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1. Introduction

This paper considers a fractional coupled system on an infinite interval involving the Erdélyi-
Kober derivative: 

Dγ,δ1
β u(x) + F(x, u(x), v(x)) = 0, x ∈ (0,+∞),

Dγ,δ2
β v(x) + G(x, u(x), v(x)) = 0, x ∈ (0,+∞),

limx→0 xβ(2+γ)Iδ1+γ,2−δ1u(x) = 0, limx→∞ xβ(1+γ)Iδ1+γ,2−δ1u(x) = 0,
limx→0 xβ(2+γ)Iδ2+γ,2−δ2v(x) = 0, limx→∞ xβ(1+γ)Iδ2+γ,2−δ2v(x) = 0,

(1.1)

where δ1, δ2 ∈ (1, 2], γ ∈ (−2,−1), and β > 0. Dγ,δ1
β , Dγ,δ2

β are Erdélyi-Kober fractional derivatives
(EKFDs for short), and Iδ1+γ,2−δ1 , Iδ2+γ,2−δ2 are the Erdélyi-Kober fractional integrals. F,G are
continuous functions. We discuss the existence of positive solutions for (1.1).

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024247


5089

During the past several decades, fractional equations have been studied widely; see [1–36]
for instance. From the literature, we can see that there are many fractional derivatives used in
differential equations. Among these various definitions, the widely used ones are the Riemann-
Liouville and Caputo fractional derivatives, in many works. To generalize the Riemann-Liouville
fractional derivative, Erdélyi-Kober defined a new fractional derivative, and we call it the Erdélyi-
Kober fractional derivative. Moreover, the Erdélyi-Kober operator is very useful; we can refer
to [6, 9, 14–17] and the references therein. The Erdélyi-Kober operator is a fractional integration
operation which was given by Arthur Erdélyi and Hermann Kober in 1940 [23]. Some of these
definitions and results were given in Samko et al. [3], Kiryakova [19], and McBride [20].

Nowadays, the theory of fractional operators in the Erdélyi-Kober frame has attracted much interest
from researchers. The study of fractional systems is also very important, as these systems appear in
various applications, especially in biological sciences. Recently, some problems of Erdélyi-Kober type
fractional differential equations on infinite intervals received widespread attention from many scholars;
see [8, 21, 22] for example.

Recently, in [8], the authors investigated the following equation:
(Dϑ,σ

θ u)(x) + F(u(x)) = 0, 0 ≤ x < ∞,

limt→0 xθ(2−σ)Iσ+ϑ,2−σu(x) = 0,
limt→+∞ xθ(2−σ)Iσ+ϑ,2−σu(x) = 0,

where σ ∈ (1, 2), ϑ ∈ (1, 2), θ > 0, and F is a given continuous function, Dϑ,σ
θ denotes the EKFD,

and Iσ+ϑ,2−σ denotes the Erdélyi-Kober fractional integral. The authors studied the existence and
nonexistence of positive solutions for this problem by utilizing a fixed point result which uses the
strongly positive-like operators and eigenvalue criteria.

In [9], the authors studied a fractional coupled system:

cD%u(τ) = F(τ, u(τ), z(τ),c Dς1z(τ), Iξz(τ)), τ ∈ [0,T ] := K, 2 < % ≤ 3, 1 < ς1 < 2,
cDςz(τ) = G(τ, u(τ),c D%1u(τ), Iζu(τ), z(τ), τ ∈ [0,T ] := K, 2 < ς ≤ 3, 1 < %1 < 2,
u(0) = φ1(z), u′(0) = ε1z′(k1),

u(T ) =
γρϑ−ρ($+v)

Γ($)

∫ ϑ
0

σρv+ρ−1z(σ)
(ϑρ−σρ)1−$ dσ := γJv,$

ρ v(ϑ),

z(0) = φ2(u), z′(0) = ε2z′(k2),
z(T ) =

δvϕ−v(θ+ω)

Γ(θ)

∫ ϕ
0

σvω+υ−1u(σ)
(ϕv−σv)1−θ dσ := δJω,θv u(ϕ),

where cD%,c Dς1 ,c Dς,c D%1 are the Liouville-Caputo fractional derivatives of order 2 < %, ς ≤ 3, 1 <

ς1, %1 < 2. Iξ, Iζ are the Riemann-Liouville fractional integrals of order 1 < ξ, ζ < 2. Jυ,$ρ , Jω,θv are
the Erdélyi-Kober fractional integrals of order $, θ > 0, with v, ω > 0, ρ, ϑ ∈ (−∞,+∞). F,G :
K × (−∞,+∞)4 → (−∞,+∞) and φ1, φ2 : C(K, (−∞,+∞)) → (−∞,+∞) are continuous functions.
γ, δ, ε1, ε2 are positive real constants. The existence result was given by the Leray-Schauder alternative,
and the uniqueness result was obtained due to Banach’s fixed-point theorem. By the same methods,
Arioua and Titraoui [18] studied system (1.1). Moreover, In [10], Arioua and Titraoui also investigated
a new fractional problem involving the Erdélyi-Kober derivative. Inspired by the above articles, we use
different methods to consider the fractional coupled system involving Erdélyi-Kober derivative (1.1).
We employ the Guo-Krasnosel’skii fixed point theorem to discuss (1.1) in a special Banach space, and
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we also use the monotone iterative technique to study this system. Some existence results of positive
solutions for system (1.1) are obtained, including the existence results of at least two positive solutions.

2. Preliminaries

Definition 2.1. (see [2]) Let α ∈ (−∞,+∞). Cn
α, n ∈ N, denotes a set of all functions f (t), t > 0, with

f (t) = tp f1(t) with p > α and f1 ∈ Cn[0,∞).
Definition 2.2. (see [1, 2]) For a function u ∈ Cα, the σ-order right-hand Erdélyi-Kober fractional
integral is

(Iγ,σβ u)(t) =
βt−β(γ+σ)

Γ(σ)

∫ t

0

sβ(γ+1)−1u(s)
(tβ − sβ)1−σ ds, σ, β > 0, γ ∈ (−∞,+∞),

in which, Γ is the Euler gamma function.
Definition 2.3. (see [2]) Let n−1 < δ ≤ n, n ∈ N, and for u ∈ Cα, the σ-order right-hand Erdélyi-Kober
fractional derivative is

(Dγ,σ
β u)(t) =

n∏
j=1

(γ + j +
t
β

d
dt

)(Iγ+σ,n−σ
β u)(t),

where
n∏

j=1

(γ + j +
t
β

d
dt

)(Iγ+σ,n−σ
β u) = (γ + 1 +

t
β

d
dt

) · · · (γ + n +
t
β

d
dt

)(Iγ+σ,n−σ
β u).

Lemma 2.1. (see [10]) Let 1 < σ ≤ 2, −2 < γ < −1, β > 0, and h ∈ C2
α, with

∫ ∞
0

sβ(γ+m)−1h(τ)dτ < ∞,
m = 1, 2. The fractional problemDγ,σ

β u(x) + h(x) = 0, x > 0,
limx→0 xβ(2+γ)Iσ+γ,2−δu(x) = 0, limx→∞ xβ(1+γ)Iσ+γ,2−σu(x) = 0,

has a unique solution given by u(x) =
∫ ∞

0
Gσ(x, s)sβ(γ+1)−1h(s)ds, where

Gσ(x, s) =

 β

Γ(σ) [x−β(γ+1) − x−β(δ+γ)(xβ − sβ)σ−1], 0 < s ≤ x < ∞,
β

Γ(σ) x−β(γ+1), 0 < x ≤ s < ∞.
(2.1)

Lemma 2.2. (see [10]) For 1 < σ ≤ 2, −2 < γ < −1, and β > 0, the function Gσ, defined in (2.1), has
the following properties:
(i) Gσ(x,s)

1+x−β(1+γ) > 0, for x, s > 0;
(ii) Gσ(x,s)

1+x−β(1+γ) ≤
β

Γ(σ) , for x, s > 0;
(iii) for 0 < τ

λ
≤ x ≤ τ and s > τ

λ2 , where λ > 1, τ > 0, we have

Gσ(x, s)
1 + x−β(1+γ) ≥

β(σ − 1)τ−β(1+γ)

Γ(σ)λ−β(1−γ)(1 + τ−β(1+γ))
=
βp(τ)
Γ(σ)

,

where p(τ) =
(σ−1)τ−β(1+γ)

λβ(1+γ)(1+τ−β(1+γ)) .
Lemma 2.3. (see [18]) Let 0 < σ1, σ2 ≤ 1 and F,G ∈ C2

α with∫ ∞

0
sβ(γ+m)−1F(s, u(s), v(s))ds < ∞,m = 1, 2,
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0
sβ(γ+m)−1G(s, u(s), v(s))ds < ∞,m = 1, 2.

