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Abstract: As a powerful tool for describing and studying the properties of networks, the graph
spectrum analyses and calculations have attracted substantial attention from the scientific community.
Let C, represent linear crossed phenylenes. Based on the Laplacian (normalized Laplacian, resp.)
polynomial of C,, we first investigated the Laplacian (normalized Laplacian, resp) spectrum of C, in
this paper. Furthermore, the Kirchhoff index, multiplicative degree-Kirchhoff, index and complexity of
C, were obtained through the relationship between the roots and the coefficients of the characteristic
polynomials. Finally, it was found that the Kirchhoff index and multiplicative degree-Kirchhoff index
of C,, were approximately one quarter of their Wiener index and Gutman index, respectively.
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1. Introduction

In recent years, researchers have been interested in the study of complex networks [1-4]. Three
common characteristics of complex networks are: small-world, scale-free, and fractal. Yang and
Huang et al. [5, 6] have determined the Kirchhoff index and multiplicative degree-Kirchhoff index of
hexagonal chains, and they obtained that the Kirchhoff index and multiplicative degree-Kirchhoff index
of hexagonal chains are approximately half of their Wiener index and Gutman index, respectively.
In particular, Peng et al. [7] studied the Kirchhoff index and complexity for linear phenylenes, and
determined that the Kirchhoff index of linear phenylenes is approximately half of its Wiener index. In
addition, Z. Zhu and J.-B. Liu [8] obtained the multiplicative degree-Kirchhoff index and complexity of
generalized phenylenes. In 2018, Pan and Li [9] determined the Kirchhoff index, multiplicative degree-
Kirchhoff index, and complexity of linear crossed hexagonal networks, and obtained that the Kirchhoff
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index and multiplicative degree-Kirchhoff index of linear crossed hexagonal chains are approximately
one quarter of their Wiener index and Gutman index, respectively. For other networks, see [10-14].

Motivated by these, we investigate the Laplacian and normalized Laplacian spectra of linear crossed
phenylenes. We also obtain that the Kirchhoff index and multiplicative degree-Kirchhoff index of
linear crossed phenylenes are approximately one quarter of their Wiener index and Gutman index,
respectively.

In this paper, we suppose G = (Eg, Vi) is a graph with edge set Eg = {ey, es,- - - , e,,} and vertex set
Vo = {vi,va, -+ ,v,}. For more notations, one can be referred to [15].

Let D(G) = diagl{d,,d>, - - - ,d,} represent a degree matrix, and A(G) be the adjacency matrix, where
d; is the degree of v;. Therefore, we can calculate the Laplacian matrix and normalized Laplacian
matrix, which are defined as L(G) = D(G) — A(G) and L(G) = D(G)‘%LD(G)‘%, respectively. The
Laplacian matrix is

dl' i: j;
(L(G))ij =4-1, i# j, viandv;are ad jacent; (L.1)
0, otherwise.

The normalized Laplacian matrix is

1, i=j,d; #0;
(LG))j=4~ \/lﬁ’ i # j, viand v; are ad jacent; (1.2)
0, otherwise.

The distance between vertices v; and v;, denoted by d;, is defined as the length of the shortest path
between vertices v; and v;. The Wiener index [16,17] is defined as

WG) = ) di. (1.3)
i<j
In 1994, the Gutman index [18] is defined as
Gut(G) = Z didjdij' (14)

i<j

Klein and Randi¢ [19] were the first to put forward the concept of resistance distance, and the
resistance distance between vertices v; and v; is denoted by r;;. Klein et al. [20, 21] introduced the
Kirchhoff index as Kf(G) = X,.;r;;. In 2007, Chen et al. [22] proposed the multiplicative degree-
Kirchhoff index as Kf*(G) = X, ;d;d;r;;. Gutman and Mohar [23] introduced the Kirchhoff index
as

"1
KfGy=n) —, (1.5)
= Mk

where 0 =y < p < --- < p,(n > 2) are the eigenvalues of L(G).
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According to the normalized Laplacian, Chen et al. [22] proposed the multiplicative degree-
Kirchhoff index as

1
Kf' (G =2m ) = (1.6)
=2 "k

where 4; < A, < --- < An are the normalized Laplacian eigenvalues of £(G).
The number of spanning trees of G can also be called the complexity of G [15], denoted by 7(G).

