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1. Introduction

The classical Sturmian comparison theory of second-order ordinary differential equations and their
oscillatory behaviors is acknowledged as the foundation for investigating many fundamental features
of their solutions [1, 2]. The theory of Sturm comparison on partial differential equations has grown
rapidly in the last few decades. Comparison theorems have been explored on various types of
partial differential equations and have made significant contributions to the literature [3, 4]. Some of
remarkable contributions can be counted as for elliptic-type self-adjoint equations by Hartman et al. [5],
second-order elliptic equations by Shimoda [6], fourth-order elliptic systems by Kusano et al. [7],
a genus of higher-order elliptic systems by Yoshida [8], a genus of second-order half-linear partial
differential equations by Kusano et al. [9], a genus of half-linear elliptic equations by Yoshida [10],
quasilinear elliptic equations with mixed nonlinearities via Picone-type inequality by Yoshida [11],
half-linear elliptic operators with p(x)-Laplacians by Yoshida [12], quasilinear elliptic operators with
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p(x)-Laplacians by Yoshida [13], and a genus of partial differential equations of order 4m by Jaroš [14]
(see also [15, 16]). We direct the readers to the monograph by Yoshida [17] for historical development
in the oscillation and comparison theory of partial differential equations.

In 1969, Kreith [18] considered Sturmian comparison theory on hyperbolic differential equations,
which was the prime and very likely the sole publication on the topic; see also [19, pp. 24–26]. He
considered the pair of hyperbolic equations, which are inspired by the simplistic harmonic motion
perception of the Sturm comparison theorem as

utt − uxx + p(x, t)u = 0 (1.1)

and

vtt − vxx + q(x, t)v = 0 (1.2)

illustrating throwing two vibrating strings with the same density and elastic constant movement as they
oscillate, regarding the equilibrium lines v = 0 and u = 0 under the effect of continuous restorative
forces p(x, t) and q(x, t), respectively. Presume that if

q(x, t) ≥ p(x, t),

then in some sense Eq (1.2) should oscillate faster than Eq (1.1). Experimentation with straightforward
cases that allow variable separation indicates that in the absence of an auxiliary condition, this is not
the case. Physically, it is important to analyze finite strings that are elastically bounded at the ends,
with the string that is to oscillate more faster being firmly bound. When viewed mathematically, Kreith
established an analogue of the Sturm comparison theorem for the pair hyperbolic initial value problems
of the form

utt − uxx + p(x, t)u = 0,
ux(xk, t) + (−1)kσk(t)u(xk, t) = 0 (k = 1, 2)

(1.3)

and

vtt − vxx + q(x, t)v = 0,
vx(xk, t) + (−1)kτk(t)v(xk, t) = 0 (k = 1, 2)

(1.4)

on the rectangular domain:
D = {(x, t) : x ∈ (x1, x2), t ∈ (t1, t2)};

see [18, Theorem 1] and [19, Theorem 3.8].

Theorem 1.1. Let u be a positive solution of problem (1.3) satisfying the boundary conditions

u(x, t1) = u(x, t2) = 0, x1 ≤ x ≤ x2

on [x1, x2] × (t1, t2). If q(x, t) ≥ p(x, t) on D and τk(t) ≥ σk(t) (k = 1, 2) for t ∈ [t1, t2], then every
solution v of problem (1.4) has a zero in

D̄ = {(x, t) : x ∈ [x1, x2], t ∈ [t1, t2]}.
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For our purpose, we fix x0, y0, t0 ∈ R. Let I = (x1, x2) ⊂ [x0,∞), J = (y1, y2) ⊂ [y0,∞) and
K = (t1, t2) ⊂ [t0,∞) be three nondegenerate intervals and define the domain (a rectangular prism) as

Ω = I × J × K . (1.5)

In this paper, we are attempting to arrange some analogical comparison results for the continuous
solutions of a couple of hyperbolic equations

utt − ∆u + f (x, y, t)u = 0, (1.6)
vtt − ∆v + g(x, y, t)v = 0 (1.7)

for (x, y, t) ∈ Ω, satisfying the initial conditions

ux(xk, y, t) + (−1)krk(t)u(xk, y, t) = 0, (y, t) ∈ J̄ × K̄ ,
uy(x, yk, t) + (−1)krk+2(t)u(x, yk, t) = 0, (x, t) ∈ Ī × K̄

(1.8)

and
vx(xk, y, t) + (−1)ksk(t)v(xk, y, t) = 0, (y, t) ∈ J̄ × K̄ ,
vy(x, yk, t) + (−1)ksk+2(t)v(x, yk, t) = 0, (x, t) ∈ Ī × K̄

(1.9)

for k = 1, 2, respectively, where f , g ∈ C
(
Ω̄,R

)
, rk, sk ∈ C

(
K̄ ,R

)
(k = 1, 2, 3, 4), and ∆ is the usual

Laplace operator in R2, i.e.,

∆ =
∂2

∂2x
+
∂2

∂2y
.

