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Abstract: During the transitional phase spanning from the realm of fuzzy logic to the realm of
neutrosophy, a multitude of hybrid models have emerged, each surpassing its predecessor in terms
of superiority. Given the pervasive presence of indeterminacy in the world, a higher degree of
precision is essential for effectively handling imprecision. Consequently, more sophisticated variants
of neutrosophic sets (NSs) have been conceived. The key objective of this paper is to introduce yet
another variant of NS, known as the q-rung orthopair fuzzy-valued neutrosophic set (q-ROFVNS).
By leveraging the extended spatial range offered by q-ROFS, q-ROFVNS enables a more nuanced
representation of indeterminacy and inconsistency. Our endeavor commences with the definitions
of q-ROFVNS and q-ROFVN numbers (q-ROFVNNs). Then, we propose several types of score
and accuracy functions to facilitate the comparison of q-ROFVNNs. Fundamental operations of
q-ROFVNSs and some algebraic operational rules of q-ROFVNNs are also provided with their
properties, substantiated by proofs and elucidated through illustrative examples. Drawing upon the
operational rules of q-ROFVNNs, the q-ROFVN weighted average operator (q-ROFVNWAO) and
q-ROFVN weighted geometric operator (q-ROFVNWGO) are proposed. Notably, we present the
properties of these operators, including idempotency, boundedness and monotonicity. Furthermore,
we emphasize the applicability and significance of the q-ROFVN operators, substantiating their utility
through an algorithm and a numerical application. To further validate and evaluate the proposed model,
we conduct a comparative analysis, examining its accuracy and performance in relation to existing
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1. Introduction

Multiple criteria decision-making (MCDM) is the most common method to help decision-makers
opt for the most in-demand alternative from a given alternative set, where the MCDM requires ranking
all results (alternatives) according to effective mathematical tools to pick the best one(s) in real-
world systems. At the forefront of classical MCDM theory, fuzzy sets (FSs), conceptualized by the
renowned pioneer Zadeh [1], have emerged as a transformative force. With their unique ability to
effectively tackle the challenges posed by ambiguous and misleading information [2,3], fuzzy sets have
established themselves as an invaluable tool for navigating the intricacies of complex decision-making
processes [4–6]. However, there are situations where fuzzy sets alone may not provide an accurate
representation of vague and incomplete information in MCDM problems. To address these challenging
scenarios effectively, intuitionistic fuzzy sets (IFSs) [7] have been developed. The uncertain data in
IFS is portrayed by the form of two membership functions, namely, the membership function (MF) ζ̂
and non-membership function (NMF) $̂, and both values fulfill the following condition: ζ̂ + $̂ < 1.
Some further expansion and modernization of IFS are portrayed in [8–10]. Subsequently, Yager [11]
proposed the Pythagorean fuzzy set (PyFS) to make up for the shortcomings of IFS when ζ̂ + $̂ ≥ 1.
In a simple way, the mechanism of action of PyFS is to square the values of each MF and NMF
so that their sum is less than or equal to 1. This model attracted a large number of researchers and
prompted them to make many contributions. For instance, in [12–15] authors conceptualized various
measures like distance, similarity, divergence and fuzzy entropy in the PyF environment. Gao and
Deng [16] presented PyFSs based on the negation of probability (NP) and applied the NPPyFS into
technique for order preference by similarity to ideal solution (TOPSIS). Hussain et al. [17] studied
the impact of Aczel-Alsina aggregation operators (AOs) on PyFSs when they developed novel types
of PyFAOs by employing the Aczel-Alsina t-norm and Aczel-Alsina t-conorm. Ullah et al. [18]
developed complex PyFSs and referred to their applications in pattern recognition. Subsequently,
more and more contributions of PyFSs have been discussed by numerous scholars [19–21]. In some
real-life situations, the handcuffs of the IFS and PyFS structures may be broken where the sum of
both MF and NMF exceeds 1, i.e., ζ̂ + $̂ > 1 or the sum of the squares of both MF and NMF
exceeds 1. For example, if we take the value (0.7, 0.9), we can simply note that 0.7 + 0.9 > 1.
To tackle this issue, Yager [22] again constructed an innovative notion called q-ROFS as an acclaimed
generalization of both IFS and PyFS structures, with the following standard condition: The sum of the
qth powers of MF and NMF is less than or equal to 1. Obviously, we can conclude that q-ROFS is
more general than IFS and PyFS and offers a greater degree of flexibility and reliability. Therefore,
q-ROFS has been successfully applied to treat obscure data where two or more grounds for doubt arise
simultaneously. As a result, Liu and Wang [23] introduced the pioneering q-ROF weighted averaging
operator (q-ROFWAO) and the q-ROF weighted geometric operator (q-ROFWGO) as effective tools for
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handling decision information. They [24] also proposed MADM based on Archimedean T-norm and
T-conorm (ATT), Bonferroni mean (BM) operators of a q-ROF environment. Wang et al. [25] utilized
ten similarity measures and ten weighted similarity measures between q-ROFSs to deal with MADM
problems. Liu et al. [26] coined the cosine similarity measure and a Euclidean distance measure of
q-ROFSs and studied their properties. Dhankhar et al. [27] initially defined the possibility degree-
based measurement of q-ROFSs and clarified their theoretical structure. Deveci et al. [28] proposed a
q-ROF OPA-RAFSI model to estimate three personal mobility alternative implementation options for
autonomous cars in the metaverse. Lin et al. [29] initiated a general form of linguistic q-ROFSs and
devised the operational laws, which are the linguistic q-ROF weighted averaging (LqROFWA) operator
and the linguistic q-ROF weighted geometric (LqROFWG) operator. Li et al. [30] coined preference
relations on q-ROFSs, and based on these preference relations, they built some algorithms for ranking
and selecting the MCDM alternatives. Peng et al. [31] defined a new exponential operational law
concerning q-ROFNs bases being positive real numbers and the exponents being q-ROFNs and applied
it to derive the q-ROF weighted exponential aggregation operator (q-ROFWEAO). Deveci et al. [32]
proposed a novel hybrid MCDM model named q-ROF full consistency method (q-ROF FUCOM) and
q-ROF combined compromised solution (q-ROF CoCoSo), respectively, for the site picking of an
offshore wind farm (OWF). Deveci et al. [33] developed a new approach to combinative distance-
based assessment (CODAS)-based q-ROFSs, and this approach has been implemented to deal with the
uncertain issues that occur in DM problems. Alnefaie et al. [34] formulated the q-ROFS for algebraic
structures, and Habib et al. [35] investigated the formwork q-ROFS graph structures. The relationship
between the q-ROFS and complex numbers (CN) was defined by Garg et al. [36] when they discussed
several weighted averaging and geometric power aggregation operators for complex q-ROFSs (Cq-
ROFSs).

On the other hand, Smarandache [37] came up with the idea of the NSs, which expand the MF
and NMF of FS, IFS and PyFS in order to handle the MADM issues that have uncertain, incomplete
and indeterminate decision information. The notion of NSs is summarized by terms namely, MF,
NMF, and, in addition, the indeterminacy term (IMF) with the following condition: The sum of these
terms is equal to or limited to three, so it can describe the real-life data more constitutionally and
accurately. Due to these features that characterize the concept of NSs, NSs have been extensively
studied by several researchers in the academic environment around the world, where it has invaded all
mathematical sciences branches. For example, in neutrosophic statistics, it represents sample sizes and
control chart design constants as neutrosophic numbers, while in neutrosophic algebra many algebraic
concepts have appeared, such as the neutrosophic subgroup and group and the neutrosophic ring, whose
operations and axioms are partially MF, partially IMF and partially NMF. In neutrosophic possibility,
every neutrosophic term (MF, IMF, and NMF) has a possibility degree. However, from a precise
scientific perspective, some weaknesses appear when applying NSs to common data analysis in many
daily life scenarios. To overcome this issue, Ye [38] proposed the idea of simplified neutrosophic
sets (SNSs), which are considered a sub-class form of NSs, and introduced some AOs, including a
SN-weighted arithmetic average (SNWAA) operator and a SN-weighted geometric average operator
(SNWGA). Mishra et al. [39] presented MCDM using the NS environment. Ali and Smarandache [40]
expanded three NS memberships from a real to a complex environment. Building upon their work,
Al-Quran et al. [41, 42] have further expanded NS by introducing Q-complex neutrosophic sets and
fuzzy parameterized complex neutrosophic soft expert sets within the same environment. Expanding
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on these advancements, Al-Sharqi et al. [43] combined both NS and soft sets under the interval
complex value. Karabasevi et al. [44] developed a novel extension of the TOPSIS method using NSs.
Abdel-Basset et al. [45] suggested a neutrosophic MCDM (NMCDM) approach to assist patients and
physicians in determining if a patient is suffering from heart failure. Jana and Pal [46] introduced a
new aggregation operator of SVNSNs and utilized this operator to address medical diagnosis problems.
Further, Ji et al. [47] studied the Frank normalized prioritized Bonferroni mean (FNPBM) under NS
environment and defined some NS interaction FNPBM operators to solve MADM problems. Xu et
al. [48] developed the neutrosophic TODIM method. Hu et al. [49] developed the local and global
threshold criteria with the SVNS domain. Ye [50] extended the triangular NS to the trapezoidal NS,
in which its main three characteristics (MF, NMF and IMF) are trapezoidal neutrosophic numbers
rather than triangular neutrosophic numbers. Kaur and Garg [51] presented AOs based on generalized
linguistic neutrosophic cubic weighted averages (GLNCWA) and generalized linguistic neutrosophic
cubic weighted geometric using Archimedean norms. Jana et al. [52] further defined the score and
accuracy functions on the interval trapezoidal neutrosophic set (ITNS), and then they defined the ITN-
number weighted arithmetic averaging (ITNNWAA) operator and the ITN-number weighted geometric
averaging (ITNNWGA) operator, along with their applications in real-life scenarios. Recently, a lot of
emphasis has been placed on incorporating the features of NSs, IFSs and PyFs to increase accuracy
and improve AOs to address data inaccuracies. Bhowmik and Pal [53] initiated the IFVNS and its
operators with the condition that the sum of its MFs is less than or equal to two. Then, Unver et
al. [54] redefined the IFVNS, when they defined the IF neutrosophic multi-sets (IFNMSs). They also
presented some algebraic operations between IFVNSs in order to develop several AOs. Palanikumar et
al. [55] discussed a new generalization of Pythagorean neutrosophic normal interval-valued weighted
geometric (PNNIVWG) and obtained an algorithm that tackles the alternatives in MADM problems
entrenched in these operators. Chellamani and Ajay [56] proposed several basic graphical ideas
employing the Dombi operator within Pythagorean neutrosophic fuzzy graphs (PyNFG). Ajay and
Chellamani [57] utilized soft parameters for the MCDM scenario under a PyFVNS environment.
Palanikumar and Arulmozhi [58] developed a new approach to AOs using parameterized factors in the
PyFVNS environment, and they proposed a score function based on aggregating of both TOPSIS and
VIKOR techniques. Rajan and Krishnaswamy [59] developed clustering methods based on similarity
measures between PyFVNSs. Siraj et al. [60] provoked the concept of a Pym-polar FNs (PmFNSs) for
managing data that contains multi-polar facts. Lately, Bozyigit et al. [61] have redefined the PyFVNS,
where each component of the NS encompasses a PyFVS under the condition: ζ̂2+$̂2 ≤ 1. However, the
scope of IFVNSs and PyFVNSs is restricted because their capability is limited to addressing decision
making problems where the evaluation values are represented using IF and PyF values, and these values
are insufficient to fully convey the actual decision-related information. In this article, we broaden the
scope of the notions of IFVNSs and PyFVNSs by incorporating the q-ROF values to the construction
of the SNS. It is important to highlight that as the rung q increases, the range of acceptable orthopairs
expands, and a greater number of orthopairs meet the bounding constraint. Consequently, by utilizing
q-ROF values, we are able to represent a broader spectrum of fuzzy information. Hence, this paper
introduces several key contributions.

(1) The concept of the q-ROFVNS is introduced, which extends and incorporates the principles of
previously published neutrosophic set-like literature.

(2) The q-ROFVNWAO and q-ROFVNWGO are investigated by leveraging the operational laws of
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q-ROFVNNs.
(3) The ranking is accomplished using various types of SFs and AFs.
(4) An MADM problem is tackled by utilizing q-ROFVNNs and incorporating the q-ROFVNWAO

and q-ROFVNWGO.
(5) Through comparative analysis, geometric interpretations are presented to demonstrate the benefits

of the proposed approaches.

The subsequent sections of this manuscript are succinctly delineated as follows: Section 2
encompasses an exhaustive appraisal of the fundamental underpinnings surrounding the IFS, PyFS,
q-ROFS, NS, SNS, IFVNS, and PyFVNS. Section 3, in its entirety, expounds upon the meticulous
definition of the q-ROFVNS and delves into a comprehensive examination of its fundamental and
algebraic operations. Furthermore, a multitude of diverse categories of SFs and AFs are meticulously
introduced within this section. Section 4, on the other hand, engenders the conceptualization of
the q-ROFVNWAO and q-ROFVNWGO, accompanied by an extensive discourse on their inherent
properties. Notably, Section 5 unveils an exemplary MADM methodology that effectively harnesses
the proposed operators. A compelling illustrative example is also presented here to vividly showcase
the practical application of the proposed models. Section 6 culminates in a comprehensive comparative
analysis meticulously elucidating the unequivocal superiority of the proposed methodologies. In the
ultimate Section 7, conclusive remarks are expounded, encapsulating the key findings and outcomes.

2. Basic knowledge

A few elementary terms are recalled from previously published papers in this part. The symbols �̂
and ∆̂ will represent [0,1] and the universal set, respectively, throughout the paper.