In Section 2, we mainly introduce some notations and theorems. Next, applying the relationship
between the roots and coefficients of C,, the Laplacian spectrum of C, is determined in Section 3. In
Section 4, we obtain the normalized Laplacian spectrum of C, in the same way as in Section 3. The
conclusion is summarized in Section 5.

2. Preliminary

First, we state some notations and theorems, which will be used later.

Given an n X n matrix M, the submatrix of M is represented by M[iy, - - - ,ix], where M[iy,--- , ;] is
formed by removing the i;-th,- - - ,i;-th rows and columns of M. Let P(x) = det(xI — M) represent the
characteristic polynomial of M.

3n—1

3n-2 E 3n+1

Gn)  Gntl)

G-

Figure 1. Linear crossed phenylenes C,,.

Label linear crossed phenylenes as shown in Figure 1. Evidently, |V(C,)| = 6n+2,|E(C,)| = 14n+1
and 7 = (1,1')(2,2")---(B3n + 1,(3n + 1)) is an automorphism of C,,.. Set V|, = {1,2,--- ,3n+ 1}, V, =
{1,2,--- ,(Bn+ 1)}.

Thus, L(C,) and L(C,) can be expressed by

L(C,) = ( Ly,yv, Ly, ), £C,) :( Lvyv, Lvv, )’

LV2V1 LV2V2 LVZVI -EVZVZ
where

LV1V1 = LVZVZa LV1V2 = LV2V1’ £V1V1 = LVZVZ’ LV]VZ = £V2V1~

Let

L L

T = %13;%1 %I&Hl
\/§I3n+1 - \@I3n+l ’
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then
L, O
0 Lg

where 7’ is the transpose of the matrix 7" and

Ly = Ly,y, + Ly,v,, Ls = Lv,v, — Lv,v,, La = Ly,v, + Lyv,, Ls = Ly, = Ly,
Theorem 2.1. [24]If L4, Ls, L4, Ls are defined as above, the following formula can be obtained:

Prcy(x) = P, (x)Pr;(x), P gc,)(x) = P, (X)P g (x).
Theorem 2.2. [15] If G is a graph with |Vg| = n and |Eg| = m, then

ZI’I’LT(G) = ﬁ dl' . ﬁ /ll',
i=1 i=2

where 1(G) is the complexity of G, and A; is the normalized Laplacian eigenvalue of L(G).

TLC)T = (

), TLC)T :( La 0 )

0 L

3. The Kirchhoff index and Wiener index of C, in terms of the Laplacian spectrum

In this section, we mainly calculate the Kirchhoff index and Wiener index of C,,.
According to (1.1), we can get Ly,y, and Ly, y,:

3 -1
-1 4 -1
-1 5 -1
-1 5 -1
-1 4 -1
Lyy, = -5 -l ,
-1 5 -1
-1 4 -1
-1 5 -1
-1 (Bn+1)x(3n+1)
-1 -1
-1 0 -1
-1 -1 -1
-1 -1 -1
-1 0 -1
Ly.v, -1 -1 -1
-1 -1 -1
-1 0 -1
-1 -1 -1
-1

(Bn+1)x(3n+1)

AIMS Mathematics Volume 9, Issue 3, 5431-5450.



5435

Based on Theorem 2.1, the Laplacian spectrum consists of the eigenvalues of L4, and Lg of C,, can

be obtained.

2 -2
2 4 -2
2 4 -2
2 4 -2
2 4 -2
L, = 2 4 -2 ,
2 4 -2
2 4 -2
2 4 =2

-2 2

(Bn+1)x(3n+1)

Lg = diag(4, 4,6,6,4,6,---,6,4, 6,4)(3n+1).

Assume that 0 = @) < @y < @3 < -+ < @3, are the roots of Py, (x),and 0 < 8 < B, < B3 <

B3n+1 are the roots of Py (x). By (1.5), we have

KFCy=6n+2)( Y —+ > =),

Z o I B
It is obvious from the matrix Lg that the following expression can be obtained:
3n+1
I 1 1 Tn+ 4
—=—-Xn+2)+=-x2n-1)= .
;ﬁi4<n )+ x@n-1)=—0

Thus, we need to calculate the first sum in (3.1).
Let

Py (x) = det(xI — Ly) = "' + ;X" + -+ + az,x.