Then, (1.1) has a unique solution given by

u(x) =

∫ ∞

0
Gσ1(x, s)sβ(γ+1)−1F(s, u(s), v(s))ds,

v(x) =

∫ ∞

0
Gσ2(x, s)sβ(γ+1)−1G(s, u(s), v(s))ds,

where

Gσ1(x, s) =

 β

Γ(σ1) [x−β(γ+1) − x−β(σ1+γ)(xβ − sβ)σ1−1], 0 < s ≤ x < ∞,
β

Γ(σ1) x−β(γ+1), 0 < x ≤ s < ∞,
(2.2)

Gσ2(x, s) =

 β

Γ(σ2) [x−β(γ+1) − x−β(σ2+γ)(xβ − sβ)σ2−1], 0 < s ≤ x < ∞,
β

Γ(σ2) x−β(γ+1), 0 < x ≤ s < ∞.
(2.3)

The following result is our main tool.
Lemma 2.4. (Guo-Krasnosel’skii fixed point theorem; see [37]) P is a cone in a Banach space E, and
D1 and D2 are bounded open sets in E with θ ∈ D1,D1 ⊂ D2. A : P ∩ (D2 \ D1) → P is a completely
continuous operator. Consider the following conditions (i), (ii):
(i) ‖Aw‖ ≤ ‖w‖ for w ∈ P ∩ ∂D1, ‖Aw‖ ≥ ‖w‖ for w ∈ P ∩ ∂D2;
(ii) ‖Aw‖ ≥ ‖w‖ for w ∈ P ∩ ∂D1, ‖Aw‖ ≤ ‖w‖ for w ∈ P ∩ ∂D2.

If one of the preceding conditions (i), (ii) holds, then A has at least one fixed point in P∩ (D2 \D1).
Next, we present some hypotheses that will play an important role in the subsequent discussion:
(H1) F,G : (0,+∞) × (−∞,+∞) × (−∞,+∞) → (0,+∞) are continuous and nondecreasing with

respect to the second, third variables on (0,+∞).
(H2) For (x, u, v) ∈ (0,+∞) × (−∞,+∞) × (−∞,+∞),

F1(x, u, v) = xβ(1+γ)−1F(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v),

F2(x, u, v) = xβ(1+γ)−1G(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v),

such that
F1(x, u, v) ≤ ϕ1(x)ω1(| u |) + ψ1(x)ω2(| v |),

F2(x, u, v) ≤ ϕ2(x)ω̃1(| u |) + ψ2(x)ω̃2(| v |),

with ωi, ω̃i ∈ C((0,+∞), (0,+∞)) nondecreasing and ϕi, ψi ∈ L1(0,+∞), i = 1, 2.
(H3) There are positive functions qi, q̃i, i = 1, 2, with

q∗i =

∫ ∞

0
(1 + x−β(1+γ))qi(x)dx < ∞,

q̃∗i =

∫ ∞

0
(1 + x−β(1+γ))̃qi(x)dx < ∞,

such that
xβ(γ+1)−1 | F(x, u, v) − F(x, ũ, ṽ) |≤ q1(x) | u − ũ | +q̃1(x) | v − ṽ |,
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xβ(γ+1)−1 | G(x, u, v) −G(x, ũ, ṽ) |≤ q2(x) | u − ũ | +q̃2(t) | v − ṽ |,

for any u, v, ũ, ṽ ∈ (−∞,+∞) and x ∈ (0,+∞).
(H4) F,G : (0,+∞) × (0,+∞) × (0,+∞)→ (0,+∞) are continuous, such that

xβ(1+γ)−1F(x, u, v) = a1(x)F1(x, u, v),

xβ(1+γ)−1G(x, u, v) = a2(x)G1(x, u, v),

where a1, a2 ∈ L1((0,+∞), (0,+∞)), F1,G1 ∈ C((0,+∞) × (0,+∞) × (0,+∞), (0,+∞)), 0 <∫ τ
τ
λ

a1(x)dx < ∞, 0 <
∫ τ
τ
λ

a2(x)dx < ∞, with τ > 0, λ > 1. Moreover, xβ(1+γ)−1F(x, u, v),

xβ(1+γ)−1G(x, u, v) : [0,+∞) × (0,+∞) × (0,+∞)→ [0,+∞) also are continuous.
Remark 2.1. These conditions ensure the continuity and integrability of nonlinear terms in an infinite
interval, which play a very important role in the proof of completely continuity for the relevant
integral operators.

3. Main results

In this section, we use two Banach spaces defined by

X = {u ∈ C((0,+∞), (−∞,+∞)) | lim
x→0

u(x)
1 + x−β(1+γ) and lim

t→+∞

u(x)
1 + x−β(1+γ) exist},

with the norm
‖u‖X = sup

x>0
|

u(x)
1 + x−β(1+γ) |,

and
Y = {v ∈ C((0,+∞), (−∞,+∞)) | lim

x→0

v(x)
1 + x−β(1+γ) and lim

x→+∞

v(x)
1 + x−β(1+γ) exist},

with the norm
‖v‖Y = sup

x>0
|

v(x)
1 + x−β(1+γ) | .

So, (X × Y, ‖(u, v)‖X×Y) is a Banach space, with the norm ‖(u, v)‖X×Y = ‖u‖X + ‖v‖Y .
Lemma 3.1. If F,G are continuous, then (u, v) ∈ X × Y is a solution of system (1.1)⇔ (u, v) ∈ X × Y
is a solution of the following equations:u(x) =

∫ ∞
0

Gσ1(x, s)sβ(γ+1)−1F(s, u(s), v(s))ds,

v(x) =
∫ ∞

0
Gσ2(x, s)sβ(γ+1)−1G(s, u(s), v(s))ds.

For (u, v) ∈ X × Y , we define an operator A : X × Y → X × Y as follows:

A(u, v)(x) = (A1(u, v)(x), A2(u, v)(x)),

where
A1(u, v)(x) =

∫ ∞

0
Gσ1(x, s)sβ(γ+1)−1F(s, u(s), v(s))ds,

A2(u, v)(x) =

∫ ∞

0
Gσ2(x, s)sβ(γ+1)−1G(s, u(s), v(s))ds,
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with Gσi(x, s), i = 1, 2, given by (2.2) and (2.3).
Remark 3.1. Let σ1, σ2, β, γ, λ, τ ∈ R, such that 1 < σ1, σ2 ≤ 2, β > 0,−2 < γ < −1, λ > 1, τ > 0. If
(H2) and (H4) hold, then for (u, v) ∈ X × Y with u(x), v(x) > 0,∫ ∞

0
sβ(γ+1)−1F(s, u(s), v(s))ds ≤ η

∫ ∞

τ

λ2

sβ(γ+1)−1F(s, u(s), v(s))ds,

∫ ∞

0
sβ(γ+1)−1G(s, u(s), v(s))ds ≤ η

∫ ∞

τ

λ2

sβ(γ+1)−1G(s, u(s), v(s))ds,

where η = max{η1, η2} with η1 = 1 + ι
%1(λ2−1) , η2 = 1 + ι∗

%2(λ2−1) > 1, %1, %2, ι, ι
∗ > 0.

Proof. By (H4), for x ∈ [ τ
λ2 , τ], we know that there exist two constants %1, %2 > 0, such that

xβ(γ+1)−1F(s, u, v) ≥ %1, xβ(γ+1)−1G(s, u, v) ≥ %2, u, v ∈ (0,+∞).

So, for (u, v) ∈ X × Y with u(x), v(x) > 0,∫ ∞

τ

λ2

sβ(γ+1)−1F(s, u(s), v(s))ds ≥
∫ τ

τ

λ2

sβ(γ+1)−1F(s, u(s), v(s))ds ≥
τ(λ2 − 1)

λ2 %1,

∫ ∞

τ

λ2

sβ(γ+1)−1G(s, u(s), v(s))ds ≥
∫ τ

τ

λ2

sβ(γ+1)−1G(s, u(s), v(s))ds ≥
τ(λ2 − 1)

λ2 %2,

and hence,
λ2

τ(λ2 − 1)%1

∫ ∞

τ

λ2

sβ(γ+1)−1F(s, u(s), v(s))ds ≥ 1,

λ2

τ(λ2 − 1)%2

∫ ∞

τ

λ2

sβ(γ+1)−1G(s, u(s), v(s))ds ≥ 1.

By (H4), we know that there exist two constants ι, ι∗ > 0, such that

xβ(γ+1)−1F(x, u(x), v(x)) ≤ ι, xβ(γ+1)−1G(x, u(x), v(x)) ≤ ι∗, f or ∀x ∈ [0,
τ

λ2 ].

