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Abstract: As a powerful tool for describing and studying the properties of networks, the graph
spectrum analyses and calculations have attracted substantial attention from the scientific community.
Let Cn represent linear crossed phenylenes. Based on the Laplacian (normalized Laplacian, resp.)
polynomial of Cn, we first investigated the Laplacian (normalized Laplacian, resp) spectrum of Cn in
this paper. Furthermore, the Kirchhoff index, multiplicative degree-Kirchhoff, index and complexity of
Cn were obtained through the relationship between the roots and the coefficients of the characteristic
polynomials. Finally, it was found that the Kirchhoff index and multiplicative degree-Kirchhoff index
of Cn were approximately one quarter of their Wiener index and Gutman index, respectively.
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1. Introduction

In recent years, researchers have been interested in the study of complex networks [1–4]. Three
common characteristics of complex networks are: small-world, scale-free, and fractal. Yang and
Huang et al. [5, 6] have determined the Kirchhoff index and multiplicative degree-Kirchhoff index of
hexagonal chains, and they obtained that the Kirchhoff index and multiplicative degree-Kirchhoff index
of hexagonal chains are approximately half of their Wiener index and Gutman index, respectively.
In particular, Peng et al. [7] studied the Kirchhoff index and complexity for linear phenylenes, and
determined that the Kirchhoff index of linear phenylenes is approximately half of its Wiener index. In
addition, Z. Zhu and J.-B. Liu [8] obtained the multiplicative degree-Kirchhoff index and complexity of
generalized phenylenes. In 2018, Pan and Li [9] determined the Kirchhoff index, multiplicative degree-
Kirchhoff index, and complexity of linear crossed hexagonal networks, and obtained that the Kirchhoff
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index and multiplicative degree-Kirchhoff index of linear crossed hexagonal chains are approximately
one quarter of their Wiener index and Gutman index, respectively. For other networks, see [10–14].

Motivated by these, we investigate the Laplacian and normalized Laplacian spectra of linear crossed
phenylenes. We also obtain that the Kirchhoff index and multiplicative degree-Kirchhoff index of
linear crossed phenylenes are approximately one quarter of their Wiener index and Gutman index,
respectively.

In this paper, we suppose G = (EG,VG) is a graph with edge set EG = {e1, e2, · · · , em} and vertex set
VG = {v1, v2, · · · , vn}. For more notations, one can be referred to [15].

Let D(G) = diag{d1, d2, · · · , dn} represent a degree matrix, and A(G) be the adjacency matrix, where
di is the degree of vi. Therefore, we can calculate the Laplacian matrix and normalized Laplacian
matrix, which are defined as L(G) = D(G) − A(G) and L(G) = D(G)−

1
2 LD(G)−

1
2 , respectively. The

Laplacian matrix is

(L(G))i j =


di, i = j;
−1, i , j, vi and v j are ad jacent;
0, otherwise.

(1.1)

The normalized Laplacian matrix is

(L(G))i j =


1, i = j, di , 0;
− 1√

did j
, i , j, vi and v j are ad jacent;

0, otherwise.

(1.2)

The distance between vertices vi and v j, denoted by di j, is defined as the length of the shortest path
between vertices vi and v j. The Wiener index [16, 17] is defined as

W(G) =
∑
i< j

di j. (1.3)

In 1994, the Gutman index [18] is defined as

Gut(G) =
∑
i< j

did jdi j. (1.4)

Klein and Randić [19] were the first to put forward the concept of resistance distance, and the
resistance distance between vertices vi and v j is denoted by ri j. Klein et al. [20, 21] introduced the
Kirchhoff index as K f (G) =

∑
i< j ri j. In 2007, Chen et al. [22] proposed the multiplicative degree-

Kirchhoff index as K f ∗(G) =
∑

i< j did jri j. Gutman and Mohar [23] introduced the Kirchhoff index
as

K f (G) = n
n∑

k=2

1
µk
, (1.5)

where 0 = µ1 < µ2 ≤ · · · ≤ µn(n ≥ 2) are the eigenvalues of L(G).
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According to the normalized Laplacian, Chen et al. [22] proposed the multiplicative degree-
Kirchhoff index as

K f ∗(G) = 2m
n∑

k=2

1
λk
, (1.6)

where λ1 ≤ λ2 ≤ · · · ≤ λn are the normalized Laplacian eigenvalues of L(G).
The number of spanning trees of G can also be called the complexity of G [15], denoted by τ(G).

