz f ′(z) + (1 − α) f (z)

, α − 1 + ik (z ∈ U)

for all k (|k| ≥
√

(2 + α)/α/β), then

αz(zF′(z))′ + (1 − α)zF′(z)
αzF′(z) + (1 − α)F(z)

≺
1 + (1 + 2(1 − α)/α)z

1 − z
(z ∈ U).

Proof. Differentiating F with respect to z and multiplying by z, we have

αz(zF′(z))′ + (1 − α)zF′(z)
αzF′(z) + (1 − α)F(z)

=
z f ′(z)
f (z)

.

Therefore, the result follows from Corollary 1. �

Letting β = 1/α (α > 0), γ = 0, and p(z) = z f ′(z)/ f (z) in Theorem 1, we have the following result.

Corollary 3. Let f ∈ A and α > 0. If

(1 − α)
z f ′(z)
f (z)

+ α

(
1 +

z f ′′(z)
f ′(z)

)
, ik (z ∈ U)

for all k (|k| ≥
√
α(2 + α)), then f is starlike in U.

Taking β = 1, γ = 0, and p(z) = z f ′(z)/ f (z) in Theorem 1, we have the following result.

Corollary 4. Let f ∈ A. If

1 +
z f ′′(z)
f ′(z)

, ik (z ∈ U)

for all k (|k| ≥
√

3), then f is a starlike in U.

Example 1. Consider a function f̃ : U→ C defined by

f̃ (z) =
1

√
3 − 1

(e(
√

3−1)z − 1).

Then we have

1 +
z f̃ ′′(z)
f̃ ′(z)

= 1 + (
√

3 − 1)z

and ∣∣∣∣∣∣1 +
z f̃ ′′(z)
f̃ ′(z)

∣∣∣∣∣∣ < √3, z ∈ U.

Therefore, by Corollary 4, f̃ is starlike in U (see also the left side of Figure 1). In fact, we can check
that Re {z f̃ ′(z)/ f̃ (z)} > 0 holds for all z ∈ U, as shown in the right side of Figure 1.
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Figure 1. The images of f̃ (z) and z f̃ ′(z)/ f̃ (z) in U.

Letting β = 1, γ = 0 and p(z) = f (z)/z in Theorem 1, we have the following result.

Corollary 5. Let f ∈ A. If
f (z)
z

+
z f ′(z)
f (z)

, 1 + ik (z ∈ U)

for all k with |k| ≥
√

3, then

Re
f (z)
z

> 0 (z ∈ U).

Further, we derive the following corollary.

Corollary 6. Let f ∈ A and let

F(z) =

{
β + γ

zγ

∫ z

0
tγ−1 f β(t)dt

} 1
β

(β > 0, β + γ > 0).

If
z f ′(z)
f (z)

, −
γ

β
+ ik (z ∈ U)

for all k (|k| ≥
√

2(β + γ) + 1/β), then

zF′(z)
F(z)

≺
1 + (1 +

2γ
β

)z

1 − z
(z ∈ U).

Proof. From the definition of F, we have

zF′(z)
F(z)

+
γ

β
=
β + γ

β

f β(z)
Fβ(z)

. (2.4)

Let

p(z) =
zF′(z)
F(z)

.
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Taking logarithmic derivatives in (2.4) and multiplying by z, we obtain, after some simple
calculations,

p(z) +
zp′(z)

βp(z) + γ
=

z f ′(z)
f (z)

.

Therefore, applying Theorem 1, we have the result. �

Next, we prove the following theorem.

Theorem 2. Let p be nonzero analytic in U with p(0) = 1 and 0 < η < 1. If∣∣∣∣∣∣Im
(
1 −

1
p(z)

+
zp′(z)
p(z)2

)∣∣∣∣∣∣ < C(η) (z ∈ U) (2.5)

where
C(η) = t0

η sin
π

2
η +

η

2
(t0

η−1 + t0
η+1) cos

π

2
η (2.6)

and

t0 =
− sin π

2η +
√

1 − η2 cos2 π
2η

(1 + η) cos π
2η

,

then
| arg p(z)| <

π

2
η (z ∈ U).

Proof. We choose q(z) =
(
(1 + z)/(1 − z)

)η
(0 < η < 1), θ(ω) = 1−1/ω, and ϕ(ω) = 1/ω2 in Lemma 1,

then we see that θ and ϕ are analytic in q(U) and ϕ(ω) , 0 for ω ∈ q(U). Further,

Q(z) = zq′(z)ϕ(q(z)) =
2ηz

1 − z2

(
1 − z
1 + z

)η
is starlike, and for the function

h(z) = θ(q(z)) + Q(z)

= 1 −
(
1 − z
1 + z

)η
+

2ηz
1 − z2

(
1 − z
1 + z

)η
,

we have

Re
{

zh′(z)
Q(z)

}
= Re

{
1 +

zQ′(z)
Q(z)

}
> 0 (z ∈ U).

