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1. Introduction

This paper considers a fractional coupled system on an infinite interval involving the Erdélyi-
Kober derivative:

D" u(x) + F(x, u(x), v(x)) = 0, x € (0, +0),
D v(x) + Gx, u(x), (x)) = 0, x € (0, +00),
lim,q #7200 (x) = 0, Tim, o P20 (2) = 0,

lim,_,q 2@ 02472702y (x) = 0, lim, e X2 [0247:2702y(x) = 0,

(1.1)

where 01,0, € (1,2], y € (=2,-1), and g > 0. D;’(s‘, D,Z"S2 are Erdélyi-Kober fractional derivatives
(EKFDs for short), and [°1+7-2791 [2%7:27%2 are the Erdélyi-Kober fractional integrals. F,G are
continuous functions. We discuss the existence of positive solutions for (1.1).
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During the past several decades, fractional equations have been studied widely; see [1-36]
for instance. From the literature, we can see that there are many fractional derivatives used in
differential equations. Among these various definitions, the widely used ones are the Riemann-
Liouville and Caputo fractional derivatives, in many works. To generalize the Riemann-Liouville
fractional derivative, Erdélyi-Kober defined a new fractional derivative, and we call it the Erdélyi-
Kober fractional derivative. Moreover, the Erdélyi-Kober operator is very useful, we can refer
to [6,9, 14-17] and the references therein. The Erdélyi-Kober operator is a fractional integration
operation which was given by Arthur Erdélyi and Hermann Kober in 1940 [23]. Some of these
definitions and results were given in Samko et al. [3], Kiryakova [19], and McBride [20].

Nowadays, the theory of fractional operators in the Erdélyi-Kober frame has attracted much interest
from researchers. The study of fractional systems is also very important, as these systems appear in
various applications, especially in biological sciences. Recently, some problems of Erdélyi-Kober type
fractional differential equations on infinite intervals received widespread attention from many scholars;
see [8,21,22] for example.

Recently, in [8], the authors investigated the following equation:

(D) u)(x) + F(u(x)) = 0,0 < x < oo,
hmt—)O xH(Z—O')IO'H?,Z—(Tu(x) — 0,

1im[—>+oo x9(2—0')10'+19,2—0'u(x) — 0,

where o € (1,2), ¢ € (1,2), 8 > 0, and F is a given continuous function, DZ’” denotes the EKFD,
and [7"%277 denotes the Erdélyi-Kober fractional integral. The authors studied the existence and
nonexistence of positive solutions for this problem by utilizing a fixed point result which uses the
strongly positive-like operators and eigenvalue criteria.

In [9], the authors studied a fractional coupled system:

‘Du(t) = F(t,u(1), z2(1),c DS'7(1), I’ 2(7)), 7 € [0, T] := K,2 < 0 < 3,1 < ¢ < 2,
°DSz(1) = G(, u(7),* D u(7), Iu(7),z(r), 7 € [0,T] := K,2 < ¢ < 3,1 < 0| <2,
u(0) = ¢1(2), ' (0) = &1/ (ky),

u(T) = P20 [0 B D g =y (),

2(0) = ¢2(u), 2(0) = &7/ (k2),

_ 6V‘pfv(€+w) 0 o-"“'*“’lu(a') L w,0
Z(T) - IX0O) 0 (<p"—0'v)1_8 do— - 6‘]\/ M(SO)’

where D9, D', D¢, D¢ are the Liouville-Caputo fractional derivatives of order 2 < o,¢ < 3,1 <
§1,01 < 2. 5, IF are the Riemann-Liouville fractional integrals of order 1 < &,¢ < 2. J;', JY are
the Erdélyi-Kober fractional integrals of order @, > 0, with v,w > 0, p, & € (—o0,+00). F,G :
K X (=00, +00)* — (=00, 400) and ¢;, ¢, : C(K,(—00,+00)) — (—o0, +00) are continuous functions.
v, 0, €1, & are positive real constants. The existence result was given by the Leray-Schauder alternative,
and the uniqueness result was obtained due to Banach’s fixed-point theorem. By the same methods,
Arioua and Titraoui [18] studied system (1.1). Moreover, In [10], Arioua and Titraoui also investigated
a new fractional problem involving the Erdélyi-Kober derivative. Inspired by the above articles, we use
different methods to consider the fractional coupled system involving Erdélyi-Kober derivative (1.1).

We employ the Guo-Krasnosel’skii fixed point theorem to discuss (1.1) in a special Banach space, and
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we also use the monotone iterative technique to study this system. Some existence results of positive
solutions for system (1.1) are obtained, including the existence results of at least two positive solutions.

2. Preliminaries

Definition 2.1. (see [2]) Let @ € (=00, +0). C,,, n € N, denotes a set of all functions f(z),t > 0, with

f(@®) =t fi(t) with p > @ and f; € C"[0, o).

Definition 2.2. (see [1, 2]) For a function u € C,, the o-order right-hand Erdélyi-Kober fractional

integral is

Pt PO+ o POorD-1y ()
L) Jo (=)

in which, I" is the Euler gamma function.

Definition 2.3. (see [2]) Letn—1 < 6 < n,n € N, and for u € C,, the o-order right-hand Erdélyi-Kober

fractional derivative is

(D u)(0) = ds, 08 > 0,y € (~o0, +00),

(DT u)(r) = ﬂ(v+1+ d)(l”‘” Tu)(1),

Bdt

where

td
+ +—— Iy = +1+—— n+——)I7" ).
]"[(y J+ g BT = e L gy S0 )
Lemma 2.1. (see [10]) Let 1 < 0 <2,-2 <y < —1,8> 0, and h € C?, with fom PO h(ydT < oo,
m = 1, 2. The fractional problem

{Dg"ru(x) +h(x)=0,x >0,

lim,_,q X2 [7H270(x) = 0, lim, e XTI [TH27Ty(x) = 0

has a unique solution given by u(x) = fooo G, (x, 5)sP0*D-1p(s)ds, where

T(o) 2.1
(ﬂ)_ﬂ(yﬂ)o<x<s<oo 2D
(J'