In Section 2, we mainly introduce some notations and theorems. Next, applying the relationship
between the roots and coefficients of Cn, the Laplacian spectrum of Cn is determined in Section 3. In
Section 4, we obtain the normalized Laplacian spectrum of Cn in the same way as in Section 3. The
conclusion is summarized in Section 5.

2. Preliminary

First, we state some notations and theorems, which will be used later.
Given an n× n matrix M, the submatrix of M is represented by M[i1, · · · , ik], where M[i1, · · · , ik] is

formed by removing the i1-th,· · · ,ik-th rows and columns of M. Let PM(x) = det(xI −M) represent the
characteristic polynomial of M.

 

Figure 1. Linear crossed phenylenes Cn.

Label linear crossed phenylenes as shown in Figure 1. Evidently, |V(Cn)| = 6n+2, |E(Cn)| = 14n+1
and π = (1, 1′)(2, 2′) · · ·

(
3n + 1, (3n + 1)′

)
is an automorphism of Cn. Set V1 = {1, 2, · · · , 3n + 1},V2 =

{1′, 2′, · · · , (3n + 1)′}.
Thus, L(Cn) and L(Cn) can be expressed by

L(Cn) =
(

LV1V1 LV1V2

LV2V1 LV2V2

)
, L(Cn) =

(
LV1V1 LV1V2

LV2V1 LV2V2

)
,

where
LV1V1 = LV2V2 , LV1V2 = LV2V1 , LV1V1 = LV2V2 , LV1V2 = LV2V1 .

Let

T =

 1
√

2
I3n+1

1
√

2
I3n+1

1
√

2
I3n+1 −

1
√

2
I3n+1

 ,
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then

T L(Cn)T ′ =
(

LA 0
0 LS

)
, TL(Cn)T ′ =

(
LA 0
0 LS

)
,

where T ′ is the transpose of the matrix T and

LA = LV1V1 + LV1V2 , LS = LV1V1 − LV1V2 ,LA = LV1V1 +LV1V2 ,LS = LV1V1 − LV1V2 .

Theorem 2.1. [24] If LA, LS ,LA,LS are defined as above, the following formula can be obtained:

PL(Cn)(x) = PLA(x)PLS (x), PL(Cn)(x) = PLA(x)PLS (x).

Theorem 2.2. [15] If G is a graph with |VG| = n and |EG| = m, then

2mτ(G) =
n∏

i=1

di ·

n∏
i=2

λi,

where τ(G) is the complexity of G, and λi is the normalized Laplacian eigenvalue of L(G).

3. The Kirchhoff index and Wiener index of Cn in terms of the Laplacian spectrum

In this section, we mainly calculate the Kirchhoff index and Wiener index of Cn.
According to (1.1), we can get LV1V1 and LV1V2:

LV1V1 =



3 −1
−1 4 −1
−1 5 −1
−1 5 −1
−1 4 −1
−1 5 −1

. . .

−1 5 −1
−1 4 −1
−1 5 −1
−1 3


(3n+1)×(3n+1)

,

LV1V2 =



−1 −1
−1 0 −1
−1 −1 −1
−1 −1 −1
−1 0 −1
−1 −1 −1

. . .

−1 −1 −1
−1 0 −1
−1 −1 −1
−1 −1


(3n+1)×(3n+1)

.
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Based on Theorem 2.1, the Laplacian spectrum consists of the eigenvalues of LA, and LS of Cn can
be obtained.

LA =



2 −2
−2 4 −2
−2 4 −2
−2 4 −2
−2 4 −2
−2 4 −2

. . .