A nontrivial function z(x, y, t) is claimed to be the solution of problem (1.6)-(1.8) if

i. z : Ω̄→ R ∈ C
(
Ω̄,R

)
;

ii. for each (x, y, t) ∈ Ω, it has second-order partial derivatives zxx, zyy, ztt, and z satisfies Eq (1.6);
iii. z satisfies the initial conditions (1.8) on Ω̄.

Solution z(x, y, t) = 0 of problem (1.6)-(1.8) has a zero at t = t∗ if z(x, y, t∗) = 0. A solution z of
problem (1.6)-(1.8) is said to be an oscillatory if there exists a sequence {ζn}∞n=1 of real numbers such
that z(x, y, ζn) = 0 with

lim
n→∞
ζn = ∞.

Otherwise, z(x, y, t) is said to be nonoscillatory. Moreover, problem (1.6)-(1.8) is said to be oscillatory
if all the solutions of it are oscillatory. The similar definition and properties given above are also valid
for the solution v of problem (1.7)-(1.9).

Motivated by the Kreith’s comparison result obtained on the rectangular domain in the plane (i.e.,
Theorem 1.1), we attempt to give an analogous result for continuous solutions of the pair of hyperbolic
initial value problems (1.6)-(1.8) and (1.7)-(1.9) on a rectangular prism. The main findings for the
linear hyperbolic problems (1.6)-(1.8) and (1.7)-(1.9) are extended to nonlinear hyperbolic problems
in Section 3.

The paper is structured as follows: Sections 2 and 3 are devoted the Sturmian comparison results
for linear and nonlinear hyperbolic initial value problems, respectively. The last section deals with
an interesting Sturm oscillation result via separation of variables under the assumption that one of the
corresponding ordinary differential equations is oscillatory.
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2. Linear comparison results

In this section we provide Sturm comparison results for linear hyperbolic initial value problems.
The first linear comparison consequence of this section is as follows.

Theorem 2.1. (Sturm comparison theorem) Let u > 0 be a solution of problem (1.6)-(1.8) satisfying
the boundary conditions

u(x, y, t1) = u(x, y, t2) = 0, (x, y) ∈ Ī × J̄ (2.1)

on Ī × J̄ × K . If the inequalities

g(x, y, t) ≥ f (x, y, t), (x, y, t) ∈ Ω (2.2)

and

sk(t) ≥ rk(t), t ∈ K̄ (k = 1, 2, 3, 4) (2.3)

hold, then every solution v of problem (1.7)-(1.9) has a zero in Ω̄.

Proof. Assume that a solution v of problem (1.7)-(1.9) has no zero in Ω̄, then without loss of generality,
we may assume that v > 0 in Ω̄. Multiplying Eqs (1.6) and (1.7) by v and u, respectively, and then
subtracting, it can be verified that the identity[

uvx − vux
]

x +
[
uvy − vuy

]
y +

[
vut − uvt

]
t =

[
g(x, y, t) − f (x, y, t)

]
uv (2.4)

holds for all (x, y, t) ∈ Ω̄.
Integrating both sides of identity (2.4) over Ω, we obtain˚

Ω

[
g(x, y, t) − f (x, y, t)

]
uvdV =

˚
Ω

{[
uvx − vux

]
x +

[
uvy − vuy

]
y +

[
vut − uvt

]
t

}
dV. (2.5)

Note thatΩ is a simple, solid region with the piece-wise smooth boundaryS, so by applying divergence
theorem to the smooth vector field F on Ω defined by

F(x, y, t) := (uvx − vux)i + (uvy − vuy)j + (vut − uvt)k, (2.6)

the righthand side of (2.5) turns out to be˚
Ω

{[
uvx − vux

]
x +

[
uvy − vuy

]
y +

[
vut − uvt

]
t

}
dV

=

˚
Ω

∇ • FdV
(
=

˚
Ω

div FdV
)

=

"
S

F • N̂dS , (2.7)

where N̂ is the unit outward normal on the surface S (= ∂Ω) and the ∇ is the usual nabla (gradient)
operator defined by

∇ = i
∂

∂x
+ j
∂

∂y
+ k
∂

∂t
.
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Note that S is the union of six rectangular regions, that is

S =

6⋃
j=1

S j,

where each S j are disjoint, oriented, closed surfaces and defined by

S1 = {(x, y, t) : x = x1, (y, t) ∈ J × K},
S2 = {(x, y, t) : x = x2, (y, t) ∈ J × K},
S3 = {(x, y, t) : y = y1, (x, t) ∈ I × K},
S4 = {(x, y, t) : y = y2, (x, t) ∈ I × K},
S5 = {(x, y, t) : t = t1, (x, y) ∈ I × J}

and

S6 = {(x, y, t) : t = t2, (x, y) ∈ I × J}.