Based on the Vieta's Theorem of P, ,(x), we can get

3n2+1 1 (=D as,,

i—2 a; (_ 1)3na3n

3.1

(3.2)

(3.3)

Obviously, we obtain that (—1)*as, is the sum of all the principal minors of order 3n of L, and
(=1)**'as,_; is the sum of all the principal minors of order 3n — 1 of L. So, let F; be the k-th
order principal submatrix, which consists of the first k columns and k rows of L4, and f; = det(F}),

k=1,2,---,3n. Thus, we can get fi =2, f, =4, and for 1 <i < 3n,

Ji=4fio1 —4fi.
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The solution of the previous recurrence relation is
Y
fi=2".

Now, let H; be the k-th order principal submatrix, which consists of the last k columns and k rows
of L4, and h; = det(Hy), k = 1,2,--- ,3n. Based on the symmetry matrix L4, one gets h; = f;, and let
fo=1
Fact 1. (-1)*as, = 3n + 1)2%".

Proof. Since (—1)*as, is the sum of all the principal minors of order 3n of L4, we have

(=1)"as,

3n
2f3n + Z Jict fans1-i
P

3n+1
Z ﬁ—1f3n+1—i
i=1

Bn + 1)2°".

This completes the proof. =
Fact 2. (-1)**'as,_; = n(3n + 1)(3n + 2)2%2
Proof. Since (—1)**"'as,_; is the sum of all the principal minors of order 3n — 1 of L,, we obtain

(-1 az,, = Z Nijfic1 fane1-js

1<i<j<3n+1
where
4 -2
2 4 =2
-2 4 =2
Ny = .
-2 4 =2
-2 4 =2
-2 4 (j—i~Dx(j=i~1)
= (j-i2

Therefore, we can have

(=D¥ az,

D G=027 f

1<i<j<3n+1

= D, G-y

1<i<j<3n+1

= n(3n+ D3Bn +2)2% 2.

The result is as desired. |
Together with (3.3) and Facts 1 - 2, we obtain the following lemma.
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Lemma 3.1. If0 = a; < a; < a3 < -+ < @3,y are the eigenvalues of Ly, one gets

3n+1
1

Z__n(3n+2)
CZ,'_ 4 ’

i=2
Applying (3.1) - (3.2) and Lemma 3.1, we obtain the following theorem.

Theorem 3.2. For linear crossed phenylenes C,, we have

271 + 48n* + 25n + 4
3 )

The Kirchhoff indices of C, are shown in Table 1, where 1 < n < 15.

Table 1. Kirchhoff indices from C; to Cis.

G  KfG)| G| Kf(G) | G| Kf(G) | G | Kf(G) | G | Kf(G)

Ci | 1733 | Cy | 43333 | C7 | 1965.33 | Cyp | 5342.33 | Cy53 | 11293.33
C, | 77.00 | Cs | 784.00 | Cs | 2850.00 | Cy; | 7004.00 | Cy4 | 13975.00
Cs | 206.67 | Co | 1285.67 | Cy | 3966.67 | C1, | 8978.67 | Ci5 | 17050.67

Theorem 3.3. Assume that C, are the linear crossed phenylenes, then

. Kf(C,) 1
lim =—.
n—co W(C,) 4
Proof. By first classifying and discussing the following cases of vertices, the Wiener index of C, is
obtained.
e Vertex3j—1(j=1,2,--- ,n)of Cy:
i-1 3n+1-i
wi(i) =2 +2 Zk+ ki=3j-1.
k=1 k=1
e Vertex 3j(j=1,2,--- ,n)of C,:
i—1 3n+1-i
wili)=1+2( D k+ > k)i=3j
k=1 k=1
e Vertex3j+ 1(j=1,2,--- ,n—1)of Cp:
i-1 3n+1-i
k ,z =3j+1.

wa() = 1+2 Zk+
k=1

k=1
e Vertex 1 of C,;:

3n

wa(i) = 1+ 2 Z k).

k=1

AIMS Mathematics
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In view of (1.3), we have

2%z Wi + 2 2z wad) + 2 Ximzjh w3 () + 4wa()

W(C,) = >
2R 2Tk O+ 2 X [+ 208 ke S ]
B 2
L2 4200 k+ X o1+ 41+ 2 57
2
= 187> + 180> + 8n + 1.
Combining with K f(C,) and W(C,), we have
lim Kf(Cy _ 1
—w W(C,) 4
as desired. .