−2 4 −2
−2 4 −2
−2 4 −2
−2 2


(3n+1)×(3n+1)

,

LS = diag(4, 4, 6, 6, 4, 6, · · · , 6, 4, 6, 4)(3n+1).

Assume that 0 = α1 < α2 ≤ α3 ≤ · · · ≤ α3n+1 are the roots of PLA(x), and 0 < β1 ≤ β2 ≤ β3 ≤ · · · ≤

β3n+1 are the roots of PLS (x). By (1.5), we have

K f (Cn) = (6n + 2)
( 3n+1∑

i=2

1
αi
+

3n+1∑
i=1

1
βi

)
. (3.1)

It is obvious from the matrix LS that the following expression can be obtained:

3n+1∑
i=1

1
βi
=

1
4
× (n + 2) +

1
6
× (2n − 1) =

7n + 4
12
. (3.2)

Thus, we need to calculate the first sum in (3.1).
Let

PLA(x) = det(xI − LA) = x3n+1 + a1x3n + · · · + a3nx.

Based on the Vieta
′

s Theorem of PLA(x), we can get

3n+1∑
i=2

1
αi
=

(−1)3n−1a3n−1

(−1)3na3n
. (3.3)

Obviously, we obtain that (−1)3na3n is the sum of all the principal minors of order 3n of LA and
(−1)3n−1a3n−1 is the sum of all the principal minors of order 3n − 1 of LA. So, let Fk be the k-th
order principal submatrix, which consists of the first k columns and k rows of LA, and fk = det(Fk),
k = 1, 2, · · · , 3n. Thus, we can get f1 = 2, f2 = 4, and for 1 ≤ i ≤ 3n,

fi = 4 fi−1 − 4 fi−2.
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The solution of the previous recurrence relation is

fi = 2i.

Now, let Hk be the k-th order principal submatrix, which consists of the last k columns and k rows
of LA, and hk = det(Hk), k = 1, 2, · · · , 3n. Based on the symmetry matrix LA, one gets hk = fk, and let
f0 = 1.
Fact 1. (−1)3na3n = (3n + 1)23n.

Proof. Since (−1)3na3n is the sum of all the principal minors of order 3n of LA, we have

(−1)3na3n = 2 f3n +

3n∑
i=2

fi−1 f3n+1−i

=

3n+1∑
i=1

fi−1 f3n+1−i

= (3n + 1)23n.

This completes the proof.
Fact 2. (−1)3n−1a3n−1 = n(3n + 1)(3n + 2)23n−2

Proof. Since (−1)3n−1a3n−1 is the sum of all the principal minors of order 3n − 1 of LA, we obtain

(−1)3n−1a3n−1 =
∑

1≤i< j≤3n+1

Ni j fi−1 f3n+1− j,

where

Ni j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4 −2
−2 4 −2
−2 4 −2

. . .

−2 4 −2
−2 4 −2
−2 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
( j−i−1)×( j−i−1)

= ( j − i)2 j−i−1.

Therefore, we can have

(−1)3n−1a3n−1 =
∑

1≤i< j≤3n+1

( j − i)2 j−i−1 fi−1 f3n+1− j

=
∑

1≤i< j≤3n+1

( j − i)23n−1

= n(3n + 1)(3n + 2)23n−2.

The result is as desired.
Together with (3.3) and Facts 1 - 2, we obtain the following lemma.
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Lemma 3.1. If 0 = α1 < α2 ≤ α3 ≤ · · · ≤ α3n+1 are the eigenvalues of LA, one gets

3n+1∑
i=2

1
αi
=

n(3n + 2)
4

.

Applying (3.1) - (3.2) and Lemma 3.1, we obtain the following theorem.

Theorem 3.2. For linear crossed phenylenes Cn, we have

K f (Cn) =
27n3 + 48n2 + 25n + 4

6
.

The Kirchhoff indices of Cn are shown in Table 1, where 1 ≤ n ≤ 15.