The last (surface) integral in (2.7) can be expressed as

"
S

F • N̂dS =
6∑

j=1

¨
S j

F • N̂ jdS , (2.8)

where the vectors N̂ j are the unit outward normal vectors on the surfaces S j, j = 1, . . . , 6, and, hence,
we have "

S

F • N̂dS =
¨
S1

F • N̂1dS +
¨
S2

F • N̂2dS +
¨
S3

F • N̂3dS

+

¨
S4

F • N̂4dS +
¨
S5

F • N̂5dS +
¨
S6

F • N̂6dS . (2.9)

Since N̂1 = −i, N̂2 = i, N̂3 = −j, N̂4 = j, N̂5 = −k and N̂6 = k, the integrals on the righthand side
of (2.9) become

¨
S1

F • N̂1dS = −
¨
S1

F • idS = −
ˆ t2

t1

ˆ y2

y1

[uvx − vux](x1, y, t)dydt, (2.10)
¨
S2

F • N̂2dS =
¨
S2

F • idS =
ˆ t2

t1

ˆ y2

y1

[uvx − vux](x2, y, t)dydt, (2.11)
¨
S3

F • N̂3dS = −
¨
S3

F • jdS = −
ˆ x2

x1

ˆ t2

t1
[uvy − vuy](x, y1, t)dtdx, (2.12)

¨
S4

F • N̂4dS =
¨
S4

F • jdS =
ˆ x2

x1

ˆ t2

t1
[uvy − vuy](x, y2, t)dtdx, (2.13)

¨
S5

F • N̂5dS = −
¨
S5

F • kdS = −
ˆ y2

y1

ˆ x2

x1

[vut − uvt](x, y, t1)dxdy (2.14)
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and ¨
S6

F • N̂6dS =
¨
S6

F • kdS =
ˆ y2

y1

ˆ x2

x1

[vut − uvt](x, y, t2)dxdy. (2.15)

Imposing the initial conditions (1.8) and (1.9) in the integrals on the righthand sides of (2.10)–(2.13),
we get that

¨
S1

F • N̂1dS =
ˆ t2

t1

ˆ y2

y1

[r1(t) − s1(t)]u(x1, y, t)v(x1, y, t)dydt, (2.16)
¨
S2

F • N̂2dS =
ˆ t2

t1

ˆ y2

y1

[r2(t) − s2(t)]u(x2, y, t)v(x2, y, t)dydt, (2.17)
¨
S3

F • N̂3dS =
ˆ x2

x1

ˆ t2

t1
[r3(t) − s3(t)]u(x, y1, t)v(x, y1, t)dtdx (2.18)

and ¨
S4

F • N̂4dS =
ˆ x2

x1

ˆ t2

t1
[r4(t) − s4(t)]u(x, y2, t)v(x, y2, t)dtdx. (2.19)

On the other hand, boundary conditions (2.1) imply that (2.14) and (2.15) reduce to
¨
S5

F • N̂5dS = −
ˆ y2

y1

ˆ x2

x1

v(x, y, t1)ut(x, y, t1)dxdy (2.20)

and ¨
S6

F • N̂6dS =
ˆ y2

y1

ˆ x2

x1

v(x, y, t2)ut(x, y, t2)dxdy. (2.21)

Since u and v are positive solutions on Ω̄, conditions (2.3) of the theorem imply that (2.9) turns out
to be "

S

F • N̂dS ≤
ˆ y2

y1

ˆ x2

x1

{
v(x, y, t2)ut(x, y, t2) − v(x, y, t1)ut(x, y, t1)

}
dxdy. (2.22)

Since u(x, y, t1) = u(x, y, t2) = 0 and u > 0 on Ī×J̄ ×K , we have that ut(x, y, t1) ≥ 0 and ut(x, y, t2) ≤ 0
for all (x, y) ∈ Ī × J̄ . This implies that the righthand side of (2.22) is nonpositive, and we have

"
S

F • N̂dS ≤ 0. (2.23)

Finally, (2.5), (2.7) and inequality (2.23) imply that
˚
Ω

[
g(x, y, t) − f (x, y, t)

]
uvdV ≤ 0 (2.24)

which contradicts with condition (2.2). This contradiction yields that v cannot be a positive solution
of problem (1.7)-(1.9) on Ω̄. The same proof can be repeated under the assumption that v < 0 on Ω̄.
Therefore, v has a zero in Ω̄. Theorem 2.1 has been proved. □
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Remark 2.2. If inequalities (2.2) and (2.3) in Theorem 2.1 are replaced by the strict ones

g(x, y, t) > f (x, y, t), (x, y, t) ∈ Ω (2.25)

and

sk(t) > rk(t), t ∈ K̄ (k = 1, 2, 3, 4), (2.26)

then it can be easily proved that v has a zero in interior of Ω̄.