4. The multiplicative degree-Kirchhoff index, Gutman index, and complexity of C, in terms of
the normalized Laplacian spectrum

In this section, we mainly calculate the multiplicative degree-Kirchhoff index, Gutman index, and
complexity of C,,.

According to (1.2), we can get Ly,y, and Ly, v,:

~gt
W

-1
iz
=1 1 =1L
V12 B V20 B
ool
= oW
- 1 -
‘EV]Vl = @ _\/ﬁ s
—_1. 1 el
25 V20
=L 1 =L
V20 B V20
Vo !
Vi5

Bn+1)x(3n+1)
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1:Vﬂ@

-1 =L
3 V12
=L o =L
& 1 Véﬁ 1
VTﬁ?lx_ZFf
E?l
V20

—1
™
T
—_1.—_1
\/5_51
20

—1

V20 1

0__
V20

-1 -1 -l

V20 5 wl?
Vis 3

Bn+1)x(3n+1)

Based on Theorem 2.1, the normalized Laplacian spectrum consists of the eigenvalues of £,, and
Lg of C, can be obtained.

2 -1
3V
=L 1 =L
i Vs
=1 4 =2
A V25
=2 4 =1
V25 _51 V5
7 _11
5
4 6 6
:d _’19_9_
Ls ’“g(3 55

, 1

-1
5
4 =2
5 Vs ,
—_2. 4 -1
V25 5 A5
=L 1 =
V5 V5
=1 4 =2
N V15
=2 2
VI5 3 @ur)xGnt)
6 6 64)
’5’ ’5’ ,5’3(3n+1)'

Assume that 0 = y; <y, < y3 < -+ < 3,4 are the roots of Py, (x),and 0 <) <9, <93 <--- <
O3n+1 are the roots of P, (x). By (1.6), we have

Kf*(C,) = (28n +2)( Z % + Z
b=l

3n+1 3n+1

i=2

(%) (4.1)

It is obvious from the matrix Lg that the following expression can be obtained

AIMS Mathematics

3n+1

5 3
—=1 —-x2n-1 - X2 =
;51' ><n+6><(n )+4><

8n +2
3

4.2)
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Therefore, we need to calculate the first sum in (4.1).
Let

Pp,(x) =det(x] — Ly) = X b + -+ by,

Based on the Vieta's Theorem of P r,(X), we can get

3n+1
1 (=1,
Z — = ()—331 (4.3)
Vi (=1)7"Ds,

Obviously, we obtain that (—1)*bs, is the sum of all the principal minors of order 3n of £, and
(=1)*"'b3,_; is the sum of the principal minors of order 3n — 1 of L4. So, let Ty be the k-th order

principal submatrix, which consists of the first k columns and k rows of L4, and #, = det(T}), k =

1,2,---,3n. Thus, wecan get f; = 3,1, = 1,13 = =, andfor 1 <i<n-1,

_ 4 4 )
B3iv1 = 503 — 3513i-15

_ 1, .
B3iv2 = Biv1 — 5035

_ 4 1
B3iv3 = 5Biv2 — 58t

The solution of the previous recurrence relation is

25 (2.
hia =% (5)5
25 (2.
Bio1 =2 (55)5
5. (2
B =5 ()5

where 1 <i<n.
Now, let S be the k-th order principal submatrix, which consists of the last k columns and k rows of
Ly, and s = det(Sy), k=1,2,--- ,3n. Thus, we can get s; = 2,5, = =, 53 = =, andfor 1 <i<n—1,

_ 4 1 .
S3i+1 = 5831 = 553i-1>

_ 4 4 o .
§3i+2 = 3553i+1 — 3553is

_ 1
83i+3 = S3i+2 — 353i+1-

The solution of the previous recurrence relation is

25 (24
s3i2 = 5 - (35)%
10 . (2.
531 =3 - (53)5
5. (20
s30 =3 - (35)%
where 1 <i <n.