Table 1. Kirchhoff indices from C1 to C15.

G K f (G) G K f (G) G K f (G) G K f (G) G K f (G)
C1 17.33 C4 433.33 C7 1965.33 C10 5342.33 C13 11293.33
C2 77.00 C5 784.00 C8 2850.00 C11 7004.00 C14 13975.00
C3 206.67 C6 1285.67 C9 3966.67 C12 8978.67 C15 17050.67

Theorem 3.3. Assume that Cn are the linear crossed phenylenes, then

lim
n→∞

K f (Cn)
W(Cn)

=
1
4
.

Proof. By first classifying and discussing the following cases of vertices, the Wiener index of Cn is
obtained.
• Vertex 3 j − 1( j = 1, 2, · · · , n) of Cn:

w1(i) = 2 + 2
( i−1∑

k=1

k +
3n+1−i∑

k=1

k
)
, i = 3 j − 1.

• Vertex 3 j( j = 1, 2, · · · , n) of Cn:

w2(i) = 1 + 2
( i−1∑

k=1

k +
3n+1−i∑

k=1

k
)
, i = 3 j.

• Vertex 3 j + 1( j = 1, 2, · · · , n − 1) of Cn:

w3(i) = 1 + 2
( i−1∑

k=1

k +
3n+1−i∑

k=1

k
)
, i = 3 j + 1.

• Vertex 1 of Cn:

w4(i) = 1 + 2
( 3n∑

k=1

k
)
.
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In view of (1.3), we have

W(Cn) =
2
∑

i=3 j−1 w1(i) + 2
∑

i=3 j w2(i) + 2
∑

i=3 j+1 w3(i) + 4w4(i)
2

=
2
∑n

j=1[2 + 2(
∑3 j−2

k=1 k +
∑3n−3 j+2

k=1 k)] + 2
∑n

j=1[1 + 2(
∑3 j−1

k=1 k +
∑3n−3 j+1

k=1 k)]

2

+
2
∑n−1

j=1[1 + 2(
∑3 j

k=1 k +
∑3n−3 j

k=1 k)] + 4(1 + 2
∑3n

k=1 k)

2
= 18n3 + 18n2 + 8n + 1.

Combining with K f (Cn) and W(Cn), we have

lim
n→∞

K f (Cn)
W(Cn)

=
1
4
,

as desired.

4. The multiplicative degree-Kirchhoff index, Gutman index, and complexity of Cn in terms of
the normalized Laplacian spectrum

In this section, we mainly calculate the multiplicative degree-Kirchhoff index, Gutman index, and
complexity of Cn.

According to (1.2), we can get LV1V1 and LV1V2:

LV1V1 =



1 −1
√

12
−1
√

12
1 −1

√
20

−1
√

20
1 −1

√
25

−1
√

25
1 −1

√
20

−1
√

20
1 −1

√
20
. . .
−1
√

25
1 −1

√
20

−1
√

20
1 −1

√
20

−1
√

20
1 −1

√
15

−1
√

15
1


(3n+1)×(3n+1)

,
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LV1V2 =



−1
3

−1
√

12
−1
√

12
0 −1

√
20

−1
√

20
−1
5

−1
√

25
−1
√

25
−1
5

−1
√

20
−1
√

20
0 −1

√
20
. . .
−1
√

25
−1
5

−1
√

20
−1
√

20
0 −1

√
20

−1
√

20
−1
5

−1
√

15
−1
√

15
−1
3


(3n+1)×(3n+1)

.

Based on Theorem 2.1, the normalized Laplacian spectrum consists of the eigenvalues of LA, and
LS of Cn can be obtained.

LA =



2
3

−1
√

3
−1
√

3
1 −1

√
5

−1
√

5
4
5

−2
√

25
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

25
. . .
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

15
−2
√

15
2
3


(3n+1)×(3n+1)

,

LS = diag
(4
3
, 1,

6
5
,

6
5
, 1,

6
5
, · · · ,

6
5
, 1,

6
5
,

4
3

)
(3n+1)
.