Definition 2.1. [7] An IFS Ξ̂ is defined on ∆̂ as

Ξ̂ = {
(
δ̂, 〈ζ̂Ξ̂(δ̂), $̂Ξ̂(δ̂)〉

)
: δ̂ ∈ ∆̂},

where ζ̂Ξ̂ and $̂Ξ̂ ∈ �̂ are, respectively, the MF and NMF, such that 0 ≤ ζ̂Ξ̂(δ̂) + $̂Ξ̂(δ̂) ≤ 1, ∀δ̂ ∈ ∆̂.

Definition 2.2. [11] The PyFS Â in ∆̂ is formalized as

Â = {
(
δ̂, 〈ζ̂Â(δ̂), $̂Â(δ̂)〉

)
: δ̂ ∈ ∆̂},

where ζ̂Â : ∆̂ −→ �̂ denotes the MF and $̂Â : ∆̂ −→ �̂ denotes the NMF with the condition that 0 ≤
(ζ̂Â(δ̂))2 + ($̂Â(δ̂))2 ≤ 1.

Definition 2.3. [22] The q-ROFS Λ̂ on ∆̂ is expressed as

Λ̂ = {(δ̂, ζ̂Λ̂(δ̂), $̂Λ̂(δ̂)) : δ̂ ∈ ∆̂},

where ζ̂Λ̂(δ̂) and $̂Λ̂(δ̂) lie in �̂ under the condition 0 ≤ (ζ̂Λ̂(δ̂))q + ($̂Λ̂(δ̂))q ≤ 1 (q ≥ 1),∀δ̂ ∈ ∆̂. The

hesitancy part is given by: λΛ̂(δ̂) =
(
(ζ̂Λ̂(δ̂))q + ($̂Λ̂(δ̂))q − (ζ̂Λ̂(δ̂))q($̂Λ̂(δ̂))q

)1/q
.

Definition 2.4. [37] A NS M̂ in ∆̂ is a structure of the form

M̂ = {< δ̂;TM̂(δ̂), IM̂(δ̂),FM̂(δ̂) >: δ̂ ∈ ∆̂},

where the mappings TM̂; IM̂; FM̂ : ∆̂→]−0; 1+[ represent the MF, IMF and NMF functions, respectively,
with −0 ≤ TM̂ + IM̂ + FM̂ ≤ 3+.
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Definition 2.5. [38] A SNS N̂ in ∆̂ with a generic element u in ∆̂ is characterized as.

N̂ = {< δ̂;TN̂(δ̂), IN̂(δ̂),FN̂(δ̂) >: δ̂ ∈ ∆̂},

where the mappings TN̂; IN̂; FN̂ : ∆̂ → �̂ represent the MF, IMF and NMF functions, respectively,
with 0 ≤ TN̂ + IN̂ + FN̂ ≤ 3.

3. The concept of q-rung orthopair fuzzy-valued neutrosophic set (q-ROFVNS)

This part exhibits the formal definitions of q-ROFVNS and q-ROFVNN, along with score functions
(SF) of q-ROFVNN. Then, the basic and algebraic operations of q-ROFVNS are provided in the
following parts.

Definition 3.1. A q-ROFVNS S over ∆̂ is signified by S = {
〈
δ̂,TS, IS,FS

〉
: δ̂ ∈ ∆̂}, where TS, IS and

FS represent the membership, indeterminacy membership and non-membership neutrosophic values.
Each of them is a q-rung orthopair fuzzy value, where ∀δ̂ ∈ ∆̂, q ≥ 1, TS =

(
ζ̂S,T(δ̂), $̂S,T(δ̂)

)
such

that ζ̂S,T(δ̂), $̂S,T(δ̂) ∈ �̂, subject to the condition (ζ̂S,T(δ̂))q + ($̂S,T(δ̂))q ≤ 1, IS =
(
ζ̂S,I(δ̂), $̂S,I(δ̂)

)
such that ζ̂S,I(δ̂), $̂S,I(δ̂) ∈ �̂, subject to the condition (ζ̂S,I(δ̂))q + ($̂S,I(δ̂))q ≤ 1, FS =

(
ζ̂S,F(δ̂), $̂S,F(δ̂)

)
such that ζ̂S,F(δ̂), $̂S,F(δ̂) ∈ �̂, subject to the condition (ζ̂S,F(δ̂))q + ($̂S,F(δ̂))q ≤ 1. By definition, 0 ≤
TS + IS + FS ≤ 3. A q-ROFVNS S over ∆̂ can be written as.

S = {
〈
δ̂,

(
ζ̂S,T(δ̂), $̂S,T(δ̂)

)
,
(
ζ̂S,I(δ̂), $̂S,I(δ̂)

)
,
(
ζ̂S,F(δ̂), $̂S,F(δ̂)

)〉
: δ̂ ∈ ∆̂}.

Definition 3.2. A collection of Γ =
〈(
ζ̂T, $̂T

)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

)〉
is called a q-ROFVN number (q-

ROFVNN) with (ζ̂T)q + ($̂T)q ≤ 1, (ζ̂I)q + ($̂I)q ≤ 1 and (ζ̂F)q + ($̂F)q ≤ 1, (q ≥ 1).

Example 3.3. Suppose ∆̂ = {u1, u2, u3}. Then,

S =


〈u1, (0.7, 0.9), (0.1, 0.8), (0.7, 0.6)〉,
〈u2, (0.2, 0.5), (0.3, 0.8), (0.8, 0.6)〉,
〈u3, (0.8, 0.9), (0.3, 0.8), (0.5, 0.6)〉


is a q-ROFVNS (q = 5).

Remark 3.4. Some particular cases are as follows

(1) When q = 2 , a q-ROFVNN S becomes a PyFVNN.
(2) When q = 1 , a q-ROFVNN S becomes an IFVNN.

Definition 3.5. Let S = {
〈
δ̂,

(
ζ̂S,T(δ̂), $̂S,T(δ̂)

)
,
(
ζ̂S,I(δ̂), $̂S,I(δ̂)

)
,
(
ζ̂S,F(δ̂), $̂S,F(δ̂)

)〉
: δ̂ ∈ ∆̂} be a q-

ROFVNS over ∆̂. S is said to be an absolute q-ROFVNS denoted by SΨ if ζ̂S,T(δ̂) = $̂S,I(δ̂) =

$̂S,F(δ̂) = 1 and $̂S,T(δ̂) = ζ̂S,I(δ̂) = ζ̂S,F(δ̂) = 0, i.e., SΨ =
〈(

1, 0
)
,
(
0, 1

)
,
(
0, 1

)〉
, ∀δ̂ ∈ ∆̂.

Definition 3.6. Let S = {
〈
δ̂,

(
ζ̂S,T(δ̂), $̂S,T(δ̂)

)
,
(
ζ̂S,I(δ̂), $̂S,I(δ̂)

)
,
(
ζ̂S,F(δ̂), $̂S,F(δ̂)

)〉
: δ̂ ∈ ∆̂} be a q-

ROFVNS over ∆̂. S is said to be a null q-ROFVNS denoted by SΦ if ζ̂S,T(δ̂) = $̂S,I(δ̂) = $̂S,F(δ̂) = 0
and $̂S,T(δ̂) = ζ̂S,I(δ̂) = ζ̂S,F(δ̂) = 1, i.e., SΦ =

〈(
0, 1

)
,
(
1, 0

)
,
(
1, 0

)〉
, ∀δ̂ ∈ ∆̂.
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3.1. Score functions of q-ROFVNNs

In this section, we define the SF, accuracy function (AF), quadratic SF (QSF) and QAF.

Definition 3.7. Let Γ =
〈(
ζ̂T, $̂T

)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

)〉
be q-ROFVNN. Then, the SF on Γ is signified by

the mapping Π : q − ROFVNN(∆̂) −→ [−1, 1] and defined as

ΠΓ = Π(Γ) = 1
3 [[(ζ̂T)q − ($̂T)q] − [(ζ̂I)q − ($̂I)q] − [(ζ̂F)q − ($̂F)q]], q ≥ 1. (1)

q − ROFVNN(∆̂) is the collection of q-ROFVNNs on ∆̂.

Definition 3.8. The AF k is signified by the mapping k : q − ROFVNN(∆̂) −→ �̂ and defined as

2kΓ = k(Γ) =
1
6

[[(ζ̂T)q + ($̂T)q] + [(ζ̂I)q + ($̂I)q] + [(ζ̂F)q + ($̂F)q]], q ≥ 1.(2) (2)

q − ROFVNN(∆̂) is the collection of q-ROFVNNs on ∆̂.

Definition 3.9. Let Γ1 and Γ2 be two q-ROFVNNs.

(1) If ΠΓ1 < ΠΓ2 , then Γ1 < Γ2.
(2) If ΠΓ1 > ΠΓ2 , then Γ1 > Γ2.
(3) If ΠΓ1 = ΠΓ2 and kΓ1 < kΓ2 , then Γ1 < Γ2.
(4) If ΠΓ1 = ΠΓ2 and kΓ1 > kΓ2 , then Γ1 > Γ2.

Definition 3.10. Let Γ =
〈(
ζ̂T, $̂T

)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

)〉
be a q-ROFVNN. Then, the QSF on Γ is

determined by the mapping Ω : q − ROFVNN(∆̂) −→ [−1, 1] and defined as

OmegaΓ = Ω(Γ) =
1
3

[[
(ζ̂T)2q − ($̂T)2q] − [

(ζ̂I)2q − ($̂I)2q] − [
(ζ̂F)2q − ($̂F)2q]], q ≥ 1. (3)

q − ROFVNN(∆̂) is the collection of q-ROFVNNs on ∆̂.

Definition 3.11. The QAF i is signified by the mapping i : q − ROFVNN(∆̂) −→ �̂ and defined as

4iΓ = i(Γ) =
1
6

[[
(ζ̂T)2q + ($̂T)2q] +

[
(ζ̂I)2q + ($̂I)2q] +

[
(ζ̂F)2q + ($̂F)2q]], q ≥ 1. (4)

q − ROFVNN(∆̂) is the collection of q-ROFVNNs on ∆̂.

Definition 3.12. Let Γ1 and Γ2 be two q-ROFVNNs.

(1) If ΩΓ1 < ΩΓ2 , then Γ1 < Γ2.
(2) If ΩΓ1 > ΩΓ2 , then Γ1 > Γ2.
(3) If ΩΓ1 = ΩΓ2 and iΓ1 < iΓ2 , then Γ1 < Γ2.
(4) If ΩΓ1 = ΩΓ2 and iΓ1 > iΓ2 , then Γ1 > Γ2.
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3.2. Basic operations on q-ROFVNS

In order to present the basic operations on q-ROFVNS, we suppose that H,
G are two q-ROFVNSs over ∆̂, where H = {

〈
δ̂,TH, IH,FH

〉
: δ̂ ∈ ∆̂} =

{
〈
δ̂,

(
ζ̂H,T(δ̂), $̂H,T(δ̂)

)
,
(
ζ̂H,I(δ̂), $̂H,I(δ̂)

)
,
(
ζ̂H,F(δ̂), $̂H,F(δ̂)

)〉
: δ̂ ∈ ∆̂}, and G = {

〈
δ̂,TG, IG,FG

〉
:

δ̂ ∈ ∆̂},= {
〈
δ̂,

(
ζ̂G,T(δ̂), $̂G,T(δ̂)

)
,
(
ζ̂G,I(δ̂), $̂G,I(δ̂)

)
,
(
ζ̂G,F(δ̂), $̂G,F(δ̂)

)〉
: δ̂ ∈ ∆̂}.

Definition 3.13. Let H, G be two q-ROFVNSs over ∆̂. Then, H is a subset of G, denoted by H ⊆ G if
and only if.
TH ⊆q TG, i.e., ζ̂H,T(δ̂) ≤ ζ̂G,T(δ̂) and $̂H,T(δ̂) ≥ $̂G,T(δ̂),
IH ⊇q IG, i.e., ζ̂H,T(δ̂) ≥ ζ̂G,I(δ̂) and $̂H,I(δ̂) ≤ $̂G,I(δ̂),
FH ⊇q FG, i.e., ζ̂H,F(δ̂) ≥ ζ̂G,F(δ̂) and $̂H,F(δ̂) ≤ $̂G,F(δ̂). In this definition ⊆q represents the q-rung
orthopair fuzzy subset.

Definition 3.14. Let H, G be two q-ROFVNSs over ∆̂. Then, H is equal to G, denoted by H = G if
and only if.
TH = TG, i.e., ζ̂H,T(δ̂) = ζ̂G,T(δ̂) and $̂H,T(δ̂) = $̂G,T(δ̂),
IH = IG, i.e., ζ̂H,T(δ̂) = ζ̂G,I(δ̂) and $̂H,I(δ̂) = $̂G,I(δ̂),
FH = FG, i.e., ζ̂H,F(δ̂) = ζ̂G,F(δ̂) and $̂H,F(δ̂) = $̂G,F(δ̂).

Definition 3.15. Let H be a q-ROFVNS over ∆̂. Then, the complement of H is denoted by (H)c and
defined as
(H)c = {

〈
δ̂,FH, (IH)cq ,TH

〉
: δ̂ ∈ ∆̂}, where cq is a q-ROF-complement, and (IH)cq =

(
$̂H,I(δ̂), ζ̂H,I(δ̂)

)
.

