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1. Introduction

Throughout this paper, let N > 2 (N = « or 7) and R be the Euclidean space of dimension N. Let
SM~! be the unit sphere in R equipped with the normalized Lebesgue surface measure do, ().
Forn, = a; + ibl,nz =a, +ib, (a1, by,a,,b, € R with a;,a, > 0), let

h(lxl, [yDO(x, y)
(](U,h(x’ y) = |x|/<—771 |y|T—772

where h is a measurable function defined on R, XR, and O is a measurable function defined on R“xXR",
which is integrable over S~! x S™! with the following properties:

O(tx,sy) = 0O(x,y), Vt,s>0 (1.1)

and

L;] O(x, )do(x) = fsrl O(.,y)do.(y) = 0. (1.2)
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For an appropriate mapping ® : R, X R, — R, we consider the generalized parametric

Marcinkiewicz integral operator Qg)u , along the surface of revolution I'y (u, v) = (u, v, O(|u|, [v])) given
by

Gorn( N Y.2) = ( ff |F (). y.2)
Ry XR4
where f € CP(R“XR" XR), &> 1 and

adtdS) ’ (13)

Fis(f)(x,,2) = fu ’ Kon(u, V) f(x = u,y = v, 2= O(lul, V)dudy.

m g2

We remark that the operator QS)U , (in the two parameter setting) is a natural generalization of the

Marcinkiewicz integral operator Q‘p( ) along the surface of revolution I («) = (u, ¢(|ul)) (in the one
parameter setting), which is defined by

1 h(u)O *dr\'’®
£ f)(x, xK+1>—( f L f| | Pu)OW) o et — oul))d {) | (14)
Ry u|<t

' |u|K m
The study of the L” boundedeness of the operator g*" under various conditions on the functions
U, ¢, and h has received a large amount of attention by many authors. For a sample of past studies, we
advise readers to refer to [1-10], among others.

,(2)

The study of singular integrals on product spaces and the corresponding Marcinkiewicz integrals
such as g,)U,h’ which may have singularities along subvarities, has attracted the attention of many
authors in the past two decades. One of the principal motivations for the study of such operators is
the requirement of several complex variables and large classes of “subelliptic” equations. For more

background information, readers may refer to [10-12].

Our main focus in this paper will be on the operator Q(g’)uh. When® =0,h=1,n =1 =n,, and
e = 2, we denote gg}uh by My, which is essentially the classical Marcinkiewicz integral on product
spaces. The study of L” boundedness of the operator My has attracted the attention of many authors.
For a sample of previous studies and more information about the applications as well as development of
the integral operator §® o We consult the readers to refer to [13—19] and the references therein. Let us
now recall some pertinent results to our current study. In [13], the authors proved the L” boundedness
of M for all p € (1, 00) under the assumption U € L(log L)(S*"! x S7!). In addition, they pointed out
the condition U € L(log L)(S*! x S™!) is optimal in the sense that the L? boundedness of M;; may that
not hold if we replace this condition by any weaker condition U € L(log L)*(S*"!xS™!) with a € (0, 1).
Also, in [14] the author showed that M;; is bounded on LP(R* x R7) for all p € (1, o), provided that
U € BYV(s! x §™') with ¢ > 1. Moreover, they proved that the condition U € B)"”(S*"! x 7') is
optimal in the sense that if we replace this condition by a weaker condition U € Bflo’“)(SK‘1 x ST with
a € (—1,0), then the operator My may not be bounded on L>(R¥ x R7). Here, B(qo"”(SK‘1 xS isa
special class of block spaces introduced in [20].

In [21], the authors proved the L” boundedness of gwh for all |[1/p —1/2| < min{1/2,1/¢'} if

U e Llog LS x S™H U BV (8! x ™) and h € V,(R, X R,) with £ > 1, where V,(R, x R,) (for
¢ > 1) is the class of measurable functions / such that

2/+1 2k+1
dldr
Ally,®, xr,) = sup [f f lh(l, )|[ —] < 0.
JkeZ
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Very recently, under the assumptions U € L(log L)(S* ! x S™ 1)U BO?(S* 1 x S™1) and h € V, (R, X
R,) for some ¢ > 1, the authors of [22] established the L” boundedness of gg,)l),h for various classes
of ®.