Assume that 0 = γ1 < γ2 ≤ γ3 ≤ · · · ≤ γ3n+1 are the roots of PLA(x), and 0 < δ1 ≤ δ2 ≤ δ3 ≤ · · · ≤

δ3n+1 are the roots of PLS (x). By (1.6), we have

K f ∗(Cn) = (28n + 2)
( 3n+1∑

i=2

1
γi
+

3n+1∑
i=1

1
δi

)
. (4.1)

It is obvious from the matrix LS that the following expression can be obtained:

3n+1∑
i=1

1
δi
= 1 × n +

5
6
× (2n − 1) +

3
4
× 2 =

8n + 2
3
. (4.2)
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Therefore, we need to calculate the first sum in (4.1).
Let

PLA(x) = det(xI − LA) = x3n+1 + b1x3n + · · · + b3nx.

Based on the Vieta
′

s Theorem of PLA(x), we can get

3n+1∑
i=2

1
γi
=

(−1)3n−1b3n−1

(−1)3nb3n
. (4.3)

Obviously, we obtain that (−1)3nb3n is the sum of all the principal minors of order 3n of LA and
(−1)3n−1b3n−1 is the sum of the principal minors of order 3n − 1 of LA. So, let Tk be the k-th order
principal submatrix, which consists of the first k columns and k rows of LA, and tk = det(Tk), k =
1, 2, · · · , 3n. Thus, we can get t1 =

2
3 , t2 =

1
3 , t3 =

2
15 , and for 1 ≤ i ≤ n − 1,

t3i+1 =
4
5 t3i −

4
25 t3i−1;

t3i+2 = t3i+1 −
1
5 t3i;

t3i+3 =
4
5 t3i+2 −

1
5 t3i+1.

The solution of the previous recurrence relation is
t3i−2 =

25
3 · (

2
25 )i;

t3i−1 =
25
6 · (

2
25 )i;

t3i =
5
3 · (

2
25 )i;

where 1 ≤ i ≤ n.
Now, let S k be the k-th order principal submatrix, which consists of the last k columns and k rows of

LA, and sk = det(S k), k = 1, 2, · · · , 3n. Thus, we can get s1 =
2
3 , s2 =

4
15 , s3 =

2
15 , and for 1 ≤ i ≤ n − 1,

s3i+1 =
4
5 s3i −

1
5 s3i−1;

s3i+2 =
4
5 s3i+1 −

4
25 s3i;

s3i+3 = s3i+2 −
1
5 s3i+1.

The solution of the previous recurrence relation is
s3i−2 =

25
3 · (

2
25 )i;

s3i−1 =
10
3 · (

2
25 )i;

s3i =
5
3 · (

2
25 )i;

where 1 ≤ i ≤ n.
Without loss of generality, let t0 = 1 and s0 = 1.

Fact 1. (−1)3nb3n =
5
9 (14n + 1)( 2

25 )n.
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Proof. By a similar discussion as in Section 3, we obtain that (−1)3nb3n is the sum of all the principal
minors of order 3n of LA,

(−1)3nb3n =

3n+1∑
j=1

t j−1s3n+1− j

= t3n + s3n +

3n∑
j=2

t j−1s3n+1− j

= 2 ·
5
3
·
( 2
25

)n
+

n∑
i=1

25
3
·
( 2
25

)i
·

10
3
·
( 2
25

)n−i+1
+

n∑
i=1

25
6
·
( 2
25

)i
·

25
3
·
( 2
25

)n−i+1

+

n−1∑
i=1

5
3
·
( 2
25

)i
·

5
3
·
( 2
25

)n−i

=
5
9

(14n + 1)
( 2
25

)n
.

The result is as desired.

Fact 2. (−1)3n−1b3n−1 =
98n3+21n2+9n

45 ( 2
25 )n−1.