Definition 3.16. Let H and G be two q-ROFVNSs over ∆̂. The union of H and G is denoted by (H∪G)
and defined as:
(H ∪ G) = {

〈
δ̂,TH ∪q TG, IH ∩q IG,FH ∩q FG

〉
: δ̂ ∈ ∆̂}, where ∪q is the q-ROF-union, ∩q is the q-ROF-

intersection, and
TH ∪q TG =

((
ζ̂H,T(δ̂) ∨ ζ̂G,T(δ̂)

)
,
(
$̂H,T(δ̂) ∧ $̂G,T(δ̂)

))
,

IH ∩q IG =
((
ζ̂H,I(δ̂) ∧ ζ̂G,I(δ̂)

)
,
(
$̂H,I(δ̂) ∨ $̂G,I(δ̂)

))
,

FH ∩q FG =
((
ζ̂H,F(δ̂) ∧ ζ̂G,F(δ̂)

)
,
(
$̂H,F(δ̂) ∨ $̂G,F(δ̂)

))
.

∨ = max, ∧ = min.

Definition 3.17. Let H and G be two q-ROFVNSs over ∆̂. The intersection of H and G is denoted by
(H ∩ G) and defined as
(H ∩ G) = {

〈
δ̂,TH ∩q TG, IH ∪q IG,FH ∪q FG

〉
: δ̂ ∈ ∆̂}, where ∪q is the q-ROF-union, ∩q is the q-ROF-

intersection, and
TH ∩q TG =

((
ζ̂H,T(δ̂) ∧ ζ̂G,T(δ̂)

)
,
(
$̂H,T(δ̂) ∨ $̂G,T(δ̂)

))
,

IH ∪q IG =
((
ζ̂H,I(δ̂) ∨ ζ̂G,I(δ̂)

)
,
(
$̂H,I(δ̂) ∧ $̂G,I(δ̂)

))
,

FH ∪q FG =
((
ζ̂H,F(δ̂) ∨ ζ̂G,F(δ̂)

)
,
(
$̂H,F(δ̂) ∧ $̂G,F(δ̂)

))
.

∨ = max, ∧ = min.

Example 3.18. If ∆̂ = {u1, u2} such that

H =
{〈

u1, (0.7, 0.9), (0.1, 0.8), (0.7, 0.6)
〉
,
〈
u2, (0.2, 0.5), (0.3, 0.8), (0.8, 0.6)

〉}
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and
G =

{〈
u1, (0.3, 0.9), (0.5, 0.7), (0.9, 0.6)

〉
,
〈
u2, (0.1, 0.7), (0.2, 0.8), (0.9, 0.7)

〉}
are two q-ROFVNSs, then

(1) (H)c =
{〈

u1, (0.7, 0.6), (0.8, 0.1), (0.7, 0.9)
〉
,
〈
u2, (0.8, 0.6), (0.8, 0.3), (0.2, 0.5)

〉}
,

(2) (H ∪ G) =
{〈

u1, (0.7, 0.9), (0.1, 0.8), (0.7, 0.6)
〉
,
〈
u2, (0.2, 0.5), (0.2, 0.8), (0.8, 0.7)

〉}
,

(3) (H ∩ G) =
{〈

u1, (0.3, 0.9), (0.5, 0.7), (0.9, 0.6)
〉
,
〈
u2, (0.1, 0.7), (0.3, 0.8), (0.9, 0.6)

〉}
.

Proposition 3.19. Let H = {
〈
δ̂,TH, IH,FH

〉
: δ̂ ∈ ∆̂}, G = {

〈
δ̂,TG, IG,FG

〉
: δ̂ ∈ ∆̂} and

K = {
〈
δ̂,TK, IK,FK

〉
: δ̂ ∈ ∆̂} be three q-ROFVNSs. Then, the following properties hold:

(1) (H∪G)∪K = H∪ (G∪K). (5)
(2) (H∩G)∩K = H∩ (G∩K). (6)
(3) H∪ (G∩K) = (H∪G)∩ (H∪K). (7)
(4) H∩ (G∪K) = (H∩G)∪ (H∩K). (8)
(5) (H∪G)c = (H)c∩ (G)c. (9)
(6) (H∩G)c = (H)c∪(G)c. (10)

Proof. We will prove properties (5) and (6) as the proof of the remaining properties is trivial.

(5) For the left side, we have (H ∪ G) = {
〈
δ̂,TH ∪q TG, IH ∩q IG,FH ∩q FG

〉
: δ̂ ∈ ∆̂}. According to

Definition 3.16, we have
(H ∪ G)c = {

〈
δ̂,FH ∩q FG, (IH ∩q IG)cq ,TH ∪q TG

〉
: δ̂ ∈ ∆̂}

= {
〈
δ̂,FH ∩q FG, (IH)cq ∪q (IG)cq ,TH ∪q TG

〉
: δ̂ ∈ ∆̂},

= (H)c ∩ (G)c

(6) For the left side, we have (H ∩ G) = {
〈
δ̂,TH ∩q TG, IH ∪q IG,FH ∪q FG

〉
: δ̂ ∈ ∆̂}. According to

Definition 3.17, we have
(H ∩ G)c = {

〈
δ̂,FH ∪q FG, (IH ∪q IG)cq ,TH ∩q TG

〉
: δ̂ ∈ ∆̂}.

= {
〈
δ̂,FH ∪q FG, (IH)cq ∪q (IG)cq ,TH ∩q TG

〉
: δ̂ ∈ ∆̂},

= (H)c ∪ (G)c.

�

3.3. Algebraic operations for q-ROFVNNs

In this part, we present some algebraic operations for q-ROFVNNs.

Definition 3.20. Let
Γ1 =

〈( 1ζ̂T,
1$̂T

)
,
( 1ζ̂I,

1$̂I
)
,
( 1ζ̂F,

1$̂F
)〉

and Γ2 =
〈( 2ζ̂T,

2$̂T
)
,
( 2ζ̂I,

2$̂I
)
,
( 2ζ̂F,

2$̂F
)〉

be two
q-ROFVNNs over ∆̂ and Θ > 0. Then,

(1) Γ1 ⊕ Γ2 =
〈(

( ( 1ζ̂T)q + ( 2ζ̂T)q − ( 1ζ̂T)q ( 2ζ̂T)q )
1
q , 1$̂T

2$̂T
)
,
( 1ζ̂I

2ζ̂I,
(

( 1$̂I)q + ( 2$̂I)q −

( 1$̂I)q ( 2$̂I)q )
1
q
)
,
( 1ζ̂F

2ζ̂F,
(

( 1$̂F)q +( 2$̂F)q− ( 1$̂F)q ( 2$̂F)q )
1
q
)〉
. (11)

(2) Γ1 ⊗ Γ2 =
〈( 1ζ̂T

2ζ̂T,
(

( 1$̂T)q + ( 2$̂T)q − ( 1$̂T)q ( 2$̂T)q )
1
q
)
,
(

( 1ζ̂I)q + ( 2ζ̂I)q −

( 1ζ̂I)q ( 2ζ̂I)q )
1
q , 1$̂I

2$̂I
)
,
(

( 1ζ̂F)q+( 2ζ̂F)q− ( 1ζ̂F)q ( 2ζ̂F)q )
1
q , 1$̂F

2$̂F
)〉
. (12)
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(3) ΘΓ1 =
〈 (

(1 − (1 − ( 1ζ̂T)q)Θ)
1
q , ( 1$̂T)Θ

)
,
(
( 1ζ̂I)Θ, (1 − (1 − ( 1$̂I)q)Θ)

1
q
)
,
(
( 1ζ̂F)Θ, (1 − (1 −

( 1$̂F)q)Θ)
1
q
)〉
. (13)

(4) (Γ1)Θ =
〈(

( 1ζ̂T)Θ, (1 − (1 − ( 1$̂T)q)Θ)
1
q
)
,
(
(1 − (1 − ( 1ζ̂I)q)Θ)

1
q , ( 1$̂I)Θ

)
,
(
(1 − (1 −

( 1ζ̂F)q)Θ)
1
q , ( 1$̂F)Θ

)〉
. (14)

Example 3.21. Suppose
Γ1 =

〈(
0.7, 0.8

)
,
(
0.6, 0.7

)
,
(
0.4, 0.8

)〉
and Γ2 =

〈(
0.6, 0.9

)
,
(
0.4, 0.9

)
,
(
0.7, 0.6

)〉
are two 3-ROFVNNs,

and Θ = 4. Then,

(1) Γ1 ⊕ Γ2 =
〈(

0.79, 0.72
)
,
(
0.24, 0.94

)
,
(
0.28, 0.85

)〉
,

(2) Γ1 ⊗ Γ2 =
〈(

0.42, 0.95
)
,
(
0.64, 0.63

)
,
(
0.73, 0.48

)〉
,

(3) ΘΓ1 =
〈(

0.93, 0.41
)
,
(
0.13, 0.93

)
,
(
0.03, 0.98

)〉
,

(4) (Γ1)Θ =
〈(

0.24, 0.98
)
,
(
0.85, 0.24

)
,
(
0.61, 0.41

)〉
.

Proposition 3.22. Let
Γ1 =

〈( 1ζ̂T,
1$̂T

)
,
( 1ζ̂I,

1$̂I
)
,
( 1ζ̂F,

1$̂F
)〉

, Γ2 =
〈( 2ζ̂T,

2$̂T
)
,
( 2ζ̂I,

2$̂I
)
,
( 2ζ̂F,

2$̂F
)〉

and Γ3 =〈( 3ζ̂T,
3$̂T

)
,
( 3ζ̂I,

3$̂I
)
,
( 3ζ̂F,

3$̂F
)〉

be three q-ROFVNNs over ∆̂ and Θ > 0. Then, the following
properties hold:

(1) (Γ1⊕Γ2)⊕Γ3 = Γ1⊕ (Γ2⊕Γ3). (15)

(2) (Γ1⊗Γ2)⊗Γ3 = Γ1⊗ (Γ2⊗Γ3). (16)

(3) Θ(Γ1 ⊕ Γ2) = ΘΓ1 ⊕ ΘΓ2. (17)

(4) (Γ1 ⊗ Γ2)Θ = ΓΘ
1 ⊗ ΓΘ

2 . (18)

Proof. We will prove properties (3) and (4) as the proof of the remaining properties is trivial.

(3) Based on Definition 3.20 (items (1) and (3)), we have for the right side of the equation

Θ(Γ1 ⊕ Γ2) = Θ


〈 (

( ( 1ζ̂T)q + ( 2ζ̂T)q − ( 1ζ̂T)q ( 2ζ̂T)q )
1
q , 1$̂T

2$̂T
)
,( 1ζ̂I

2ζ̂I,
(

( 1$̂I)q + ( 2$̂I)q − ( 1$̂I)q ( 2$̂I)q )
1
q
)
,( 1ζ̂F

2ζ̂F,
(

( 1$̂F)q + ( 2$̂F)q − ( 1$̂F)q ( 2$̂F)q )
1
q
)
〉  ,

=

〈 ([
1 −

[
1 − [( ( 1ζ̂T)q + ( 2ζ̂T)q − ( 1ζ̂T)q ( 2ζ̂T)q )

1
q ]q]Θ

] 1
q
, ( 1$̂T)Θ( 2$̂T)Θ

)
,(

( 1ζ̂I)Θ( 2ζ̂I)Θ,
[
1 −

[
1 − [( ( 1$̂I)q + ( 2$̂I)q − ( 1$̂I)q ( 2$̂I)q )

1
q ]q]Θ

] 1
q
)
,(

( 1ζ̂F)Θ( 2ζ̂F)Θ,
[
1 −

[
1 − [( ( 1$̂F)q + ( 2$̂F)q − ( 1$̂F)q ( 2$̂F)q )

1
q ]q]Θ

] 1
q
)

〉
,

=

〈 ([
1 −

[
1 − [ ( 1ζ̂T)q + ( 2ζ̂T)q − ( 1ζ̂T)q ( 2ζ̂T)q ]

]Θ
] 1

q
, ( 1$̂T)Θ( 2$̂T)Θ

)
,(

( 1ζ̂I)Θ( 2ζ̂I)Θ,
[
1 −

[
1 − [ ( 1$̂I)q + ( 2$̂I)q − ( 1$̂I)q ( 2$̂I)q ]

]Θ
] 1

q
)
,(

( 1ζ̂F)Θ( 2ζ̂F)Θ,
[
1 −

[
1 − [ ( 1$̂F)q + ( 2$̂F)q − ( 1$̂F)q ( 2$̂F)q ]

]Θ
] 1

q
)

〉
,
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=

〈 (
[1 − (1 − ( 1ζ̂T)q )Θ (1 − ( 2ζ̂T)q )Θ]

1
q , ( 1$̂T)Θ ( 2$̂T )Θ

)
,(

( 1ζ̂I)Θ ( 2ζ̂I )Θ, [1 − (1 − ( 1$̂I)q )Θ (1 − ( 2$̂I )q )Θ]
1
q
)
,(

( 1ζ̂F)Θ ( 2ζ̂F )Θ, [1 − (1 − ( 1$̂F )q)Θ (1 − ( 2$̂F )q )Θ]
1
q
)

〉
.