On the other hand, the investigation of the boundedness of the generalized Marcinkiewicz integral
operator Q(()% , and some of its extensions has attracted many authors. The readers may consult [23-27].

Recently, the authors of [28] proved that if either U lies in L(log L)**(S*™! x S™!) or lies in
2_
B(qo’é‘ b (S ! x S, then the estimate

1662 1Dl gy < Co 1AL

F," (R*XRT)

holds for all p € (1, ), where F ;’r(RK X R X R) is the homogeneous Triebel-Lizorkin space and
its definition will be recalled in Section 2. This result was recently improved by the authors of [29].

Precisely, they established the L” boundedness of Qf)‘%’h provided that & € V,(R, X R,) for some ¢ > 1

2_
and U belongs to either L(log L)>*(S*! x S™1) or to B\ ¢ (S¥! x §™1).

In view of the results in [22] for the boundedness of Marcinkiewicz integral G

(&)
0,0,h°

(2)
0,0,k

a question arises naturally

and of the results

in [29] for the boundedness of the generalized Marcinkiewicz integral G
is the following:
Question: Does the L” boundedness of the operator gﬁ;}uh hold under the conditions in [22] if € = 2
is replaced by £ > 17

The main purpose of this article is to answer the above question in the affirmative.

Let us present our main results. First, we present the conditions on ®. Let W be the class of all
functions ® : R, X R, — R, which satisfies one of the following conditions (see [30]):

(a) ® € C'(R, x R,) such that for any fixed [, 7 > 0, we have ¢;(.) = O(/,.) and ¢,(.) = O(., r) are in
C2(R,), increasing and convex functions with ¢;(0) = ¢,(0) = 0.

b) O, r) = i ﬁ Cil"r" (v, v; > 0) is a generalized polynomial on R2.

k=0 j=0

(©) (L, r) = ¢1(I) + @y(r), where ¢i(+) (k = 1,2) is either a generalized polynomial or is in C*(R,),

increasing and convex function with ¢;(0) = 0.

(d) ©(l,r) = P(Dy(r), where P is a generalized polynomial given by P(l) = >, C;I"* with v, > 0,
k=0

and ¢ € C*(R,), increasing and convex function with ¢(0) = 0.

Model examples for functions @ that are covered by the class W are O(, r) = (e~ "/'+e~ ") r?, (I, r >
0); O, r) = I"r" with n,m > 0; ©(,r) = P(l,r) is a polynomial; and O(/, r) = ¢;(r)¢,(l), where each
@;isin C*(R,) and a convex increasing function with ¢ i(0) =0.

In this article, our method of proof relies on obtaining some delicate estimates and following a
similar argument as that employed in [28], which allows us to employ Yano’s extrapolation argument
so we can improve and extend the results in [13, 14,21, 22, 28,29]. In fact, we have the following
results:

Theorem 1.1. Let © belong to the class W, h € Vi(R, xR,) and U € L1 (S x S™") with £, q € (1,2].
Then there exists a positive constant C, 55, such that the inequality

1 2/e
(&)
1G5 n N ey < Covi (m) 1A . (1.5)

F,” (R*xR"xR)
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holds for all p € (.s+€ T, = c if e < U, and it holds for all p € ({',) if € > ', where C,s, =
Cp 100 La(se-1xsm-1) l1Plly, e, x2 -

Theorem 1.2. Suppose that O lies in L9 (S"_l X Sf_l) for some q € (1,2) and that h € V,(R, X R.,) for
some { € (2,00). If ® belongs to the class W, then the inequality

2/e
(&)
||g®,0,h(f ) |LP(R’<><RT><R) < Cpvn (q - 1) 71, ‘O(kafoR)

holds for all p € (1,¢) if e < ', and it holds for all p € ({',0) ife > {'.