Lemma 2.2. (see [10]) For 1 < 0 <2, -2 <y < -1, and 8 > 0, the function G, defined in (2.1), has
the following properties:

(i) %5+ > 0, for x, s > 0;

Go(x.5)
(i0) 1+x(/;ilv+y) = l—f),fOI‘X s> 0;

(i) for0 < 3 <x<tands>

{ L[ xBOD _ x PO (1B — P10 < 5 < x < 00,
s(x, )

e where 1 > 1,7 > 0, we have

Gox,8)  _ Plo-DrA™  Bpr)
1 + x B0 = T()ABA-D(1 + 7))~ T(o)’

_ (o=Dr A0
where p(7) = PO (L7 AT -

Lemma 2.3. (see [18]) Let0 < 0,0, <1l and F,G € Ci with

f PO B u(s), v(s))ds < co,m = 1,2,

0
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f SLOMG(s, u(s), v(s))ds < co,m = 1,2.
0

Then, (1.1) has a unique solution given by

u(x) = f ) Gy, (x, )PV (s, u(s), v(s))ds,
0

v(x) = f ) G, (x, $)PT VLG (s, u(s), v(s))ds,
0

where
L [xBOD _ x B (B — FYi-1] 0 < 5 < x < o0,
Gy, (x,5) = I(o1) (2.2)
%x‘ﬁ(ﬁl),O <x<§5<o00,

B [xBOD _ x BB — FY21] )< 5 < x < o0,
Goy(x,8) =15 - (2.3)

r((Tz)x"é’(V“),O <x<s< oo,
The following result is our main tool.
Lemma 2.4. (Guo-Krasnosel’skii fixed point theorem; see [37]) P is a cone in a Banach space E, and
D and D, are bounded open sets in E with 8 € D;,D; C D,. A : PN (D_2 \ D;) — P is a completely
continuous operator. Consider the following conditions (i), (ii):
(@) |Aw|| < |w|| for w € PN dDy, ||Aw|| > ||w|| for w € P N OD»;
(i) |Aw]|| = ||w|| for w € P N dDy, ||Aw|| < |w|| for w € P N OD,.
If one of the preceding conditions (i), (ii) holds, then A has at least one fixed point in P N (D_2 \ D)).
Next, we present some hypotheses that will play an important role in the subsequent discussion:
(Hy) F,G : (0,400) X (=00, 4+00) X (=00, +00) — (0, +0c0) are continuous and nondecreasing with
respect to the second, third variables on (0, +00).
(H,) For (x,u,v) € (0, +00) X (=00, +00) X (—00, +00),

Fi(x,u,v) = UGG (1 + P52y, (1 4+ x7 Py,

Fy(x,u,v) = UG, (1 + x5y, (1 + x7PE)y),

such that
Fi(x,u,v) < or(0)wi(| u|) + gi(x)w(| v ),

Fa(x,u,v) < ga(0)wi(| u]) + ¢a(x)wa(] v 1),

with w;, @; € C((0, +0), (0, +00)) nondecreasing and ¢;, ¥; € L'(0, +o0),i = 1,2.
(H3) There are positive functions ¢;, ¢;, i = 1,2, with

G = [ @t g 0 < o
0

q = f (1 + xPI)gi(x)dx < o,
0

such that
xﬁ(’)/‘*'l)—l | F(X, u, V) - F(X’ﬂﬁa‘{;) |S ‘Zl(x) | u _FI’T| +Fql(x) | v _T;la
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P Gl u,v) = G, V) 1< qo(x) | u =T | +qo() | v =7 |,
for any u, v, u, v € (—oo, +o0) and x € (0, +00).
(Hy) F,G : (0,4+00) X (0, +o0) X (0, +00) — (0, +00) are continuous, such that

x8(1+7)_]F(x, u,v) = aj(x)F(x,u,v),

FLINNG(x,u,v) = ar(x)G(x, u, v),

where a;,a, € L'((0,400),(0,+)), Fi,G; € C((0,+00) X (0,+00) X (0, +00),(0,+0)), 0 <
f, a(x)dx < o0, 0 < frag(x)dx < oo, with 7 > 0, 1 > 1. Moreover, X"V -1F(x,u,v),
xg(”” 'G(x,u,v) : [0, +00) X (0, +00) X (0, +00) — [0, +00) also are continuous.

Remark 2.1. These conditions ensure the continuity and integrability of nonlinear terms in an infinite
interval, which play a very important role in the proof of completely continuity for the relevant
integral operators.

3. Main results

In this section, we use two Banach spaces defined by

u(x) u(x) .
X = {I/t S C((O +00) (—o0 +00)) | hm m and t1—1>1-310 m eXlSt},
with the norm
B u(x)
l|lullx = le:g | m l,
and
Y = {v € C((0, +00), (—00, +00)) | th nd tim —  exis)
1 + X ﬁ(1+7) X—+00 1 + X B(1+7) ’
with the norm
B v(x)
Ivlly = leilg | m | .

So, (X X Y, ||(u, v)||lxxy) is @ Banach space, with the norm ||(&, v)||xxy = l|lullx + [[VIly.
Lemma 3.1. If F, G are continuous, then (1, v) € X X Y is a solution of system (1.1)& (u,v) € X X Y
is a solution of the following equations:

u(x) = [ Go, (x, 5)LI D (s, u(s), v(s))ds,
v(x) = fooo G, (x, $)SPO DG (s, u(s), v(s))ds.

For (4,v) € X x Y, we define an operator A : X X ¥ — X X Y as follows:
Au, v)(x) = (A1 (u, v)(x), Az (u, v)(x)),

where

Ai(u,v)(x) = f‘x’ Gy, (x, )PV (s, u(s), v(s))ds,
0

Ax(u, v)(x) = f ) Gy, (x, )P VLG (s, u(s), v(s))ds,

0
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with G, (x, s),i = 1,2, given by (2.2) and (2.3).
Remark 3.1. Let 0y,0,,8,y,4, Tt € R,suchthat 1 < 0,0, <2,6>0,-2<y<-1,A>1, 7> 0. If
(H») and (H4) hold, then for (1, v) € X x Y with u(x), v(x) > 0,

f ) SO (s, u(s), v(s))ds < f "o, u(s), v(s))ds,
0 2z

f PG s, u(s), v(s))ds < 7 f OG5, u(s), W,
0 T

where n = max{n,,n,} withn; = 1 + m,nz =1+
Proof. By (H,), for x € [5

A2°

g(/lZ 5> 1, 01,021, 0" > 0.
7], we know that there exist two constants o1, 0, > 0, such that

FPODECs, u,v) > 01, POV G(s, u,v) = 00, u, v € (0, +00).