For the right side of the equation, we have

ΘΓ1 =

〈 (
(1 − (1 − ( 1ζ̂T)q)Θ)

1
q , ( 1$̂T)Θ

)
,(

( 1ζ̂I)Θ, (1 − (1 − ( 1$̂I)q)Θ)
1
q
)
,(

( 1ζ̂F)Θ, (1 − (1 − ( 1$̂F)q)Θ)
1
q
)

〉
,

ΘΓ2 =

〈 (
(1 − (1 − ( 2ζ̂T)q)Θ)

1
q , ( 2$̂T)Θ

)
,(

( 2ζ̂I)Θ, (1 − (1 − ( 2$̂I)q)Θ)
1
q
)
,(

( 2ζ̂F)Θ, (1 − (1 − ( 2$̂F)q)Θ)
1
q
)

〉
,

ΘΓ1 ⊕ ΘΓ2

=

〈
 ([

(1 − (1 − ( 1ζ̂T)q)Θ)
1
q
]q

+
[
(1 − (1 − ( 2ζ̂T)q)Θ)

1
q
]q

−
[
(1 − (1 − ( 1ζ̂T)q)Θ)

1
q
]q[(1 − (1 − ( 2ζ̂T)q)Θ)

1
q
]q) 1

q , ( 1$̂T)Θ( 2$̂T)Θ

 , ( 1ζ̂I)Θ( 2ζ̂I)Θ,
([

(1 − (1 − ( 1$̂I)q)Θ)
1
q
]q

+
[
(1 − (1 − ( 2$̂I)q)Θ)

1
q
]q

−
[
(1 − (1 − ( 1$̂I)q)Θ)

1
q
]q[(1 − (1 − ( 2$̂I)q)Θ)

1
q
]q) 1

q

 , ( 1ζ̂F)Θ( 2ζ̂F)Θ,
([

(1 − (1 − ( 1$̂F)q)Θ)
1
q
]q

+
[
(1 − (1 − ( 2$̂F)q)Θ)

1
q
]q

−
[
(1 − (1 − ( 1$̂F)q)Θ)

1
q
]q[(1 − (1 − ( 2$̂F)q)Θ)

1
q
]q) 1

q


〉
,

=

〈
 (

1 − (1 − ( 1ζ̂T)q)Θ + 1 − (1 − ( 2ζ̂T)q)Θ−[
1 − (1 − ( 1ζ̂T)q)Θ

][
1 − (1 − ( 2ζ̂T)q)Θ

] ) 1
q

, ( 1$̂T)Θ( 2$̂T)Θ

 , ( 1ζ̂I)Θ( 2ζ̂I)Θ,

(
1 − (1 − ( 1$̂I)q)Θ + 1 − (1 − ( 2$̂I)q)Θ−[
1 − (1 − ( 1$̂I)q)Θ

][
1 − (1 − ( 2$̂I)q)Θ

] ) 1
q

 , ( 1ζ̂F)Θ( 2ζ̂F)Θ,

(
1 − (1 − ( 1$̂F)q)Θ + 1 − (1 − ( 2$̂F)q)Θ−[
1 − (1 − ( 1$̂F)q)Θ

][
1 − (1 − ( 2$̂F)q)Θ

] ) 1
q


〉
,

=

〈 (
[1 − (1 − ( 1ζ̂T)q )Θ (1 − ( 2ζ̂T)q )Θ]

1
q , ( 1$̂T)Θ ( 2$̂T )Θ

)
,(

( 1ζ̂I)Θ ( 2ζ̂I )Θ, [1 − (1 − ( 1$̂I)q )Θ (1 − ( 2$̂I )q )Θ]
1
q

)
,(

( 1ζ̂F)Θ ( 2ζ̂F )Θ, [1 − (1 − ( 1$̂F )q)Θ (1 − ( 2$̂F )q )Θ]
1
q

)
〉
.

Thus, the right side of the equation equals the left side, which proves that Θ(Γ1⊕Γ2) = ΘΓ1⊕ΘΓ2.

(4) Based on Definition 3.20 (item (2) and item (4)), we have for the right side of the equation
(Γ1 ⊗ Γ2)Θ = 

〈 ( 1ζ̂T
2ζ̂T,

(
( 1$̂T)q + ( 2$̂T)q − ( 1$̂T)q ( 2$̂T)q )

1
q
)
,(

( 1ζ̂I)q + ( 2ζ̂I)q − ( 1ζ̂I)q ( 2ζ̂I)q )
1
q ,

1$̂I
2$̂I

)
,
(

( 1ζ̂F)q + ( 2ζ̂F)q − ( 1ζ̂F)q ( 2ζ̂F)q )
1
q , 1$̂F

2$̂F
)
〉 

Θ

,
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=

〈 (
( 1ζ̂T)Θ( 2ζ̂T)Θ,

[
1 −

[
1 − [( ( 1$̂T)q + ( 2$̂T)q − ( 1$̂T)q ( 2$̂T)q )

1
q ]q]Θ

] 1
q

)
,( [

1 −
[
1 − [( ( 1ζ̂I)q + ( 2ζ̂I)q − ( 1ζ̂I)q ( 2ζ̂I)q )

1
q ]q]Θ

] 1
q
, ( 1$̂I)Θ( 2$̂I)Θ

)
,( [

1 −
[
1 − [( ( 1ζ̂F)q + ( 2ζ̂F)q − ( 1ζ̂F)q ( 2ζ̂F)q )

1
q ]q]Θ

] 1
q
, ( 1$̂F)Θ( 2$̂F)Θ

)
〉
,

=

〈 (
( 1ζ̂T)Θ( 2ζ̂T)Θ,

[
1 −

[
1 − [ ( 1$̂T)q + ( 2$̂T)q − ( 1$̂T)q ( 2$̂T)q ]

]Θ
] 1

q

)
,( [

1 −
[
1 − [ ( 1ζ̂I)q + ( 2ζ̂I)q − ( 1ζ̂I)q ( 2ζ̂I)q ]

]Θ
] 1

q
, ( 1$̂I)Θ( 2$̂I)Θ

)
,( [

1 −
[
1 − [ ( 1ζ̂F)q + ( 2ζ̂F)q − ( 1ζ̂F)q ( 2ζ̂F)q ]

]Θ
] 1

q
, ( 1$̂F)Θ( 2$̂F)Θ

)
〉
,

=

〈 (
( 1ζ̂T)Θ ( 2ζ̂T )Θ, [1 − (1 − ( 1$̂T)q )Θ (1 − ( 2$̂T)q )Θ]

1
q

)
,(

[1 − (1 − ( 1ζ̂I)q )Θ (1 − ( 2ζ̂I )q )Θ]
1
q , ( 1$̂I)Θ ( 2$̂I )Θ

)
,(

[1 − (1 − ( 1ζ̂F)q )Θ (1 − ( 2ζ̂F )q )Θ]
1
q , ( 1$̂F)Θ ( 2$̂F )Θ

)
,

〉
.

For the right side of the equation, we have

(Γ1)Θ =

〈 (
( 1ζ̂T)Θ, (1 − (1 − ( 1$̂T)q)Θ)

1
q

)
,(

(1 − (1 − ( 1ζ̂I)q)Θ)
1
q , ( 1$̂I)Θ

)
,(

(1 − (1 − ( 1ζ̂F)q)Θ)
1
q , ( 1$̂F)Θ

)
〉
,

(Γ2)Θ =

〈 (
( 2ζ̂T)Θ, (1 − (1 − ( 2$̂T)q)Θ)

1
q

)
,(

(1 − (1 − ( 2ζ̂I)q)Θ)
1
q , ( 2$̂I)Θ

)
,(

(1 − (1 − ( 2ζ̂F)q)Θ)
1
q , ( 2$̂F)Θ

)
〉
,

ΓΘ
1 ⊗ ΓΘ

2 =

〈

 ( 1ζ̂T)Θ( 2ζ̂T)Θ,


[
(1 − (1 − ( 1$̂T)q)Θ)

1
q
]q

+[
(1 − (1 − ( 2$̂T)q)Θ)

1
q
]q
−[

(1 − (1 − ( 1$̂T)q)Θ)
1
q
]q[(1 − (1 − ( 2$̂T)q)Θ)

1
q
]q


1
q

 ,


[
(1 − (1 − ( 1ζ̂I)q)Θ)

1
q
]q

+[
(1 − (1 − ( 2ζ̂I)q)Θ)

1
q
]q
−[

(1 − (1 − ( 1ζ̂I)q)Θ)
1
q
]q[(1 − (1 − ( 2ζ̂I)q)Θ)

1
q
]q


1
q

, ( 1$̂I)Θ( 2$̂I)Θ

 ,


[
(1 − (1 − ( 1ζ̂F)q)Θ)

1
q
]q

+[
(1 − (1 − ( 2ζ̂F)q)Θ)

1
q
]q
−[

(1 − (1 − ( 1ζ̂F)q)Θ)
1
q
]q[(1 − (1 − ( 2ζ̂F)q)Θ)

1
q
]q


1
q

, ( 1$̂F)Θ( 2$̂F)Θ



〉
,
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=

〈

 ( 1ζ̂T)Θ( 2ζ̂T)Θ,


1 − (1 − ( 1$̂T)q)Θ+

1 − (1 − ( 2$̂T)q)Θ−[
1 − (1 − ( 1$̂T)q)Θ

][
1 − (1 − ( 2$̂T)q)Θ

] 1
q


 ,


1 − (1 − ( 1ζ̂I)q)Θ+

1 − (1 − ( 2ζ̂I)q)Θ−[
1 − (1 − ( 1ζ̂I)q)Θ

][
1 − (1 − ( 2ζ̂I)q)Θ

]


1
q

, ( 1$̂I)Θ( 2$̂I)Θ

 ,


1 − (1 − ( 1ζ̂F)q)Θ+

1 − (1 − ( 2ζ̂F)q)Θ−[
1 − (1 − ( 1ζ̂F)q)Θ

][
1 − (1 − ( 2ζ̂F)q)Θ

]


1
q

, ( 1$̂F)Θ( 2$̂F)Θ



〉
,

=

〈 (
( 1ζ̂T )

Θ
( 2ζ̂T )

Θ
, [1 − (1 − ( 1$̂T )q )Θ (1 − ( 2$̂T )q )Θ]

1
q

)
,(

[1 − (1 − ( 1ζ̂I)
q

)
Θ

(1 − ( 2ζ̂I )
q

)
Θ

]
1
q
, ( 1$̂I)Θ ( 2$̂I )Θ

)
,(

[1 − (1 − ( 1ζ̂F )
q

)
Θ

(1 − ( 2ζ̂F )
q

)
Θ

]
1
q
, ( 1$̂F )Θ ( 2$̂F )Θ

)
〉
.

�

This proves that (Γ1 ⊗ Γ2)Θ = ΓΘ
1 ⊗ ΓΘ

2 .

4. q-ROFVN aggregation operators

Based on the algebraic operations of q-ROFVNNs, we go on with aggregation operators of q-
ROFVNSs.

4.1. q-ROFVNWA operator

Here, we define the q-ROFVNWA operator and discuss its properties.

Definition 4.1. Let Γε =
{〈( εζ̂T,

ε$̂T
)
,
( εζ̂I,

ε$̂I
)
,
( εζ̂F,

ε$̂F
)〉

: ε = 1, ..., n
}

be a set of q-
ROFVNNs. The q-ROFVNWA operator is characterized by the transformation q − ROFVNWA :
q − ROFVNN(∆̂) −→ q − ROFVNN(∆̂) and defined as.

q − ROFVNWA(Γ1,Γ2, ...,Γn) = η1Γ1 ⊕ η2Γ2 ⊕ ...ηnΓn,

where ηε ∈ �̂ is the weight of Γε, ∀ε = 1, ..., n and
n∑
ε=1

ηε = 1.

Theorem 4.2. Let Γε =
{〈( εζ̂T,

ε$̂T
)
,
( εζ̂I,

ε$̂I
)
,
( εζ̂F,

ε$̂F
)〉

: ε = 1, ..., n
}

be a set of q-ROFVNNs
and η = (η1, η2, ...ηn) be the weight vector of Γε. Then, q − ROFVNWA(Γ1,Γ2, ...,Γn)

=

〈
([

1 −
n∏
ε=1

(
1 − (εζ̂T)q)ηε] 1

q ,

n∏
ε=1

(ε$̂T)ηε
)
,

( n∏
ε=1

(εζ̂I)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂I)q)ηε] 1

q
)
,

( n∏
ε=1

(εζ̂F)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂F)q)ηε] 1

q
)

〉
, q ≥ 1. (19)
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Proof. This theorem can be proven using mathematical induction as follows.

(1) Take n = 2. Then, since

η1Γ1 =

〈 (
(1 − (1 − ( 1ζ̂T)q)η1)

1
q , ( 1$̂T)η1

)
,(

( 1ζ̂I)η1 , (1 − (1 − ( 1$̂I)q)η1)
1
q
)
,(

( 1ζ̂F)η1 , (1 − (1 − ( 1$̂F)q)η1)
1
q
)

〉
,

and

η2Γ2 =

〈 (
(1 − (1 − ( 2ζ̂T)q)η2)

1
q , ( 2$̂T)η2

)
,(

( 2ζ̂I)η2 , (1 − (1 − ( 2$̂I)q)η2)
1
q
)
,(

( 2ζ̂F)η2 , (1 − (1 − ( 2$̂F)q)η2)
1
q
)

〉
,

we have,
η1Γ1 ⊕ η2Γ2 =

〈 ((
1 − (1 − ( 1ζ̂T)q)η1 + 1 − (1 − ( 2ζ̂T)q)η2 −

[
1 − (1 − ( 1ζ̂T)q)η1

][
1 − (1 −

( 2ζ̂T)q)η2
]) 1

q , ( 1$̂T)η1( 2$̂T)η2
)
,
(
( 1ζ̂I)η1( 2ζ̂I)η2 ,

(
1− (1− ( 1$̂I)q)η1 + 1− (1− ( 2$̂I)q)η2 −

[
1− (1−

( 1$̂I)q)η1
][

1 − (1 − ( 2$̂I)q)η2
]) 1

q
)
,
(
( 1ζ̂F)η1( 2ζ̂F)η2 ,

(
1 − (1 − ( 1$̂F)q)η1 + 1 − (1 − ( 2$̂F)q)η2 −[

1 − (1 − ( 1$̂F)q)η1
][

1 − (1 − ( 2$̂F)q)η2
]) 1

q
)〉
,

=
〈 (

[1−(1−( 1ζ̂T)q )η1 (1−( 2ζ̂T)q )η2]
1
q , ( 1$̂T)η1 ( 2$̂T )η2

)
,
(

( 1ζ̂I)η1 ( 2ζ̂I )η2 , [1−(1−( 1$̂I)q )η1 (1−

( 2$̂I )q )η2]
1
q
)
,
(

( 1ζ̂F)η1 ( 2ζ̂F )η2 , [1 − (1 − ( 1$̂F )q)η1 (1 − ( 2$̂F )q )η2]
1
q
) 〉
,

=

〈
([

1 −
2∏
ε=1

(
1 − (εζ̂T)q)ηε] 1

q ,

2∏
ε=1

(ε$̂T)ηε
)
,

( 2∏
ε=1

(εζ̂I)ηε ,
[
1 −

2∏
ε=1

(
1 − (ε$̂I)q)ηε] 1

q
)
,

( 2∏
ε=1

(εζ̂F)ηε ,
[
1 −

2∏
ε=1

(
1 − (ε$̂F)q)ηε] 1

q
)

〉
.

