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Abstract: This paper explores multimode function multistability of Cohen-Grossberg neural networks
(CGNNs) with Gaussian activation functions and mixed time delays. We start by using the geometrical
properties of Gaussian functions. The state space is partitioned into 3µ subspaces, where 0 ≤ µ ≤ n.
Moreover, through the utilization of Brouwer’s fixed point theorem and contraction mapping, some
sufficient conditions are acquired to ensure the existence of precisely 3µ equilibria for n-dimensional
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1. Introduction

Essentially, Cohen-Grossberg neural networks (CGNNs) are a sort of artificial feedback neural
networks, which means they exhibit common characteristics with other artificial neural networks in
terms of information transfer and feedback mechanisms. CGNNs encompass highly adaptable neural
network models (see, e.g., [1–3]), incorporating various types shaped like Hopfield neural networks
and cellular neural networks, so the dynamic properties of multitudinous neural networks can be
considered simultaneously when studying CGNNs. In addition, CGNNs offer extensive application
prospects across various fields, including pattern recognition, classification, associative memory (see,
e.g., [4–6]), etc. Stability is a prerequisite for the effectiveness of CGNNs in these applications. Thus,
in order to get a larger capacity, CGNNs are designed with multiple stable equilibrium points. This has
attracted many researchers to explore the multistability of CGNNs.

Actually, multistability analysis problems are typically more challenging than single-stability
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analysis, in which the phase space needs to be effectively partitioned into subsets containing
equilibrium points according to different types of activation functions. By dividing the state space, the
dynamics of multiple equilibrium points in each subset can be studied. Naturally, there are valuable
works addressing this issue (see, e.g., [7–11]). In [9], Liu et al. investigated multistability in fractional-
order recurrent neural networks by exploiting an activation function and nonsingular M-matrix, and
they concluded that there exist

∏n
i=1(2Ki + 1) equilibria, among which,

∏n
i=1(Ki + 1) equilibria are

local Mittag-Leffler stable. In [11], the authors explored multistability of CGNNs with non-monotonic
activation functions and time-varying delays, and they found that one can obtain (2K + 1)n equilibria
for n-neuron CGNNs, with (K + 1)n of them being exponentially stable. In addition, Wan and Liu [12]
studied the multiple O(t−q) stability of fractional-order CGNNs with Gaussian activation functions.

To the best of our knowledge, it is agreed that the number of equilibrium points in multistability
analysis of neural networks is intimately connected with the types of activation function. Some
activation functions utilized widely in the existing literature are saturation function, Gaussian function,
sigmoid function, Mexican-hat function [13], etc. Among these functions, a Gaussian function
endows neural networks with greater modeling power and adaptability due to its properties of being
nonmonotonic, bounded, symmetric, strongly nonlinear, and nonnegative. Additionally, research has
conclusively shown that employing Gaussian activation functions in neural networks can accelerate
learning and improve prediction (see, e.g., [14, 15]). As such, it is indispensable to analyze the
dynamical behavior of neural networks introducing Gaussian functions. In the literature related
to Gaussian functions, Liu et al. [16] addressed the stable issue of recurrent neural networks with
Gaussian activation functions by analyzing geometric properties of the Gaussian function. Their results
concluded that there exist exactly 3k equilibrium points, and 2k equilibria are locally exponentially
stable, while 3k − 2k equilibria are unstable. In [17], the dynamical behaviors of multiple equilibria for
fractional-order competitive neural networks with Gaussian activation functions were explored.

Due to the limited switching speeds and constrained signal propagation rates of neural amplifiers,
it is imperative not to neglect time delays in neural networks (see, e.g., [18–20]). In fact, for some
neurons, discrete-time delays offer a well-approximated and simplified circuit model for representing
delay feedback systems. It is worth noting that neural networks typically exhibit spatial expansion
since they consist of numerous parallel pathways with varying axon sizes and lengths. In such cases,
the transmission of signals is not transient anymore and cannot be adequately characterized only by
discrete-time delays. That is, it is reasonable to include distributed time delays in neural networks,
which can reveal more realistically characteristics of neurons in the human brain (see, e.g., [21–23]).
Therefore, we should be dedicated to analyzing CGNNs with mixed time delays, which is also highly
necessary.

Nowadays, there are several frequently mentioned types of stability, such as asymptotic stability
(see, e.g., [24, 25]), exponential stability (see, e.g., [26, 27]), logarithmic stability and polynomial
stability [28]. In general, differences in stability indicate different convergence paradigms, allowing
systems to satisfy the corresponding evolutionary requirements. Recently, a novel category of stability
known as multimode function stability has been explored. Implementing this form of stability enables
the simultaneous realization of the aforementioned types of stability. It is also revealed that multimode
function stability can be employed in image processing and pattern recognition to construct neural
network architectures with multiple feature extraction modes [29]. In [30], the authors presented
multimode function multistability along with its specific formula. The state space was partitioned
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into
∏n

i (2Hi + 1) regions based on the positions of the zeros of boundary functions. Furthermore,
through the application of the Lyapunov stability theorem and fixed point theorem, some associated
criteria for multimode function multistability were obtained.