By the estimates in Theorems 1.1 and 1.2 and by employing the extrapolation argument of Yano
(see [31,32]) we obtain the following results:

Theorem 1.3. Suppose that h € V,(R, X R,) for some € € (1,2) and ® €¢ W.
(i) If U € L(log L)*¢(S*~! x S™"), then we have

(&)
< C h (1 + U &(QKk— T— ) o
”ga,v,h(f )”LP(]RKXRTXR) < Cp lWAlly @ Il zqogr e errxs—) ”f”F;’O(RKxRTxR)

forpe(l, oo)lfs>€’andf0rpe(8+[ T € ife<t;
@) IfO € Bq (SK‘1 x ST for some g > 1, then the inequality

()
1G5 4D carsmy < Co Mll5, e (1 NI PSR 1)) A s

p (RXXR™XR)

holds for p € (£, 00) if € > {' and it holds for p € (8+[ Ty € ife<t.
Theorem 14. Let ® € W, h € V,(R, x R,) with £ € (2,0) and U € L(log L)**(S*! x S™H U

B(O (S" U S71 with g > 1. Then the generalized Marcinkiewicz operator Q®U , 18 bounded on
LP(R"XRTXR)forp e(l,e)ife<{l,andforpe ({',0)ife>"1.

Remarks:

(i) We notice that in the special case € = 2, Theorems 1.3 and 1.4 recover the results obtained
n [22]. Thus, our results improve the main results in [22].

(if) We notice that Theorem 2.7 in [28] is obtained directly from Theorem 1.4 if we take ® = 0 and
h=1.

(iii) For the special case ® = 0, Theorems 1.3 and 1.4 give the main results in [29]. Thus, our results
generalize the results in [29].

(iv) For the special case ® = 0, & =2, and 1 < ¢ < 2, Theorem 1.3 gives that Q®U , 18 bounded for

(2
0,0.h

is bounded for p € (25 3 (,) Therefore, the range of p in Theorem 1.3 is better than the range of p
obtained in [21].

(v) In Theorem 1.4, the conditions on U are the weakest conditions in their respective classes for
thecase ® =0, h =1, and & = 2 (see [13, 14]).

(vi) For the case € = ¢’ with 2 < £ < oo, Theorem 1.4 implies the boundedness of Qg}u’h for all
p € (1, 00), which is the full range.

From now on, the constant C denotes a positive number that may vary at each occurrence but
it is independent of the essential variables. Also, ¢’ denotes the exponent conjugate of ¢, that is,
1/¢+1/¢=1.

pE (F =T g) Wthh essentlally improves the results in [21] in which the authors showed that G
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2. Some definitions and lemmas

Let us start recalling the definition of the homogeneous Triebel-Lizorkin space F (RK X RT X R).
Assume that p,e € (1, 00) and 7 = = (y,v) € R x R. Then the homogeneous Trlebel Lizorkin space

F ;’ ' (R“x R™ x R) 1s the collection of all tempered distributions f on R* X R X R satisfying

— [Z njvenkve

J-keZ

1/e
”f”Fs,_r’ W ® ) * f|€] < 0

(R¥XR™XR)

LP(R¥XRTXR)

where fp\j(x) = 271 (27x) for j € Z, @{(y) = 27%1.(27%y) for k € Z, and the radial functions
I, € Cy(RY), I, € CyP(R") satisty the following:

(Ho<sr, <1, 071, <1,

(2) supp (L) € {x: 3 < <2}, supp (T cly: <=2},

(3) there exists C > 0 such that 7 ,(x), Z.(y) > C for all |x|,|y| € [5, 3

4 Y 7,27x)=1with x#0 and Y 7.(2%y) =1 with y #0.

JEZ keZ
The authors of [33] pointed out that the following properties hold:

(i) The Schwartz space S(R* x R* x R) is dense in F, (R* x R X R),
270
(i) F, (RKxRTxR)_LP(RKxRTxR)forl <p<w,