So, for (u,v) € X x Y with u(x), v(x) > 0,

2
f PO (s, u(s), (s)ds > f P (s, us), vispds = o,
f SOVNGs, uls), vis)ds 2 f SO1G(s, uls), v(s)ds 2 (ﬂ Don,

and hence,

MI SOVE (s, u(s), v(s)ds 2 1,

Mf £OGs, u(s), v(s)ds 2 1.

By (H,), we know that there exist two constants ¢,¢* > 0, such that
PO E(x u(x), v(x) < o, PYV7IG(x, u(x), v(x)) < o, for Vx € [0, %].

Thus,
2 (y+1)-1 (28
SOV (s, u(s), v(s))ds < =,
0

3
f PG, u(s),
0

Therefore, we can obtain

foo SO E s u(s), v(s))ds fﬂ SPYDNE s u(s), v(s))ds + foo SPYDLE s u(s), v(s))ds
0 0 £

IA

;—Tﬁ f SO (s, u(s), v(s))ds
3
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(1+ )f SPYDECs u(s), v(s))ds

91(/12 -D

m f LYV E(s u(s), v(s))ds.

A2

Similarly,

IA

fo i SING(s, uls), v(s)ds < (1+ Qz(ﬂz_ @D f PTG (s, u(s), v(s))ds

= 1 f SPYVNG(s, u(s), v(s))ds.
2
Take = max{n,, n,}, and thus

f " PO (s, u(s) w(s)ds < 7 f SV (s, u(s), W(5)ds,
0 2z

f SONG(s, u(s), v(s))ds < n f SPOVG(s, u(s), v(s))ds,

0 2

hold. O
4. A positive solution

Define two cones

B u(x) ()
Ki={ueX|ux) >0,x>0; xrer[lyl] T A 2 lleellx },
Ky=fve?|vi)>0.x>0: min — p(T)n ly}.

xe[%.7] 1 4+ x B+ —

Obviously, K; X K» = {(w,v) € X XY | u(x) > 0,v(x) > 0,¥x > 0; min —<2

s 2
relfr] [ E=Y)
p(r>||u||X, rr[nn]% > %T)Ilvlly} is also a cone. For convenience, we first list the

following definitions:

Fi(t, (1 + x Ay, (1 + x7PA)y)

Fo= lim sup ,
(u,v)—(0%,0%) 40 u-+v
, o F G, (1 + x7 By (1 4 x7BIYy)
fo = lim inf ,
(u,v)—>(+00,+00) x>0 u-+v
. - FiO (1 + x7 PO, (1 4 xBU)y)
Jo= lim inf ,
(,)—>(0%,0%) x>0 u+v
, Fi(t, (1 + x Py, (1 + xPA)y)
Fo = lim sup )
(u,)—>(+00,+00) o u-+v
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Gi(x, (1 + x ATy, (1 + xPT)y)

Gy= lim sup ,
) =(0%,0%) 10 u+v
\ : . G (14 77T, (14 x0T
- = lim  inf ,
(u,v)—>(+00,+00) x>0 u-+v

Gi(x, (1 + x Py, (1 + xPIN)y)

c= lim inf ,
0= ym(00%) 220 u+v
. . Gi(x, (1 + x U, (1 + xP)y)
G, = lim sup .
(u,v)>(+00,4+00) o0 u+v

Lemma 4.1. If assumptions (H;) and (H,) hold, then A : K; X K, — K; X K; is completely continuous.
Proof. First, we show A : K; X K, — K; X K. By (H;) and (H,), for (u,v) € K; X K,

|A 1 (e, v)lIx

Similarly,

1A (1, V)lly <

|A1 (u, v)(x)|
0 1+ x P+

* Gy (x,8) _
Waﬁ(”” VE(s, u(s), v(s))ds |

= sup|
x>0 0

ﬂ ” (y+1)-1
r(m)fo | SO (s u(s), v(s) | ds

_ _B ~ | PO (g (1 + sPIMu(s) (14 sPI)p(s)
-~ T Jo S e N S EeY)

_ P fwuf?l(s,1 u(s) OB
0

I'(oy) + 5B’ ] 4 By

IA

)| ds

IA

L[601(||M||x)‘[ 901(5)d5+w2(”V”Y)f Y1(s)ds] < +oo.
(o) 0 0

[G(Ilullx)f <pz(S)dS+ZJ£(IIVIly)f Ua(s)ds] < +oo.
['(oy) 0 0

By (H;) and Lemma 2.2, for (u,v) € K; X K;,, we have A{(u,v)(x) > 0,A,(u,v)(x) > 0,x > 0. From
Lemma 2.2 and Remark 3.1, for x € [, 7], 7> 0,and A > 1,

AIMS Mathematics

A, VD) _ f * Gy,
0

(x, 5) SPOUTNE (s, u(s), v(s))ds

1 + xB4+y) 1 + xB80+y

T

_ f * Gl 9 gt v ), isyyds
0

1+ X—B(I‘H’)

+

0
f G091 p s, u(s), w(s)ds

- 1+ B0

2

0
Go (1, 5) -
f T TG u(s), v(s)ds

Zz

Bp(t)

0
T(o)) f/;z Sﬁ(y+1)—1F(s, u(s), v(s))ds

Volume 9, Issue 2, 5088-5109.
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> ’Bp—(T)foo SPYDNE s, u(s), v(s))ds
(o) Jo

p(7)

> —||A1(u Vllx.
n

So, S > EO|IA, (u, v)ly. Similarly, {2455 > Z0][4,(u, v)]ly. Therefore,

> 14xB+y) = 1+xAU+y) =

A1) ( )
Xrel[gll] 1+ A 2 1AL (u, V)lIx,

. Ao(u, v)(x) ()
xrer[l;g]lﬂ_ﬂ(m) 1A2(u, V)l

Thatis, A : K1 X K, — K; X K, is true.