Thus, ∫ τ

λ2

0
sβ(γ+1)−1F(s, u(s), v(s))ds ≤

ιτ

λ2 ,∫ τ

λ2

0
sβ(γ+1)−1G(s, u(s), v(s))ds ≤

ι∗τ

λ2 .

Therefore, we can obtain∫ ∞

0
sβ(γ+1)−1F(s, u(s), v(s))ds =

∫ τ

λ2

0
sβ(γ+1)−1F(s, u(s), v(s))ds +

∫ ∞

τ

λ2

sβ(γ+1)−1F(s, u(s), v(s))ds

≤
ιτ

λ2 +

∫ ∞

τ

λ2

sβ(γ+1)−1F(s, u(s), v(s))ds
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≤ (1 +
ι

%1(λ2 − 1)
)
∫ ∞

τ

λ2

sβ(γ+1)−1F(s, u(s), v(s))ds

= η1

∫ ∞

τ

λ2

sβ(γ+1)−1F(s, u(s), v(s))ds.

Similarly, ∫ ∞

0
sβ(γ+1)−1G(s, u(s), v(s))ds ≤ (1 +

ι

%2(λ2 − 1)
)
∫ ∞

τ

λ2

sβ(γ+1)−1G(s, u(s), v(s))ds

= η2

∫ ∞

τ

λ2

sβ(γ+1)−1G(s, u(s), v(s))ds.

Take η = max{η1, η2}, and thus∫ ∞

0
sβ(γ+1)−1F(s, u(s), v(s))ds ≤ η

∫ ∞

τ

λ2

sβ(γ+1)−1F(s, u(s), v(s))ds,

∫ ∞

0
sβ(γ+1)−1G(s, u(s), v(s))ds ≤ η

∫ ∞

τ

λ2

sβ(γ+1)−1G(s, u(s), v(s))ds,

hold. �

4. A positive solution

Define two cones

K1 = {u ∈ X | u(x) > 0, x > 0; min
x∈[ τλ ,τ]

u(x)
1 + x−β(1+γ) ≥

p(τ)
η
‖u‖X},

K2 = {v ∈ Y | v(x) > 0, x > 0; min
x∈[ τλ ,τ]

v(x)
1 + x−β(1+γ) ≥

p(τ)
η
‖v‖Y}.

Obviously, K1 × K2 = {(u, v) ∈ X × Y | u(x) > 0, v(x) > 0,∀x > 0; min
x∈[ τλ ,τ]

u(x)
1+x−β(1+γ) ≥

p(τ)
η
‖u‖X, min

x∈[ τλ ,τ]

v(x)
1+x−β(1+γ) ≥

p(τ)
η
‖v‖Y} is also a cone. For convenience, we first list the

following definitions:

F0 = lim
(u,v)→(0+,0+)

sup
x>0

F1(t, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)
u + v

,

f∞ = lim
(u,v)→(+∞,+∞)

inf
x>0

F1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)
u + v

,

f0 = lim
(u,v)→(0+,0+)

inf
x>0

F1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)
u + v

,

F∞ = lim
(u,v)→(+∞,+∞)

sup
x>0

F1(t, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)
u + v

,
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G∗0 = lim
(u,v)→(0+,0+)

sup
x>0

G1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)
u + v

,

g∗∞ = lim
(u,v)→(+∞,+∞)

inf
x>0

G1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)
u + v

,

g∗0 = lim
(u,v)→(0+,0+)

inf
x>0

G1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)
u + v

,

G∗∞ = lim
(u,v)→(+∞,+∞)

sup
x>0

G1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)
u + v

.

Lemma 4.1. If assumptions (H1) and (H2) hold, then A : K1×K2 → K1×K2 is completely continuous.
Proof. First, we show A : K1 × K2 → K1 × K2. By (H1) and (H2), for (u, v) ∈ K1 × K2,

‖A1(u, v)‖X = sup
t>0

|A1(u, v)(x)|
1 + x−β(1+γ)

= sup
x>0
|

∫ ∞

0

Gσ1(x, s)
1 + x−β(1+γ) sβ(γ+1)−1F(s, u(s), v(s))ds |

≤
β

Γ(σ1)

∫ ∞

0
| sβ(γ+1)−1F(s, u(s), v(s)) | ds

=
β

Γ(σ1)

∫ ∞

0
| sβ(γ+1)−1F(s,

(1 + s−β(1+γ))u(s)
1 + s−β(1+γ) ,

(1 + s−β(1+γ))v(s)
1 + s−β(1+γ) ) | ds

=
β

Γ(σ1)

∫ ∞

0
| F1(s,

u(s)
1 + s−β(1+γ) ,

v(s)
1 + s−β(1+γ) ) |

≤
β

Γ(σ1)
[ω1(‖u‖X)

∫ ∞

0
ϕ1(s)ds + ω2(‖v‖Y)

∫ ∞

0
ψ1(s)ds] < +∞.

Similarly,

‖A2(u, v)‖Y ≤
β

Γ(σ1)
[ω̃1(‖u‖X)

∫ ∞

0
ϕ2(s)ds + ω̃2(‖v‖Y)

∫ ∞

0
ψ2(s)ds] < +∞.

By (H1) and Lemma 2.2, for (u, v) ∈ K1 × K2, we have A1(u, v)(x) > 0, A2(u, v)(x) > 0, x > 0. From
Lemma 2.2 and Remark 3.1, for x ∈ [ τ

λ
, τ], τ > 0, and λ > 1,

|A1(u, v)(x)|
1 + x−β(1+γ) =

∫ ∞

0

Gσ1(x, s)
1 + x−β(1+γ) sβ(γ+1)−1F(s, u(s), v(s))ds

=

∫ τ

λ2

0

Gσ1(x, s)
1 + x−β(1+γ) sβ(γ+1)−1F(s, u(s), v(s))ds

+

∫ 0

τ

λ2

Gσ1(x, s)
1 + x−β(1+γ) sβ(γ+1)−1F(s, u(s), v(s))ds

≥

∫ 0

τ

λ2

Gσ1(t, s)
1 + t−β(1+γ) sβ(γ+1)−1F(s, u(s), v(s))ds

≥
βp(τ)
Γ(σ1)

∫ 0

τ

λ2

sβ(γ+1)−1F(s, u(s), v(s))ds
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≥
βp(τ)
ηΓ(σ1)

∫ ∞

0
sβ(γ+1)−1F(s, u(s), v(s))ds

≥
p(τ)
η
‖A1(u, v)‖X.

So, A1(u,v)(x)
1+x−β(1+γ) ≥

p(τ)
η
‖A1(u, v)‖X. Similarly, A2(u,v)(x)

1+x−β(1+γ) ≥
p(τ)
η
‖A2(u, v)‖Y . Therefore,

min
x∈[ τλ ,τ]

A1(u, v)(x)
1 + x−β(1+γ) ≥

p(τ)
η
‖A1(u, v)‖X,

min
x∈[ τλ ,τ]

A2(u, v)(x)
1 + x−β(1+γ) ≥

p(τ)
η
‖A2(u, v)‖Y .

That is, A : K1 × K2 → K1 × K2 is true.
Second, it will give a simply prove that A is continuous. Let D = {(u, v)|(u, v) ∈ K1×K2, ‖(u, v)‖X×Y ≤

K,K > 0}, a bounded subset in K1 × K2. Let (un, vn) ∈ D be a sequence that converges to (u, v) in
∈ K1 × K2. Then ‖(un, vn)‖X×Y ≤ K. From Lemma 2.2,

‖A1(un, vn) − A1(u, v)‖X = sup
x>0
|

A1(un, vn)(x) − A1(u, v)(x)
1 + x−β(1+γ) |

≤
β

Γ(σ1)
|

∫ ∞

0
sβ(γ+1)−1F(s, un(s), vn(s))ds −

∫ ∞

0
sβ(γ+1)−1F(s, u(s), v(s))ds |

≤
β

Γ(σ1)

∫ ∞

0
| sβ(γ+1)−1(F(s, un(s), vn(s)) − F(s, u(s), v(s))) | ds.

By (H2),

| sβ(γ+1)−1F(s, un(s), vn(s)) | = | sβ(γ+1)−1F(s,
(1 + s−β(1+γ))un(s)

1 + s−β(1+γ) ,
(1 + s−β(1+γ))vn(s)

1 + s−β(1+γ) ) |

= F1(s,
un(s)

1 + s−β(1+γ) ,
vn(s)

1 + s−β(1+γ) )

≤ ϕ1(s)ω1(‖un‖X) + ψ1(s)ω2(‖vn‖Y) ∈ L1(0,∞).

