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1. Introduction

Rumors are pieces of information that are not verified and often spread quickly through word of
mouth, social media, or other means of communication. They can have serious consequences, causing
panic, fear, and even violence. Therefore, understanding how rumors start and spread is crucial to
prevent their negative impacts.

In order to better predict and control rumors, the commonly used method is to utilize mathematics
to study the mathematical rumor model, analyze its nature, and apply it to real life to reduce the adverse
effects of rumors. For example, in [1], the authors studied the local stability and optimal control of the
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rumor propagation model in online social networks as the number of total users changes. Because the
transmission mechanism of rumors is very similar to that of infectious diseases, the research method of
infectious diseases can be used to study the model of rumor transmission. Besides, many scholars have
studied the rumor propagation model of ordinary differential equations, and a large number of brilliant
results have appeared. In 1965, Daley and Kendall [2] proposed a mathematical model of rumor
propagation, namely the DK model, and the model divided the population into three categories, namely,
ignorant people, disseminators, and rational people. In 1973, Maki and Thomson [3] developed the
DK model on the basis of mathematical theoretical analysis, introducting an immune population, and
established the MT rumor model. Afterwards, subsequent studies based on the MT rumor model have
been expanded and promoted, and most of the research literature assumes that rumor spreading can
ignore the skeptical population, that is, upon hearing the rumor, every ignorant person will immediately
spread it, become a spreader, and then wake up and acquire permanent or temporary immunity. For
such models, we call them SIR models or SIRS models based on the infectious disease model. For
example, in [4], Wang et al. introduced the trust mechanism into the SIR model to obtain a new model
of removal of susceptible persons, which reduced the size of the final rumor and the speed of rumor
propagation, and delayed the end time of the rumor.

When rumors spread more and more widely, and even emergency situations such as subway
congestion or car accidents occur, it is crucial to improve the ability to deal with such emergencies. In
this regard, the authors in [5] established an improved SIRS model of the spread of passenger panic in
subway emergencies, which provides certain reference significance for the construction and
implementation of rail transit emergency treatment modes. Then, in [6], Zhang et al. took into
account a forgetting mechanism and a memory mechanism, and analyzed the final scale of rumor
propagation.

Moreover, many rumors are not propagated immediately by the disseminators after hearing the
rumors, and some people are skeptical and do not spread rumors during the wait-and-see period. For
such populations, skeptics are introduced into the model, and the resulting models are called SEIR
models or SEIRS models, respectively, depending on whether the sober person is permanently awake.
For example, in research [7], Liu et al. proposed a novel SEIR heterogeneous network model for
rumor propagation and analyzed the global dynamic behavior of the rumor-free equilibrium point. In
the research [8], Chen et al. considered a new model, it was known as the susceptibility-exposure-
infection-recovery-susceptibility (SEIRS-V) model. However, the above studies do not consider the
effects of time delay.

It is worth noting that time delay is a real and common phenomenon in social networks. Considering
this factor, many scholars have established a rumor propagation model with delay. In [9], the authors
proposed a delayed rumor propagation model in social networks and analyzed and discussed the Hopf
bifurcation between time delay and rumor propagation rate.

It is well known that optimal control by media intervention refers to the use of media channels and
strategies to influence or manipulate public opinion, shape narratives, and control information flow for
a specific agenda or outcome. While media intervention can be used for various purposes, such as
promoting positive social change or raising awareness about important issues, it can also be utilized
for more manipulative purposes. For example, in [10], Misra et al. proposed a nonlinear
susceptible-infected-susceptible (SIS) infectious disease model that incorporated media-induced
behavioral responses and integrated media publicity activities into the modeling process to encourage
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individuals to adopt protective measures. This approach resulted in a decline in the transmission rate,
which in turn altered the contact rate and effectively controlled the spread of infectious diseases. This
study illustrates the significant impact of implementing media control strategies on the future course
of an epidemic. Chen [11] has extended the traditional rumor theory to incorporate crisis management
by establishing an ignorants-latents-spreaders-cooled-removed (ILSCR) rumor propagation model,
and explored the media’s control of rumors in emergencies, taking into account factors such as the
cooling-off period, which is more reflective of real-world situations, and the mobility of personnel in
specific regions. The numerical results of the study demonstrate that enhancing the credibility of
mainstream media could potentially serve as an effective measure for controlling rumors. Meanwhile,
optimal control has also been discussed to reduce the frequency of rumor propagation [12–14]. For
example, Zhu and Wang [12] proposed a rumor propagation model with the function of forced silence
in online social networks to further strengthen the supervision of network information security. Their
research also analyzed the Hopf bifurcation phenomenon caused by time delay during rumor
propagation. Because of the negative impact of rumors on society, researchers have focused on the
optimal control of rumors after studying the mechanism of rumor propagation. In [14], the authors
introduced a new classification for the pages that propagate rumors within the network, and proposed
a cholera-based model to depict the dynamic process of rumor dissemination via social media. This
study also implemented an optimal control strategy to counter the spread of rumors on social media.
The effectiveness of this strategy was validated through final numerical results. In addition, in [15] the
author studied a constant rumor propagation model with an age-dependent propagation coefficient
among people with age structure; in [16–18], the authors considered random factors and studied
stochastic rumor propagation models. In [19], Zhang and Teng improved the SEIRS disease
transmission model with exponential population structure in [20], in which they not only analyzed the
stability of disease-free balance and the existence, uniqueness and stability of endemic balance, but
they also proved the uniform persistence of the disease.

However, in previous studies, most scholars did not consider the logistic growth of the spread
population. This logistic growth phenomenon means that rumors spread quickly at the beginning, but
after a period of time, the increase rate of the number of sober people will gradually slow down the
increase rate of the spreading population. As time goes by, people lose interest in rumors, and rumors
gradually stop spreading. Therefore, this kind of growth phenomenon is more realistic in the process
of rumor propagation, and it is necessary to consider the logistic growth of the spreading population
in the rumor propagation model. Although some previous studies have discussed the optimal control
strategy for controlling rumors, it is a very new perspective to control rumors in unexpected situations
through media publicity activities. It is the most direct and easiest way for media to refute rumors
through social software. Therefore, analyzing media control is a necessary way to curb rumors. In
this paper, we consider the effects of two time delays. When a controversial topic appears, people will
be confused, they will hesitate, wait and see, and then analyze and demonstrate, where the time spent
in the middle is the time lag. The two time delays reflect real-life more effectively, and most previous
studies have been based on a single time delay. In addition, differing from the linear propagation rate
and the standard propagation rate, we choose the saturated propagation rate because of the large target
population base. The main purpose of this paper is to study the spreading mechanism and influencing
factors of a rumor model using an epidemic-like model.