Second, it will give a simply prove that A is continuous. Let D = {(u, v)|(u, v) € Ki XKy, ||(u, v)|[xxy <
K,K > 0}, a bounded subset in K; X K. Let (u,,v,) € D be a sequence that converges to (u,v) in
€ K| X K,. Then ||(u,, v,)|lxxy < K. From Lemma 2.2,

A1 (U, vi)(x) = Ay (u, v)(x)

A1 (tt, vi) = A1, )llx = sxglool T+ AT |
< Ton If ST (s, (), vn(S))ds—f SOV (s u(s), v(s))ds |
1
< F(O'l)fo | Sﬁ(y+1)—1(F(s, u,(8), v,(8)) — F(s, u(s), v(s))) | ds.

By (H>),

o s, LE ) (L 5P
T e S R " S
U () Vu(s) )
1+ S‘ﬁ(“’)’)’ 1+ S_B(1+7)

@11 (lallx) + Y1)z (Vally) € L0, 00).

| POV (s, 1, (5), va(9)) | )|

= Fi(s,

IA

By the continuity of s*¥*D=!F(s, u(s),v(s)) and the Lebesgue dominated convergence theorem,
f POV (s, uy (), va(s))ds — f SV (s, u(s), v(s))ds,n — eo.
0 0

Therefore, ||A;(u,, v,) — A1 (u, v)||x — 0,n — co. Similarly, ||A>(u,, v,) — Ax(u, v)|ly = 0,n — oo.

So, [|A(u,, v,) — A(u, V)||lxxy — 0,n — oo. That is, A is continuous in D. In the end, we know that
A(D) is relatively compact on (0, c0) and is equi-convergent at co by [18]. Therefore, A : K; X K, —
K, X K; is completely continuous. O
Theorem 4.1. Assume that (H;) and (Hy) hold. If Fy = 0,G; = 0, fo = 00,85, = oo, then the
system (1.1) has at least one positive solution.

Proof. We divide the proof into several steps.
Step 1. A : K| X K, — K; X K; is completely continuous. This result easily follows from Lemma 4.1.
Step 2. We show that there exist Ry > 0 and Dy = {(#,v) € X X Y,||(u,v)|lxxy < R;} such that

AIMS Mathematics Volume 9, Issue 2, 5088-5109.
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A, V)llxxy < I, V)lIxxy, (u,v) € (Ky X K3) NOD;.
Because Fy = 0, G, = 0, we choose Ry > 0, such that

Fi0a, (1 + x9N (1 + x7PAY) < €(u + v),

Gi(x, (1 + xPI M, (14 xPTW) < e (u+v),
for 0 < u+v <Ry, x>0, where €, € > 0 satisfy
J1 T 1 T(o»)
Zﬁfo al(s)ds @ = Eﬁfooo az(s)ds.

So, for (u,v) € Ky X K, and ||(u, v)||xxy = Ri, by Lemma 2.2,

A (™) _ f‘” G009 sowimt g sy, vis)ds
0

1 + x B0+ 1 + x A0+

IA

S fo SPYTDTE s u(s), v(s))ds,

AV f " G i1 G, u(s), s
0

1 + x A0+ 1 + x-B0+

< F o f SPYDLG (s, u(s), v(s))ds.
By (Ha),
Aq(u, v)(x) B *
T fT S T fo ar()F1(s,u(s), v(s)ds
= T ) SR e e
u(s)+v(s)
= F(o-l)f ()T mam S
< o 1)€1||(M V)||XfoO a(s)ds
< §||(u9v)||X><Y-
Similarly,
As(u, v)(x) *
T+ 0w = F(O_z)lel(u,V)||x><y‘[O ax(s)ds
1
< §||(M,V)||X><Y.
Therefore,

IAG lxxr < NI, Vllxxy, for (u,v) € Ky X Kz, and ||(u, v)llxxy = Ry.

)ds
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Let Dy = {(u,v) € X X Y, ||(u, v)|lxxy < R1}. Then,
A, Vllxxy < @, V)llxxy, for (u,v) € (Ky X K>) N OD;.
Step 3. We show that there exist R, > 0 and D, = {(u,v) € X X Y, ||(&, v)||xxy < Rz} such that
A, Vllxxy = (e, V)llxxy, for (u,v) € (Ky X K>) N OD,.
Because f,, = o0, gi = oo, there exists R > 0, such that
Fix, (1+ x5, (1 + x7P5)0) > my(u +v),

G(x, (1 + x7PTy (1 + x7PIN) > my(u + v),

foru +v > R, x > 0, where m;, m, > 0 satisfy

> l mnl'(oy) S l mnl(o2)
'=32 : =5 :
Bp*(@) [ a(s)ds Bp*(1) [ ax(s)ds

m

,n = max{n,n}.

Let R, > max{R;, 1?(_1:)}’ and D, = {(u,v) € X X Y, ||(u, V)||lxxy < R»}. Then, D; C D,.
Thus, for (u,v) € K; X K>, ||(#, V)||xxy = R>, we have

u(x) > mi u(x) S p(7)

T+ x B0 = i = Ullx,
I+ xBA+Y) 7 ez 1 4+ x B0+ m e

VIl

o v p)
T+ x B0 = et 1T+ 280 = gy

So,

u(x) + v(x) p(7) p(7) p(7)
T+ <A1 = THMHX + T”V”Y > T(H”Hx + [[Vlly)

= P iy = 228, = R
n n

By (H,), for x € [, 7], we can obtain

AwVE  Bp

foo SO u(s), v(s))ds
0

L+ x4 (o)
= pr(@) a1 ()F (s, u(s), v(s))ds
mI'(o1) Jo
Bp() (™ B+ u(s) B+ v(s)
= ey Jy O 0T (e s
Bp() ” u(s) + v(s)
= arey™ ), @OT
. Br® f p(7) Bp() fm(s) PO,
0 0

ar(s)ds—|ullx +
m

m m
mI'(oy) : mI'(oy) :

m

AIMS Mathematics Volume 9, Issue 2, 5088-5109.