By the continuity of sβ(γ+1)−1F(s, u(s), v(s)) and the Lebesgue dominated convergence theorem,∫ ∞

0
sβ(γ+1)−1F(s, un(s), vn(s))ds→

∫ ∞

0
sβ(γ+1)−1F(s, u(s), v(s))ds, n→ ∞.

Therefore, ‖A1(un, vn) − A1(u, v)‖X → 0, n→ ∞. Similarly, ‖A2(un, vn) − A2(u, v)‖Y → 0, n→ ∞.
So, ‖A(un, vn) − A(u, v)‖X×Y → 0, n → ∞. That is, A is continuous in D. In the end, we know that

A(D) is relatively compact on (0,∞) and is equi-convergent at ∞ by [18]. Therefore, A : K1 × K2 →

K1 × K2 is completely continuous. �
Theorem 4.1. Assume that (H2) and (H4) hold. If F0 = 0,G∗0 = 0, f∞ = ∞, g∗∞ = ∞, then the
system (1.1) has at least one positive solution.
Proof. We divide the proof into several steps.
Step 1. A : K1 × K2 → K1 × K2 is completely continuous. This result easily follows from Lemma 4.1.
Step 2. We show that there exist R1 > 0 and D1 = {(u, v) ∈ X × Y, ‖(u, v)‖X×Y < R1} such that
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‖A(u, v)‖X×Y ≤ ‖(u, v)‖X×Y , (u, v) ∈ (K1 × K2) ∩ ∂D1.

Because F0 = 0,G∗0 = 0, we choose R1 > 0, such that

F1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) ≤ ε1(u + v),

G1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) ≤ ε2(u + v),

for 0 < u + v ≤ R1, x > 0, where ε1, ε2 > 0 satisfy

ε1 ≤
1
2

Γ(σ1)

β
∫ ∞

0
a1(s)ds

, ε2 ≤
1
2

Γ(σ2)

β
∫ ∞

0
a2(s)ds

.

So, for (u, v) ∈ K1 × K2 and ‖(u, v)‖X×Y = R1, by Lemma 2.2,

A1(u, v)(x)
1 + x−β(1+γ) =

∫ ∞

0

Gσ1(x, s)
1 + x−β(1+γ) sβ(γ+1)−1F(s, u(s), v(s))ds

≤
β

Γ(σ1)

∫ ∞

0
sβ(γ+1)−1F(s, u(s), v(s))ds,

A2(u, v)(x)
1 + x−β(1+γ) =

∫ ∞

0

Gσ2(x, s)
1 + x−β(1+γ) sβ(γ+1)−1G(s, u(s), v(s))ds

≤
β

Γ(σ2)

∫ ∞

0
sβ(γ+1)−1G(s, u(s), v(s))ds.

By (H4),

A1(u, v)(x)
1 + x−β(1+γ) ≤

β

Γ(σ1)

∫ ∞

0
a1(s)F1(s, u(s), v(s))ds

=
β

Γ(σ1)

∫ ∞

0
a1(s)F1(s, (1 + s−β(1+γ))

u(s)
1 + s−β(1+γ) , (1 + s−β(1+γ))

v(s)
1 + s−β(1+γ) )ds

≤
β

Γ(σ1)

∫ ∞

0
a1(s)ε1

u(s) + v(s)
1 + s−β(1+γ) ds

≤
β

Γ(σ1)
ε1‖(u, v)‖X×Y

∫ ∞

0
a1(s)ds

≤
1
2
‖(u, v)‖X×Y .

Similarly,

A2(u, v)(x)
1 + x−β(1+γ) ≤

β

Γ(σ2)
ε2‖(u, v)‖X×Y

∫ ∞

0
a2(s)ds

≤
1
2
‖(u, v)‖X×Y .

Therefore,
‖A(u, v)‖X×Y ≤ ‖(u, v)‖X×Y , f or (u, v) ∈ K1 × K2, and ‖(u, v)‖X×Y = R1.
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Let D1 = {(u, v) ∈ X × Y, ‖(u, v)‖X×Y < R1}. Then,

‖A(u, v)‖X×Y ≤ ‖(u, v)‖X×Y , f or (u, v) ∈ (K1 × K2) ∩ ∂D1.

Step 3. We show that there exist R2 > 0 and D2 = {(u, v) ∈ X × Y, ‖(u, v)‖X×Y < R2} such that

‖A(u, v)‖X×Y ≥ ‖(u, v)‖X×Y , f or (u, v) ∈ (K1 × K2) ∩ ∂D2.

Because f∞ = ∞, g∗∞ = ∞, there exists R > 0, such that

F1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) ≥ m1(u + v),

G1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) ≥ m2(u + v),

for u + v ≥ R, x > 0, where m1,m2 > 0 satisfy

m1 ≥
1
2

η1ηΓ(σ1)

βp2(τ)
∫ τ

λ

τ
a1(s)ds

,m2 ≥
1
2

η2ηΓ(σ2)

βp2(τ)
∫ τ

λ

τ
a2(s)ds

, η = max{η1, η2}.

Let R2 ≥ max{R1,
ηR
p(τ) }, and D2 = {(u, v) ∈ X × Y, ‖(u, v)‖X×Y < R2}. Then, D1 ⊂ D2.

Thus, for (u, v) ∈ K1 × K2, ‖(u, v)‖X×Y = R2, we have

u(x)
1 + x−β(1+γ) ≥ min

x∈[ τλ ,τ]

u(x)
1 + x−β(1+γ) ≥

p(τ)
η1
‖u‖X,

v(x)
1 + x−β(1+γ) ≥ min

x∈[ τλ ,τ]

v(x)
1 + x−β(1+γ) ≥

p(τ)
η2
‖v‖Y .

So,

u(x) + v(x)
1 + x−β(1+γ) ≥

p(τ)
η1
‖u‖X +

p(τ)
η2
‖v‖Y ≥

p(τ)
η

(‖u‖X + ‖v‖Y)

=
p(τ)
η
‖(u, v)‖X×Y =

p(τ)
η

R2 ≥ R.

By (H4), for x ∈ [ τ
λ
, τ], we can obtain

A1(u, v)(x)
1 + x−β(1+γ) ≥

βp(τ)
η1Γ(σ1)

∫ ∞

0
sβ(γ+1)−1F(s, u(s), v(s))ds

=
βp(τ)
η1Γ(σ1)

∫ ∞

0
a1(s)F1(s, u(s), v(s))ds

=
βp(τ)
η1Γ(σ1)

∫ ∞

0
a1(s)F1(s, (1 + s−β(1+γ))

u(s)
1 + s−β(1+γ) , (1 + s−β(1+γ))

v(s)
1 + s−β(1+γ) )ds

≥
βp(τ)
η1Γ(σ1)

m1

∫ ∞

0
a1(s)

u(s) + v(s)
1 + s−β(1+γ) ds

≥
βp(τ)
η1Γ(σ1)

m1

∫ ∞

0
a1(s)ds

p(τ)
η1
‖u‖X +

βp(τ)
η1Γ(σ1)

m1

∫ ∞

0
a1(s)ds

p(τ)
η2
‖v‖Y
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≥
βp(τ)
η1Γ(σ1)

m1

∫ τ
λ

τ

a1(s)ds
p(τ)
η1
‖u‖X +

βp(τ)
η1Γ(σ1)

m1

∫ τ
λ

τ

a1(s)ds
p(τ)
η2
‖v‖Y

=
βp2(τ)
η1Γ(σ1)

m1

∫ τ
λ

τ

a1(s)ds(
1
η1
‖u‖X +

1
η2
‖v‖Y)

≥
βp2(τ)
η1Γ(σ1)

m1

∫ τ
λ

τ

a1(s)ds
1
η
‖(u, v)‖X×Y

≥
1
2
‖(u, v)‖X×Y .

Similarly, A2(u,v)(x)
1+x−β(1+γ) ≥

1
2‖(u, v)‖X×Y . Therefore,

‖A(u, v)‖X×Y ≥ ‖(u, v)‖X×Y , f or (u, v) ∈ (K1 × K2) ∩ ∂D2.

Finally, by Lemma 2.4, A has a fixed point in (K1 × K1) ∩ ∂(D2\D1). So, (1.1) has at least one
positive solution. �
Theorem 4.2. Assume that (H2) and (H4) hold. If f0 = ∞, g∗0 = ∞, F∞ = 0,G∗∞ = 0, then (1.1) has at
least one positive solution.
Proof. We divide the proof into several steps.
Step 1. A : K1 × K2 → K1 × K2 is completely continuous. This result easily follows from Lemma 4.1.
Step 2. We show that there exist r1 > 0 and D1 = {(u, v) ∈ X × Y, ‖(u, v)‖X×Y < r1} such that

‖A(u, v)‖X×Y ≥ ‖(u, v)‖X×Y , f or (u, v) ∈ (K1 × K2) ∩ ∂D1.