This satisfies Eq (19).
(2) If Eq (19) is satisfied while ε = n, then q − ROFVNWA(Γ1,Γ2, ...,Γn)

=

〈
([

1 −
n∏
ε=1

(
1 − (εζ̂T)q)ηε] 1

q ,

n∏
ε=1

(ε$̂T)ηε
)
,

( n∏
ε=1

(εζ̂I)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂I)q)ηε] 1

q
)
,

( n∏
ε=1

(εζ̂F)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂F)q)ηε] 1

q
)

〉
, q ≥ 1.

Suppose ε = n + 1. Then, based on the algebraic operations of the q-ROFVNNs, we have q −
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ROFVNWA(Γ1,Γ2, ...,Γn+1) = q − ROFVNWA(Γ1,Γ2, ...,Γn) ⊕ ηn+1Γn+1,

=

〈
([

1 −
n∏
ε=1

(
1 − (εζ̂T)q)ηε] 1

q ,

n∏
ε=1

(ε$̂T)ηε
)
,

( n∏
ε=1

(εζ̂I)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂I)q)ηε] 1

q
)
,

( n∏
ε=1

(εζ̂F)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂F)q)ηε] 1

q
)

〉
⊕

〈
(

(1 − (1 − ( n+1ζ̂T)q)ηn+1)
1
q ,

( n+1$̂T)ηn+1

)
,(

( n+1ζ̂I)ηn+1 ,

(1 − (1 − ( n+1$̂I)q)ηn+1)
1
q

)
,(

( n+1ζ̂F)ηn+1 ,

(1 − (1 − ( n+1$̂F)q)ηn+1)
1
q

)
,

〉
,

=

〈





[
1 −

n∏
ε=1

(
1 − (εζ̂T)q)ηε]+[

1 − (1 − ( n+1ζ̂T)q)ηn+1
]
−[

1 −
n∏
ε=1

(
1 − (εζ̂T)q)ηε] [

1 − (1 − ( n+1ζ̂T)q)ηn+1
]



1
q

,

(
n∏
ε=1

(ε$̂T)ηε)( n+1$̂T)ηn+1


,



(
n∏
ε=1

(εζ̂I)ηε)( n+1ζ̂I)ηn+1 ,

[
1 −

n∏
ε=1

(
1 − (ε$̂I)q)ηε]+[

1 − (1 − ( n+1$̂I)q)ηn+1
]
−[

1 −
n∏
ε=1

(
1 − (ε$̂I)q)ηε] [

1 − (1 − ( n+1$̂I)q)ηn+1
]



1
q


,



(
n∏
ε=1

(εζ̂F)ηε)( n+1ζ̂F)ηn+1 ,

[
1 −

n∏
ε=1

(
1 − (ε$̂F)q)ηε]+[

1 − (1 − ( n+1$̂F)q)ηn+1
]
−[

1 −
n∏
ε=1

(
1 − (ε$̂F)q)ηε] [

1 − (1 − ( n+1$̂F)q)ηn+1
]



1
q



〉
,

=

〈
([

1 −
n∏
ε=1

(
1 − (εζ̂T)q)ηε(1 − (n+1ζ̂T)q)ηn+1] 1

q ,

n+1∏
ε=1

(ε$̂T)ηε
)
,

( n+1∏
ε=1

(εζ̂I)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂I)q)ηε(1 − (n+1$̂I)q)ηn+1] 1

q
)
,

( n+1∏
ε=1

(εζ̂F)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂F)q)ηε(1 − (n+1$̂F)q)ηn+1] 1

q
)

〉
,
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=

〈
([

1 −
n+1∏
ε=1

(
1 − (εζ̂T)q)ηε] 1

q ,

n+1∏
ε=1

(ε$̂T)ηε
)
,

( n+1∏
ε=1

(εζ̂I)ηε ,
[
1 −

n+1∏
ε=1

(
1 − (ε$̂I)q)ηε] 1

q
)
,

( n+1∏
ε=1

(εζ̂F)ηε ,
[
1 −

n+1∏
ε=1

(
1 − (ε$̂F)q)ηε] 1

q
)

〉
,

ε = 1, 2, ..., n + 1. This proves that Eq (5) is satisfied for ε = n + 1. According to (1) and (2),
Eq (19) holds for any ε. This completes the proof.

�

Proposition 4.3. Idempotent Property: Let Γε =
{〈( εζ̂T,

ε$̂T
)
,
( εζ̂I,

ε$̂I
)
,
( εζ̂F,

ε$̂F
)〉

: ε = 1, ..., n
}

be a collection of q-ROFVNNs. If Γε = Γ =
〈(
ζ̂T, $̂T

)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

)〉
,∀ε = 1, ..., n, then

q − ROFVNWA(Γ1,Γ2, ...,Γn) = Γ =
〈(
ζ̂T, $̂T

)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

)〉
.

Proof. Γε = Γ =
〈(
ζ̂T, $̂T

)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

)〉
,∀ε = 1, ..., n. Then, based on Theorem 4.2,

q − ROFVNWA(Γ1,Γ2, ...,Γn) =

〈
([

1 −
n∏
ε=1

(
1 − (εζ̂T)q)ηε] 1

q ,

n∏
ε=1

(ε$̂T)ηε
)
,

( n∏
ε=1

(εζ̂I)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂I)q)ηε] 1

q
)
,

( n∏
ε=1

(εζ̂F)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂F)q)ηε] 1

q
)

〉
,

=

〈 ([
1 − (1 − (ζ̂T)q)

∑n
ε=1 ηε

] 1
q , ($̂T)

∑n
ε=1 ηε

)
,(

(ζ̂I)
∑n
ε=1 ηε ,

[
1 − (1 − ($̂I)q)

∑n
ε=1 ηε

] 1
q
)
,(

(ζ̂F)
∑n
ε=1 ηε ,

[
1 − (1 − ($̂F)q)

∑n
ε=1 ηε

] 1
q
)

〉
,

=

〈 ([
1 − (1 − (ζ̂T)q)

] 1
q , ($̂T)

)
,(

(ζ̂I),
[
1 − (1 − ($̂I)q)

] 1
q
)
,(

(ζ̂F),
[
1 − (1 − ($̂F)q)

] 1
q
)

〉
,

=
〈 (

ζ̂T, $̂T
)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

) 〉
= Γ.

�

Proposition 4.4. Boundedness Property: Let Γε =
{〈( εζ̂T,

ε$̂T
)
,
( εζ̂I,

ε$̂I
)
,
( εζ̂F,

ε$̂F
)〉

:
ε = 1, ..., n

}
be a collection of q-ROFVNNs. If Γ− =

〈(
ζ̂−T , $̂

+
T

)
,
(
ζ̂+
I , $̂

−
I

)
,
(
ζ̂+
F , $̂

−
F

)〉
and

Γ+ =
〈(
ζ̂+
T , $̂

−
T

)
,
(
ζ̂−I , $̂

+
I

)
,
(
ζ̂−F , $̂

+
F

)〉
, where, ζ̂−T = min

ε
{εζ̂T}, ζ̂

+
T = max

ε
{εζ̂T}, ζ̂

−
I = min

ε
{εζ̂I}, ζ̂

+
I =

max
ε
{εζ̂I}, ζ̂

−
F = min

ε
{εζ̂F}, ζ̂

+
F = max

ε
{εζ̂F}, $̂

−
T = min

ε
{ε$̂T}, $̂

+
T = max

ε
{ε$̂T}, $̂

−
I = min

ε
{ε$̂I}, $̂

+
I =

max
ε
{ε$̂I}, $̂

−
F = min

ε
{ε$̂F}, $̂

+
F = max

ε
{ε$̂F}, then Γ− ≤ q − ROFVNWA(Γ1,Γ2, ...,Γn) ≤ Γ+.
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Proof. Since ζ̂−T ≤
εζ̂T ≤ ζ̂

+
T , for q ≥ 1, we obtain

(ζ̂−T )q ≤ (εζ̂T)q ≤ (ζ̂+
T )q ⇒ 1 − (ζ̂−T )q ≥ 1 − (εζ̂T)q ≥ 1 − (ζ̂+

T )q ⇒ (1 − (ζ̂−T )q)ηε ≥ ( 1 − (εζ̂T)q)ηε ≥

(1 − (ζ̂+
T )q)ηε ⇒

n∏
ε=1

(1 − (ζ̂−T )q)ηε ≥
n∏
ε=1

( 1 − (εζ̂T)q)ηε ≥
n∏
ε=1

(1 − (ζ̂+
T )q)ηε ⇒ 1 −

n∏
ε=1

(1 − (ζ̂−T )q)ηε ≤

1 −
n∏
ε=1

( 1 − (εζ̂T)q)ηε ≤ 1 −
n∏
ε=1

(1 − (ζ̂+
T )q)ηε ⇒

[
1 −

n∏
ε=1

(1 − (ζ̂−T )q)ηε
] 1

q ≤
[
1 −

n∏
ε=1

( 1 − (εζ̂T)q)ηε
] 1

q ≤

[
1 −

n∏
ε=1

(1 − (ζ̂+
T )q)ηε

] 1
q , since,

[
1 −

n∏
ε=1

(1 − (ζ̂−T )q)ηε
] 1

q = ζ̂−T and
[
1 −

n∏
ε=1

(1 − (ζ̂+
T )q)ηε

] 1
q = ζ̂+

T .

Then, ζ̂−T ≤
[
1 −

n∏
ε=1

( 1 − (εζ̂T)q)ηε
] 1

q ≤ ζ̂+
T . Similarly, since $̂−I ≤

ε$̂I ≤ $̂
+
I , and $̂−F ≤

ε$̂F ≤ $̂
+
F ,

we obtain, $̂−I ≤
[
1 −

n∏
ε=1

( 1 − (ε$̂I)q)ηε
] 1

q ≤ $̂+
I and $̂−F ≤

[
1 −

n∏
ε=1

( 1 − (ε$̂F)q)ηε
] 1

q ≤ $̂+
F .

Now, since $̂−T ≤
ε$̂T ≤ $̂+

T ⇒ ($̂−T)
ηε ≤ ( ε$̂T)ηε ≤ ( $̂+

T)
ηε ⇒

n∏
ε=1

($̂−T)
ηε ≤

n∏
ε=1

( ε$̂T)ηε ≤

n∏
ε=1

( $̂+
T)
ηε , and

n∏
ε=1

($̂−T)
ηε = $̂−T and

n∏
ε=1

( $̂+
T)
ηε = $̂+

T. Then, $̂−T ≤
n∏
ε=1

( ε$̂T)ηε ≤ $̂+
T.

In the same manner, as ζ̂−I ≤
εζ̂I ≤ ζ̂+

I and ζ̂−F ≤
εζ̂F ≤ ζ̂+

F , we obtain ζ̂−I ≤
n∏
ε=1

( εζ̂I)ηε ≤ ζ̂+
I , and

ζ̂−F ≤

n∏
ε=1

( εζ̂F)ηε ≤ ζ̂+
F .

Now, let q − ROFVNWA(Γ1,Γ2, ...,Γn) = Γ =
〈(
ζ̂T, $̂T

)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

)〉
. Then,

Π(Γ) = 1
3

[[
(ζ̂T)q − ($̂T)q]− [

(ζ̂I)q − ($̂I)q]− [
(ζ̂F)q − ($̂F)q]] ≥ 1

3

[[
(ζ̂−T )q − ($̂+

T)
q]− [

(ζ̂+
I )q − ($̂−I )

q]−[
(ζ̂+
F )q − ($̂−F)

q]] = Π(Γ−), and

Π(Γ) = 1
3

[[
(ζ̂T)q − ($̂T)q]− [

(ζ̂I)q − ($̂I)q]− [
(ζ̂F)q − ($̂F)q]] ≤ 1

3

[[
(ζ̂+
T )q − ($̂−T)

q]− [
(ζ̂−I )q − ($̂+

I )
q]−[

(ζ̂−F )q − ($̂+
F)

q]] = Π(Γ+).
This implies Γ− ≤ q − ROFVNWA(Γ1,Γ2, ...,Γn) ≤ Γ+. �

Proposition 4.5. Monotonicity Property: Let Γε =
{〈( εζ̂T, ε$̂T), ( εζ̂I, ε$̂I), ( εζ̂F, ε$̂F)〉 : ε = 1, ..., n

}
and Γ∗ε =

{〈( εζ̂∗T,
ε$̂∗T

)
,
( εζ̂∗I ,

ε$̂∗I
)
,
( εζ̂∗F,

ε$̂∗F
)〉

: ε = 1, ..., n
}

be two collections of q-ROFVNNs.
If εζ̂T ≤

ε ζ̂∗T,
ε$̂T ≥

ε $̂∗T,
εζ̂I ≥

ε ζ̂∗I ,
ε$̂I ≤

ε $̂∗I ,
εζ̂F ≥

ε ζ̂∗F and ε$̂F ≤
ε $̂∗F, ∀ε = 1, 2, ..., n, then,

q − ROFVNWA(Γ1,Γ2, ...,Γn) ≤ q − ROFVNWA(Γ∗1,Γ
∗
2, ...,Γ

∗
n).