5099

> Bp() m f/{ al(S)ds&HM”X"' Zask m1 f/l al(S)dS@”V”Y
o™ J. m mbe) = Js "
2 1 1 1

pre f ar(s)ds(—lully + —IVly)

mI'(o1) . M n

BP*(1) "
ml(oy)

>

T 1
f (s

1
> EH(M’ Wlxxy-

Ax(u,v)(x)

Similarly, 7 =55

> %Il(u, V)|lxxy. Therefore,

IACu, V)llxxy = (e, V)lIxxy, for (u,v) € (K; X K») N OD;.

Finally, by Lemma 2.4, A has a fixed point in (K; X K;) N A(D,\D,). So, (1.1) has at least one

positive solution. O

Theorem 4.2. Assume that (H;) and (Hy) hold. If fo = o0, gf = o0, Fo, = 0,G7, = 0, then (1.1) has at

least one positive solution.
Proof. We divide the proof into several steps.

Step 1. A : K; X K; — K; X K, is completely continuous. This result easily follows from Lemma 4.1.

Step 2. We show that there exist 7y > 0 and Dy = {(u,v) € X X Y, ||(u, v)||lxxy < r1} such that
A, Vllxxy = (e, Vllxxy, for (u,v) € (Ky X K>) N OD;.
Because fy = o0, g; = o0, there exists r; > 0 such that
Fi(x, (14 x5, (1 + x7P5)) > Mo+ v),
Gi(x, (14 xPIu, (1 + x4y > Mo(u+ v),
forO <u+v <r;, x>0, where My, M, > 0, satisfy

1 r 1 T
M, > -1 (@) M, > L 1) »1 = max{ny, n}.

= T > V2 — z
2Bp2() [ ai(s)ds 2 Bp2(1) [ ax(s)ds

Let Dy = {(u,v) € X X Y, [I(u, V)llxxy < r1}. So, for (u,v) € Ky x K5 with [|(u, V)llxxy = r1, and x € [, 7],

then by (Hy),

A (u, v)(x) Bp(t)

1+ x4 mI(o1) Jo
- L@ ay($)F (s, u(s), v(s))ds
mlI(o1) Jo
_ Bp@) * 81+ u(s)
— ml(o) Jo aOFi(s, L+ 57 Y))l T A0’

Bp(7) . u(s) + v(s)
Ty fo T e 48

) SOV R u(s), v(s))ds

v(s)

1 + s B0+

(1+ S—ﬁ(1+y))

\%

)ds
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Bp(7) p(T) Bp(t) (1)
> mF(m)leo a(s )ds—ll llx + T 1)M1f0 ai(s )dsn—||v||y

Bp(7) p( ) Bp(1) (1)

Ulr(o'l)le; a(s )ds—ll lIx + — 1)M1,[T 1(S)dsn—||v||y
2 1 |

- A0 le ar()ds(—|lullx + —I[vlly)

mI'(oy) . m m
Bp*(1)
mI(oy)

EH(M, Wlxxy-

\%

\%

1
le al(S)dsnll(u Wllxxy

\%

Ax(u,v)(x)
1+xB+y)

Similarly, 2 %ll(u, Vllxxy. Thus,
lAQ, Vllxxy = I, Vllxxy, for (u,v) € (Ky X K>) N OD;.
Step 3. We show that there exist r, > 0 and D, = {(u,v) € X X Y, ||(u, v)||xxy < 1>} such that
A, V)llxxy < NI, vllxxy for (u,v) € (Ky X K>) N OD;.
Because F., = 0,G%, = 0, there exists r > 0, such that

FiOa, (1 + x9N (1 + x7P3Y) < €(u + v),

Gi(x, (1 + x P, (1 + xPT)0) < 6(u +v),
for u +v > r,x > 0, where €, &, > 0 satisfy
1 T <L 1 (o)
2,8f0 al(s)ds Z,Bfo az(s)ds

Let D, = {(u,v) € X X Y, ||(u,V)|lxxy < 72}, where r, > max{r;,r}. Then D; Cc D,. We define two

functions U, U, as follows:

U, : (=00, +00) = (=00, +00), Uj(a) = sup sup Fi(x, (1 + x Py, (1 + x Py,

O<u+v<a x>0

U, : (=00, +00) = (=00, +00), Up(a) = sup supGy(x, (1 + xPI)y (1 + xPI)y),

O<u+v<a x>0

For (u,v) € K; X K> and ||(u, V)||xxy = 12,

Ui(r,) = sup sup Fi(x, (1 +xPT)y (14 x7P0)y)
O<u+v<ry x>0
< & sup (u+v)=er = el v)lxxy,
O<u+v<ry
Us(r,) = sup supGi(x, (1 +xPTyy, (1 + xP1yy)

O<u+v<r, x>0
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< & sup (u+v)=eanrn =ell(u,v)llxxy.
O<u+v<ry

By Lemma 2.2 and (H,),

Awv B
1 +xP+ = T(oy)
= F(ﬁ'l)ﬁ a1 ($)F (s, u(s),v(s))ds
B

= F(O'l)fo ay(s)F (s, (1 + s

ﬂ‘fmwmmwMMﬂ+ﬂM%ﬂH%MMM
F(O-l ) 0 O<u+v<r, x>0

_ B (7
= F(m)fo a\(s)U (ry)ds
B

I'(o1)

EH(M’ Wlxxy-

f ) POV u(s), v(s))ds
0

u(s)

1 + s B+’

(1+ g Ad +7)) v(s)

IA

IA

f a(s)dse||(u, v)|lxxy
0

IA

1+ s A0+

Similarly, {2455 < 311, v)llxxy. Therefore, IA(u, v)llxxy < 1I(u, V)llxxy for (u,v) € (Ky X K) N AD;.