Note that h(0) = 0 and

h(eiθ) = 1 −
(
i cot

θ

2

)−η
+ i

η

sin θ

(
i cot

θ

2

)−η
= 1 −

∣∣∣∣∣cot
θ

2

∣∣∣∣∣−η (cos
π

2
η − i sin

π

2
η) + i

η

sin θ

∣∣∣∣∣cot
θ

2

∣∣∣∣∣−η (cos
π

2
η − i sin(±

π

2
η)

)
=

(
1 −

∣∣∣∣∣tan
θ

2

∣∣∣∣∣η cos
π

2
η +

η

sin θ

∣∣∣∣∣tan
θ

2

∣∣∣∣∣η sin(±
π

2
η)

)
+ i

(∣∣∣∣∣tan
θ

2

∣∣∣∣∣η sin(±
π

2
η) +

η

sin θ

∣∣∣∣∣tan
θ

2

∣∣∣∣∣η cos
π

2
η

)
,
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where we take “ + ” for 0 < θ < π, and “ - ” for −π < θ < 0. Since the imaginary part of h(eiθ) is an
odd function of θ, we consider only the case 0 < θ < π. If we put tan (θ/2) = t (t > 0), then we have

Im h(eiθ) = tη sin
π

2
η +

η

2
(tη−1 + tη+1) cos

π

2
η

≡ g(t).

It is easy to see that the function g(t) has the minimum value at the point

t0 =
− sin π

2η +
√

1 − η2 cos2 π
2η

(1 + η) cos π
2η

.

Therefore, we conclude that

|Im h(eiθ)| ≥ t0
η sin

π

2
η +

η

2
(t0

η−1 + t0
η+1) cos

π

2
η,

and so, by assumption (2.5),

1 −
1

p(z)
+

zp′(z)
p2(z)

≺ h(z) (z ∈ U).

Hence, from Lemma 1, we have p(z) ≺ q(z) (z ∈ U), and this completes the proof of Theorem 2. �

From Theorem 2, we have the following result.

Corollary 7. Let f ∈ A with f (z) f ′(z)/z , 0 for z ∈ U and 0 < η < 1. If∣∣∣∣∣Im f (z) f ′′(z)
( f ′(z))2

∣∣∣∣∣ < C(η) (z ∈ U),

where C(η) is given by (2.6), then ∣∣∣∣∣arg
z f ′(z)
f (z)

∣∣∣∣∣ < π

2
η (z ∈ U).

Proof. Setting

p(z) =
z f ′(z)
f (z)

in Theorem 2, we see that p is regular in U, p(0) = 1, and p(z) , 0 in U. It can be derived that

f (z) f ′′(z)
( f ′(z))2 = 1 −

1
p(z)

+
zp′(z)
(p(z))2 .

Thus, from Theorem 2, we immediately have the result. �

Example 2. Letting η = 1/2 in Corollary 7, we have C(1/2) + 0.72674. Therefore, if∣∣∣∣∣Im f (z) f ′′(z)
( f ′(z))2

∣∣∣∣∣ < C(1/2) (z ∈ U),

then ∣∣∣∣∣arg
z f ′(z)
f (z)

∣∣∣∣∣ < π

4
(z ∈ U).
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Taking p(z) = f (z)/z in Theorem 2, we have the following corollary.

Corollary 8. Let f ∈ A with f (z)/z , 0 for z ∈ U and 0 < η < 1. If∣∣∣∣∣∣Im
(
1 −

2z
f (z)

+
z2 f ′(z)
( f (z))2

)∣∣∣∣∣∣ < C(η) (z ∈ U),

where C(η) is given by (2.6), then ∣∣∣∣∣arg
f (z)
z

∣∣∣∣∣ < π

2
η (z ∈ U).

Finally, by using a similar method of the proofs of Theorems 1 and 2, we have Theorem 3 below.

Theorem 3. Let α, β, and η be real numbers satisfying α > 0, 0 < η ≤ 1, and

C(α, β, η) > |1 − β|, (2.7)

where

C(α, β, η) =

β sin π
2η + αη cos π

2η, if β cos π
2η > αη sin π

2η,√
β2 + α2η2, if β cos π

2η ≤ αη sin π
2η.

(2.8)

Let p be analytic in U with p(0) = 1. If∣∣∣∣∣p(z) − β + α
zp′(z)
p(z)

∣∣∣∣∣ < C(α, β, η) (z ∈ U), (2.9)

then
| arg p(z)| <

π

2
η (z ∈ U).

Proof. We note that the inequality (2.9) is well-defined by (2.7). Applying the same method of the
proof in Theorem 1, we can see that p(z) , 0 for z ∈ U. Let q(z) =

(
(1 + z)/(1 − z)

)η
(0 < η ≤

1), θ(ω) = ω − β, and ϕ(ω) = α/ω in Lemma 1, then

Q(z) = zq′(z)ϕ(q(z)) =
2αηz
1 − z2

and

h(z) = θ(q(z)) + Q(z)

=

(
1 + z
1 − z

)η
− β +

2αηz
1 − z2 .