(iii)F (R"XRTXR)CF (RKXRTXR)lf81<82
For u > 2 and an appropriate function ® on R, X R,, define the family of measures Yo/ =
{T,,: 1,5 € R} and its corresponding maximal operators 1, and M,,, on R* X R" X R by

Jlf T, = f‘ Lf £y, O] YD) Kis (. )y,
RKXRTXR ST J1prep<e J12s<pyi<s

T,(Nxy,2) = sup [Tl = fx,p,2),

t,5€R,

and

J+1

H dtd
My ()(x.y.2) = ij1 j‘ thfwyxwiﬁ

J-keZ

where |1, ;| is defined similarly to Y, ;, but with replacing Uh by |Uh|.
We shall need the following two lemmas from [22].

Lemma 2.1. Let U € L1 (SK‘I X ST‘I) withl < g <2andh € V, (R, x R,) with £ > 1. Assume that ®
belongs to the class W. Then the inequalities

I, (Ollrrexrrxry < Cp ol fllLr@esresm) (2.1)

and
My (Ol o ey < Cp o0 )2l Fllor gexiexe) (2.2)
hold for all f € LP(R* X R™ X R) with p € (', o).

AIMS Mathematics Volume 9, Issue 2, 4816-4829.
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Lemma 2.2. Let h, U and © be given as in Lemma 2.1. Then the following are satisfied:

s

< Cpun (2.3)

Jj+1 k+1

fﬂ fﬂ
w ut

where 0 < 1/(2¢') and ||'Y,,

dtds

+A
Taew T < Cuynp? e o 2.4)

L0
5w |,
e

is the total variation of (', .

Lemma 2.3. Lethe V, (R, XR,) and U € L1 (S"‘l X ST‘I) with1 < {,q <?2. Assume that 1 <& <’
and that ® belongs to the class W. Then the estimate

W k+1 /e

e did e
Zf fths* Jk 2 SCP,U,h(ln,U)z/g (Z |7_(j,k|
jkEZ

1/e
) (2.5)
ok JkeZ LP(R¥XRTXR)

LP(R*XRTXR)

holds for all p € (== = 5) where {H (-, -, "), j.k € Z} is any set of functions on R* X R" X R.

5+[’ 1
Proof. We shall follow a similar argument as that in [29]. We need to consider three cases:

Case 1. p € (5, £5). As p/e > 1, by duality there exists a nonnegative function p € L?/®'(R* x R” XR)
with [|ol| ey mesprxr) < 1 and satisfies

(Zf f |T . P dl‘ds)
t,s Bkl T,
JkeZ LP(REXRTXR)
_]+1 #k+l Sd[ds
f f f f f Ty % Hipx 3, 2 22 k. y, 2)dxdlydz. 2.6)
REXRTXR oy Ju Lk ts

By applying Holder’s inequality, we have

N t
€ (e/€") (e/€")
Yoo Hixn 30| < CHOISE o) I e f f f fs o, O

s/2 t/2

e-g dldr ;9
Ir

|7{j,k(x —lu,y -

Hence, by (2.6) and (2.7) and Holder’s inequality, we get

/+1 #k+1
[ f f | Tt,s " ]7k ]
w uk
JKeZ LP(REXRTXR)

ﬂf [E l [HCx. . Z)r} M|h|a—%[ ©O)(=x, =y, —z)dxdydz
RAXRTXR jkeZ LU
: : | ‘7 ’

JkeZ

&

1/
e dtds

(g/€") (g/€")
< CIRIITE o NOIEEY,

(g/€") (g/€") —
< CIG o IOI oy M a0 @)

L/ (RKXRTXR)
LP/&)(REXRTXR)
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where p(x,y,z) = p(—=x, -y, —z). Since |h| eV, (®.xk,)> We directly deduce that

(' )
]+l ﬂk+l
S e
]kGZ I I

forall p € (s, 25
Case 2. p = . By employing (2.7) and Holder’s inequality, we get