The content of this paper is organized as follows: Section 2 presents the considered model and

AIMS Mathematics Volume 9, Issue 2, 4962–4989.



4965

some preliminaries. Section 3 studies the boundedness of the system and analyzes the conditions for
the existence of a positive equilibrium point. Section 4 gives the conditions for the stability of the
rumor-free equilibrium point. Section 5 discusses the permanence of the rumor. In Section 6, sufficient
conditions for the global stability (including local stability) of the local equilibrium point of system (3)
are given. In Section 7, the optimal control by media for the system is given. Section 8 gives three
examples with numerical simulations to illustrate the main results of this paper. Finally, Section 9 gives
the conclusions of this paper.

2. The model and preliminaries

Based on the above works and the model discussed in [20], the components X, D, Y , and Z stand,
respectively, for the ignorant, the doubters (doubting but not spreading rumors), the communicators,
and the sober, and thus we can obtain the rumor propagation model with exponential population
structure 

dX
dt
= bN(t) − bX(t) −

βX(t)Y(t)
N(t)

+ ϵe−bτZ(t − τ),

D =
∫ t

t−ω

βX(u)Y(u)
N(u)

e−b(t−u)du,

dY
dt
=
βe−bωX(t − ω)Y(t − ω)

N(t − ω)
− (b + η)Y(t),

Z =
∫ t

t−τ
εY(u)e−b(t−u)du,

N(t) = X(t) + D(t) + Y(t) + Z(t).

(1)

The spread rate of rumors, like the incidence rate in epidemiological models, plays a very important
role in the rumor spreading model. We can refer to the definition of incidence rate to write a general
expression of transmission rate: βC(N) XY

N where N(t) represents the total population at time t. In

most models of rumor spreading, the linear incidence rate βXY and standard incidence rate βXY
N are

frequently used. Linear incidence is more suitable for propagation in a chain of relationships than in a
network. For standard incidence rates, a large target base of the rumor and higher actual exposure per
person than assumed by the theory provides a good approximation. However, when the target base is
low, the authors [19] combined the two previous approaches by assuming that the number of actual per
capita partners C(N) is proportional to N, whereas, if the number of available partners is large, there
is a saturation effect which makes the number of actual partners constant. Specifically, it has the form
(Michaelis-Menten contact rate):

C(N) =
aN

1 + bN
.

Clearly, the transmission rate of the above form indicates that the number of new communicators per
unit time is saturated with the total population. If the propagation rate of the ignorant or the spreader
is saturated, two forms of propagation are used in the rumor propagation dynamics model: βXY

1+αX , βXY
1+αY .

The parameter b is the rate that an event will cause a rumor in the crowd, d is related to a specific
event, about which the group is no longer active, b represents the probability that the rumor generated
is equal to the probability that the rumor is no longer interesting. β is the average number of adequate
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contacts of an infectious individuals per unit time, η is the rate that the spreader will become awake
after contact with an awake person, the delay ω is the time it takes for an ignorant person to think
about its authenticity before spreading it, the delay τ is the time required for the communicator to
undergo continuous analysis and demonstration in the process of becoming conscious, and ϵ is the rate
that a sober person becomes suspicious after hearing too many rumors (ε > 0, the sober becomes the
ignorant; ε = 0, always awake).

However, based on the dynamics of rumor propagation, we need to consider more realistic factors.
In the beginning, the rumor spreads quickly, but after a while, almost everyone has heard the rumor, and
it is difficult to find an ignorant person who has not heard the rumor; at this time, the spread rate will
slow down to zero. Therefore, it is very important to consider the logical growth of the disseminator
group in the rumor propagation model. We calculated the threshold of a rumor’s influence, that is, the
situation in which a rumor prevails until it finally disappears.

Additionally, the total population has a boundary, the rate of increase in the number of sober people
reduces the rate of increase in the number of communicators, and with the passage of time, people
lose interest in rumors. So, after a while, the rumor stops spreading and incrementally increases to a
constant K. Therefore, for model (1) we consider the logical growth Y(1 − Y

K ) and obtain

dX
dt
= bN(t) − bX(t) −

βX(t)Y(t)
1 + αX(t)

+ ϵe−bτZ(t − τ),

dD
dt
=
βX(t)Y(t)
1 + αX(t)

−
βe−bωX(t − ω)Y(t − ω)

1 + αX(t − ω)
− bD (t) ,

dY
dt
= Y(t)(1 −

Y(t)
K

) +
βe−bωX(t − ω)Y(t − ω)

1 + αX(t − ω)
− (b + η)Y(t),

dZ
dt
= ηY(t) − bZ(t) − εe−bτZ(t − τ),

N(t) = X(t) + D(t) + Y(t) + Z(t).

(2)

Because the variable D does not appear in the first, third, and fourth equations of system (2), so we
consider the subsystem of system (2)

dX
dt
= b − bX(t) −

βX(t)Y(t)
1 + αX(t)

+ εe−bτZ(t − τ),

dY
dt
= Y(t)(1 −

Y(t)
K

) +
βe−bωX(t − ω)Y(t − ω)

1 + αX(t − ω)
− (b + η)Y(t),

dZ
dt
= ηY(t) − bZ(t) − εe−bτZ(t − τ).

(3)

Let ι = max{τ, ω} and M be the Banach space of continuous functions ψ: [−ι, 0]→ R3 with norm

||ψ|| = sup
−r≤θ≤0

{|ψ1(θ)|, |ψ2(θ)|, |ψ3(θ)|},

where ψ = (ψ1, ψ2, ψ3). Further, let

M+ = ψ = {(ψ1, ψ2, ψ3) ∈ M : ψi(θ) ⩾ 0 for all θ ∈ [−ι, 0], i = 1, 2, 3}.
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The initial conditions for system (6) are given by

X(θ) = ψ1(θ), Y(θ) = ψ2(θ), Z(θ) = ψ3(θ), −ι ⩽ θ ⩽ 0,

where ψ = (ψ1, ψ2, ψ3) ∈ M+.
Now, we present a useful definition and a useful lemma.

Definition 2.1. The rumor in system (3) is said to be permanent if there exist constants l > 0 and L > 0
such that the any solution (X(t),Y(t),Z(t)) of system (3) with initial conditions satisfies

l ≤ lim
t→+∞

inf Y(t) ≤ lim
t→+∞

sup Y(t) ≤ L.