Proof. Since εζ̂T ≤
ε ζ̂∗T, for q ≥ 1, we obtain

(εζ̂T)q ≤ (εζ̂∗T)
q ⇒ 1 − (εζ̂T)q ≥ 1 − (εζ̂∗T)

q ⇒ ( 1 − (εζ̂T)q)ηε ≥ (1 − (εζ̂∗T)
q)ηε ⇒

n∏
ε=1

( 1 − (εζ̂T)q)ηε ≥

n∏
ε=1

(1 − (εζ̂∗T)
q)ηε ⇒ 1 −

n∏
ε=1

( 1 − (εζ̂T)q)ηε ≤ 1 −
n∏
ε=1

(1 − (εζ̂∗T)
q)ηε ⇒

[
1 −

n∏
ε=1

( 1 − (εζ̂T)q)ηε
] 1

q ≤

[
1 −

n∏
ε=1

(1 − (εζ̂∗T)
q)ηε

] 1
q . Similarly, since ε$̂I ≤

ε $̂∗I , and ε$̂F ≤
ε $̂∗F, we obtain
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[
1 −

n∏
ε=1

( 1 − (ε$̂I)q)ηε
] 1

q ≤
[
1 −

n∏
ε=1

(1 − (ε$̂∗I )
q)ηε

] 1
q , and

[
1 −

n∏
ε=1

( 1 − (ε$̂F)q)ηε
] 1

q ≤
[
1 −

n∏
ε=1

(1 −

(ε$̂∗F)
q)ηε

] 1
q .

Now, ε$̂T ≥ ε$̂∗T ⇒ (ε$̂T)ηε ≥ ( ε$̂∗T)
ηε ⇒

n∏
ε=1

(ε$̂T)ηε ≥
n∏
ε=1

( ε$̂∗T)
ηε .

In the same manner, as εζ̂I ≥
εζ̂∗I and εζ̂F ≥

εζ̂∗F, we obtain
n∏
ε=1

(εζ̂I)ηε ≥
n∏
ε=1

( εζ̂∗I )
ηε and

n∏
ε=1

(εζ̂F)ηε ≥

n∏
ε=1

( εζ̂∗F)
ηε .

Now, let q − ROFVNWA(Γ1,Γ2, ...,Γn) = Γ =
〈(
ζ̂T, $̂T

)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

)〉
and

q − ROFVNWA(Γ∗1,Γ
∗
2, ...,Γ

∗
n) = Γ∗ =

〈(
ζ̂∗T, $̂

∗
T

)
,
(
ζ̂∗I , $̂

∗
I

)
,
(
ζ̂∗F, $̂

∗
F

)〉
. Then,

Π(Γ) = 1
3

[[
(ζ̂T)q − ($̂T)q] − [

(ζ̂I)q − ($̂I)q] − [
(ζ̂F)q − ($̂F)q]] ≤ 1

3

[[
(ζ̂∗T)

q − ($̂∗T)
q] − [

(ζ̂∗I )
q − ($̂∗I )

q] −[
(ζ̂∗F)

q − ($̂∗F)
q]] = Π(Γ∗).

This implies q − ROFVNWA(Γ1,Γ2, ...,Γn) ≤ q − ROFVNWA(Γ∗1,Γ
∗
2, ...,Γ

∗
n). �

4.2. q-ROFVNWG operator

In this part the q-ROFVNWG operator and its properties are presented.

Definition 4.6. Let Γε =
{〈( εζ̂T,

ε$̂T
)
,
( εζ̂I,

ε$̂I
)
,
( εζ̂F,

ε$̂F
)〉

: ε = 1, ..., n
}

be a set of q-
ROFVNNs. The q-ROFVNWG operator is characterized by the transformation q − ROFVNWG :
q − ROFVNN(∆̂) −→ q − ROFVNN(∆̂) and defined as

q − ROFVNWG(Γ1,Γ2, ...,Γn) = Γ
η1
1 ⊗ Γ

η2
2 ⊗ ...Γ

ηn
n ,

where ηε ∈ �̂ is the weight of Γε, ∀ε = 1, ..., n, and
n∑
ε=1

ηε = 1.

Theorem 4.7. Let Γε =
{〈( εζ̂T,

ε$̂T
)
,
( εζ̂I,

ε$̂I
)
,
( εζ̂F,

ε$̂F
)〉

: ε = 1, ..., n
}

be a set of q-ROFVNNs
and η = (η1, η2, ...ηn) be the weight vector of Γε. Then,

q − ROFVNWG(Γ1,Γ2, ...,Γn) =

〈
( n∏
ε=1

(εζ̂T)ηε ,
[
1 −

n∏
ε=1

(
1 − (ε$̂T)q)ηε] 1

q
)
,

([
1 −

n∏
ε=1

(
1 − (εζ̂I)q)ηε] 1

q ,

n∏
ε=1

(ε$̂I)ηε
)
,

([
1 −

n∏
ε=1

(
1 − (εζ̂F)q)ηε] 1

q ,

n∏
ε=1

(ε$̂F)ηε
)

〉
, q ≥ 1. (20)

Proof. Proof of this theorem is similar to the proof of Theorem 4.2. �

The q-ROFVNWG operator has the following properties, which are stated without proof, as the
proof is similar to that of the q-ROFVNWA operator.
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Proposition 4.8. Idempotent Property: Let Γε =
{〈( εζ̂T,

ε$̂T
)
,
( εζ̂I,

ε$̂I
)
,
( εζ̂F,

ε$̂F
)〉

: ε = 1, ..., n
}

be a collection of q-ROFVNNs. If Γε = Γ =
〈(
ζ̂T, $̂T

)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

)〉
,∀ε = 1, ..., n, then,

q − ROFVNWG(Γ1,Γ2, ...,Γn) = Γ =
〈(
ζ̂T, $̂T

)
,
(
ζ̂I, $̂I

)
,
(
ζ̂F, $̂F

)〉
.

Proposition 4.9. Boundedness Property: Let Γε =
{〈( εζ̂T,

ε$̂T
)
,
( εζ̂I,

ε$̂I
)
,
( εζ̂F,

ε$̂F
)〉

: ε =

1, ..., n
}

be a collection of q-ROFVNNs. If Γ− =
〈(
ζ̂−T , $̂

+
T

)
,
(
ζ̂+
I , $̂

−
I

)
,
(
ζ̂+
F , $̂

−
F

)〉
and Γ+ =〈(

ζ̂+
T , $̂

−
T

)
,
(
ζ̂−I , $̂

+
I

)
,
(
ζ̂−F , $̂

+
F

)〉
, where ζ̂−T = min

ε
{εζ̂T}, ζ̂

+
T = max

ε
{εζ̂T}, ζ̂

−
I = min

ε
{εζ̂I}, ζ̂

+
I =

max
ε
{εζ̂I}, ζ̂

−
F = min

ε
{εζ̂F}, ζ̂

+
F = max

ε
{εζ̂F}, $̂

−
T = min

ε
{ε$̂T}, $̂

+
T = max

ε
{ε$̂T}, $̂

−
I = min

ε
{ε$̂I}, $̂

+
I =

max
ε
{ε$̂I}, $̂

−
F = min

ε
{ε$̂F}, $̂

+
F = max

ε
{ε$̂F}, then, Γ− ≤ q − ROFVNWG(Γ1,Γ2, ...,Γn) ≤ Γ+.

Proposition 4.10. Monotonicity Property: Let Γε =
{〈( εζ̂T, ε$̂T), ( εζ̂I, ε$̂I), ( εζ̂F, ε$̂F)〉 : ε = 1, ..., n

}
and Γ∗ε =

{〈( εζ̂∗T,
ε$̂∗T

)
,
( εζ̂∗I ,

ε$̂∗I
)
,
( εζ̂∗F,

ε$̂∗F
)〉

: ε = 1, ..., n
}

be two collections of q-ROFVNNs. If
εζ̂T ≤

ε ζ̂∗T,
ε$̂T ≥

ε $̂∗T,
εζ̂I ≥

ε ζ̂∗I ,
ε$̂I ≤

ε $̂∗I ,
εζ̂F ≥

ε ζ̂∗F and ε$̂F ≤
ε $̂∗F, ∀ε = 1, 2, ..., n, then,

q − ROFVNWG(Γ1,Γ2, ...,Γn) ≤ q − ROFVNWG(Γ∗1,Γ
∗
2, ...,Γ

∗
n).

5. Applicability of the q-ROFVN operators in decision making

This section emphasizes the applicability and materiality of the q-ROFVN operators when making
a decision. To verify this, we pose a MCDM problem, where the evaluation outcome is presented
in terms of q-ROFVNNs. We utilize the q-ROFVNWA and q-ROFVNWG operators to solve the
MCDM problem. For this purpose, we assume that the alternatives Ri=1,2,...,n can be deduced from
the DMs with the attributes S j=1,2,...,m that have the weights η j=1,2,...,m with the condition η j ∈ �̂ and

m∑
j=1

η j = 1,∀ j = 1, 2, ...,m. Experts are invited to evaluate q-ROFVN data of each attribute for the

selection of the optimal candidate. In this setting, to choose the optimal candidate, we propose the
following algorithm. (see Algorithm 1)
================================================================

Algorithm 1:

(1) The evaluated attributes for each alternative are delivered in the form of q-ROFVNNs as a matrix
called the decision matrix.

(2) The obtained decision matrix, which has two types of attributes, is normalized to keep consistency
of the attributes. For this, we use the following equation:

Γε =

{ 〈( εζ̂T,ε $̂T), ( εζ̂I,ε $̂I), ( εζ̂F,ε $̂F)〉 for benefit attributes〈( εζ̂F,ε $̂F), ( ε$̂I,ε ζ̂I), ( εζ̂T,ε $̂T)〉 for cost attributes
(21)

(3) Using q-ROFVNWA or q-ROFVNWG operators, the multiple attribute values of each candidate
amount to a single value symbolized as Li=1,2,...,n.

(4) SF of each candidate is computed using Definition 3.7.
(5) The candidate which has the highest score value is considered the optimal candidate.

================================================================

Figure 1 exemplifies the intricate procedure of the groundbreaking and innovative method put forth
in this research.
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Figure 1. Illustration of the procedural workflow for the proposed method.

5.1. Numerical application

In this part, we employ the above algorithm to solve the following decision making problem:
Bridges in cities are vital for enhancing connectivity, easing traffic congestion, supporting economic

growth, improving accessibility, and adding aesthetic value to urban landscapes. However, when it
comes to building bridges, finding the most suitable construction contractor can be challenging due to
their claims of offering affordable and dependable packages. In this proposed model, our focus is on
selecting a contractor specifically for building bridges in urban areas. We consider various objectives,
such as S1: Bridge design and engineering expertise, S2: Adherence to quality standards, S3:
Technical competence, S4: Cost competitiveness, and S5: Safety measures. For instance, let us
consider a scenario where a construction owner has four contractors Ri=1,2,3,4 available to complete
a project. The construction owner aims to evaluate these contractors based on the aforementioned
attributes, assigning different levels of importance or weights to each attribute. Suppose the weights
for the attributes are 0.2 for bridge design and engineering expertise, 0.1 for adherence to quality
standards, 0.1 for technical competence, 0.3 for cost competitiveness, and 0.3 for safety measures. In
this case study the qualities of the alternatives Ri with respect to attributes S j are expressed by q-
ROFVNNs with q = 3. Subsequently, we will use the proposed algorithm to choose the best contractor
for the bridge construction project as discussed below.

Step 1. The decision makers evaluated each alternative concerning its attributes using q-ROFVN
values and assembled the below decision matrix as in Table 1.
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Table 1. The original decision matrix.

R1 R2

S1
〈
(0.9 , 0.3) , (0.6 , 0.9) ,( 0.5 , 0.7)

〉 〈
(0.9 , 0.6),(0.5 , 0.7),(0.6 , 0.8)

〉
S2

〈
(0.6 , 0.1) , (0.5 , 0.9) ,( 0.8 , 0.7)

〉 〈
(0.8 , 0.5),(0.4 , 0.8),( 0.5 , 0.7)

〉
S3

〈
(0.7 , 0.3) , (0.3 , 0.7) ,( 0.1 , 0.4)

〉 〈
(0.6 , 0.8),(0.3 ,0.9),( 0.7 , 0.8)

〉
S4

〈
(0.5 , 0.3) , (0.2 , 0.5) ,( 0.8 , 0.7)

〉 〈
(0.6 , 0.7),(0.8 , 0.2),( 0.7 , 0.4)

〉
S5

〈
(0.5 , 0.3) , (0.8 , 0.7) ,( 0.6 , 0.7)

〉 〈
(0.8 , 0.7), (0.6 , 0,8),( 0.6, 0.9)

〉
R3 R4

S1
〈
(0.5 , 0.1), (0.8 , 0.5),( 0.5 , 0.4)

〉 〈
(0.6 , 0.2),(0.9 , 0.6), (0.5 , 0.5)

〉
S2

〈
(0.8 , 0.6), (0.6 , 0.8), (0.4 , 0.7)

〉 〈
(0.8 ,0.7),(0.5 ,0.3), ( 0.2 , 0.7)

〉
S3

〈
(0.7 , 0.2), (0.3 , 0.5),( 0.7 , 0.1)

〉 〈
(0.5 , 0.6),(0.7 , 0.9),( 0.1 , 0.2)

〉
S4

〈
(0.6 , 0.5), (0.8 , 0.7),( 0.2 , 0.4)

〉 〈
(0.7 , 0.8),(0.2 , 0.9), ( 0.5, 0.7)

〉
S5

〈
(0.5 , 0.1), (0.7 ,0.8) ,( 0.5 , 0.6)

〉 〈
(0.8 , 0.2), (0.7 , 0.8), ( 0.9, 0.1)

〉
Step 2. We normalize the original decision matrix by taking the complement of the cost attribute,

which is S4 in our case study. Table 2 portrays the normalized decision matrix.