/+1 #k+1
f f | Tt,s * Jk
ikez YW uk

1/
& dtds

1/e
< Cpua(np (Z I%,kl‘s) (2.8)

JkeZ

] LP(RFXRTXR) LP(R¥XRTXR)

&

1/
e dtds

(e/€") (g/&")
S C ||h||V1(R+XR+) ||U||LI(SK*1XST*1)

} LP(R¥XRTXR)

J+1 k+1
" o s t .
* Z fff f f f f ff [ Hi(x = T,y = v, 2= O, 1))
Jk€Z ROXR™R uk s/2 Jt/2 Sr-1y§T-1
dld dtd
X [0, vl 1h(l, )| rdias
< Clngy” ||h||(vgl/(‘9ﬂgfle+) ”U”([i/(gk):lxgr—l) f f f [Z |7_[j,k(X, Y z)|8] dxdydz. (2.9)
RAXRTXR jkez
Case 3. p € (£ H,, o, €). Define the linear operator 1 on an arbitrary function H = Hu(x,y,2) by

T(H) = Y g i * j,k(x, v, z). Thus, we have

2
HHIII FONr 10111005 [ s ey = COMH) [Z |74j,k|] (2.10)
JkeZ LI(R*XRTXR)
In addition, the inequality (2.1) gives
sup sup |‘I’#k,#,»s * j,k| < || ( sup |7'( j,k|)
JokeZ (t,s)e[1,u]X[1,u] LP(REXRTXR) JkeZ LP(REXRTXR)
< Cp,U,h sup |7'{j,k|
JkeZ LP(REXRTXR)
for all p € (£’, o), which in turn implies that
1 s * Higllo s < Coon|l1Hill s | @11
”H s JRULR ([T u]X[1u], 455) [®(ZXZ) LP(R¥XR™XR) P || Js ||l @XD)|| Lr (RexRTXR) ( )
Consequently, by interpolating (2.10) with (2.11), the estiamte (2.5) is satisfied for p € (s+ :€). O

Lemma24. Lethe V,(R, XR,) with2 < { < coand U € L4 (SK‘I X ST‘I) with 1 < g < 2. Assume
that 1 < € < €’ and that ® belongs to the class W. Then the estimate

/+1 '+
Zf flT”* ik
jkEZ

k

1/e

e dtds £
— < Cpu(Inp)* H,
- poa(in ) [§ [H;

)l/s
JkeZ LP(REXRTXR)

(2.12)

LP(REXRTXR)
holds for all p € (1, &), where {Hi(-,-,-), j,k € Z} is any set of functions on R“ x R™ X R.
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Proof. Thanks to the duality, there exists a collection of functions {X;:(x, y, z, ¢, s)} defined on R“xXR" X

< 1and

R X R X R Wlth H”H k”L‘E ([jlk k+1 X[ 'uﬁl] dtds) [F’(ZXZ)

_]+l
e dtds
|Tt s * Gk
jkEZ W
/+1 k+1
ﬂ»[RKXRTXR jkez \/[/,:j

i
f (T fTEN A Z)) Xik(x,y,2,1, s)—dxdydz
u
C(Inp)*

LV (RxR7XR)

] LP(R¥XRTXR)

k

L7 (R*xR7XR) (Z |7{Jlk|g

)1/8
JkeZ LP(REXRTXR)

IA

(P(X)"

(2.13)

where
Jj+1 k+1

L
Y(X)(x,y,2) = Z f f |Tz,s * Xii(X,y,2, 1, 5)
=AY I

Since € < ¢’ < 2 < ¢, we deduce by Holder’s inequality that

g dtds

& (& /#) & /e)
|0 X'k(x %, 2| < CIOI ey WIS G5 e

Jj+1

f ) f f f Xjx(x = lu,y = rv, 2= O ), 1, s)| [O(u, v)IdO'K(u)dO'T(v)—(,Z 14)
k-1 gr-1

and since (p’/€’) > 1, we deduce that there is a function Q belonging to the space L#/*) (R* x R* X R)
such that