Without loss of generality, let #, = 1 and s¢ = 1.

Fact 1. (=1)*bs, = 3(14n + 1)(Z)".

AIMS Mathematics Volume 9, Issue 3, 5431-5450.
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Proof. By a similar discussion as in Section 3, we obtain that (—1)*bs, is the sum of all the principal
minors of order 3n of Ly,

3n+1
(-D¥bs, = Zf,,‘—1S3n+1—j
1
3n
= l3n+S3n+ij—153n+1—j
=3
5 ,2 25 2N\ 10, 2 \n-itl 25 ;2\ 25 ;2 \n-i+l
=25 (5) DI CIEE HCY IO NN B )
5 ,- 5 2 nei
+l:1 37055 5)

2
= §(14n+ 1)(5) .

The result is as desired.

Fact 2. (_1)3n—1b3n_ — 981 +21n +9n(25)n 1

[
Proof. Since (-1)*"'bs,_; is the sum of all the principal minors of order 3n — 1 of L4, one has
D" by = > detLuli, jlti s (4.4)
1<i<j<3n+1

In view of (4.4), all possible cases are listed

Casel.i=3p,j=3¢q,1 <p<gqg<n,

4 =L
5 45
=L 1 =L
V5 V5
=L 4 =2
V55 W2s
detL,[3p,3q] = . -
5 V5
L 4 =2
V55 V25
=2 4 =1
V25 _51 V5
V5 ! (3q-3p—1)x(3¢g-3p-1)
3 2 \g-p-1
= Z@q-p(2) -
AIMS Mathematics
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Case2.i=3p,j=3qg+1,1 <p<gqg<n,

4 -l
5OV
=L 1 =L
Vs Vs
-4 2
AR V25
detLa[3p,3q+ 1] = IR
5 5 \Bs
2 i
Vs 535
=1 1 =L
V5 V5
14
V5o 5 13g-3p)x(3¢-3p)
2 2 \q-p-1
= —[3(g-p)+ 1][— )
25[(q p) ](25)
Case3.i=3p,j=3¢g+2,1<p<g<n-1,
4 -1
5%
=L 1 =L
Vs V5
-1 4 2
5 VB
detLu[3p,3¢+2] = L.
V505 A5
=L 1 =L
V5 V5
=1 4 =2
Vi 5 Vs
=2 4
V25 5 1@g-3p+1)x(3g-3p+1)
2 2 \¢-p
= —[3 — +2 .
SBa-p) ](25)
Cased.i=3p+1,j=3¢,0<p<gq<n,
-1
I %
=1 4 =2
A 5 V25
=2 4 =
V25 5 V5
detL,[3p +1,3q] = _.1' | =l
5 5
=1 4 =2
o5 s
=2 4 =1
w5
=L 1
V5

(3¢=-3p-2)x(3¢-3p-2)

1 2 \g-p-1
= -Bg-p-1=)"".
53— p)-11(53)
AIMS Mathematics
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CaseS.i=3p+1,j=3¢g+1,0<p<qg<n,

-1
5
=1 4 =2
V5 5 V25
=2 4 =1
V25 5 V5
detLa[3p+1,3¢g+ 1] = _.1' 4 2
5 5 a5
2 &z
Vs 5 W
=1 1 =L
Vs Vs
-1 4
V55 lag-3p-1)x(3g-3p-1)
3 2 \q-p-1
= S4a-n(x) -
Case6.i=3p+1,j=3g+2,0<p<qg<n-1,
-1
55
=1 4 =2
V5 5 V25
=2 4 =1
V25 5 V5
detLa[3p +1,3g+2] = S
5005 s
=L 1 =L
Vs Vs
-l 4 2
o5 Vs
=2 4
V255 1(3g-3p)x(3¢-3p)
2 \q¢-p
= [3(g—p)+1 .
[3(¢ - p) ](25)
Case7.i=3p+2,j=3¢q,0<p<gq<n,
4 =2
5 Vs
=2 4 =1
o5
=L 1 =L
V5 V5
detLa[3p +2,3q] = N
Vs V5
=1 4 =2
v 5 s
=2 4 =1
V5 5V
5ol (3g-3p-3)x(3g-3p-3)
2 \q-p-1
= [3<q—p)—2](g)
AIMS Mathematics
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Case8.i=3p+2,j=3¢g+1,0<p<qg<n,