Lemma 2.1. The solutions of system (3) with initial conditions are positive for all t ⩾ 0.

3. Boundedness and existence of positive equilibrium points

In this section, we will obtain the boundedness and positive equilibrium point of system (3).
From

X(t) + D(t) + Y(t) + Z(t) ≡ 1,

we can see that
Γ = {(X,Y,Z) : X ⩾ 0, Y ⩾ 0, Z ⩾ 0, X + Y + Z ⩽ 1}

is positively invariant with respect to system (3).

Theorem 3.1. The positive solutions of system (3) with initial conditions are ultimately bounded.

Proof. Let (X(t),Y(t),Z(t)) be any positive solution of system (3), then from system (3) we can obtain

dN(t)
dt
= ρ(Y) + b − bN(t),

where
ρ(Y) = Y(1 −

Y
K

).

One can derive that the function ρ(Y) reaches its maximum value K
4 when Y is equal to K

2 . Then,
from above equation, we have

dN(t)
dt
≤

K
4
+ b − bN(t),

which yields

N(t) ≤
K
4 + b

b
+ (N(0) −

K
4 + b

b
)e−bτ.

It follows from the above inequality when t → ∞,

lim sup
t→∞

N(t) ≤ lim
t→∞

[
K
4 + b

b
+ (N(0) −

K
4 + b

b
)e−bτ] =

K
4 + b

b
.

Hence, there exists a constant T > 0 such that

N(t) = X(t) + D(t) + Y(t) + Z(t) ≤
K
4 + b

b
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for t > T.
Therefore, we obtain

X(t) ≤
b + K

4

b
, D(t) ≤

b + K
4

b
, Y(t) ≤

b + K
4

b
, Z(t) ≤

b + K
4

b

for t > T. □

One can see that there are two equilibria points of system (3):

(1) Rumor-free equilibrium point E0 = (x̄, 0, 0) where x̄ = 1. This means that the rumors will
eventually disappear.

(2) Rumor prevailing equilibrium point or rumor existing equilibrium point E+ = (X̂, Ŷ , Ẑ) with
Ŷ , 0. This means that the rumors will continue to spread.

Next, by the interior equilibrium point and system (3), we obtain

b − bX(t) −
βX(t)Y(t)
1 + αX(t)

+ εe−bτZ(t − τ) = 0,

Y(t)(1 −
Y(t)
K

) +
βe−bωX(t − ω)Y(t − ω)

1 + αX(t − ω)
− (b + η)Y(t) = 0,

ηY(t) − bZ(t) − εe−bτZ(t − τ) = 0.

(4)

Then, solving the first and third equations of system (4), we have

X̂ =
b + η − 1 + Ŷ

K

βe−bω − α(b + η − 1 + Ŷ
K )
, Ẑ =

η

b + εe−bτ Ŷ . (5)

From the values of X̂ and Ẑ and the second equation of system (5), one has the following cubic equation
of Y∗

L1(Ŷ)3 − L2(Ŷ)2 + L3Ŷ − L4 = 0, (6)

where

L1 =
α

K2 ,

L2 = be−bωα + 1
K
+
ηεe−bτ−2bω[α(b + η − 1) − β]

b + εe−bτ + (b + η − 1)(βe−bω − α(b + η − 1)),

L3 =
2α(b + η − 1) − βe−bω

K
−

αηe−bτ−bω

K(b + εe−bτ)
,

L4 = be−bω[(α + 1)(b + η − 1) − βe−bω].

It is clear that this fixed point exists only if Eq (6) has a positive root. Thus, L1 and L2 are positive.
Now we can suppose that L4 < 0 or R0 > 1. If this condition is true, then there are two cases:

(i) L3 < 0, meaning that Eq (6) has only one positive root.

(ii) L3 > 0, meaning Eq (6) has three roots or exactly one positive root.
If the condition is not true, then there are two possibilities:
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(i’) L3 < 0, meaning Eq (6) has two positive real roots or no real roots (according to Descartes’ rule
of sign).

(ii’) L3 > 0, meaning Eq (6) has two positive real roots or no real roots (according to Descartes’
rule of sign).

In order to find the one positive real root of Eq (6), first we need to find the value of Ŷ , and then we
can find the values of X̂ and Ẑ. Thus, we want to get a positive real root of Eq (6).

From the above discussion, one can see that system (3) has at least one positive rumor local
equilibrium point.

Now, by the next generation matrix method [21], we can obtain the basic regeneration number
(which is analogous to the basic reproduction number in a disease transmission model)

R0 =
1 + βe−bω

1+α

η + b
=

1 + α + βe−bω

(1 + α)(b + η)

and then one can easily get that, when R0 ≤ 1, system (3) only has E0, and, when R0 > 1, system (3)
has E+ except for E0 and E+ is unique.

4. Stability of rumor-free equilibrium point E0

On the stability of the rumor-free equilibrium point E0 of system (3), we have the following result:

Theorem 4.1. In Γ, the equilibrium point E0 of system (3) is globally stable if R0 ≤ 1, and the
equilibrium point E0 of system (3) is unstable if R0 > 1.

Proof. Denote
ht = (X(t + θ),Y(t + θ),Z(t + θ)), θ ∈ [−r, 0],

where
h(t) = (X(t),Y(t),Z(t))

is any positive solution of system (3) with initial function (ψ1, ψ2, ψ3).
Construct a Lyapunov functional as follows:

V(ht) = Y(t) + βe−bω
∫ t

t−ω

X(u)Y(u)
1 + αX(u)

du.

Then by calculation we obtain

V
′

(ht) = [1 −
Y
K
+
βe−bωX(t)
1 + αX(t)

− (b + η)]Y(t).

Let
G = {ψ ∈ M+ :

·

V(ψ) = 0}

and take the largest set Ψ ∈ G which is invariant with respect to system (3). Obviously, Ψ is not empty,
because (1, 0, 0) ∈ Ψ. If R0 < 1, from X(t) ≤ 1 we get

V
′

(ht) ≤ [
βe−bωX(t)
1 + αX(t)

+ 1 − (b + η)]Y(t) ≤ (R0 − 1)(η + b)Y(t) ≤ 0.
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Hence,
G = {ψ = (ψ1, 0, ψ3) ∈ M+}.

It follows from system (3) that
Ψ = {(1, 0, 0)}.

If R0 = 1, we have

V
′

(ht) ≤ (η + b − 1)
X(t) − 1

1 + αX(t)
Y(t) ≤ 0.

Hence,
G = {ψ = (ψ1, ψ2, ψ3) ∈ M+ : ψ1 = 1 or ψ2 = 1}.