T+ Ay =

Finally, by Lemma 2.4, A has a fixed point in (K; X K;) N d(D,\D,). So, the system (1.1) has at least

one positive solution. O

5. Multiple positive solutions

In the section, we obtain the multiplicity of positive solution of (1.1) by using the monotone

iterative technique.

Theorem 5.1. If (H;) and (H,) hold, then (1.1) has two positive solutions («*, v*) and (w*, z*) satisfying
0 < |, v)llxxy < T and 0 < ||(W*, 2)|lxxy < Y, where Y is a positive preset constant. Moreover,

lim(u,, v,) = (u*,v*) and lim(w,, z,) = (W*, %), where (u,, v,) and (w,, z,) are given by

(W (), V(X)) = (A1 (U1, Vao1)(X), Ao (U1, Veo1)(X),n = 1,2, ...,
with
(uo(x), vo(x)) = (T1[1 + x POV L1+ xPO* DD Y, T > 0,7 + T2 < T,
and
(Wn(x), Z2(x)) = (A1(Wp1, Zp-1)(X), Ao(Wpe1, 2D (X)), n = 1,2, ..,
with (wo(x), zo(x)) = (0, 0). In addition,
(Wo(x), 20(x)) < (W1(x),z1(x)) < -+ < (Wy(X), Z,(x)) < -+ - < (W5, Z) < (u', V")
< S (U(X), V(X)) < -0 < (), vi(X) < (up(x), vo(X)).

Proof. First, from Lemma 4.1, A(K; X K;) C K; X K; for (u4,v) € K; X K. Let

T]I

[wl(T)f 901(S)ds+w2(T)f Yi(s)ds] < oo,
['(oy) 0 0

(5.1)

(5.2)

(5.3)
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TQZ

[@(T)f 902(S)ds+555('r)f Yo (s)ds] < oo,
['(02) 0 0

and ¥ > T + Y, with Dy = {(u,v) € K1 X K5 ¢ [|[(u, v)||lxxy < Y}. For any (u,v) € D+, from (H,) and
Lemma 2.2,

|A 1 (u, v)(x)|
0 1+ x A0

< Gg (x,8)
msﬂm” LFE(s, u(s), v(s))ds |

A1 (u, V)llx

= sup|
x>0 0

L (y+1)-1
r(aofo | 7T (s, u(s), v(s))ds |

reston ) [ eds o) [ s

= [w(llu ||x)f gol(s)ds+w2(||v||y)f Y (s)ds]

IA

IA

IA

B
(o)
< ot f o1(s)ds + () f Ji(s)ds] =
o
Similarly, ||A>(u, v)|ly < T for (4, v) € Dy. Thus,
A, V)llxxy = llA1(u, V)lIx + [[A2(u, V)lly <11+ T < T

That is, A(Dy) € Dy. We construct two sequences as follows:

(Mn, Vn) = A(un—la Vn—l)a (Wm Zn) = A(Wn—l’zn—l)a n=123,....

Obviously, (u(x), vo(x)), (Wo(x),z0(x)) € Dy. Because A(Dy) C D, (up,vy), Wy, 2,) € Dy,n =
1,2,.... We need to show that there exist (u*,v*) and (w*,z") satisfying lim(u,,v,) = (u*,v*) and
lim(w,, z,) = (w*,z") which are two monotone sequences for approximatinrglgoositive solutions of the
system (1.1).

For x € (0, +0), (u,,,v,) € Dy, from Lemma 2.2 and (5.1),

uy(x)

A (ug, vo)(x) = f ) G, (x, )P D7V (s, u(s), vo(s))ds
0

IA

F(O’])f (1+ t—ﬂ(1+y))sﬂ(7+1) lF(S 1o (). vo($))ds

Iﬂ(ﬁ_l)(l + x_ﬂ(”’))[wl(—1 LMEE;()IL))f @1(s)ds + W (7 | VOE;()lly))f w1 (s)ds]

IA

< L1y luell) f 1(s)ds + wa(lIvolly) f Y1(s)ds]
I'(oy) 0 0

< L+ B f ©1(8)ds + wy(T) f Y1(s)ds]
(o) 0 0

= (1 + 377 = ug(x)
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and

vi(x) = As(ug, vo)(x)

f ) G, (x, $)PY VNG (s, ug(s), vo(s))ds
0

< F(O'z)f (1 +xPI) PO DG, (), vol )

< r(ﬂz)(1+fﬂ(l+y))[ (%)f (pz(s)dez( | v O(Z<)1l+y>)f Ua(5)ds]
< r(i 2)(1+tﬁ“*”)[wl(lluollx) f ©2()ds + @3(|[volly) f Uo(s)ds]

< 1"(’82)(1+xﬁ(1+w) w](T)f 902(S)ds+w2(‘r)f Uo(s)ds]

= (1 +x7P1)7; = vy(x),
that is,
(1 (x), v1(x)) = (A1, vo)(x), Ax(ttg, vo) () < (1 + xPI)YY, (1 + xPH)L3) = (ug(x), vo(x)).
So, by the condition (H),
(Ua(X), v2(x)) = (A1 (g, 1)), Aa(ity, v1)(x)) < (Aj (g, v0)(X), An(t, Vo) (X)) = (1 (x), vy ().

For x € (0, +00), the sequences {(u,, v,)} -, satisfy (#,+1(x), Vps1(x)) < (uu(x), v,(x)). By the iterative

sequences (4,41, Vay1) = A(u,, v,) and the complete continuity of the operator A, (u,,v,) — (u*,v*), and
A, v = (", v").
Similarly, for the sequences {(w,, z,)}:"

n=0°
(wi(x), z1(x)) (A1(wo, 20)(x), A2 (Wo, 20)(X))
(f Gy (x, $)s" 7 D7 (s, Wo(S),Zo(S))dS,f G, (x, )T DTG (s, wo(s), 20(5))ds)
0 0
(0,0) = (wo(x), zo(x)).

Then, by the condition (H)),
(W2(x), 22(x)) = (A1(wy, 21)(x), A2 (w1, 21)(X)) = (A1(Wo, 20)(X), Az(Wo, 20)(X)) = (W(x), 21(X)).