Proof. Since (−1)3n−1b3n−1 is the sum of all the principal minors of order 3n − 1 of LA, one has

(−1)3n−1b3n−1 =
∑

1≤i< j≤3n+1

detLA[i, j]ti−1s3n+1− j. (4.4)

In view of (4.4), all possible cases are listed.

Case 1. i = 3p, j = 3q, 1 ≤ p < q ≤ n,

detLA[3p, 3q] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

25
. . .
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

25
−2
√

25
4
5

−1
√

5
−1
√

5
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3q−3p−1)×(3q−3p−1)

=
3
5

(q − p)
( 2
25

)q−p−1
.
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Case 2. i = 3p, j = 3q + 1, 1 ≤ p ≤ q ≤ n,

detLA[3p, 3q + 1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

25
. . .
−1
√

5
4
5

−2
√

25
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3q−3p)×(3q−3p)

=
2

25
[3(q − p) + 1]

( 2
25

)q−p−1
.

Case 3. i = 3p, j = 3q + 2, 1 ≤ p ≤ q ≤ n − 1,

detLA[3p, 3q + 2] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

25
. . .
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

25
−2
√

25
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3q−3p+1)×(3q−3p+1)

=
2
5

[3(q − p) + 2]
( 2
25

)q−p
.

Case 4. i = 3p + 1, j = 3q, 0 ≤ p < q ≤ n,

detLA[3p + 1, 3q] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1
√

5
−1
√

5
4
5

−2
√

25
−2
√

25
4
5

−1
√

5
. . .
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

25
−2
√

25
4
5

−1
√

5
−1
√

5
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3q−3p−2)×(3q−3p−2)

=
1
2

[3(q − p) − 1]
( 2
25

)q−p−1
.
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Case 5. i = 3p + 1, j = 3q + 1, 0 ≤ p < q ≤ n,

detLA[3p + 1, 3q + 1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1
√

5
−1
√

5
4
5

−2
√

25
−2
√

25
4
5

−1
√

5
. . .
−1
√

5
4
5

−2
√

25
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3q−3p−1)×(3q−3p−1)

=
3
5

(q − p)
( 2
25

)q−p−1
.

Case 6. i = 3p + 1, j = 3q + 2, 0 ≤ p ≤ q ≤ n − 1,

detLA[3p + 1, 3q + 2] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1
√

5
−1
√

5
4
5

−2
√

25
−2
√

25
4
5

−1
√

5
. . .
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

25
−2
√

25
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3q−3p)×(3q−3p)

= [3(q − p) + 1]
( 2
25

)q−p
.

Case 7. i = 3p + 2, j = 3q, 0 ≤ p < q ≤ n,

detLA[3p + 2, 3q] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5
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√

25
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5
. . .
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

25
−2
√

25
4
5

−1
√

5
−1
√

5
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3q−3p−3)×(3q−3p−3)

= [3(q − p) − 2]
( 2
25

)q−p−1
.
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Case 8. i = 3p + 2, j = 3q + 1, 0 ≤ p < q ≤ n,

detLA[3p + 2, 3q + 1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5

−2
√

25
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5
. . .
−1
√

5
4
5

−2
√

25
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3q−3p−2)×(3q−3p−2)

=
2
5

[3(q − p) − 1]
( 2
25

)q−p−1
.

Case 9. i = 3p + 2, j = 3q + 2, 0 ≤ p < q ≤ n − 1,

detLA[3p + 2, 3q + 2] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
5

−2
√

25
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5
. . .
−2
√

25
4
5

−1
√

5
−1
√

5
1 −1

√
5

−1
√

5
4
5

−2
√

25
−2
√

25
4
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3q−3p−1)×(3q−3p−1)

=
12
25

(q − p)
( 2
25

)q−p−1
.