By
X(t) + D(t) + Y(t) + Z(t) ≡ 1

and when X(t) = 1, one can get
Y(t) = 0 and Ψ = {(1, 0, 0)}.

By means of the Lyapunov-LaSalle invariance principle, we have that, when R0 ≤ 1, the equilibrium
point E0 is globally stable in Γ. Next, when R0 > 1, we let

X1(t) = X(t) − 1, Y1(t) = Y(t), Z1(t) = Z(t),

and then we have the following linearization equations of system (3) at E0

dX1(t)
dt

= −bX1(t) −
βY1(t)
1 + α

+ εe−bτZ1(t − τ),

dY1(t)
dt
= Y1(t)(1 −

Y1(t)
K

) +
βe−bωX1 (t − ω)

1 + α
− (b + η)Y1(t),

dZ1(t)
dt
= ηY1(t) − bZ1(t) − εe−bτZ1(t − τ).

(7)

Further, we have the characteristic equation of system (7)∣∣∣∣∣∣∣∣∣
λ + b β

1+α εe−bτe−λτ

0 λ − [1 + βe−bω

1+α e−λω − (η + b)] 0
0 η λ + (εe−bτe−λτ + b)

∣∣∣∣∣∣∣∣∣ = 0.

Consequently,

(λ + b)(λ − [1 +
βe−bω

1 + α
e−λω − (η + b)])(λ + (εe−bτ + b)) = 0. (8)

Set

f (λ) = λ − [1 +
βe−bω

1 + α
e−λω − (η + b)].

Obviously,

f (0) = b + η − 1 −
βe−bω

1 + α
e−bω < 0,

and, by R0 > 1, when λ → +∞ we have f (λ) → +∞. In this case, there must be a λ0 > 0 such
that f (λ0) = 0. Therefore, there exists at least one root of (8) with positive real part. Thus, E0 is
unstable. □
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5. Permanence of rumor

On the permanence of the rumor of system (3), we have the following result.

Theorem 5.1. In system (3), if R0 > 1, then the rumor is permanent.

Proof. From

R0 =
1 + βe−bω

1+α

b + η
=

1 + α + βe−bω

(1 + α)(b + η)
> 1,

there are small enough α0 > 0 and large enough T0 > 0 such that

1
η + b

+ βe−bω
b

b+βα0
(1 − e−(b+βα0)T0)

1 + α b
b+βα0

(1 − e−(b+βα0)T0)
1

η + b
> 1. (9)

Consider the derivative of the function

V̇(t) = (1 −
Y
K
+
βe−bωX(t)
1 + αX(t)

− (η + b))Y(t),

where

V(t) = Y(t) + βe−bω
∫ t

t−ω

X(u)Y(u)
1 + αX(u)

du.

Now, we claim that for all t ≥ t0 ≥ T0, Y(t) ≤ α0 is impossible. Suppose the contrary is true. Then
for t ≥ t1, we have

dX(t)
dt
= b − bX(t) −

βX(t)Y(t)
1 + αX(t)

+ εZ(t − τ)e−bτ ≥ b − (b + βα0)X(t).

Therefore, when t ≥ t1 + T0,

X(t) = [X(t1) + b
∫ t

t1
e(b+βα0)(θ−t1)dθ]e−(b+βα0)(t−t1)

≥
b

b + βα0
(1 − e−(b+βα0)(t−t1))

= N△,

(10)

where
N△ =

b
b + βα0

(1 − e−(b+α0)T0).

Let t1 = T0, and then from the above inequality, for t ≥ 2T0, we get

V̇(t) = (1 −
Y
K
+
βe−bωX(t)
1 + αX(t)

− (η + b))Y(t)

≥ (1 −
Y
K
+
βe−bωN△

1 + αN△
− (η + b))Y(t).

Take
y = min

θ∈[−ω,0]
Y(2T0 + ω + θ) > 0.
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Now, we prove that Y(t) ≥ y for all t ≥ 2T0. If the condition is not true, then there is a T ≥ 0
satisfies T ≥ 0, Y(t) ≥ y for all

2T0 ≤ t ≤ 2T0 + ω + T,

Y(2T0 + ω + T ) = y

and
Ẏ(2T0 + ω + T ) ≤ 0.

In addition, from the second equation of system (3), we get

Ẏ(2T0 + ω + T ) =Y(2T0 + T )[1 −
Y(2T0 + T )

K
] +

βe−bωX(2T0 + T )Y(2T0 + T )
1 + αX(2T0 + T )

− (η + b)Y(2T0 + ω + T )

≥[βe−bω N△

1 + αN△
− (η + b)]y

>0.

This is a contradiction. Therefore, Y(t) ≥ y for all t ≥ 2T0. Consequently, for all t ≥ 2T0, we obtain

V̇(t) ≥[1 −
Y
K
+ βe−bω N△

1 + αN△
− (η + b)]Y(t)

≥[βe−bω N△

1 + αN△
− (η + b)]y

>0.

This means that V(t) → +∞ as t → +∞ contradicts the boundedness of V(t). Thus, the claim is
valid. Then, we will discuss the following two possibilities for all large t:

(i) Y(t) ⩾ α0;
(ii) Y(t) oscillates about α0.

At last, for a sufficiently large t, we will get the result

Y(t) ⩾ α0e−(η+b)(T0+ω).

Therefore, we only need to consider case (ii).
Set t1 and t2 large enough satisfying

Y(t1) = Y(t2) = α0

and Y(t) < α0 for all t ∈ (t1, t2).
If

t2 − t1 ⩽ T0 + ω,

since
Ẏ(t) ⩾ −(b + η)Y(t) and Y(t1) = α0,

we get
Y(t) ⩾ α0e−(b+η)(T0+ω)

AIMS Mathematics Volume 9, Issue 2, 4962–4989.



4973

for all t ∈ [t1, t2]. If t2 − t1 > T0 + ω, then, it is easy to see that

Y(t) ⩾ α0e−(b+η)(T0+ω)

for all t ∈ [t1, t1 + T0 + ω]. Therefore, based on the analysis and proof of the above claims, we observe
that

Y(t) ⩾ α0e−(b+η)(T0+ω)

on [t1 + T0 + ω, t2]. If it does not hold, then there exists a T̃ ⩾ 0 such that

Y(t) ⩾ α0e−(b+η)(T0+ω)

for all t ∈ [t1, t1 + T0 + ω + T̃ ], and

Y(t1 + T0 + ω + T̃ ) = α0e−(b+η)(T0+ω)

and
Ẏ(t1 + T0 + ω + T̃ ) ⩽ 0.