Proposition 2.3. (Sturm comparison theorem) Let u > 0 be a solution of problem (1.6)-(1.8) satisfying
the boundary condition (2.1) on Ī × J̄ × K . If inequalities (2.25) and (2.26) hold, then every solution
v of problem (1.7)-(1.9) has a zero in Ω.

Remark 2.4. Inequalities (2.25) and (2.26) in Proposition 2.3 can be weakened and Proposition 2.3
can be commuted by the following conclusion.

Proposition 2.5. (Sturm comparison theorem) Let u > 0 be a solution of problem (1.6)-(1.8) satisfying
the boundary condition (2.1) on Ī × J̄ × K , and assume that inequalities (2.2) and (2.3) hold.

If either

meas{(x, y, t) ∈ Ω : g(x, y, t) − f (x, y, t) > 0} > 0 (2.27)

or

meas{t ∈ K̄ : sk(t) − rk(t) > 0, k = 1, 2, 3, 4} > 0, (2.28)

then every solution v of problem (1.7)-(1.9) has a zero in Ω.

The following oscillation criterion is immediate.

Corollary 2.6. (Sturm oscillation theorem) If the inequalities

g(x, y, t) ≥ f (x, y, t), (x, y, t) ∈ I × J × (t∗,∞) (2.29)

and

sk(t) ≥ rk(t), t ∈ [t∗,∞) (k = 1, 2, 3, 4) (2.30)

hold for every t∗ ≥ t0, then every solution of problem (1.7)-(1.9) is oscillatory whenever problem
(1.6)-(1.8) is oscillatory.

3. Nonlinear comparison results

The results obtained for linear equations in the previous section can be extended to the nonlinear
hyperbolic equations of the form

utt − ∆u + F (u, x, y, t) = 0, (x, y, t) ∈ Ω (3.1)

AIMS Mathematics Volume 9, Issue 2, 4805–4815.
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and

vtt − ∆v + G(v, x, y, t) = 0, (x, y, t) ∈ Ω (3.2)

satisfying the initial conditions (1.8) and (1.9), respectively. The functions rk(t) and sk(t), k = 1, 2, 3, 4,
are as previously defined, and F ,G : R × Ω̄→ R are continuous functions satisfying

µF (µ, x, y, t) ≤ p(t)µ2; (µ, x, y, t) ∈ R × Ω̄

and
µG(µ, x, y, t) ≥ q(t)µ2; (µ, x, y, t) ∈ R × Ω̄

for which p, q : K̄ → R are continuous functions.
The second primary conclusion of this paper is as follows.

Theorem 3.1. (Sturm comparison theorem) Let u > 0 be a solution of problem (1.8)-(3.1) satisfying
the boundary condition (2.1) on Ī × J̄ × K . If the inequalities

q(t) ≥ p(t) and sk(t) ≥ rk(t) (k = 1, 2, 3, 4) (3.3)

hold for t ∈ K̄ , then every solution v of problem (1.9)-(3.2) has a zero in Ω̄.

The proof of Theorem 3.1 is based on the inequality[
uvx − vux

]
x +

[
uvy − vuy

]
y +

[
vut − uvt

]
t

=
[
uG(v, x, y, t) − vF (u, x, y, t)

]
≥
[
q(t) − p(t)

]
uv

for u ∈ C(Ω,R+∪{0}), v ∈ C
(
Ω̄,R+

)
, and can be done following the same steps as those in Theorem 2.1.

Therefore, it is left to the reader.

Remark 3.2. If the inequalities given in (3.3) are replaced by the strict ones

q(t) > p(t) and sk(t) > rk(t) (k = 1, 2, 3, 4), (3.4)

then the comparison conclusion is as follows.

Proposition 3.3. (Sturm comparison theorem) Let u > 0 be a solution of problem (1.8)-(3.1) satisfying
the boundary condition (2.1) Ī×J̄ ×K . If the inequalities in (3.4) hold for t ∈ K̄ , then every solution v
of problem (1.9)-(3.2) has a zero in Ω.