4 =2
5 V25
2 4 o
V25 S NG
=L 1 =L
V5 NG
detLy[3p+2,3g+1] = I
5 5 s
=2 4 =1
V25 5 NG
=L 1 =L
& V5
14
Vi 5 13g-3p-2)x(3g-3p-2)
2 2 \g-p-1
= =-[3(g-p) —-1ll— .
513 —-p) ](25)
Case9.i=3p+2,j=3¢g+2,0<p<g<n-—1,
4 =2
5 V25
=2 4 =1
V25 S V5
=L 1 =L
V5 V5
detLa[3p +2,3+2] = 54 4
V25 05 s
=L 1 =L
V5 V5
-t 4 =2
V55 V25
=2 4
V25 5 13g=-3p-1)x(3g=3p-1)
12 2 \a-p-1
= g(q - P)(g) .
Therefore, we can get
D"y = > detLali, Mt
1<i<j<3n+1
= X1 + X2 + X3,
where
X, = Z detLa[3p,3qlt3p-153n-3¢+1 + Z detLA[3p,3q + 1]t3)_153,-34
1<p<q<n 1<p<g<n
+ detL, [3p, 3q + 2]t3p_1S3n_3q_1
1<p<g<n—1
B 14n® — 5n% — 3n( 2 )n—l
18 25 ’
Xo = ) detLalB3p+1,3qM,53 500+ ), detLu[3p+1,3q+ 113,85, 3,
0<p<g<n 0<p<g<n
AIMS Mathematics
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+ Z detLA[?’p +1, 3q + 2]t3pS3n_3q_1
0<p<g<n-1
B 7013 + 31n® + 37n( 2 )n—l
B 90 25/

X3 = Z detLy[3p +2,3q1t3p41531-3¢g+1 + Z detLy[3p +2,3q + 11t3,4153,-34

0<p<q<n 0<p<q<n

+ Z detLy[3p + 2,3q + 2]t3p41530-3¢-1

0<p<g<n-1

_ 2 3 2 2 \n-1
= o514’ +9n —n)(g) .
Thus, we can obtain

(=" by =X+ X0 + X3 =

9813 + 21n® + 9n( 2 )n—l
45 25 ’

which is the desired result. u
Together with (4.3) and Facts 1 - 2, one can get the following lemma.

Lemma 4.1. Assume that 0 = y; <y, < y3 < --- < Y341 are the eigenvalues of Ly, then one gets

RAda _ 98n® +21n* +9n
iy, 28n+2

According to (4.1) - (4.2) and Lemma 4.1, we obtain the following theorem.
Theorem 4.2. For linear crossed phenylenes C,, we have

294n3 + 287n% + 99n + 4

The multiplicative degree-Kirchhoff indices of C, are shown in Table 2, where 1 <n < 15.

Table 2. Multiplicative degree-Kirchhoff indices from C; to C;s.

G | Kf'(G)| G| Kff(G) | G| Kfi(g) | G Kf*(G) G Kf*(G)

C, | 208.00 | C4 | 7688.00 | C7 | 37806.00 | Cyo | 106438.00 | C;3 | 229460.00
C, | 1166.00 | Cs | 14428.00 | Cs | 55620.00 | Cy; | 140618.00 | Cy4 | 285298.00
Cs | 3463.33 | Co | 24271.33 | Cy | 78301.33 | Cy, | 181429.33 | Cy5 | 349531.33

Theorem 4.3. Assume that C, are the linear crossed phenylenes, then

Kfi(Cy) 1

m =-.
n—e Gut(C,) 4
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Proof. By first classifying and discussing the following cases of vertices, the Gutman index of C, is
obtained.

e Vertex3i — 1(i=1,2,--- ,n) of Cy;:

83i-1 = 22[4><4><2+2><3><4><(3i—2)+2><3><4><(3n—3i+2)

i=1
i—

+2 4><4><3><(i—k)+2Z4x4x3x(k—i)
1 k=i+1

>~

i n

4><5><(3i—3k+1)+224><5><(3k—3i—1)

k=i+1

+2

[

>~
Ll

+2 4><5><(3i—k—1)+2Z4><5><(3k—3i+1)]
k=i

=~

=1
= 8(28n° + 3n* + 5n).

e Vertex 3i(i = 1,2,--- ,n) of Cy:

N

gi = 2 ) [5X5X1+2x3%x5x@Bi-1)+2x3x5xBn-3i+1)

+2 4><5><(3i—3k+1)+2z4><5><(3k—3i—1)
1 k=i+1

+225x5x(3i—3k+2)+225><5><(3k—3i—2)

k=2 k=i+1

i—1 n
+2;5><5><3><(i—k)+2k215><5><3><(k—i)]

= =i+

= 10028%° + 3n?).

e Vertex 3i — 2(i = 2,3,--- ,n)of Cy;:

Gia = 2 ) [5Xx5x1+2%x3%x5%x@Bi-3)+2x3x5x3n-3i+3)

n
i=2
i—

—_

+2

[

4><5><(3i—3k—1)+2Z4X5x(3k—3i+1)
k=i

~
— =

+2 5><5><3><(i—k)+225><5><3><(k—i)

k=i+1

[

+2 5><5x(3i—3k—2)+225><5><(3k—3i+2)]
k=1 k=i
= 100287 — 391> + 161 - 3).

o
-~
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e Corner vertex of C,:

g = 2[3><3><1+2><3><3><3n+2(23><4(3i—2)

i=1

+Z}13x5x(3i—1)+Zzl3x5><(3i—3))]

+2[3><3><1+2><3><3><3n+2(23><4><(3n—3i+2)

i=1

+Z3><5><(3n—3i+1)+Z;3><5><(3n—3i+3))]

i=1
= 504n® + 36n + 36.
Applying (1.4), we obtain

ot &3i-1 T &3i-2 1 83i
Gut(Cn):g 83 12832 83

Combining with K f*(C,) and Gut(C,), one has

=392n° + 84n”> + 118n — 7.

Kf(Cy) 1

im =-.
n—o Gut(C,) 4

This completes the proof.
In the following, we can calculate the complexity of C,,.

Theorem 4.4. For linear crossed phenylenes C,, we have
T(Cn) — 27n+2 . 32n—1.

Proof. Based on Theorem 2.2, we can get [1%*d; 1%y T12%' 6; = 2(14n + 1)7(C,),
where

6n+2

l—l d; = 3%. 4% . 542,

i=1

3n+1
5

n 2 n
];[yi=<—1>3 by =5 (dn+ 1) (52)"

3n+1 4.2 6201
D5f=(§) (3
Hence,

T(Cn) — 27n+2 . 32n—1'

AIMS Mathematics

Volume 9, Issue 3, 5431-5450.
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The result is as desired. n
The complexity of C, is shown in Table 3, where 1 < n < 12.

Table 3. The complexity from C; to Cy.

G 7(G) G 7(G)

C 1536 Cy 3590096234354105647104

C» 1769472 Cs 4135790861975929705463808
Cs 2038431744 Cy 4764431072996271020694306816

Cy 2348273369088 Cio 5488624596091704215839841452032
Cs 2705210921189376 | Cy; 6322895534697643256647497352740864
Ce | 3116402981210161152 | Cy, | 7283975655971685031657916950357475328

5. Conclusions

Based on the Laplacian (normalized Laplacian, resp) polynomial of C,, we determined the
Kirchhoft index, multiplicative degree-Kirchhoff index, and complexity of linear crossed phenylenes
through the decomposition theorem and Vieta's Theorem. In addition, we found that the Kirchhoff
index and multiplicative degree-Kirchhoff index of linear crossed phenylenes were approximately one
quarter of their Wiener index and Gutman index, respectively, which further enriched the results of the
Kirchhoft index, multiplicative degree-Kirchhoff index, and complexity for the linear crossed chains.
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