Analogously, for x € (0, +00), we have (W,41(x), Z,4+1(x)) = (W,(x), z,(x)). By the iterative sequences
Wnt1>Znr1) = A(wy,,z,) and the complete continuity of the operator A, (w,,z,) — (W",z"), and
AW*,7") = (W', 2°).

Finally, we prove that («*, v*) and (w*, z*) are the minimal and maximal positive solutions of (1.1).
Assume that (¢(x), u(x)) is any positive solution of (1.1). Then, A(g(x), u(x)) = (¢(x), u(x)), and

(Wo(x), 20(x)) = (0,0) < (5(x), u(x)) < (1 + x PN (1 + xPI)Y5) = (up(x), vo(x)).
Therefore,

(W1(x), 21(%)) = (A1(Wo, 20)(x), A2 (W, 20)(%)) < ($(x), u(x)) < (A1(uo, vo)(x), Az(utg, vo)(X)) = (u1(x), v1(x)).

That is, (w1(x),z1(x)) < (¢(x), u(x)) < (u,(x),v,(x)). So, (5.3) holds. By (H;), (0,0) is not a solution
of (1.1). From (5.1), (w*,z") and (u*,v") are two extreme positive solutions of (1.1), which can be
constructed via limitS of two monotone iterative sequences in (5.1) and (5.2). O

we have

v

AIMS Mathematics Volume 9, Issue 2, 5088-5109.



5104

6. Examples

Example 6.1. We consider the following system:

5

D, “u(x)+x2( )e—ux%( Y _)2e=* = 0,1 € (0, +00),

x2 +x2

D, y(x) + xle 2X( L2 Inl +( ) 4 x3e 2 (2 In(] + (<), x € (0, +00),
142 1+x2 1+x2 (6.1)

lim,_,q x2 [ Su(x) = O, hmx_m X2 I 3u(x) =0

lim, o x21%2v(x) = 0, lim, e x"21%3v(x) = 0

_5 _3 A 3 p_
Wherem—g,dz—g,y——g,ﬁ—l,

1%

3y u
F(x,u,v) = x2e[( )+ ( )1,
1+ x2 1+ x2

G, u,v) = e [(——PIn(1 + (——)) + (—— Y In(1 + (——)?)].
1+ x2 1+ x2 1+ x2 1+ x2

First, for Fi(x,u,v) = X*U 7 1E(x, (1 4+ x5y, (1 4+ x7PA )W) = e7*(u?, v?), we choose w; (1) = u® €
C((0, +00), (0, +00)), wo(v) = v* € C((0, +0), (0, +00)), and ¢;(x) = ¥ (x) = e~ € L(0, +00). Then,

| F1(x,u,v) [< @r(wi(| u ]) + ¢ (Dwa(l v D), (0, +00) X (=00, +00) X (=00, +00).

Similarly, for Fa(x, u,v) = XT71G(x, (1 + x P, (1 + xPE)) = xe 2 [1? In(u® + 1) +v* In(0? +
)], we choose @7 (1) = u? In(u? + 1) € C((0, +00), (0, +c0)), @>(v) = V2 In(v2+1) € C((0, +0), (0, +0)),
and ,(x) = Ya(x) = xe>* € L1(0, +00). Then,

| F2(x, u,v) I€ @a(0)wi (| u ) + Ya(Dwa(| v 1), (0, +00) X (=00, +00) X (00, +00).

So, the condition (H>) holds. Obviously, F, G : (0, +00) X (0, +00) X (0, +c0) — (0, +00) are continuous.

x_%F(x, u,v) = e [( - )+ ( 4 )1 = a1 (x)F(x, u,v),

1+ x2 1+ x2
X 3G(x u,v) = xe [(——)2 In(l + (— ) + (—— Y In(1 + (———))] = a()G) (x, 1, v),
1+ x2 1+ x2 1+ x2 1+ x2
where a,(x) = ™, ax(x) = xe 2%, Fy(x,u,v) = (Ll)2 + ()% Gi(tu,v) = () In(1 + (—5)H) +
1+x2 1+x2 1+x2
(—“-)? In(1 ,)2) So, x~ 2f(x u,v), x 2G(x u,v) : [0, +00) X (0, +00) X (0, +00) — [0, +00) are
l+x

continuous. Hence the condition (H,4) holds. Finally,

2 2 2 2
. u? +1? . uwIn(u+ 1) +v-In(v- + 1
Fo= lim =0,G,= lim ( ) ( ) =0,
wv)—=0*0%) u+v (u,v)—(0%,0%) u-+v
) u? +? ) ) Wn@® + 1) +vIn(» + 1)
Jo = lim =o00,g". = lim =
(u,y)—>(+00,+00) U + V (,v)—>(+00,+00) u+v

Therefore, from Theorem 4.1, (6.1) has at least one positive solution (u(x), v(x)). Further,
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Example 6.2. We consider the following system:

\w
L.)

D[ u(x) + x3e 2! [arctan(Ll)2 + 1]+ a3 [arctan(%)Q +7] = 0, x € (0, +00),

m
\\l

D 26v(x)+xze 1)2+1))+ 7r]+xze ol

+ 1))+ 1], x € (0, +00),

lim, o x2 I°2u(x) = 0, 11mx_>OO X 210 du(x) =

lim, o x2 "33 v(x) = 0, lim, e, x—%r%%v(x) =0

(6.2)
where o) = %,0'2 = %,7 = —%,,3 =1,
3 _ox%+1 2 1 3 —2x2+1 2, 1
F(x,u,v) = x2e [arctan( =)+ =]+ x%e [arctan( =)+ =1,
1 +x2 s I+ x2 4
3
G(x,u,v) = x2e *[arctan(In(( )2+ 1)) + 2x1] + x3 e *[arctan(In(( )+ 1)+ 11.
+ x2 2 1+ x2