As mentioned in Remark 2.4, Proposition 3.3 can be alternated by the following result.

Proposition 3.4. (Sturm comparison theorem) Let u > 0 be a solution of problem (1.8)-(3.1) satisfying
the boundary condition (2.1) on Ī × J̄ × K , and assume that the inequalities in (3.3) hold for t ∈ K̄ .

If either
meas

{
t ∈ K̄ : q(t) − p(t) > 0

}
> 0

or
meas

{
t ∈ K̄ : sk(t) − rk(t) > 0, k = 1, 2, 3, 4

}
> 0,

then every solution v of problem (1.9)-(3.2) has a zero in Ω.

AIMS Mathematics Volume 9, Issue 2, 4805–4815.
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The following oscillation criteria is immediate.

Corollary 3.5. (Sturm oscillation theorem) If the inequalities given in (3.4) hold for t ∈ [t∗,∞) for
every t∗ ≥ t0, then every solution of problem (1.9)-(3.2) is oscillatory whenever problem (1.8)-(3.1) is
oscillatory.

4. An application

Consider the hyperbolic equation (1.6) with only the time dependent potential

wtt − ∆w + f̂ (t)w = 0, (x, y, t) ∈ I × J × (t̂,∞) (4.1)

satisfying the initial conditions

wx(xk, y, t) + (−1)kαkw(xk, y, t) = 0, (y, t) ∈ J̄ × [t̂,∞),
wy(x, yk, t) + (−1)kαk+2w(x, yk, t) = 0, (x, t) ∈ Ī × [t̂,∞)

(4.2)

for k = 1, 2, where t̂ ∈ [t0,∞) and αk’s are real constants.
As Eq (4.1) allows a separation of variables, we set w(x, y, t) = H(x, y)T (t). Solving (4.1), we get

the eigenvalue problem

∆H = λH, (x, y) ∈ I × J (4.3)

with the initial conditions
Hx(xk, y) + (−1)kαkH(xk, y) = 0, y ∈ J̄ ,
Hy(x, yk) + (−1)kαk+2H(x, yk) = 0, x ∈ Ī

(4.4)

for k = 1, 2, and
T ′′ + f̂ (t)T = λT, t ∈ [t̂,∞).

Applying Corollary 2.6, we can derive an interesting oscillation criterion for a class of hyperbolic
equations.

Theorem 4.1. (Sturm oscillation theorem) Let w be a nontrivial solution of problem (4.1)-(4.2) and
assume that equation

T ′′ + [ f̂ (t) − λ0]T = 0 (4.5)

is oscillatory, where λ0 is the first eigenvalue of problem (4.3)-(4.4).
If the inequalities

g(x, y, t) ≥ f̂ (t), (x, y, t) ∈ I × J × [t̃,∞) (4.6)

and

sk(t) ≥ αk, t ∈ [t̃,∞) (k = 1, 2, 3, 4) (4.7)

hold for every t̃ ≥ t̂, then every solution v of problem (1.7)-(1.9) has a zero in Ī × J̄ × [t̃,∞).

For the elliptic case, analogous results of Theorem 4.1 can be found in a paper by Kreith [20].

Remark 4.2. When the potential does not depend on time variable, the technique of Theorem 4.1 also
can be applied to the equation

νtt − ∆ν + Q(x, y)ν = 0, (x, y, t) ∈ I × J × (t̂,∞)

under the analogous initial conditions with (4.2).
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5. Conclusions

The paper presented novel Sturmian comparison results for linear and nonlinear hyperbolic
equations on a rectangular prism. The results for linear equations provided an extension to those
obtained by Kreith in [18], which were founded within a rectangular region in the plane. The
results were verified by considering a certain class of hyperbolic equations that were converted to
an eigenvalue problem, which enabled us to draw a new and interesting oscillation criterion.

It will be of great interest for the reader to obtain all the results given in this paper on the (n + 1)-
orthotope (hyperrectangle) for the hyperbolic equations of the form

utt − ∆u +H(x, t)u = 0, (x, t) ∈ Γ ⊂ Rn × (t0,∞)

under the proper boundary conditions, where x = (x1, . . . , xn) and ∆ is the usual Laplace operator in Rn,
i.e.,

∆ =

n∑
j=1

∂2

∂2x j
,

and Γ is the hyperrectangle defined by

Γ := ((x1)1, (x1)2) × ((x2)1, (x2)2) × · · · × ((xn)1, (xn)2) × (t1, t2)

for (x j)1, (x j)2 ∈ R are points on the x j-axis, and j = 1, 2, . . . , n. The details are left for future
consideration.
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