Table 2. The normalized decision matrix.

R1 R2

S1
〈
(0.9 , 0.3) , (0.6 , 0.9) ,( 0.5 , 0.7)

〉 〈
(0.9 , 0.6),(0.5 , 0.7),(0.6 , 0.8)

〉
S2

〈
(0.6 , 0.1) , (0.5 , 0.9) ,( 0.8 , 0.7)

〉 〈
(0.8 , 0.5),(0.4 , 0.8),( 0.5 , 0.7)

〉
S3

〈
(0.7 , 0.3) , (0.3 , 0.7) ,( 0.1 , 0.4)

〉 〈
(0.6 , 0.8),(0.3 ,0.9),( 0.7 , 0.8)

〉
S4

〈
(0.8 , 0.7) , (0.5 , 0.2) ,( 0.5 , 0.3)

〉 〈
(0.7 , 0.4),(0.2 , 0.8),( 0.6 , 0.7)

〉
S5

〈
(0.5 , 0.3) , (0.8 , 0.7) ,( 0.6 , 0.7)

〉 〈
(0.8 , 0.7), (0.6 , 0,8),( 0.6, 0.9)

〉
R3 R4

S1
〈
(0.5 , 0.1), (0.8 , 0.5),( 0.5 , 0.4)

〉 〈
(0.6 , 0.2),(0.9 , 0.6), (0.5 , 0.5)

〉
S2

〈
(0.8 , 0.6), (0.6 , 0.8), (0.4 , 0.7)

〉 〈
(0.8 ,0.7),(0.5 ,0.3), ( 0.2 , 0.7)

〉
S3

〈
(0.7 , 0.2), (0.3 , 0.5),( 0.7 , 0.1)

〉 〈
(0.5 , 0.6),(0.7 , 0.9),( 0.1 , 0.2)

〉
S4

〈
(0.2 , 0.4), (0.7 , 0.8),( 0.6 , 0.5)

〉 〈
(0.5 , 0.7),(0.9 , 0.2), ( 0.7, 0.8)

〉
S5

〈
(0.5 , 0.1), (0.7 ,0.8) ,( 0.5 , 0.6)

〉 〈
(0.8 , 0.2), (0.7 , 0.8), ( 0.9, 0.1)

〉
Step 3. In this step we use Eq (19) to find the q-ROFVNWA operator for each alternative. The

resulting values are given below.
L1 =

〈(
0.7615, 0.3466

)
,
(
0.5674, 0.7548

)
,
(
0.4712, 0.6164

)〉
,

L2 =
〈(

0.7951, 0.5623
)
,
(
0.3728, 0.7998

)
,
(
0.5983, 0.814

)〉
,

L3 =
〈(

0.5509, 0.1943
)
,
(
0.6504, 0.748

)
,
(
0.5341, 0.5371

)〉
,

and L4 =
〈(

0.6856, 0.3684
)
,
(
0.7675, 0.6906

)
,
(
0.5125, 0.6283

)〉
.

Step 4. The score value of each alternative is calculated. We obtained Π(L1) = 0.259,Π(L2) =

0.37,Π(L3) = 0.1019 and Π(L4) = 0.0877.
Step 5. From Step 4, the ranking results are R2 ≥ R1 ≥ R3 ≥ R4.

The q-ROFVNWG operator can be used in Step 3. The results are given below.
L1 =

〈(
0.682, 0.5103

)
,
(
0.6494, 0.5183

)
,
(
0.5756, 0.5133

)〉
,

L2 =
〈(

0.7646, 0.6248
)
,
(
0.4725, 0.7881

)
,
(
0.6048, 0.7857

)〉
,
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L3 =
〈(

0.4117, 0.3543
)
,
(
0.7011, 0.6948

)
,
(
0.5558, 0.4447

)〉
, and

L4 =
〈(

0.6258, 0.5628
)
,
(
0.8271, 0.4571

)
,
(
0.7491, 0.3352

)〉
.

Then, Step 4 is applied to find the score value of each alternative. We obtain Π(L1) = −0.0019,Π(L2) =

0.2836,Π(L3) = −0.0226 and Π(L4) = −0.2621.
According to Step 4, the ranking results are R2 ≥ R1 ≥ R3 ≥ R4. We can see that the ranking results
are the same for both proposed operators.

6. Discussion and comparative analysis

This section encompasses three parts. In part 1, we discuss the stability of the proposed operators
while taking different q values. Part 2 presents the performances of the proposed q-ROFVNWA and
q-ROFVNWG operators by using different types of SFs. Comparison of the proposed method with
existing methods is provided in part 3.

6.1. Accuracy analysis

In this part, we examine the stability and reliability of derived approaches by changing the values
of q . Here, we check q-ROFVNWA and q-ROFVNWG operators along with SF and see the ranking
results. Tables 3 and 4 exhibit the ranking positions of the alternatives according to parameter q.

Table 3. Ranking of the q-ROFVNWA operator with the values of the parameter q.

q SF Order of alternatives
q = 3 Π(L1) = 0.259,Π(L2) = 0.37,Π(L3) = 0.1019,Π(L4) = 0.0877 R2 > R1 > R3 > R4

q = 5 Π(L1) = 0.1974,Π(L2) = 0.2972,Π(L3) = 0.0713,Π(L4) = 0.066 R2 > R1 > R3 > R4

q = 7 Π(L1) = 0.1413,Π(L2) = 0.2185,Π(L3) = 0.0491,Π(L4) = 0.0467 R2 > R1 > R3 > R4

q = 10 Π(L1) = 0.0867,Π(L2) = 0.134,Π(L3) = 0.0269,Π(L4) = 0.0285 R2 > R1 > R4 > R3

q = 13 Π(L1) = 0.0556,Π(L2) = 0.0836,Π(L3) = 0.0143,Π(L4) = 0.0179 R2 > R1 > R4 > R3

q = 15 Π(L1) = 0.0423,Π(L2) = 0.0619,Π(L3) = 0.0093,Π(L4) = 0.0133 R2 > R1 > R4 > R3

q = 20 Π(L1) = 0.0227,Π(L2) = 0.031,Π(L3) = 0.0031,Π(L4) = 0.0065 R2 > R1 > R4 > R3

q = 40 Π(L1) = 0.0025, Π(L2) = 0.003,Π(L3) = 0,Π(L4) = 0.0005 R2 > R1 > R4 > R3
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Tables 3 and 4 provide a comprehensive overview of the ranking results obtained at different values
of q. Our analysis encompasses a wide range of q values between 3 and 40, revealing a consistent and
robust optimal solution throughout this entire range. This remarkable stability serves as a testament to
the reliability and effectiveness of the proposed method.

Table 4. Ranking of the q-ROFVNWG operator with the values of the parameter q.

q SF Order of alternatives
q = 3 Π(L1) = −0.0019,Π(L2) = 0.2836,Π(L3) = −0.0226,Π(L4) = −0.2621 R2 > R1 > R3 > R4

q = 5 Π(L1) = −0.0163,Π(L2) = 0.2133,Π(L3) = −0.019,Π(L4) = −0.2155 R2 > R1 > R3 > R4

q = 7 Π(L1) = −0.0164,Π(L2) = 0.1433,Π(L3) = −0.0124,Π(L4) = −0.1655 R2 > R3 > R1 > R4

q = 10 Π(L1) = −0.0109,Π(L2) = 0.0732,Π(L3) = −0.0063,Π(L4) = −0.111 R2 > R3 > R1 > R4

q = 13 Π(L1) = −0.0063,Π(L2) = 0.036,Π(L3) = −0.0033,Π(L4) = −0.0761 R2 > R3 > R1 > R4

q = 15 Π(L1) = −0.0042,Π(L2) = 0.0222,Π(L3) = −0.0022,Π(L4) = −0.06 R2 > R3 > R1 > R4

q = 20 Π(L1) = −0.0015,Π(L2) = 0.0066,Π(L3) = −0.0007,Π(L4) = −0.034 R2 > R3 > R1 > R4

q = 40 Π(L1) = 0, Π(L2) = 0, Π(L3) = 0, Π(L4) = −0.0039 R2 = R1 = R3 > R4

Upon closer examination of Table 3, it is evident that R2 emerges as the dominant alternative,
closely followed by R1. Meanwhile, R3 lags behind these alternatives and switches roles with R4.
Notably, a clear inverse relationship is observed between the values of q and the corresponding scores.
As q increases, the scores decrease, eventually converging towards zero. In Table 4, we observe that
the optimal solution remains consistent with R2 when using the q-ROFVNWG operator. However,
it is worth noting that as the values of q increase, the score of R2 decreases, while the scores of the
other alternatives increase. Ultimately, all alternative scores converge to zero. It is to be noted that
if we obtain the same score value of two alternatives, we refer to the accuracy value, Definition 3.8.
Figures 2 and 3 show the tendency of the ranking of the alternatives produced by the q-ROFVNWA
and q-ROFVNWG operators as discussed in Tables 3 and 4.
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Figure 2. Accuracy of the proposed q-ROFVNWA operator with different q values.

Figure 3. Accuracy of the proposed q-ROFVNWG operator with different q values.
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6.2. Performances of the proposed operators and SFs

In Section 5.1, we utilized the q-ROFVNWA and q-ROFVNWG operators in conjunction with SF
to address the decision making problem. In this part, we employ the same operators with QSF to solve
the same decision-making problem mentioned earlier. By employing QSF with both the q-ROFVNWA
and q-ROFVNWG operators, we obtained the subsequent outcomes.

For the q-ROFVNWA operator, we get Ω(L1) = 0.1296,Ω(L2) = 0.2417,Ω(L3) = 0.0427
and Ω(L4) = 0.0163. Thus, the ranking results are R2 ≥ R1 ≥ R3 ≥ R4.

For the q-ROFVNWG operator, we get Ω(L1) = 0.0031,Ω(L2) = 0.185,Ω(L3) = −0.0084 and
Ω(L4) = −0.1527. Thus, the ranking results are R2 ≥ R1 ≥ R3 ≥ R4.

Table 5 summarizes the obtained results employing the proposed operators and SFs.

Table 5 clearly shows that the ranking results are exactly the same for all the proposed models,
which reveals the consistency and accuracy of measures. Figure 4 illustrates the performance of the
proposed operators and SFs, as presented in Table 5.

Table 5. Performances of the proposed operators and SFs.
Proposed Operators Score Values Order of alternatives
q-ROFVNWA (SF) Π(L1) = 0.259,Π(L2) = 0.37,Π(L3) = 0.1019,Π(L4) = 0.0877 R2 > R1 > R3 > R4

q-ROFVNWA (QSF) Ω(L1) = 0.1296,Ω(L2) = 0.2417,Ω(L3) = 0.0427,Ω(L4) = 0.0163 R2 > R1 > R3 > R4

q-ROFVNWG (SF) Π(L1) = −0.0019,Π(L2) = 0.2836,Π(L3) = −0.0226,Π(L4) = −0.2621 R2 > R1 > R3 > R4

q-ROFVNWG (QSF) Ω(L1) = 0.0031,Ω(L2) = 0.185,Ω(L3) = −0.0084,Ω(L4) = −0.1527 R2 > R1 > R3 > R4

Figure 4. A visual depiction of the information presented in Table 5.
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6.3. Comparison of the proposed method with existing methods

In this section, we will compare the proposed method with other commonly used approaches and
discuss their strengths and weaknesses to determine the effectiveness of the presented method.

Besides the q-ROFVN model, there are also some other models proposed in the literature to address
the MCDM problems. Among them, we present for their relevance in this comparison, the IFS [7],
PyFS [11], q-ROFS [22], SNS [38], IFVNS [53] and PyFVNS [61]. In what follows, let us give some
comparison analysis over these variant models. In order to conduct the comparison, we try to apply the
above mentioned models to the same data presented in Section 5.1. In this comparison υ, ξ, γ refer to
MF, IMF and NMF degrees, respectively.

First, IFS is characterized by υ and γ, where υ + γ ≤ 1. The AOs of this model are proposed under
this condition. In circumstances where υ+γ > 1, these AOs fail to give the requested outcomes in such
situation. Moreover, this model is not prepared to handle the indeterminate situations. Thus, it can not
be applied to solve the DM problem in Section 5.1.

Second, PyFS came to enlarge the space of IFS, although in a limited fashion, with the condition υ2+

γ2 ≤ 1. For example, if we pick the value (6, 9) from Table 2, according to this condition 62 + 92 =

0.36 + 0.81 = 1.17 > 1. Thus, such model can not handle the DM problem at hand.
Third, q-ROFS replaces the conditions of IFS and PyFS with the constraint υq + γq ≤ 1, q ≥ 1.

Obviously, the q-ROFS can express efficiently such kinds of data, i.e., 63 + 93 = 0.216 + 0.729 =

0.945 < 1 (q = 3). However, q-ROFS ignores indeterminacy circumstances, which makes it unable to
be a descriptor of the data given in Table 2.

Fourth, SNS has three components, υ, ξ and γ, for MF, IMF and NMF degrees, respectively. Each
component is represented by a single value, while the q-ROFVNS is constructed by considering q-ROF
values instead of single values for the MF, IMF and NMF degrees. It can be seen that the SVNS cannot
model the data presented in Table 2, as its memberships are unable to express two dimensional data.
However, the structure of q-ROFVNS provides the ability to describe these data, as its memberships
are two-dimensional.