Because f0 = ∞, g∗0 = ∞, there exists r1 > 0 such that

F1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) ≥ M1(u + v),

G1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) ≥ M2(u + v),

for 0 < u + v ≤ r1, x > 0, where M1,M2 > 0, satisfy

M1 ≥
1
2

η1ηΓ(σ1)

βp2(τ)
∫ τ

λ

τ
a1(s)ds

,M2 ≥
1
2

η2ηΓ(σ2)

βp2(τ)
∫ τ

λ

τ
a2(s)ds

, η = max{η1, η2}.

Let D1 = {(u, v) ∈ X × Y, ‖(u, v)‖X×Y < r1}. So, for (u, v) ∈ K1 × K2 with ‖(u, v)‖X×Y = r1, and x ∈ [ τ
λ
, τ],

then by (H4),

A1(u, v)(x)
1 + x−β(1+γ) ≥

βp(τ)
η1Γ(σ1)

∫ ∞

0
sβ(γ+1)−1F(s, u(s), v(s))ds

=
βp(τ)
η1Γ(σ1)

∫ ∞

0
a1(s)F1(s, u(s), v(s))ds

=
βp(τ)
η1Γ(σ1)

∫ ∞

0
a1(s)F1(s, (1 + s−β(1+γ))

u(s)
1 + s−β(1+γ) , (1 + s−β(1+γ))

v(s)
1 + s−β(1+γ) )ds

≥
βp(τ)
η1Γ(σ1)

M1

∫ ∞

0
a1(s)

u(s) + v(s)
1 + s−β(1+γ) ds
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≥
βp(τ)
η1Γ(σ1)

M1

∫ ∞

0
a1(s)ds

p(τ)
η1
‖u‖X +

βp(τ)
η1Γ(σ1)

M1

∫ ∞

0
a1(s)ds

p(τ)
η2
‖v‖Y

≥
βp(τ)
η1Γ(σ1)

M1

∫ τ
λ

τ

a1(s)ds
p(τ)
η1
‖u‖X +

βp(τ)
η1Γ(σ1)

M1

∫ τ
λ

τ

a1(s)ds
p(τ)
η2
‖v‖Y

=
βp2(τ)
η1Γ(σ1)

M1

∫ τ
λ

τ

a1(s)ds(
1
η1
‖u‖X +

1
η2
‖v‖Y)

≥
βp2(τ)
η1Γ(σ1)

M1

∫ τ
λ

τ

a1(s)ds
1
η
‖(u, v)‖X×Y

≥
1
2
‖(u, v)‖X×Y .

Similarly, A2(u,v)(x)
1+x−β(1+γ) ≥

1
2‖(u, v)‖X×Y . Thus,

‖A(u, v)‖X×Y ≥ ‖(u, v)‖X×Y , f or (u, v) ∈ (K1 × K2) ∩ ∂D1.

Step 3. We show that there exist r2 > 0 and D2 = {(u, v) ∈ X × Y, ‖(u, v)‖X×Y < r2} such that

‖A(u, v)‖X×Y ≤ ‖(u, v)‖X×Y for (u, v) ∈ (K1 × K2) ∩ ∂D2.

Because F∞ = 0,G∗∞ = 0, there exists r > 0, such that

F1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) ≤ ε1(u + v),

G1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) ≤ ε2(u + v),

for u + v > r, x > 0, where ε1, ε2 > 0 satisfy

ε1 ≤
1
2

Γ(σ1)

β
∫ ∞

0
a1(s)ds

, ε2 ≤
1
2

Γ(σ2)

β
∫ ∞

0
a2(s)ds

.

Let D2 = {(u, v) ∈ X × Y, ‖(u, v)‖X×Y < r2}, where r2 > max{r1, r}. Then D1 ⊂ D1. We define two
functions U1,U2 as follows:

U1 : (−∞,+∞)→ (−∞,+∞),U1(a) = sup
0<u+v≤a

sup
x>0

F1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v),

U2 : (−∞,+∞)→ (−∞,+∞),U2(a) = sup
0<u+v≤a

sup
x>0

G1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v).

For (u, v) ∈ K1 × K2 and ‖(u, v)‖X×Y = r2,

U1(r2) = sup
0<u+v≤r2

sup
x>0

F1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)

≤ ε1 sup
0<u+v≤r2

(u + v) = ε1r2 = ε1‖(u, v)‖X×Y ,

U2(r2) = sup
0<u+v≤r2

sup
x>0

G1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)
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≤ ε2 sup
0<u+v≤r2

(u + v) = ε2r2 = ε2‖(u, v)‖X×Y .

By Lemma 2.2 and (H4),

A1(u, v)(x)
1 + x−β(1+γ) ≤

β

Γ(σ1)

∫ ∞

0
sβ(γ+1)−1F(s, u(s), v(s))ds

=
β

Γ(σ1)

∫ ∞

0
a1(s)F1(s, u(s), v(s))ds

=
β

Γ(σ1)

∫ ∞

0
a1(s)F1(s, (1 + s−β(1+γ))

u(s)
1 + s−β(1+γ) , (1 + s−β(1+γ))

v(s)
1 + s−β(1+γ) )ds

≤
β

Γ(σ1)

∫ ∞

0
a1(s) sup

0<u+v≤r2

sup
x>0

F1(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v)ds

=
β

Γ(σ1)

∫ ∞

0
a1(s)U1(r2)ds

≤
β

Γ(σ1)

∫ ∞

0
a1(s)dsε1‖(u, v)‖X×Y

≤
1
2
‖(u, v)‖X×Y .

Similarly, A2(u,v)(x)
1+x−β(1+γ) ≤

1
2‖(u, v)‖X×Y . Therefore, ‖A(u, v)‖X×Y ≤ ‖(u, v)‖X×Y , for (u, v) ∈ (K1 × K2) ∩ ∂D2.

Finally, by Lemma 2.4, A has a fixed point in (K1 × K1) ∩ ∂(D2\D1). So, the system (1.1) has at least
one positive solution. �

5. Multiple positive solutions

In the section, we obtain the multiplicity of positive solution of (1.1) by using the monotone
iterative technique.
Theorem 5.1. If (H1) and (H2) hold, then (1.1) has two positive solutions (u∗, v∗) and (w∗, z∗) satisfying
0 ≤ ‖(u∗, v∗)‖X×Y ≤ Υ and 0 ≤ ‖(w∗, z∗)‖X×Y ≤ Υ, where Υ is a positive preset constant. Moreover,
lim
n→∞

(un, vn) = (u∗, v∗) and lim
n→∞

(wn, zn) = (w∗, z∗), where (un, vn) and (wn, zn) are given by

(un(x), vn(x)) = (A1(un−1, vn−1)(x), A2(un−1, vn−1)(x)), n = 1, 2, . . . , (5.1)

with
(u0(x), v0(x)) = (Υ1[1 + x−β(γ+1)],Υ2[1 + x−β(γ+1)]),Υ1,Υ2 > 0,Υ1 + Υ2 ≤ Υ,

and
(wn(x), zn(x)) = (A1(wn−1, zn−1)(x), A2(wn−1, zn−1)(x)), n = 1, 2, . . . , (5.2)

with (w0(x), z0(x)) = (0, 0). In addition,

(w0(x), z0(x)) ≤ (w1(x), z1(x)) ≤ · · · ≤ (wn(x), zn(x)) ≤ · · · ≤ (w∗, z∗) ≤ (u∗, v∗)
≤ · · · ≤ (un(x), vn(x)) ≤ · · · ≤ (u1(x), v1(x)) ≤ (u0(x), v0(x)).

(5.3)

Proof. First, from Lemma 4.1, A(K1 × K2) ⊂ K1 × K2 for (u, v) ∈ K1 × K2. Let

Υ1 =
β

Γ(σ1)
[ω1(Υ)

∫ ∞

0
ϕ1(s)ds + ω2(Υ)

∫ ∞

0
ψ1(s)ds] < ∞,
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Υ2 =
β

Γ(σ2)
[ω̃1(Υ)

∫ ∞

0
ϕ2(s)ds + ω̃2(Υ)

∫ ∞

0
ψ2(s)ds] < ∞,

and Υ ≥ Υ1 + Υ2 with DΥ = {(u, v) ∈ K1 × K2 : ‖(u, v)‖X×Y ≤ Υ}. For any (u, v) ∈ DΥ, from (H2) and
Lemma 2.2,

‖A1(u, v)‖X = sup
x>0

|A1(u, v)(x)|
1 + x−β(1+γ)

= sup
x>0
|

∫ ∞

0

Gσ1(x, s)
1 + t−β(1+γ) sβ(γ+1)−1F(s, u(s), v(s))ds |

≤
β

Γ(σ1)

∫ ∞

0
| sβ(γ+1)−1F(s, u(s), v(s))ds |

≤
β

Γ(σ1)
[ω1(

| u(s) |
1 + s−β(1+γ) )

∫ ∞

0
ϕ1(s)ds + ω2(

| v(s) |
1 + s−β(1+γ) )

∫ ∞

0
ψ1(s)ds]

≤
β

Γ(σ1)
[ω1(‖u‖X)

∫ ∞

0
ϕ1(s)ds + ω2(‖v‖Y)

∫ ∞

0
ψ1(s)ds]

≤
β

Γ(σ1)
[ω1(Υ)

∫ ∞

0
ϕ1(s)ds + ω2(Υ)

∫ ∞

0
ψ1(s)ds] = Υ1.