Next, from (10) and by the second equation of system (3), we get for

t = t1 + T0 + ω + T̃ ,

dY(t)
dt
= Y(t)(1 −

Y(t)
K

) +
βe−bωX(t − ω)I(t − ω)

1 + αS (t − ω)
− (b + η)Y(t)

⩾ [1 −
Y(t)
K
+ βe−bω N∆

1 + αN∆
− (b + η)]α0e−(b+η)(T0+ω)

> 0,

which is a contradiction. Thus,
Y(t) ≥ α0e−(b+η)(T0+ω)

holds for any t ∈ [t1, t2]. Therefore, we obtain

lim
t→∞

inf Y(t) ≥ α0e−(b+η)(T0+ω) > 0.

□
Remark 5.1. From Theorems 4.1 and 5.1, one can see that the condition R0 > 1 is a sufficient and
necessary condition for the permanence of the rumor in system (3). Moreover, the condition R0 ⩽ 1 is a
sufficient and necessary condition for global stability of the rumor-free equilibrium point of system (3).

6. Stability of the rumor prevailing equilibrium point E+

In this part, we will derive some conditions on the locally asymptotic stability and global stability
of the rumor prevailing equilibrium point of system (3). First, let

A(t) = X(t) − X̂, B(t) = Y(t) − Ŷ , C(t) = Z(t) − Ẑ.
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Then, system (3) takes the form

dA(t)
dt
= − bA(t) − β

X(t)B(t)
1 + αX(t)

− β
A(t)Ŷ

1 + αX(t)
+ εe−bτC(t − τ),

dB(t)
dt
=[1 − (b + η) −

2Ŷ
K

]B(t) −
B2(t)

K

+ βe−bω A(t − ω)Y(t − ω) + (1 + αX(t − ω))X̂B(t − ω)
(1 + αX(t − ω))(1 + αX̂)

,

dC(t)
dt
=ηB(t) − bC(t) − εe−bτC(t − τ).

(11)

The linear part of system (11) is

dA(t)
dt
= −k11A(t) − k12B(t) + k13C(t),

dB(t)
dt
= k21A(t − ω) + k22B2(t) + k23B(t − ω) − k24B(t),

dC(t)
dt
= k31B(t) − k32C(t) − k33C(t − τ),

(12)

where

k11 = b +
βŶ

(1 + αX̂)2
, k12 =

βX̂
1 + αX̂

, k13 = εe−bτ,

k21 =
βe−bωŶ

(1 + αX̂)2
, k22 = −

1
K
, k23 =

βe−bωX̂
1 + αX̂

, k24 = 1 −
2Ŷ
K
− (η + b),

k31 = η, k32 = −b, k33 = εe−bτ.

It is clear that in order to prove the locally uniform asymptotic stability of the rumor prevailing
equilibrium point E+ of system (3), we only need to prove the locally uniform asymptotic stability of
the zero solution of system (12).

Theorem 6.1. If R0 > 1 holds and conditions Gi (i = 1, 2, 3) hold, then the equilibrium point E+ of
system (3) is locally uniformly asymptotically stable, where

(G1) 2k11 + k12 − k13 − k21 (1 + k23ω) > 0;

(G2) −k31 (1 + k33τ) + (k24 − 3k23 − 2k21 − k22) + k12 > 0;
(G3) 2k32 + k33 − k31 − k33τ(k31 + 2k32 + 2k33) > 0.

Proof. First, we define
F11(t) = A2(t).

Then, by a2 + b2 ⩾ 2|ab| and system (12), we get

d
dt

F11(t) = 2A(t)[−k11A(t) − k12B(t) + k13C(t − τ)]

⩽ (k12 + k13 − 2k11)A2(t) + k12B2(t) + k13C2(t − τ).
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Let

F12(t) = k13

∫ t

t−τ
C2(u)du.

Then, from the derivatives of F11(t) and F12(t), we have

d
dt

F1(t) ⩽ (−2k11 − k12 + k13)A2(t) + k12B2(t) + k13C2(t),

where
F1(t) = F11(t) + F12(t).

Rewriting the second equation of (12), we get

dB(t)
dt
=k21A(t − ω) + k22B2(t) + k23B(t − ω) − k24B(t)

=k21A(t − ω) + k22B2(t) + (k23 − k24)B(t)

− k23

∫ t

t−ω
[k21A(u − ω) + k22B2(u) + k23B(u − ω) − k24B(u)]du.

Define
F21(t) = B2(t)

and from system (12), we get

d
dt

F21(t) =2B(t)[k21A(t − ω) + k22B2(t) + (k23 − k24)B(t)]

− 2B(t)[k23

∫ t

t−ω
[k21A(u − ω) + k22B2(u) + k23B(u − ω) − k24B(u)]du]

=2k22B3(t) + 2(k23 − k24)B2(t) + 2k21B(t)A(t − ω)

− k23

∫ t

t−ω
[2k21B(t)A(u − ω) + 2k22B(t)B2(u) + 2k23B(t)B(u − ω) − 2k23B(t)B(u)]du.

Using the inequality a2 + b2 ⩾ 2|ab|, we further get

d
dt

F21(t) ⩽2k22B3(t) + 2(k23 − k24)B2(t) + k21B2(t) + k21AB2(t − ω)

+ k23

∫ t

t−ω
[k21A2(u − ω) + k22B4(u) + k23B2(u − ω) + k24B2(u)]du

+ (k21 + k22 + k23 + k24)k23ωI(t).

Define

F22(t) = k22

∫ t

t−ω

∫ t

v
[k21A2(u − ω) + k24B4(t) + k23B2(u − ω) + k24B2(u)]dudv.

Then, from the derivatives of F21(t) and F22(t), we have

d
dt

(F21(t) + F22(t)) ⩽2k22B3(t) + (2k23 − 2k24 + k21)B2(t)

+ k21A2(t − ω) + (k21 + k22 + k23 + k24)k23ωT (t)
+ k23ω[k21A2(t − ω) + k22B4(t) + k23B2(t − ω) + k24B2(t)].
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Next, let
F2(t) = F21(t) + F22(t) + F23(t),

where

F23(t) = −
k22

5
B5(t) −

k22

2
B4(t) + k21(1 + k23ω)

∫ t

t−ω
A2(u)du + k2

23ω

∫ t

t−ω
B2(u)du.