/+]
||\P(X)||L(p /a/)(kaRTxR) - Z fff f f |Tt S j,k(-x’ y7 Z’ ta S)
_]kEZ R¥XRTXR /J/ k

X  Q(x,y,z)dxdydz
which gives, by a simple change of variable along with Lemma 2.1 and (2.14), that

& dtds
ts

IOl gearsy < CNOI ok orn ) Ilhlliféi&x&) I (O 1 ey
& dtdS
X (e et -
S [ ol 4]
JikeZ L' 1) (RKXRTXR)

< CURIG, iy 0N o) NN sy ey (2.15)
Consequently, by (2.13) and (2.15), the estimate (2.12) is satisfied for all p € (1,&). The proof of
Lemma 2.4 is finished. m|

Lemma 2.5. Let U, O, and {H(-,-,-), j.k € Z} be given as in Lemma 2.3. Suppose that h €
Ve (R, X R,) for some € € (1,00) and that € > . Then there is a constant C, 55, > 0 such that

5 Jiom

J keZ

1/
e dids
i (2.16)

< Cp,U,h(ln,U)z/s (Z |7{ ’

1/e
j,kEZ ) P(RK T
LP(REXRTXR) LP(REXRTXR)
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forall p € (¢, ).
Proof. It is clear that the inequality (2.1) leads to

sup sup |Tﬂkr’”js * j,k| < |7, ( sup |7’[j’k|)
JKeZ (t,s)E[1,ulX[1,u] LP(REXRTXR) JKEZ LP(REXRTXR)
< Cp,U,h sup |7_{j,k| (217)
JkeZ LP(REXRTXR)
for all p € (£, ). Thus,
IC ok guis * Hirll oo 1 gt g, dets
”H ML s J (LAIXTLAL S oo (22 LP(R¥XRTXR)
< Cpun ||?{j’k||lm(ZxZ) LP(REXRTXR) (2.18)

Again, by the duality a function ¢ € L?/Y(R* x R” X R) exists such that |||, e ®oxmrxmy S 1 and

¢ dtds
(5 [ [ e 2]
ke LP(R¥XRTXR)
N A ¢ dtds
fff Zf f [Vt * Hia| - ——=(x,y, )dxdydz
RAXRTXR j,kEZ 1 1

Vi

/0 4

S C ||U||L](SK—]><ST—]) ||h||V€(R+XR+)
8 B

N (B D S e e S

ReXRTXR j,kEZ

2 7€ /0 @) v
< Clnp OIS oo WA o |1 ]
JkeZ LPI)(REXRTXR)

X ||Th("_0)||L(P/f’)’(RK><RT><R) (219)

where ¢(x,y,z7) = Y(—x,—y,—z). Let I be the linear operator, which is defined in the proof of
Lemma 2.3. Then by combining (2.18) with (2.19), we get
1/e

& dtdS

j+1 k+1
w

5 Jiom

J keZ

LP(R*XRTXR)

noopu
Zf f|T#kt,ﬂfs * Sk
keZY

JkeZ

Cp,U,h(ln/l)z/a [Z |7_{j,k|€

]1 /e
JkeZ LP(REXRTXR)

1/e

& dtds

ts

IA

LP (R*XR™XR)

IA

for all p € (£, 00) with ¢’ < &. This finishes the proof of Lemma 2.5. O
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3. Proof of the main results

Proof of Theorem 1.1. Let ® € W and & > 1. Assume that h € V, (R, X R,) and U € L7 (s*! x §7')
with £, g € (1,2]. By Minkowski’s inequality we have