Similarly, ‖A2(u, v)‖Y ≤ Υ2 for (u, v) ∈ DΥ. Thus,

‖A(u, v)‖X×Y = ‖A1(u, v)‖X + ‖A2(u, v)‖Y ≤ Υ1 + Υ2 ≤ Υ.

That is, A(DΥ) ⊂ DΥ. We construct two sequences as follows:

(un, vn) = A(un−1, vn−1), (wn, zn) = A(wn−1, zn−1), n = 1, 2, 3, . . . .

Obviously, (u0(x), v0(x)), (w0(x), z0(x)) ∈ DΥ. Because A(DΥ) ⊂ DΥ, (un, vn), (wn, zn) ∈ DΥ, n =

1, 2, . . .. We need to show that there exist (u∗, v∗) and (w∗, z∗) satisfying lim
n→∞

(un, vn) = (u∗, v∗) and
lim
n→∞

(wn, zn) = (w∗, z∗) which are two monotone sequences for approximating positive solutions of the
system (1.1).

For x ∈ (0,+∞), (un, vn) ∈ DΥ, from Lemma 2.2 and (5.1),

u1(x) = A1(u0, v0)(x) =

∫ ∞

0
Gσ1(x, s)sβ(γ+1)−1F(s, u0(s), v0(s))ds

≤
β

Γ(σ1)

∫ ∞

0
(1 + t−β(1+γ))sβ(γ+1)−1F(s, u0(s), v0(s))ds

≤
β

Γ(σ1)
(1 + x−β(1+γ))[ω1(

| u0(s) |
1 + s−β(1+γ) )

∫ ∞

0
ϕ1(s)ds + ω2(

| v0(s) |
1 + s−β(1+γ) )

∫ ∞

0
ψ1(s)ds]

≤
β

Γ(σ1)
(1 + x−β(1+γ))[ω1(‖u0‖X)

∫ ∞

0
ϕ1(s)ds + ω2(‖v0‖Y)

∫ ∞

0
ψ1(s)ds]

≤
β

Γ(σ1)
(1 + x−β(1+γ))[ω1(Υ)

∫ ∞

0
ϕ1(s)ds + ω2(Υ)

∫ ∞

0
ψ1(s)ds]

= (1 + x−β(1+γ))Υ1 = u0(x)
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and

v1(x) = A2(u0, v0)(x) =

∫ ∞

0
Gσ2(x, s)sβ(γ+1)−1G(s, u0(s), v0(s))ds

≤
β

Γ(σ2)

∫ ∞

0
(1 + x−β(1+γ))sβ(γ+1)−1G(s, u0(s), v0(s))ds

≤
β

Γ(σ2)
(1 + t−β(1+γ))[ω̃1(

| u0(s) |
1 + s−β(1+γ) )

∫ ∞

0
ϕ2(s)ds + ω̃2(

| v0(s) |
1 + s−β(1+γ) )

∫ ∞

0
ψ2(s)ds]

≤
β

Γ(σ2)
(1 + t−β(1+γ))[ω̃1(‖u0‖X)

∫ ∞

0
ϕ2(s)ds + ω̃2(‖v0‖Y)

∫ ∞

0
ψ2(s)ds]

≤
β

Γ(σ2)
(1 + x−β(1+γ))[ω̃1(Υ)

∫ ∞

0
ϕ2(s)ds + ω̃2(Υ)

∫ ∞

0
ψ2(s)ds]

= (1 + x−β(1+γ))Υ2 = v0(x),

that is,

(u1(x), v1(x)) = (A1(u0, v0)(x), A2(u0, v0)(x)) ≤ ((1 + x−β(1+γ))Υ1, (1 + x−β(1+γ))Υ2) = (u0(x), v0(x)).

So, by the condition (H1),

(u2(x), v2(x)) = (A1(u1, v1)(x), A2(u1, v1)(x)) ≤ (A1(u0, v0)(x), A2(u0, v0)(x)) = (u1(x), v1(x)).

For x ∈ (0,+∞), the sequences {(un, vn)}∞n=0 satisfy (un+1(x), vn+1(x)) ≤ (un(x), vn(x)). By the iterative
sequences (un+1, vn+1) = A(un, vn) and the complete continuity of the operator A, (un, vn)→ (u∗, v∗), and
A(u∗, v∗) = (u∗, v∗).

Similarly, for the sequences {(wn, zn)}∞n=0, we have

(w1(x), z1(x)) = (A1(w0, z0)(x), A2(w0, z0)(x))

= (
∫ ∞

0
Gσ1(x, s)sβ(γ+1)−1F(s,w0(s), z0(s))ds,

∫ ∞

0
Gσ2(x, s)sβ(γ+1)−1G(s,w0(s), z0(s))ds)

≥ (0, 0) = (w0(x), z0(x)).

Then, by the condition (H1),

(w2(x), z2(x)) = (A1(w1, z1)(x), A2(w1, z1)(x)) ≥ (A1(w0, z0)(x), A2(w0, z0)(x)) = (w1(x), z1(x)).

Analogously, for x ∈ (0,+∞), we have (wn+1(x), zn+1(x)) ≥ (wn(x), zn(x)). By the iterative sequences
(wn+1, zn+1) = A(wn, zn) and the complete continuity of the operator A, (wn, zn) → (w∗, z∗), and
A(w∗, z∗) = (w∗, z∗).

Finally, we prove that (u∗, v∗) and (w∗, z∗) are the minimal and maximal positive solutions of (1.1).
Assume that (ς(x), µ(x)) is any positive solution of (1.1). Then, A(ς(x), µ(x)) = (ς(x), µ(x)), and

(w0(x), z0(x)) = (0, 0) ≤ (ς(x), µ(x)) ≤ ((1 + x−β(1+γ))Υ1, (1 + x−β(1+γ))Υ2) = (u0(x), v0(x)).

Therefore,

(w1(x), z1(x)) = (A1(w0, z0)(x), A2(w0, z0)(x)) ≤ (ς(x), µ(x)) ≤ (A1(u0, v0)(x), A2(u0, v0)(x)) = (u1(x), v1(x)).

That is, (w1(x), z1(x)) ≤ (ς(x), µ(x)) ≤ (un(x), vn(x)). So, (5.3) holds. By (H1), (0, 0) is not a solution
of (1.1). From (5.1), (w∗, z∗) and (u∗, v∗) are two extreme positive solutions of (1.1), which can be
constructed via limitS of two monotone iterative sequences in (5.1) and (5.2). �
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6. Examples

Example 6.1. We consider the following system:

D−
3
2 ,

5
3

1 u(x) + x
3
2 ( u

1+x
1
2
)2e−x + x

3
2 ( v

1+x
1
2
)2e−x = 0, t ∈ (0,+∞),

D−
3
2 ,

3
2

1 v(x) + x
5
2 e−2x2

( u

1+x
1
2
)2 ln(1 + ( u

1+x
1
2
)2) + x

5
2 e−2x2

( u

1+x
1
2
)2 ln(1 + ( u

1+x
1
2
)2), x ∈ (0,+∞),

limx→0 x
1
2 I

1
6 ,

1
3 u(x) = 0, limx→∞ x−

1
2 I

1
6 ,

1
3 u(x) = 0,

limx→0 x
1
2 I0, 1

2 v(x) = 0, limx→∞ x−
1
2 I0, 1

2 v(x) = 0,

(6.1)

where σ1 = 5
3 , σ2 = 3

2 , γ = −3
2 , β = 1,

F(x, u, v) = x
3
2 e−x[(

u

1 + x
1
2

)2 + (
v

1 + x
1
2

)2],

G(x, u, v) = x
5
2 e−2x2

[(
u

1 + x
1
2

)2 ln(1 + (
u

1 + x
1
2

)2) + (
u

1 + x
1
2

)2 ln(1 + (
u

1 + x
1
2

)2)].