Then, we have

d
dt

F2(t) ⩽ (2k23 − 2k24 + k21)B2(t) + (k21 + k22 + k23 + k24)k23ωB(t) + k21(1 + k23ω)A2(t)

≤ (3k23 − k24 + 2k21 + k22)B2(t) + k21(1 + k23ω)A2(t).

Similarly, rewriting the third equation of (12) we get

dC(t)
dt
= k31B(t) − (k32 + k33)C(t) + k33

∫ t

t−τ
C′(u)du

= k31B(t) − (k32 + k33)C(t) + k33

∫ t

t−τ
(k31B(u) − k32C(u) − k33C(u − τ))du.

Let
F31(t) = C2(t).

Then, using the inequality a2 + b2 ⩾ 2|ab|, we further derive

d
dt

F31(t) ⩽ − [2k32 + 2k33 − k31]C2(t) + k31B2(t) + k33τ(k31 + k32 + k33)C2(t)

+ k33

∫ t

t−τ
(k31B2(u) + k32C2(u) + k33C2(u − τ))du.

Define F32(t) as

F32(t) = k33

∫ t

t−τ
(
∫ t

v
(k31B2(u) + k32C2(u) + k33C2(u − τ))du) dv.

Then, from the derivatives of F31(t) and F32(t), we have

d
dt

(F31(t) + F32(t)) ⩽ − [2(k32 + k33) − k31 − k33τ(k31 + 2k32 + k33)]C2(t)

+ k31(1 + k33τ)B2(t) + k2
33τC

2(t − τ).

Define
F3(t) = F31(t) + F32(t) + F33(t),

where

F33(t) = k2
33τ

∫ t

t−τ
C2(u)du.

Then, we get

d
dt

F3(t) ⩽ −[2(k32 + k33) − k31 − k33τ(k31 + 2k32 + 2k33)]C2(t) + k31(1 + k33τ)B2(t).
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Finally, let
F(t) = F1(t) + F2(t) + F3(t).

Then, we get
d
dt

F(t) ⩽ −(D1x2(t) + D2y2(t) + D3z2(t)),

where

H1 = 2k11 + k12 − k13 − k21(1 + k23ω),
H2 = k12 − k31(1 + k33τ) − (k24 − 3k23 − 2k21 − k22),
H3 = 2(k32 + k33) − k31 − k33τ(k31 + 2k32 + 2k33) − k13.

Obviously, from the assumptions of Theorem 6.1, we can see that

Hi > 0, (i = 1, 2, 3),

and then dF
dt is negative definite in Γ. □

Now, we will consider the global stability of the rumor prevailing equilibrium point E+. We need
the positive invariant set of system (11)

Γ̄ = {(A, B,C) : A ⩾ −X̂, B ⩾ −Ŷ ,C ⩾ −Ẑ, A + B +C ⩽ 1 − (X̂ + Ŷ + Ẑ)}

and the following lemma:

Lemma 6.1. Suppose that (X(t), Y(t), Z(t)) is any positive solution of system (3). Then,

lim
t→+∞

X(t) ⩾
b

b + β
∆
= a.

Proof. For any positive constant θ, there exists a sufficiently large t1 > 0, such that Y(t) ⩽ 1 + θ as
t ⩾ t1. Then, from system (3), we get

Ẋ(t) ⩾ b − (b +
β(1 + θ)

1 + αX(t)
) ⩾ b − [b + β(1 + θ)]X(t)

for t ⩾ t1. Since θ is arbitrary and it follows from the above inequality when t → ∞,

lim
t→+∞

X(t) ⩾
b

b + β
.

Hence, there exists a constant T0 > 0 such that

X(t) ⩾
b

b + β

for t > T0.
Based on the above lemma, we can assume

a ⩽ X(t) ⩽ 1, 0 ⩽ Y(t) ⩽ 1, 0 ⩽ Z(t) ⩽ 1.
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First, define functions Ji(i = 1, 2, 3) as follows:

J1(A(t), B(t),C(t)) =
1
2

A2(t),

J2(A(t), B(t),C(t)) =
1
2

B2(t),

J3(A(t), B(t),C(t)) =
1
2

C2(t).

Next, by calculation of the derivatives of Ji (i = 1, 2, 3) along system (11), we get

J̇1(A(t), B(t),C(t)) = − (b +
βŶ

(1 + αX(t))(1 + αX̂)
)A2(t) −

βX(t)
1 + αX(t)

A(t)B(t)

+ εe−bτB(t)C(t − τ)

⩽ − (b +
βŶ

(1 + α)(1 + αX̂)
)A2(t) +

β

2(1 + α)
(A2(t) + B2(t))

+
εe−bτ

2
(A2(t) +C2(t − τ)),

J̇2(A(t), B(t),C(t)) =B2(t) −
2B2(t)

K
−

B3(t)
K
− (b + η)B2(t) +

βe−bωX̂
1 + αX̂

B(t)B(t − ω)

+
βe−bωY(t − ω)

(1 + αX(t − ω))
(
1 + αX̂

)B(t)A(t − ω)

⩽ − (b + η − 1 +
2
K

)B2(t) +
βe−bωX̂

2(1 + αX̂)
(B2(t) + B2(t − ω))

+
βe−bω

2(1 + αa)(1 + αX̂)
(B2(t) + A2(t − ω))

and

J̇3(A(t), B(t),C(t)) = ηC(t)B(t) − bC2(t) − εe−bτC(t)C(t − τ)

⩽ −bC2(t) +
η

2
(B2(t) +C2(t)) +

εe−bτ

2
(C2(t) +C2(t − τ)).

Finally, we construct the Lyapunov functional

J(t) = J1(t) + J2(t) + J3(t) + J4(t),

where

J4(A(t), B(t),C(t)) =
βe−bω

2(1 + αa)(1 + αX̂)

∫ t

t−ω
A2(u)du + εe−bτ

∫ t

t−τ
C2(u)du

+
βe−bωX̂

2
(
1 + αX̂

) ∫ t

t−ω
B2(u)du.

Then, calculating the derivative of J(t), we get

dJ
dt
⩽ −(p1A2(t) + p2B2(t) + p3C2(t)),
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where

e1 = b +
βŶ

(1 + α)(1 + αX̂)
− (

β

2(1 + α)
+
εe−bτ

2
+

βe−bω

2(1 + αa)(1 + αX̂)
),

e2 = b − 1 +
2
K
+
η

2
− (

β

2(1 + α)
+
βe−bωX̂
1 + αX̂

+
βe−bω

2(1 + αa)(1 + αX̂)
),

e3 = b − (
η

2
+

3εe−bτ

2
).