Fifth, IFVNS serves as a generalized form of SNS, incorporating three membership functions,
namely, υ, ξ and γ, each encompassing an IF value subject to the condition υ + γ ≤ 1. While IFVNS
shares the same construction as q-ROFVNS, it imposes different conditions. However, the limitations
of IFVNS become apparent when confronted with certain data, as exemplified in Table 2. Notably,
data such as < (0.8 , 0.7) , (0.5 , 0.2) , (0.5 , 0.3) > cannot be effectively represented by IFVNS, as the
condition υ + γ ≤ 1 is violated in the case of (0.8, 0.7). Conversely, q-ROFVNS exhibits exceptional
flexibility, effortlessly accommodating such data within its adaptable conditions.

Finally, PyFVNS emerged as a pivotal expansion of the IFVNS domain with the condition (υ)2 +

(γ)2 ≤ 1 for each of its MFs. This revised condition significantly broadens the scope of data that can
be effectively accommodated, surpassing the limitations of IFVNS. For instance, when considering the
data set < (0.7, 0.4), (0.2, 0.8), (0.6, 0.7) > from Table 2, it becomes evident that IFVNS fails to capture
the essence of such data. Conversely, PyFVNS effortlessly represents this type of data. However, in
our case study, there exist some data that cannot be adequately described by PyFVNS, such as the data
set < (0.8, 0.7), (0.6, 0.8), (0.6, 0.9) >. This necessity led to the exploration of a new model, namely,
q-ROFVNS, specifically designed to handle such data. In q-ROFVNS, each membership function
consists of q-ROF value with the condition (υ)q + (γ)q ≤ 1, where q ≥ 1. Notably, q-ROFVNS proves
to be more comprehensive, encompassing IFS and PyFS as special cases (when q = 1 and q = 2,
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respectively). To effectively represent the value < (0.8, 0.7), (0.6, 0.8), (0.6, 0.9) > using q-ROFVNS,
the parameter q is increased to q = 3. It is important to note that as the rung q increases, the acceptable
orthopair space expands, allowing for a greater number of orthopairs to satisfy the bounding constraint.
Consequently, q-ROFVNS enables the expression of a wider range of fuzzy information. In essence,
the flexibility of q-ROFVNS lies in dynamically adjusting the value of parameter q to determine the
range of information expression. This flexibility renders q-ROFVNS more suitable for effectively
describing uncertain information. Table 6 compares current models based on suitable criteria, including
the existence of three membership degrees, representation as 2D information in each degree, existence
of constraints on 2D information in each degree, degree of flexibility of the constraints, and ranking
values.

Table 6. Comparative analysis of current models based on relevant criteria.

Method Existence
of three
membership
degrees

Representation
as 2D
information
in each degree

Existence of
constraints on
2D information
in each degree

Degree of
flexibility of
the constraints

Ranking values

IFS [7] x x Non-applicable Non-applicable Non-computable
PyFS [11] x x Non-applicable Non-applicable Non-computable
q-ROFS [22] x x Non-applicable Non-applicable Non-computable
SNS [38] X x Non-applicable Non-applicable Non-computable
IFVNS [53] X X X Low Non-computable
PyFVNS [61] X X X Mid Non-computable
The proposed
method

X X X High Algorithmic

7. Conclusions

This manuscript provides a thorough and comprehensive analysis of the proposed theory of q-
ROFVNS, showcasing its remarkable capacity to encompass and generalize prevailing methodologies.
q-ROFVNS stands as a profound advancement, enabling a more precise representation of indeterminate
information and facilitating the simulation of intricate decision-making scenarios through the strategic
incorporation of the novel q-ROFS model in the construction of SNS. The manuscript expounds
upon the formal definition of q-ROFVNS, accompanied by the development of operational laws
and a comprehensive delineation of diverse aggregation operators within the q-ROFVN environment.
Rigorous verification of the properties inherent to these operators is undertaken. Moreover, an
innovative MADM methodology is meticulously devised, hinging on the proposed operators and
the adept utilization of SFs. A numerical application is conducted to rank various construction
contractors, utilizing q-ROFVNNs to assess their performance across different features. Subsequently,
q-ROFVNWA and q-ROFVNWG operators are applied to aggregate attribute values, while SF is
employed to derive ranking results. A rigorous examination of the robustness and dependability
of the proposed q-ROFVNWA and q-ROFVNWG operators and SF methodologies is conducted by
systematically varying the values of q. Remarkably, we observed that the optimal solution remained
unaltered throughout these variations, thereby unequivocally affirming the unwavering stability and
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resilience of the proposed techniques. We also examined the proposed QSF. To evaluate its efficacy, we
tackled the same numerical application that was previously addressed using the q-ROFVNWA and q-
ROFVNWG operators and SF methodologies. We discovered that the ranking outcomes obtained from
all the proposed models were wholly identical. This remarkable consistency unequivocally attests to
the unwavering accuracy and precision exhibited by these measures. Furthermore, this manuscript
facilitated a comparative examination of the proposed models in relation to the existing models,
employing a detailed and insightful discussion to elucidate and interpret the findings. In this research,
we strive to tackle more complex decision making problems. However, it is important to acknowledge
the limitations of our proposed work. We have solely considered the evaluation information provided
by q-ROFVNS, whereas in practical decision problems, decision makers have the ability to employ
hybrid evaluation methods that incorporate features of bipolar fuzzy hypersoft sets [62], T-spherical
fuzzy sets [63], hesitant q-rung orthopair fuzzy sets [64], and interval-valued neutrosophic sets [65].
These hybrid methods can effectively capture the vagueness and uncertainties present in complex
data. Furthermore, our study has focused exclusively on two aggregation operators, namely, the q-
ROFVNWA and q-ROFVNWG operators. To broaden the scope of our research, future investigations
should explore other generalizations of q-ROFVNS such as q-rung orthopair bipolar neutrosophic sets,
T-spherical fuzzy valued neutrosophic sets, hesitant q-rung orthopair neutrosophic sets and interval-
valued q-ROFVNS. Additionally, the proposed operators could be extended to incorporate Heronian
mean, Yager’s ordered weighted averaging, Hamacher product, Einstein product, Choquet average and
Dombi’s aggregation operators.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgements

We would like to acknowledge the Ministry of Higher Education Malaysia for their sponsorship of
the Fundamental Research Grant Scheme (Project Code: FRGS/1/2023/STG06/UITM/02/5). This
financial support has been crucial in advancing our research efforts, and we are grateful for their
assistance.

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate
Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. GRANT5305].

Conflicts of interest

Authors declare no conflicts of interest.

References

1. L. A. Zadeh, Fuzzy sets, Inform. Contr., 8 (1965), 338–353. https://doi.org/10.1016/S0019-
9958(65)90241-X

2. S. Sniazhko, Uncertainty in decision-making: A review of the international business literature,
Cogent Bus. Manag., 6 (2019), 1650692. https://doi.org/10.1080/23311975.2019.1650692

AIMS Mathematics Volume 9, Issue 2, 5038–5070.

http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1080/23311975.2019.1650692


5066

3. L. S. Jin, Uncertain probability, regular probability interval and relative proximity, Fuzzy Set. Syst.,
467 (2023), 108579. https://doi.org/10.1016/j.fss.2023.108579

4. B. Bishesh, Fuzzy decision making, In: Fuzzy computing in data science, John Wiley & Sons, Ltd,
2022, 33–75. https://doi.org/10.1002/9781394156887

5. M. Pouyakian, A. Khatabakhsh, M. Yazdi, E. Zarei, Optimizing the allocation of risk control
measures using fuzzy MCDM approach: Review and application, In: Linguistic methods under
fuzzy information in system safety and reliability analysis, Springer, Cham, 414 (2022), 53–89.
https://doi.org/10.1007/978-3-030-93352-4 4

6. H. Li, M. Yazdi, Developing failure modes and effect analysis on offshore wind turbines using two-
stage optimization probabilistic linguistic preference relations, In: Advanced decision-making
methods and applications in system safety and reliability problems, Studies in Systems, Decision
and Control, Springer, Cham, 211 (2022), 47–68. https://doi.org/10.1007/978-3-031-07430-1 4

7. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96.

8. M. Gulzar, M. H. Mateen, D. Alghazzawi, N. Kausar, A novel applications of complex
intuitionistic fuzzy sets in group theory, IEEE Access, 8 (2020), 196075–196085.
https://doi.org/10.1109/ACCESS.2020.3034626

9. J. C. R. Alcantud, A. Z. Khameneh, A. Kilicman, Aggregation of infinite chains of intuitionistic
fuzzy sets and their application to choices with temporal intuitionistic fuzzy information, Inform.
Sciences, 514 (2020), 106–117. https://doi.org/10.1016/j.ins.2019.12.008

10. A. U. Rahman, M. R. Ahmad, M. Saeed, M. Ahsan, M. Arshad, M. Ihsan, A study on fundamentals
of refined intuitionistic fuzzy set with some properties, J. Fuzzy Ext. Appl., 1 (2020), 279–292.
https://doi.org/10.22105/jfea.2020.261946.1067

11. R. R. Yager, Pythagorean fuzzy subsets, IEEE, 2013, 57–61. https://doi.org/10.1109/IFSA-
NAFIPS.2013.6608375

12. D. Q. Li, W. Y. Zeng, Distance measure of Pythagorean fuzzy sets, Int. J. Intell. Syst., 33 (2018),
348–361. https://doi.org/10.1002/int.21934

13. G. W. Wei, Y. Wei, Similarity measures of Pythagorean fuzzy sets based on the cosine function
and their applications, Int. J. Intell. Syst., 33 (2018), 634–652. https://doi.org/10.1002/int.21965

14. F. Y. Xiao, W. P. Ding, Divergence measure of Pythagorean fuzzy sets and
its application in medical diagnosis, Appl. Soft Comput., 79 (2019), 254–267.
https://doi.org/10.1016/j.asoc.2019.03.043

15. N. X. Thao, F. Smarandache, A new fuzzy entropy on Pythagorean fuzzy sets, J. Intell. Fuzzy
Syst., 37 (2019), 1065–1074. https://doi.org/10.3233/JIFS-182540

16. X. Z. Gao, Y. Deng, Generating method of Pythagorean fuzzy sets from the negation of probability,
Eng. Appl. Artif. Intel., 105 (2021), 104403. https://doi.org/10.1016/j.engappai.2021.104403

17. A. Hussain, K. Ullah, M. N. Alshahrani, M. S. Yang, D. Pamucar, Novel Aczel-Alsina operators
for Pythagorean fuzzy sets with application in multi-attribute decision making, Symmetry, 14
(2022), 940. https://doi.org/10.3390/sym14050940

AIMS Mathematics Volume 9, Issue 2, 5038–5070.

http://dx.doi.org/https://doi.org/10.1016/j.fss.2023.108579
http://dx.doi.org/https://doi.org/10.1002/9781394156887
http://dx.doi.org/https://doi.org/10.1007/978-3-030-93352-4_4
http://dx.doi.org/https://doi.org/10.1007/978-3-031-07430-1_4
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.3034626
http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.12.008
http://dx.doi.org/https://doi.org/10.22105/jfea.2020.261946.1067
http://dx.doi.org/https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
http://dx.doi.org/https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
http://dx.doi.org/https://doi.org/10.1002/int.21934
http://dx.doi.org/https://doi.org/10.1002/int.21965
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2019.03.043
http://dx.doi.org/https://doi.org/10.3233/JIFS-182540
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2021.104403
http://dx.doi.org/https://doi.org/10.3390/sym14050940


5067

18. K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean
fuzzy sets and their applications in pattern recognition, Complex Intell. Syst., 6 (2020), 15–27.
https://doi.org/10.1007/s40747-019-0103-6

19. Z. Wang, F. Y. Xiao, Z. H. Cao, Uncertainty measurements for Pythagorean fuzzy set and
their applications in multiple-criteria decision making, Soft Comput., 26 (2022), 9937–9952.
https://doi.org/10.1007/s00500-022-07361-9

20. T. M. Athira, S. J. John, H. Garg, A novel entropy measure of Pythagorean fuzzy soft sets, AIMS
Math., 5 (2020), 1050–1061. https://doi.org/10.3934/math.20200073

21. M. Rasheed, E. Tag-Eldin, N. A. Ghamry, M. A. Hashmi, M. Kamran, U. Rana, Decision-making
algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and
Choquet integral, AIMS Math., 8 (2023), 12422–12455. https://doi.org/10.3934/math.2023624

22. R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230.
https://doi.org/10.1109/TFUZZ.2016.2604005

23. P. D. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their
applications to multiple-attribute decision making, Int. J. Intell. Syst., 33 (2017), 259–280.
https://doi.org/10.1002/int.21927

24. P. D. Liu, P. Wang, Multiple-attribute decision-making based on archimedean bonferroni
operators of q-rung orthopair fuzzy numbers, IEEE T. Fuzzy Syst., 27 (2018), 834–848.
https://doi.org/10.1109/TFUZZ.2018.2826452

25. P. Wang, J. Wang, G. W. Wei, C. Wei, Similarity measures of q-rung orthopair
fuzzy sets based on cosine function and their applications, Mathematics, 7 (2019), 340.
https://doi.org/10.3390/math7040340

26. D. H. Liu, X. H. Chen, D. Peng, Some cosine similarity measures and distance
measures between q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 34 (2019), 1572–1587.
https://doi.org/10.1002/int.22108

27. C. Dhankhar, A. K. Yadav, K. Kumar, A ranking method for q-rung orthopair fuzzy
set based on possibility degree measure, Soft Comput. Theor. Appl., 425 (2022), 15–24.
https://doi.org/10.1007/978-981-19-0707-4 2
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