[ee]
LffR+ xR j k=0

1
E . Ko n(u, v)
= TTS2 Jo-imtgapic2-is  J2-k-li<ju<2-kt
& 1/e

Gersn(N)x..2)

dtd
X flr=uy = v,z = O(ul, ) dudy | ==
< i (ff ! f f Kon(u,v)
- =0 WIRR, IS Jo-j-1gai<a-is  J2-k1r<pul<2-*k1 o

dtd
X fOc=uy = v,z = O(ul , W))dudvi —ss)
sdtds
< (ff T, f3,2) ) G.1)
Ry xR,

For k € Z, choose a set of smooth partition of unity {;}",  defined on (0,00) and adapted to the
interval [p~'7%, u'~*] with the following properties:

O € C°,0<Q <1, Zszka):l,

keZ
dvQy (¢
supp () € [ and [T <
dta l-(l
where C; does not depend on the lacunary sequence {u*;k €  Z}. Define
the multiplier operators {A;;} on R X R™ X R by (Aﬁ(\f))(f,{,w) = Q;(|EN%
(DS £, w). So, forany f € CF(R* X R™ X R),
e drds\'"*
Yoo fuy 0 =] <C ) Auu(H)x.3,2) (3.2)
Ry xRy rs n,mez
where
s dtds
Anm()(X,y,2) = (ff Bum()(X,, 2,1, 5) )
RyxR,
and

Bn,m(f)(xa ya Za t’ S) = Z TI,S * Aj+m,k+n * f(x7 y9 Z)X

JkeZ

(1, 5).

[k pk+ Dyxipd i+ 1

Thus, to prove Theorem 1.1, it is enough to show that a constant 5 > 0 exists such that

1P| ey S Cpnain o)/ 27500 I, 5 (3.3)

(RKXRTXR)
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for all p € (8+€, Ty 5) with ¢’ > g, and also for all p € (£, 00) with ¢’ < ¢.
For the case p = € = 2, we estimate the norm of A, ,(f) as follows: By employing Plancherel’s
theorem, Fubini’s theorem, and the inequality (2.4), we directly obtain

[E T —

k+1

g did
< 2 fff U f  rucsof S s)lf(é ¢.w)[ didédw
JkeZ Ejink+m u
< p(lnlJ) CpUh Z fff |,U " ) |,uf§ 0 |f(§ £, w)| didédw
JkeZ E jvmken

—B(|n|+|m £ 2
< Cpnp? 2P 2 N f f f /¢, ¢ 0)| didédw
j,kGZ E_j+n,m+i

< Cping)® 2720 €2 45 1l 3.4

XR7XR)

where E; = {(g, £ w) ERFXRTXR : (2], 1€]) € [k, =] x [, ,ul_j]} and B € (0, 1).

However, for the other cases, we estimate the L”-norm of ‘A, ,(f) by using an argument similar to
that employed in [34]. Precisely, we invoke Littlewood-Paley theory, Lemmas 2.3, 2.5, and Lemma 2.3
in [28], so we get

||ﬂ’””(f) | |LP(RK><RT><R)

s dtds
- ( f fk Yoo # Ajimion * f] ]
Jkez LP(R¥XRTXR)
1/e
< ij,'(},h(ln:u)y‘g Z |Aj+m,k+n 8]
Jkez LP(REXRTXR)
< Cpua(lnpy®® ||f|| 4 (3.5)
(R*XR7XR)

forall p € (EH,, T {,) with € < ', and also for all p € (£, 00) with £ > ¢’. Hence, the estimate (3.3)

holds by interpolating (3.4) with (3.5) and taking u = 27%. Therefore, the proof of Theorem 1.1 is
complete.

Proof of Theorem 1.2. The proof can be obtained by following the same argument employed in the
proof of Theorem 1.1, except we invoke Lemma 2.4 instead of Lemma 2.3.

4. Conclusions

In this paper, we established suitable L” estimates for several classes of generalized Marcinkiewicz
operators along surfaces of revolution on product domains with rough kernels. These estimates along
with Yano’s extrapolation arguments confirmed the L” boundedness of the aforementioned operators
under weaker conditions on the singular kernels. Our results improve and generalize many previously
known results in Marcinkiewicz and generalized Marcinkiewicz operators.
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