□
Based on the above analysis and discussion on the globally asymptotic stability of rumor prevailing

equilibrium point E+ of system (3), we have the following result:

Theorem 6.2. If R0 > 1 and ei > 0 (i = 1, 2, 3) hold, then the rumor prevailing equilibrium point of
system (3) is globally asymptotically stable in Γ.

7. Optimal control by media intervention

If there is an emergency or a situation becomes very urgent, in order to curb the spread of rumors,
the government will usually control or intervene in the trend of rumors through the media [22–24]. This
paper uses the most common media interventions to study the role of control mechanisms in the system.
For a clearer understanding, a period of time can be selected as the effective time, during which the
control is added, and the control is removed when the number of spreaders is reduced enough to restore
the stability of the system. At this time, both the ignorant and the conscious are actively or passively
taking control. Therefore, when the system performs media intervention controls, we calculate the cost
per user. Now, assume that u is the media control variable, then we have the following assumptions:

(1) Let u2(t)(X(t) + Y(t) + Z(t)) be the cost function of the control, where the media control are
effective for all users. Although our goal is to minimize the spread of false information, the spread of
false information through the media cannot be applied to any specific group, but to all groups.

(2) The ignorant population directly enters the aware class with the rate ζ1,whereas the spreader
population transfers to the aware class with the rate ζ2. It is evident that ζ1 is greater than ζ2.

dX
dt
= bN(t) − bX(t) −

βX(t)Y(t)
1 + αX(t)

+ ϵZ(t) − ζ1uX(t),

dY
dt
= Y(t)(1 −

Y(t)
K

) +
βX(t)Y(t)
1 + αX(t)

− (b + η)Y(t) − ζ2uY(t),

dZ
dt
= ηY(t) − bZ(t) − εZ(t) + (ζ1X(t) + ζ2Y(t))u

(13)

with the initial condition X(0) ≥ 0, Y(0) ≥ 0, Z(0) ≥ 0. Here our objective is to minimize the total
number of spreaders and the corresponding cost. So,

W(X,Y,Z, u) = min
u∈Θ̂

∫ T

0
[F0Y(t) + F1u2(t)(X(t) + Y(t) + Z(t))]dt, (14)

where
Θ̂ =
{
u : u ∈ L2 [0,T ], 0 ≤ u ≤ 1

}
.
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By [25], to find the optimal solution, we find the Hamiltonian of our optimal control problem (13)
as given by

G =[F0Y + F1u2(X(t) + Y(t) + Z(t))] + f1(b − bX(t) −
βX(t)Y(t)
1 + αX(t)

+ ϵZ(t) − ζ1uX(t)) + f2[Y(t)(1 −
Y(t)
K

) +
βX(t)Y(t)
1 + αX(t)

− (b + η)Y(t) − ζ2uY(t)]

+ f3[ηY(t) − bZ(t) − εZ(t) + (ζ1X(t) + ζ2Y(t))u],

(15)

where the fi (i = 1, 2, 3) are adjoint variables.

7.1. Existence of optimal control

Theorem 7.1. For system (13) and objective function (14), there exists an optimal control u∗ ∈ Θ̂ for
which

W(X∗,Y∗,Z∗, u∗) = min
u∈Θ̂

∫ T

0
[F0Y∗ + F1(u∗)2(X∗ + Y∗ + Z∗)]dt.

Proof. As all the state variables and co-state variables are non-negative, so too is the control variable u.
The control space Θ̂ is convex and closed. According to Theorems 3.1 and 5.1 and their proofs in [26],
one can see that there is a minimum value, so the control coefficient u has a minimum value, and thus
there is an optimal control, and the proof is complete. □

7.2. Analysis of the control

Here we find the set of necessary conditions for our optimal control problem with the help of
Pontryagin’s maximum principle.

Theorem 7.2. If u∗ is the optimal control variable which optimizes (14) for system (13), with optimal
state variables X∗,Y∗, and Z∗, and optimal co-state variable fi (i = 1, 2, 3) where fi satisfies the system

d f1

dt
= − F1u2 + f1(b + ζ1u +

βY
(1 + αX)2 ) − f2

βY
(1 + αX)2 − f3ζ1u,

d f2

dt
= − F0 − F1u2 + ( f1 − f2)

βX
1 + αX

+
2 f2Y

K
+ (b + η − 1) f2 − f3η + ( f2 − f3)ζ2u,

d f3

dt
= − F1u2 − f1ε + f3(b + ε)

(16)

with transversality condition
fi(T ) = 0, i = 1, 2, 3, (17)

then we obtain

u∗ = min
{

max
{

( f1 − f3)ζ1X + ( f2 − f3)ζ2Y
2B1(X + Y + Z)

, 0
}
, 1
}
. (18)

Proof. Using Pontryagin’s maximum principle on the Hamiltonian (15), we obtain the mathematical
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expression of the adjoint system (16), which is

d f1

dt
= −

∂G
∂X
= − F1u2 + f1(b + ζ1u +

βY
(1 + αX)2 ) − f2

βY
(1 + αX)2 − f3ζ1u,

d f2

dt
= −

∂G
∂Y
= − F0 − F1u2 + ( f1 − f2)

βX
1 + αX

+
2 f2Y

K
+ (b + η − 1) f2 − f3η + ( f2 − f3)ζ2u,

d f3

dt
= −

∂G
∂Z
= − F1u2 − f1ε + f3(b + ε).

(19)

From the optimality condition
∂G
∂u
|X=X∗,Y=Y∗,Z=Z∗= 0,

we obtain
u∗ =

( f1 − f3)ζ1X + ( f2 − f3)ζ2Y
2B1(X + Y + Z)

.

By definition, the highest and the lowest value of control are 1 and 0, respectively. That is, if u∗ ≤ 0
then u∗ = 0, and if u∗ ≥ 1, then u∗ = 1. So, for u∗ we get the optimum value of W(X,Y,Z) for
system (16). □

8. Numerical simulations

In this section, three examples are given to illustrate the effectiveness of our results obtained in this
paper.

Example 8.1. First, we take a set of parameters and consider the following system

dX
dt
= 0.8 − 0.8 ∗ X(t) −

0.5X(t)Y(t)
1 + 0.2X(t)

+ 0.3e−0.16Z(t − 0.2),

dY
dt
= Y(t)(1 −

Y(t)
K

) +
0.5e−0.4X(t − 0.5)Y(t − 0.5)

1 + 0.2X(t − 0.5)
− 1.6Y(t),

dZ
dt
= 0.8Y(t) − 0.8Z(t) − 0.3e−0.2Z(t − 0.2).