Therefore, we can get

(−1)3n−1b3n−1 =
∑

1≤i< j≤3n+1

detLA[i, j]ti−1s3n+1− j

= X1 + X2 + X3,

where

X1 =
∑

1≤p<q≤n

detLA[3p, 3q]t3p−1s3n−3q+1 +
∑

1≤p≤q≤n

detLA[3p, 3q + 1]t3p−1s3n−3q

+
∑

1≤p≤q≤n−1

detLA[3p, 3q + 2]t3p−1s3n−3q−1

=
14n3 − 5n2 − 3n

18

( 2
25

)n−1
,

X2 =
∑

0≤p<q≤n

detLA[3p + 1, 3q]t3ps3n−3q+1 +
∑

0≤p<q≤n

detLA[3p + 1, 3q + 1]t3ps3n−3q
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+
∑

0≤p≤q≤n−1

detLA[3p + 1, 3q + 2]t3ps3n−3q−1

=
70n3 + 31n2 + 37n

90

( 2
25

)n−1
,

X3 =
∑

0≤p<q≤n

detLA[3p + 2, 3q]t3p+1s3n−3q+1 +
∑

0≤p<q≤n

detLA[3p + 2, 3q + 1]t3p+1s3n−3q

+
∑

0≤p<q≤n−1

detLA[3p + 2, 3q + 2]t3p+1s3n−3q−1

=
2
45

(14n3 + 9n2 − n)
( 2
25

)n−1
.

Thus, we can obtain

(−1)3n−1b3n−1 = X1 + X2 + X3 =
98n3 + 21n2 + 9n

45

( 2
25

)n−1
,

which is the desired result.
Together with (4.3) and Facts 1 - 2, one can get the following lemma.

Lemma 4.1. Assume that 0 = γ1 < γ2 ≤ γ3 ≤ · · · ≤ γ3n+1 are the eigenvalues of LA, then one gets

3n+1∑
i=2

1
γi
=

98n3 + 21n2 + 9n
28n + 2

.

According to (4.1) - (4.2) and Lemma 4.1, we obtain the following theorem.

Theorem 4.2. For linear crossed phenylenes Cn, we have

K f ∗(Cn) =
294n3 + 287n2 + 99n + 4

3
.

The multiplicative degree-Kirchhoff indices of Cn are shown in Table 2, where 1 ≤ n ≤ 15.

Table 2. Multiplicative degree-Kirchhoff indices from C1 to C15.

G K f ∗(G) G K f ∗(G) G K f ∗(G) G K f ∗(G) G K f ∗(G)
C1 208.00 C4 7688.00 C7 37806.00 C10 106438.00 C13 229460.00
C2 1166.00 C5 14428.00 C8 55620.00 C11 140618.00 C14 285298.00
C3 3463.33 C6 24271.33 C9 78301.33 C12 181429.33 C15 349531.33

Theorem 4.3. Assume that Cn are the linear crossed phenylenes, then

lim
n→∞

K f ∗(Cn)
Gut(Cn)

=
1
4
.
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Proof. By first classifying and discussing the following cases of vertices, the Gutman index of Cn is
obtained.
• Vertex 3i − 1(i = 1, 2, · · · , n) of Cn:

g3i−1 = 2
n∑

i=1

[
4 × 4 × 2 + 2 × 3 × 4 × (3i − 2) + 2 × 3 × 4 × (3n − 3i + 2)

+2
i−1∑
k=1

4 × 4 × 3 × (i − k) + 2
n∑

k=i+1

4 × 4 × 3 × (k − i)

+2
i∑

k=2

4 × 5 × (3i − 3k + 1) + 2
n∑

k=i+1

4 × 5 × (3k − 3i − 1)

+2
i−1∑
k=1

4 × 5 × (3i − k − 1) + 2
n∑

k=i

4 × 5 × (3k − 3i + 1)
]

= 8(28n3 + 3n2 + 5n).

• Vertex 3i(i = 1, 2, · · · , n) of Cn:

g3i = 2
n∑

i=1

[
5 × 5 × 1 + 2 × 3 × 5 × (3i − 1) + 2 × 3 × 5 × (3n − 3i + 1)

+2
i∑

k=1

4 × 5 × (3i − 3k + 1) + 2
n∑

k=i+1

4 × 5 × (3k − 3i − 1)

+2
i∑

k=2

5 × 5 × (3i − 3k + 2) + 2
n∑

k=i+1

5 × 5 × (3k − 3i − 2)

+2
i−1∑
k=1

5 × 5 × 3 × (i − k) + 2
n∑

k=i+1

5 × 5 × 3 × (k − i)
]

= 10(28n3 + 3n2).