First, for F1(x, u, v) = xβ(1+γ)−1F(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) = e−x(u2, v2), we choose ω1(u) = u2 ∈

C((0,+∞), (0,+∞)), ω2(v) = v2 ∈ C((0,+∞), (0,+∞)), and ϕ1(x) = ψ1(x) = e−x ∈ L1(0,+∞). Then,

| F1(x, u, v) |≤ ϕ1(x)ω1(| u |) + ψ1(t)ω2(| v |), (0,+∞) × (−∞,+∞) × (−∞,+∞).

Similarly, for F2(x, u, v) = xβ(1+γ)−1G(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) = xe−2x2
[u2 ln(u2 + 1) + v2 ln(v2 +

1)], we choose ω̃1(u) = u2 ln(u2 +1) ∈ C((0,+∞), (0,+∞)), ω̃2(v) = v2 ln(v2 +1) ∈ C((0,+∞), (0,+∞)),
and ϕ2(x) = ψ2(x) = xe−2x2

∈ L1(0,+∞). Then,

| F2(x, u, v) |≤ ϕ2(x)ω̃1(| u |) + ψ2(x)ω̃2(| v |), (0,+∞) × (−∞,+∞) × (−∞,+∞).

So, the condition (H2) holds. Obviously, F,G : (0,+∞)× (0,+∞)× (0,+∞)→ (0,+∞) are continuous.

x−
3
2 F(x, u, v) = e−x[(

u

1 + x
1
2

)2 + (
v

1 + x
1
2

)2] = a1(x)F1(x, u, v),

x−
3
2 G(x, u, v) = xe−2x2

[(
u

1 + x
1
2

)2 ln(1 + (
u

1 + x
1
2

)2) + (
u

1 + x
1
2

)2 ln(1 + (
u

1 + x
1
2

)2)] = a2(x)G1(x, u, v),

where a1(x) = e−x, a2(x) = xe−2x2
, F1(x, u, v) = ( u

1+x
1
2
)2 + ( v

1+x
1
2
)2, G1(t, u, v) = ( u

1+x
1
2
)2 ln(1 + ( u

1+x
1
2
)2) +

( u

1+x
1
2
)2 ln(1 + ( u

1+x
1
2
)2). So, x−

3
2 f (x, u, v), x−

3
2 G(x, u, v) : [0,+∞) × (0,+∞) × (0,+∞) → [0,+∞) are

continuous. Hence, the condition (H4) holds. Finally,

F0 = lim
(u,v)→(0+,0+)

u2 + v2

u + v
= 0,G∗0 = lim

(u,v)→(0+,0+)

u2 ln(u2 + 1) + v2 ln(v2 + 1)
u + v

= 0,

f∞ = lim
(u,v)→(+∞,+∞)

u2 + v2

u + v
= ∞, g∗∞ = lim

(u,v)→(+∞,+∞)

u2 ln(u2 + 1) + v2 ln(v2 + 1)
u + v

= ∞.

Therefore, from Theorem 4.1, (6.1) has at least one positive solution (u(x), v(x)). Further,u(x) = 3
2Γ( 2

3 )
[x

1
2

∫ ∞
0

s−
3
2 F(s, u(s), v(s))ds − x−

8
3

∫ ∞
x

(x − s)
2
3 s−

3
2 F(s, u(s), v(s))ds],

v(x) = 2
√
π
[x

1
2

∫ ∞
0

s−
3
2 G(s, u(s), v(s))ds −

∫ ∞
x

(x − s)
1
2 s−

3
2 G(s, u(s), v(s))ds].
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Example 6.2. We consider the following system:

D−
3
2 ,

3
2

1 u(x) + x
5
2 e−2x2+1[arctan( u

1+x
1
2
)2 + 1

π
] + x

5
2 e−2x2+1[arctan( u

1+x
1
2
)2 + π] = 0, x ∈ (0,+∞),

D−
3
2 ,

7
6

1 v(x) + x
3
2 e−x[arctan(ln(( u

1+x
1
2
)2 + 1)) + 3

2π] + x
3
2 e−x[arctan(ln(( v

1+x
1
2
)2 + 1)) + 1], x ∈ (0,+∞),

limx→0 x
1
2 I0 1

2 u(x) = 0, limx→∞ x−
1
2 I0, 1

2 u(x) = 0,
limx→0 x

1
2 I−

1
3 ,

5
6 v(x) = 0, limx→∞ x−

1
2 I−

1
3 ,

5
6 v(x) = 0,

(6.2)
where σ1 = 3

2 , σ2 = 7
6 , γ = −3

2 , β = 1,

F(x, u, v) = x
5
2 e−2x2+1[arctan(

u

1 + x
1
2

)2 +
1
π

] + x
5
2 e−2x2+1[arctan(

u

1 + x
1
2

)2 +
1
π

],

G(x, u, v) = x
3
2 e−x[arctan(ln((

u

1 + x
1
2

)2 + 1)) +
3
2
π] + x

3
2 e−x[arctan(ln((

v

1 + x
1
2

)2 + 1)) + 1].

First, for

F1(x, u, v) = xβ(1+γ)−1F(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) = xe−2x2+1[arctan u2 +
1
π

+ arctan v2 + π],

we choose ω1(u) = arctan u2 + 1
π
∈ C((0,+∞), (0,+∞)), ω2(v) = arctan v2 + π ∈ C((0,+∞), (0,+∞)),

and ϕ1(x) = ψ1(x) = xe−2x2+1 ∈ L1(0,+∞). Then,

| F1(x, u, v) |≤ ϕ1(x)ω1(| u |) + ψ1(x)ω2(| v |), (0,+∞) × (−∞,+∞) × (−∞,+∞).

Similarly, for

F2(x, u, v) = xβ(1+γ)−1g(x, (1+x−β(1+γ))u, (1+x−β(1+γ))v) = e−x[arctan(ln(u2+1))+
3
2
π+arctan(ln(v2+1))+1],

we choose ω̃1(u) = arctan(ln(u2 + 1)) + 3
2π ∈ C((0,+∞), (0,+∞)), ω̃2(v) = arctan(ln(v2 + 1)) + 1 ∈

C((0,+∞), (0,+∞)), and ϕ2(x) = ψ2(x) = e−x ∈ L1(0,+∞). Then,

| F2(x, u, v) |≤ ϕ2(x)ω̃1(| u |) + ψ2(x)ω̃2(| v |), (0,+∞) × (−∞,+∞) × (−∞,+∞).

That is, (H2) holds. Second, F,G : (0,+∞) × (0,+∞) × (0,+∞)→ (0,+∞) are continuous. And

x−
3
2 F(x, u, v) = xe−2x2+1[arctan(

u

1 + x
1
2

)2 +
1
π

+ arctan(
v

1 + x
1
2

)2 + π] = a1(x)F1(x, u, v),

x−
3
2 G(x, u, v) = e−x[arctan(ln((

u

1 + x
1
2

)2 + 1)) +
3
2
π + arctan(ln((

v

1 + x
1
2

)2 + 1)) + 1] = a2(x)G1(x, u, v),

where a1(x) = xe−2x2+1, a2(x) = e−x, F1(x, u, v) = arctan( u

1+x
1
2
)2 + 1

π
+ arctan( v

1+x
1
2
)2 + π, G1(x, u, v) =

arctan(ln(( u

1+x
1
2
)2 + 1)) + 3

2π + arctan(ln(( v

1+x
1
2
)2 + 1)) + 1. So, x−

3
2 F(x, u, v), x−

3
2 G(x, u, v) : [0,+∞) ×

(0,+∞) × (0,+∞)→ [0,+∞) are continuous. That is, (H4) holds. In addition,

f0 = lim
(u,v)→(0+,0+)

arctan u2 + 1
π

+ arctan v2 + π

u + v
= ∞,
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g∗0 = lim
(u,v)→(0+,0+)

arctan(ln(u2 + 1)) + 3
2π + arctan(ln(v2 + 1)) + 1
u + v

= ∞,

F∞ = lim
(u,v)→(+∞,+∞)

arctan u2 + 1
π

+ arctan v2 + π

u + v
= 0,

G∗∞ = lim
(u,v)→(+∞,+∞)

arctan(ln(u2 + 1)) + 3
2π + arctan(ln(v2 + 1)) + 1
u + v

= 0.

Therefore, from Theorem 4.2, (6.2) has at least one positive solution (u(x), v(x)). Further,u(x) = 2
√
π
[x

1
2

∫ ∞
0

s−
3
2 F(s, u(s), v(s))ds −

∫ ∞
x

(x − s)
1
2 s−

3
2 F(s, u(s), v(s))ds],

v(x) = 6
Γ( 1

6 )
[x

1
2

∫ ∞
0

s−
3
2 G(s, u(s), v(s))ds − x

1
3

∫ ∞
x

(x − s)
1
6 s−

3
2 G(s, u(s), v(s))ds].