(20)

Directly from calculation, we get R0 = 0.7996 < 1. On the basis of Theorem 3.1, we have that the
rumor-free equilibrium point E0 = (1, 0, 0) is globally stable, which means the rumor disappears. The
corresponding simulations are shown in Figure 1.
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t
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X(t)

Y(t)

Z(t)

Figure 1. The time histories and the phase trajectories of system (20).
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Next, we take another set of parameters and consider the following system

dX
dt
= 0.6 − 0.6X(t) −

0.01X(t)Y(t)
1 + 0.5X(t)

+ 0.6e−1.05Z(t − 0.6),

dY
dt
= Y(t)(1 −

Y(t)
K

) +
0.01e−0.42X(t − 0.7)Y(t − 0.7)

1 + 0.5X(t − 0.7)
− 1.5Y(t),

dZ
dt
= 0.9Y(t) − 0.6Z(t) − 0.6e−1.05Z(t − 0.7).

(21)

Directly from calculation, we get R0 = 0.6696 < 1. From Theorem 3.1, we also have that the
rumor-free equilibrium point E0 = (1, 0, 0) is globally stable, which means the rumor disappears. The
corresponding simulations are shown in Figure 2.
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Figure 2. The time histories and the phase trajectories of system (21).

Example 8.2. Next, we consider the system

dX
dt
= 1 − X(t) −

15X(t)Y(t)
1 + 0.3X(t)

+ 0.2e−1Z(t − 1),

dY
dt
= Y(t)(1 −

Y(t)
K

) +
15e−0.9X(t − 0.9)Y(t − 0.9)

1 + 0.5X(t − 0.9)
− 1.4Y(t),

dZ
dt
= 0.4Y(t) − 0.6Z(t) − 0.6e−1Z(t − 1).

(22)

Directly from calculation, we get R0 = 4.0651 > 1.
From Theorem 5.1, we have that the rumor is permanent, which means the rumor exists for a long

time. The corresponding simulations are shown in Figure 3.
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Figure 3. The time histories and the phase trajectories of system (22).
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Example 8.3. Finally, we consider the system

dX
dt
= 0.8 − X(t) −

12.8X(t)Y(t)
1 + 0.3X(t)

+ 6.4e−τZ(t − τ),

dY
dt
= Y(t)(1 −

Y(t)
K

) +
12.8e−ωX(t − ω)Y(t − ω)

1 + 0.3X(t − ω)
− 1.9Y(t),

dZ
dt
= 0.9Y(t) − Z(t) − 6.4e−τZ(t − τ),

(23)

where τ = 0.38, ω = 0.07. Directly from calculation, we get

R0 = 5.3582 > 1

and
E+ ≈ (0.1382, 0.6844, 0.1144).

The corresponding simulations are shown in Figure 4 (a1, b1, c1, d1, e1, f1, g1).
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Figure 4. The time histories and the phase trajectories of system (23).
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In system (23), if we take
τ = 0.38, ω = 0.24,

then, we have
R0 = 4.6028.

The corresponding simulations are shown in Figure 5 (a2, b2, c2, d2, e2, f2, g2).
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Figure 5. The time histories and the phase trajectories of system (23).

In system (23), if we take
τ = 0.38, ω = 0.72,

then we have
R0 = 3.0488
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and
E+ ≈ (0.2095, 0.3284, 0.0551).

The corresponding simulations are shown in Figure 6 (a3, b3, c3, d3, e3, f3, g3).
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Figure 6. The time histories and the phase trajectories of system (23).

In system (23), if we take
τ = 1.48, ω = 0.72,

then we have
R0 = 3.0488

and
E+ ≈ (0.2052, 0.3058, 0.1117).

The corresponding simulations are shown in Figure 7 (a4, b4, c4, d4, e4, f4, g4).
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Figure 7. The time histories and the phase trajectories of system (23).

Remark 8.1. From the above numerical simulation figures in Example 8.3 and the values of the time
delays τ, ω, we can see that if τ = 0.38, ω = 0.07, then the rumor prevailing equilibrium point E+
of system (23) is globally asymptotically stable; if τ = 0.38, ω = 0.24, then the rumor prevailing
equilibrium point E+ of system (23) is unstable; if τ = 0.38, ω = 0.72, then the rumor prevailing
equilibrium point E+ of system (22) is globally asymptotically stable; if τ = 1.48, ω = 0.72, then the
rumor prevailing equilibrium point E+ of system (22) is globally asymptotically stable. From the above
analysis, we can conclude that the time delay ω has an effect on the global asymptotic stability of the
rumor prevailing equilibrium point E+.

9. Conclusions

Social networks have become an important medium for rumor propagation, and it may cause some
serious negative effects on our society. Hence, studying the ways in which rumors spread and
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controlling them is of great significance. This paper considers the delayed XDYZ rumor propagation
model based on social networks with logistic growth and saturation incidence, and the dynamical
behavior of the model is studied by using of the next generation matrix method, some inequality
techniques, the Lyapunov-LaSalle invariance principle, and the Lyapunov functional. First, the
positiveness and boundedness of the system are obtained. Second, the rumor-free equilibrium point,
the rumor prevailing equilibrium point, and the basic regeneration number R0 of the model are
obtained. Meanwhile, the global stability of the rumor-free equilibrium point E0, the permanence of
the rumor, and the global asymptotic stability of the rumor prevailing equilibrium point E+ are
obtained. Then, the minimum cost of controlling rumors is given. Finally, the validity of the
theoretical results and the influence of different parameters and time delays on the model are shown
by numerical simulations. Additionally, we can see from the results and numerical simulation
examples that the time delay ω has an effect on the aforementioned dynamic behaviors of the
considered system. Because of this, system (2) can be seen as a general model compared to the
models in [1–11, 13–18], and the theoretical results obtained in this article and model (2) can be seen
as extensions of and supplements to the previously known theoretical results and models.

From the dynamic analysis of the rumor propagation model, one can find that rumor propagation
is a very complicated process. Mathematical analysis can provide a theoretical basis for reducing and
controlling the harmful effects of rumor propagation and to reduce the disturbance or panic caused by
widely circulated rumors (viral scenes) in society. In conclusion, studying the ways in which rumors
spread and controlling them is essential to preventing their negative impacts. By using social network
analysis, debunking false claims, and addressing the underlying emotions that drive rumor-mongering,
governments and organizations can effectively manage rumors and protect their communities. This
model can also use different time delays required by users of different age structures or take into
account the role of a trust mechanism to study a more realistic rumor propagation model.
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