Also, the other conditions (i) and (ii) of Lemma 1 can be checked to be satisfied. Note that

h(eiθ) =

(
i cot

θ

2

)η
− β + i

αη

sin θ
(0 < |θ| < π),

and

i cot
θ

2
=

ei π2 cot θ2 , if 0 < θ < π,
−e−i π2 cot θ2 , if − π < θ < 0.
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Setting t = cot (θ/2) (0 < θ < π) without loss of generality, we obtain

|h(eiθ)|2 =

(
tη cos

π

2
η − β

)2
+

(
tη sin

π

2
η +

αη(1 + t2)
2t

)2

≥ t2η + 2
(
αη sin

π

2
η − β cos

π

2
η
)

tη + β2 + α2η2

≡ g(t), t > 0.

We first consider the case β cos(πη/2) > αη sin(πη/2), then the function g(t) has the minimum value
at

t0 =

(
β cos

π

2
η − αη sin

π

2
η
) 1
η

so that

|h(eiθ)|2 ≥ g(t0) =

(
β sin

π

2
η + αη cos

π

2
η
)2
.

Hence we see that
|h(eiθ)| ≥ β sin

π

2
η + αη cos

π

2
η = C(α, β, η).

Therefore, by the assumption (2.9), we have

p(z) − β + α
zp′(z)
p(z)

≺ h(z) (z ∈ U). (2.10)

Next, we consider the case β cos(πη/2) ≤ αη sin(πη/2), then the function g is increasing on (0,∞)
and it follows that

|h(eiθ)|2 ≥ g(0) = β2 + α2η2.

Hence, we get
|h(eiθ)| ≥

√
β2 + α2η2 = C(α, β, η).

Therefore, by the assumption (2.9), we have (2.10) again. Finally, with the aid of Lemma 1, we
obtain p(z) ≺ q(z) (z ∈ U), that is, | arg p(z)| < π

2η. �

Taking β = α in Theorem 3, we have the following result.

Corollary 9. Let α and η be real numbers such that α > 0, 0 < η ≤ 1, and

sin
π

2
η + η cos

π

2
η >

1 − α
α

.

Let x∗ = 0.638 . . . be the unique root of the equation x = cot(πx/2). If f ∈ A satisfies∣∣∣∣∣αz f ′′(z)
f ′(z)

+ (1 − α)
z f ′(z)
f ′(z)

∣∣∣∣∣ < C(α, η) (z ∈ U),

where

C(α, η) =

α(sin π
2η + η cos π

2η), if 0 < η < x∗,

α
√

1 + η2, if x∗ ≤ η ≤ 1,

then ∣∣∣∣∣arg
z f ′(z)
f (z)

∣∣∣∣∣ < π

2
η (z ∈ U).
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Example 3. Choosing α = 1 and η = 1/2 in Corollary 9, we have C(1, 1/2) = 3
√

2/4. Therefore, we
obtain that if ∣∣∣∣∣z f ′′(z)

f ′(z)

∣∣∣∣∣ < 3
√

2
4

(z ∈ U),

then ∣∣∣∣∣z f ′(z)
f (z)

∣∣∣∣∣ < π

4
(z ∈ U).

Making p(z) = f (z)/z in Theorem 3, we have the following result.

Corollary 10. Let α, β, and η be real numbers satisfying (2.7). If f ∈ A satisfies∣∣∣∣∣ f (z)
z
− (β + 1) + α

z f ′(z)
f (z)

∣∣∣∣∣ < C(α, β, η) (z ∈ U),

where C(α, β, η) is given by (2.8), then∣∣∣∣∣arg
f (z)
z

∣∣∣∣∣ < π

2
η (z ∈ U).

We remark that, for the case η = 1 in Theorem 3, we have C(α, β, 1) =
√
α2 + β2. We end this

paper with showing that this quantity can be improved as follows:

Corollary 11. Let α and β be real numbers such that α > 0 and
√
α(α + 2) + β2 > |1 − β|. Let p be

analytic in U with p(0) = 1. If∣∣∣∣∣p(z) − β + α
zp′(z)
p(z)

∣∣∣∣∣ < √
α(α + 2) + β2 (z ∈ U),

then Re p(z) > 0 for all z ∈ U.

Proof. By defining the same functions q, θ, ϕ, Q, and h with η = 1, as in the proof of Theorem 3, we
will reach the following equality:

∣∣∣h(eiθ)
∣∣∣2 = β2 +

(
t +

α(1 + t2)
2t

)2

, (2.11)

where t = cot(θ/2) with 0 < θ < π. Furthermore, since t > 0, we get

t +
α(1 + t2)

2t
=

1
2

[
α · t−1 + (α + 2)t

]
≥

√
α(α + 2). (2.12)

Hence, combining (2.11) and (2.12) leads us to get∣∣∣h(eiθ)
∣∣∣ ≥ √

α(α + 2) + β2 (0 < θ < π).

Thus, it follows from the same proof of Theorem 3 that | arg p(z)| < π/2 (z ∈ U), or Re p(z) > 0
(z ∈ U). �
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20. J. Stankiewicz, Quelques problèmes extrémaux dans les classes des fonctions α-angularirement
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