Example 6.3. We consider the following system:

D−
3
2 ,

5
3

1 u(x) + x
3
2 e−x

3 |
u

1+x
1
2
| +x

5
2 ln(| v

1+x
1
2
| +1) e−2x2+1

10 = 0, x ∈ (0,+∞),

D−
3
2 ,

3
2

1 v(x) + x
5
2 e−2x2+1 arctan(| u

1+x
1
2
| + 1

√
π
) + x

5
2 e−2x2+1

5 | v

1+x
1
2
|= 0, x ∈ (0,+∞),

limx→0 x
1
2 I

1
6 ,

1
3 u(x) = 0, limx→∞ x−

1
2 I

1
6 ,

1
3 u(x) = 0,

limx→0 x
1
2 I0, 1

2 v(x) = 0, limx→∞ x−
1
2 I0, 1

2 v(x) = 0,

(6.3)

where σ1 = 5
3 , σ2 = 3

2 , γ = −3
2 , β = 1,

F(x, u, v) = x
3
2
e−x

3
|

u

1 + x
1
2

| +x
5
2 ln(|

v

1 + x
1
2

| +1)
e−2x2+1

10
,

G(x, u, v) = x
5
2 e−2x2+1 arctan(|

u

1 + x
1
2

| +
1
√
π

) + x
5
2
e−2x2+1

5
|

v

1 + x
1
2

| .

Obviously, F,G : (0,+∞) × (−∞,+∞) × (−∞,+∞)→ (0,+∞) are continuous and nondecreasing with
respect to the second and the third variables on (0,+∞). That is, (H1) holds. Next,

F1(x, u, v) = xβ(1+γ)−1F(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) =
e−x

3
| u | +x

e−2x2+1

10
ln(| v | +1).

We choose ω1(u) =| u |∈ C((0,+∞), (0,+∞)), ω2(v) = ln(| v | +1) ∈ C((0,+∞), (0,+∞)), and ϕ1(x) =
e−x

3 , ψ1(x) = xe−2x2+1

10 ∈ L1(0,+∞). Then,

| F1(x, u, v) |≤ ϕ1(x)ω1(| u |) + ψ1(x)ω2(| v |), (0,+∞) × (−∞,+∞) × (−∞,+∞).

Similarly, for

F2(x, u, v) = xβ(1+γ)−1G(x, (1 + x−β(1+γ))u, (1 + x−β(1+γ))v) = xe−2x2+1 arctan(| u | +
1
√
π

) + x
e−2x2+1

5
| v |,

we choose ω̃1(u) = arctan(| u | + 1
√
π
) ∈ C((0,+∞), (0,+∞)), ω̃2(v) =| v |∈ C((0,+∞), (0,+∞)), and

ϕ2(x) = xe−2x2+1, ψ2(x) = x e−2x2+1

5 ∈ L1(0,+∞). Then,

| F2(x, u, v) |≤ ϕ2(x)ω̃1(| u |) + ψ2(x)ω̃2(| v |), (0,+∞) × (−∞,+∞) × (−∞,+∞).
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That is, (H2) holds. Therefore, from Theorem 5.1, (6.3) has two positive solutions (u∗, v∗) and (w∗, z∗)
with (0, 0) ≤ (u∗(x), v∗(x)), (w∗(x), z∗(x)) ≤ ((1 + x

1
2 )Υ1, (1 + x

1
2 )Υ2), where Υ1 +Υ2 ≤ Υ, and Υ satisfies

95.58
191.86

Υ − 0.69 arctan(Υ + 0.56) ≥
1

36
.

7. Conclusions

This paper studies the Erdélyi-Kober fractional coupled system (1.1), where the variable is in an
infinite interval. We give some proper conditions and set a special Banach space. We obtain the
existence of at least one positive solution for (1.1) by using the Guo-Krasnosel’skii fixed point theorem,
and we get the existence of at least two positive solutions for (1.1) by using the monotone iterative
technique. Our methods and results are different from ones in [18]. Moreover, we give three examples
to show the plausibility of our main results. For future work, we intend to use other fixed point theorems
to solve some Erdélyi-Kober fractional differential equations.
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23. A. Erdélyi, H. Kober, Some remarks on Hankel transforms, Quart. J. Math., 11 (1940), 212–221.
https://doi.org/10.1093/qmath/os-11.1.212

24. B. Ahmad, S. Ntouyas, On Hadamard fractional integro-differential boundary value problems, J.
Appl. Math. Comput., 47 (2015), 119–131. https://doi.org/10.1007/s12190-014-0765-6

25. G. Wang, K. Pei, R. Agarwal, L. Zhang, B. Ahmad, Nonlocal Hadamard fractional boundary value
problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl.
Math., 343 (2018), 230–239. https://doi.org/10.1016/j.cam.2018.04.062

26. W. Zhang, W. Liu, Existence, uniqueness, and multiplicity results on positive solutions for a class
of Hadamard-type fractional boundary value problem on an infinite interval, Math. Meth. Appl.
Sci., 43 (2020), 2251–2275. https://doi.org/10.1002/mma.6038

27. J. Wang, M. Feckan, A survey on impulsive fractional differential equations, Fract. Calc. Appl.
Anal., 19 (2016), 806–831. https://doi.org/10.1515/fca-2016-0044

28. J. Wang, M. Feckan, Y. Zhou, Fractional order differential dwitched systems with
coupled nonlocal initial and impulsive conditions, B. Sci. Math., 141 (2017), 727–746.
https://doi.org/10.1016/j.bulsci.2017.07.007

29. J. Xu, L. Liu, S. Bai, Y. Wu, Solvability for a system of Hadamard fractional multi-point boundary
value problems, Nonlinear Anal. Model. Contr., 26 (2021), 502–521.

30. H. Wang, L. Zhang, Uniqueness methods for the higher-order coupled fractional differential
systems with multi-point boundary conditions, B. Sci. Math., 166 (2021), 102935.
https://doi.org/10.1016/j.bulsci.2020.102935

31. W. Wang, Unique positive solutions for boundary value problem of p-Laplacian fractional
differential equation with a sign-changed nonlinearity, Nonlinear Anal. Model. Contr., 27 (2022),
1110–1128.

32. W. Wang, X. Liu, Properties and unique positive solution for fractional boundary value
problem with two parameters on the half-line, J. Appl. Anal. Comput., 11 (2021), 2491–2507.
https://doi.org/10.11948/20200463

33. R. Liu, C. Zhai, J. Ren, A new method for a semi-positone Hadamard fractional boundary value
problem, Chaos Soliton. Fract., 12 (2024), 100102. https://doi.org/10.1016/j.csfx.2023.100102

34. J. Ren, L. Bai, C. Zhai, A decreasing operator method for a fractional differential equation initial
value problem on infinite interval, J. Nonlinear Funct. Anal., 2023 (2023), 35.

35. R. Fan, N. Yan, C. Yang, C. Zhai, Qualitative behaviour of a Caputo fractional differential system,
Qual. Theor. Dyn. Syst., 22 (2023), 143. https://doi.org/10.1007/s12346-023-00836-6

36. C. Zhai, W. Wang, Solutions for a system of Hadamard fractional differential
equations with integral conditions, Numer. Funct. Anal. Optim., 41 (2020), 209–229.
https://doi.org/10.1080/01630563.2019.1620771

37. D. Guo, Nonlinear functional analysis, Jinan: Shandong Sci. Tech. Press, 2001.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 2, 5088–5109.

http://dx.doi.org/https://doi.org/10.1093/qmath/os-11.1.212
http://dx.doi.org/https://doi.org/10.1007/s12190-014-0765-6
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.04.062
http://dx.doi.org/https://doi.org/10.1002/mma.6038
http://dx.doi.org/https://doi.org/10.1515/fca-2016-0044
http://dx.doi.org/https://doi.org/10.1016/j.bulsci.2017.07.007
http://dx.doi.org/https://doi.org/10.1016/j.bulsci.2020.102935
http://dx.doi.org/https://doi.org/10.11948/20200463
http://dx.doi.org/https://doi.org/10.1016/j.csfx.2023.100102
http://dx.doi.org/https://doi.org/10.1007/s12346-023-00836-6
http://dx.doi.org/https://doi.org/10.1080/01630563.2019.1620771
http://dx.doi.org/ 
http://creativecommons.org/licenses/by/4.0

	Introduction 
	Preliminaries
	Main results
	A positive solution
	Multiple positive solutions
	Examples
	Conclusions