• Vertex 3i − 2(i = 2, 3, · · · , n) of Cn:

g3i−2 = 2
n∑

i=2

[
5 × 5 × 1 + 2 × 3 × 5 × (3i − 3) + 2 × 3 × 5 × (3n − 3i + 3)

+2
i−1∑
k=1

4 × 5 × (3i − 3k − 1) + 2
n∑

k=i

4 × 5 × (3k − 3i + 1)

+2
i−1∑
k=2

5 × 5 × 3 × (i − k) + 2
n∑

k=i+1

5 × 5 × 3 × (k − i)

+2
i−1∑
k=1

5 × 5 × (3i − 3k − 2) + 2
n∑

k=i

5 × 5 × (3k − 3i + 2)
]

= 10(28n3 − 39n2 + 16n − 5).
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• Corner vertex of Cn:

go = 2
[
3 × 3 × 1 + 2 × 3 × 3 × 3n + 2(

n∑
i=1

3 × 4(3i − 2)

+

n∑
i=1

3 × 5 × (3i − 1) +
n∑

i=2

3 × 5 × (3i − 3))
]

+2
[
3 × 3 × 1 + 2 × 3 × 3 × 3n + 2(

n∑
i=1

3 × 4 × (3n − 3i + 2)

+

n∑
i=1

3 × 5 × (3n − 3i + 1) +
n∑

i=2

3 × 5 × (3n − 3i + 3))
]

= 504n2 + 36n + 36.

Applying (1.4), we obtain

Gut(Cn) =
go + g3i−1 + g3i−2 + g3i

2
= 392n3 + 84n2 + 118n − 7.

Combining with K f ∗(Cn) and Gut(Cn), one has

lim
n→∞

K f ∗(Cn)
Gut(Cn)

=
1
4
.

This completes the proof.
In the following, we can calculate the complexity of Cn.

Theorem 4.4. For linear crossed phenylenes Cn, we have

τ(Cn) = 27n+2 · 32n−1.

Proof. Based on Theorem 2.2, we can get
∏6n+2

i=1 di
∏3n+1

i=2 γi
∏3n+1

i=1 δi = 2(14n + 1)τ(Cn),
where

6n+2∏
i=1

di = 34 · 42n · 54n−2,

3n+1∏
i=2

γi = (−1)3nb3n =
5
9
· (14n + 1) ·

( 2
25

)n
,

3n+1∏
i=1

δi =
(4
3

)2
·
(6
5

)2n−1
.

Hence,

τ(Cn) = 27n+2 · 32n−1.
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The result is as desired.
The complexity of Cn is shown in Table 3, where 1 ≤ n ≤ 12.

Table 3. The complexity from C1 to C12.

G τ(G) G τ(G)
C1 1536 C7 3590096234354105647104
C2 1769472 C8 4135790861975929705463808
C3 2038431744 C9 4764431072996271020694306816
C4 2348273369088 C10 5488624596091704215839841452032
C5 2705210921189376 C11 6322895534697643256647497352740864
C6 3116402981210161152 C12 7283975655971685031657916950357475328

5. Conclusions

Based on the Laplacian (normalized Laplacian, resp) polynomial of Cn, we determined the
Kirchhoff index, multiplicative degree-Kirchhoff index, and complexity of linear crossed phenylenes
through the decomposition theorem and Vieta

′

s Theorem. In addition, we found that the Kirchhoff
index and multiplicative degree-Kirchhoff index of linear crossed phenylenes were approximately one
quarter of their Wiener index and Gutman index, respectively, which further enriched the results of the
Kirchhoff index, multiplicative degree-Kirchhoff index, and complexity for the linear crossed chains.
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