First, for

1
Fi(x,u,v) = PUYUEGG (1 + x7PU )y, (1 4+ x7PE))y) = xe 2 *arctan u® + — + arctanv? + 7],
n

we choose w;(1) = arctan u® + % € C((0, +00), (0, +00)), wy(v) = arctanv? + 1 € C((0, +00), (0, +00)),
and ¢1(x) = ¥1(x) = xe 2+ e L1(0, +00). Then,

| F1(x,u,v) < or(0wi(| u]) + Yi(x)wa(| v ]), (0,+00) X (=00, +00) X (—00, +00).
Similarly, for
3
Fo(x,u,v) = XU g, (14 xPT )y, (14x7P1)y) = e‘x[arctan(ln(u2+1))+§n+arctan(ln(v2+1))+1],

we choose @;(u) = arctan(In(u? + 1)) + 27 € C((0, +), (0, +0)), @ (v) = arctan(In(* + 1)) + 1 €
C((0, +00), (0, +00)), and ¢,(x) = ¢r(x) = e € L'(0, +0). Then,

| Fa(x, u,v) I€ a()wi (| u ) + ga(Dwa(| v 1), (0, +00) X (=00, +00) X (00, +00).

That is, (H;) holds. Second, F, G : (0, +00) X (0, +0) X (0, +00) — (0, +00) are continuous. And

_3 9,2
X 2F(x,u,v) = xe > *[arctan(

1
-)* + — + arctan( D+l = a()F (x,u,v),
1+ x2 s I +x2

x_%G(x, u,v) = e *[arctan(In((

)+ 1) + 2+ arctan(In(( )+ 1)) + 1] = ax(0)Gy(x, u, v),
+ x2 2 +x2

2%+ l)2 + 7, Gi(x,u,v) =

arctan(ln(( = ! Y+ 1)+ 7r + arctan(In((—~ T Y+ 1))+ 1 So X 2F(x u,v), x" 2G(x u,v) : [0, +o00) X
1+
(0, +00) X (O +oo) [0, +oo) are contmuous That is, (H4) holds. In addition,

where a;(x) = xe >t ay(x) = e, Fi(x,u,v) = arctan( u . )?

arctan u® + % + arctan v’ + 7

= lim = oo,
fo (u,v)—>(0*,0%) u+v
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arctan(In(u?® + 1)) + 37 + arctan(In(v? + 1)) + 1 ~

. .
= lim = 00,
0= o000 U+ v
‘ arctanu® + 1 + arctanv? + 7
Fo= lim =0,
(u,v)—(+00,+00) u-+v
. ' arctan(In(u? + 1)) + 37 + arctan(In(v? + 1)) + 1

G, = lim =0

(u,v)—>(+00,+00) u+v

Therefore, from Theorem 4.2, (6.2) has at least one positive solution (u(x), v(x)). Further,

u(x) = %[x% fooo 573 F (s, u(s), v(s))ds — fxm(x — §)25 2 F(s, u(s), v(s))ds],
v(x) = gslx2 [T 573G (s, u(s), v(s)ds — x3 [ (x = )6 572G (s, us), W(s))ds].

Example 6.3. We consider the following system:

_35 3 —2x2+1
D" u(x) + 275 | | +x2 In(| | +1)¢ = 0,x € (0, +0),
-33 * * -2:241
Dy *v(x) + e arctan(| —r | +p) + a3 o | = = 0,0 € (0, +0), 63)
+x +x .
lim, x2 163 u(x) = 0, limy_e x 2153 u(x) = 0,
lim, x21%2v(x) = 0, lim,_e x 2 1%21(x) = 0,
where oy = 3,0, =3,y =-3,p=1,
2
3 e—x 5 v e—2x +1
F(x,u,v) = x2— | = | +x2 In(] = | +1) ,
3 1+xz 1 + xz 10
2
5 o0 u 1 se 2 v
G(x,u,v) = x2e¢ > " arctan(| - | +—) + x2 | - .
l+x2 7 5 1 +x2

Obviously, F, G : (0, +00) X (—00, +00) X (—00, +00) — (0, +00) are continuous and nondecreasing with
respect to the second and the third variables on (0, +c0). That is, (H;) holds. Next,

—X —2x%+1
Fi(x,u,v) = PUTEG (1 + x7PE)y, (1 4+ x Py = % | u| +x
We choose w(u) =| u |e C((0, +00), (0, +00)), w(v) = In(| v | +1) € C((0, +00), (0, +00)), and ¢;(x) =

2
xe*ZX +1

§, Y1(x) = 2— € L'(0, +c0). Then,

In(| v | +1).

| Fi(x,u,v) IS or(X)wi (| u |) + gi(x)ws(| v ]), (0,+00) X (=00, +00) X (=00, +00).

Similarly, for

—2x2+1

2 1
Fy(x,u,v) = PEG, (1 + 7Py, (1 + x7PY)) = xe ™ Harctan(| u | +—=) + x v,
n

N 5

we choose w;(u) = arctan(] u | +%) € C((0, +00), (0, +0)), wr(v) =| v |€ C((0, +0), (0, +0)), and

2
e—2x +1

©(x) = xe‘z)‘z“, Yo(x) = x=— € L'(0, +00). Then,

| Fa(x, u,v) I€ a1 (| u ) + Y2 (0w v 1), (0, +00) X (=00, +00) X (00, +00).
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That is, (H,) holds. Therefore, from Theorem 5.1, (6.3) has two positive solutions («*,v*) and (w*, z*)
with (0,0) < (u*(x), v*(x)), (W* (%), 2°(x)) < (1 +x2)Yy, (1 + x2)Y>), where T; + ¥, < T, and T satisfies

95.58 1
— 11 —0. . > —.
191.86T 0.69 arctan(Y + 0.56) > 36

7. Conclusions

This paper studies the Erdélyi-Kober fractional coupled system (1.1), where the variable is in an
infinite interval. We give some proper conditions and set a special Banach space. We obtain the
existence of at least one positive solution for (1.1) by using the Guo-Krasnosel’skii fixed point theorem,
and we get the existence of at least two positive solutions for (1.1) by using the monotone iterative
technique. Our methods and results are different from ones in [18]. Moreover, we give three examples
to show the plausibility of our main results. For future work, we intend to use other fixed point theorems
to solve some Erdélyi-Kober fractional differential equations.
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