As indicated by the preceding analysis, many previous papers either analyzed only the multistability
of CGNNs with/without time-varying delays and Gaussian activation functions, or solely examined
the multimode function multistability of neural networks with mixed delays. There are few works
on studying the multimode function multistability of CGNNs with Gaussian activation functions and
mixed time delays. Consequently, we are prepared to address the multimode function multistability
of CGNNs with Gaussian activation functions and mixed time delays. To be specific, the advantage
of this paper can be summarized in these aspects. First, this paper will focus on specific activation
functions, namely, Gaussian functions. Through the utilization of the geometrical properties of
Gaussian functions, the state space can be partitioned into 3µ subspaces, where 0 ≤ µ ≤ n. In contrast
to the class of strictly nonlinear and monotonic activation functions considered in [30], the number
of equilibrium points in this paper is explicitly explored. Second, multimode function multistability
is discussed. Quite different from most of the existing literature concerning the multistability of
CGNNs with Gaussian functions, the multimode function multistability results derived herein cover
multiple asymptotic stability, multiple exponential stability, multiple polynomial stability and multiple
logarithmic stability, so the results presented in this paper are more universal. Finally, relying on
the geometric properties of Gaussian functions and a fixed point theorem, we deduce some sufficient
conditions that guarantee the coexistence of precisely 3µ equilibria for an n-dimensional neural
network, among which 2µ equilibrium points are multimode function stable and 3µ − 2µ equilibrium
points are unstable. The results obtained here serve as a supplement to the existing relevant multimode
function multistability criteria.

Notations. In this article, for a given vector x = (x1, x2, ..., xn)T ∈ Rn, define ‖x‖ = max1≤i≤n(|xi|),

and τ̃ = max1≤ j≤n

(
τ̃ j, supt≥0τ j(t)

)
. Define C([−τ̃, 0],D) as the Banach space of continuous functions φ:

[−τ̃, 0] −→ D ⊂ Rn. Let ‖φ‖τ̃ = max1≤i≤n(sup−τ̃≤r≤0|φi(r)|).

2. Preliminaries

We introduce CGNNs with Gaussian activation functions and mixed time delays as follows:

dxi(t)
dt

=mi(xi(t))
(
−ηixi(t) +

n∑
j=1

βi j f j(x j(t)) +

n∑
j=1

γi j f j(x j(t − τ j(t)))

+

n∑
j=1

ϕi j

∫ t

t−τ̃ j

f j(x j(s))ds + Ii

)
, i = 1, 2, ...n,

(2.1)

where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn is state vector. ηi stands for the strength of self-inhibition.
mi(·) is amplification. βi j,γi j and ϕi j are connection weights. τ j(·) ≥ 0 represents time-varying delay, τ̃ j

in distributed delay term satisfies τ̃ j > 0. Ii denotes external input. fi(·) is a Gaussian function with the
expression:

fi(r) = exp
(
−

(r − ci)2

ρ2
i

)
, (2.2)
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where (2.2) satisfies fi(r) ∈ (0, 1], for r ∈ R, ci > 0 represents the center and ρi denotes the width.
The initial value of (2.1) can be written as

xi(r) = φi(r), i = 1, 2, ..., n. (2.3)

Prior to the study, we need to recall some definitions and consider some assumptions which will be
applied in subsequent content.

Assumption 2.1. There are positive constants m̀i and Ḿi, such that

m̀i ≤ mi(r) ≤ Ḿi, r ∈ R.

Definition 2.1. A constant vector x∗ = (x∗1, ..., x
∗
n)T is regarded as an equilibrium point of (2.1), if x∗

satisfies

−ηix∗i +

n∑
j=1

βi j f j(x∗j) +

n∑
j=1

γi j f j(x∗j) +

n∑
j=1

ϕi jτ̃ j f j(x∗j) + Ii = 0, i = 1, 2, ..., n.

Definition 2.2. Suppose that xi(t) is the solution of neural network (2.1) with initial condition (2.3). A
given set Θ can be referred to as a positive invariant set given that, if initial condition φi(t0) ∈ Θ, then
xi(t) ∈ Θ for all t ≥ t0.

Definition 2.3. Assume x∗ ∈ D is an equilibrium point of (2.1), and D ⊂ Rn is a positively invariant
set. Furthermore, suppose that ~(t) is a monotonically continuous and nondecreasing function for
which ~(t) > 0, for t ≥ 0, ~(r) = ~(0), r ∈ [−τ̃, 0], and limt→∞ ~(t) = +∞. If

‖x(t) − x∗‖ ≤
ι ‖φ − x∗‖τ̃
~(t)

, t ≥ 0,

holds for any initial value φ(r) ∈ D, r ∈ [−τ̃, 0], where ι > 0 is a positive constant, then (2.1) is locally
multimode function stable.

Calculating the first and second-order derivatives of activation function fi(r):

f ′i (r) = −
2(r − ci)
ρ2

i

exp
(
−

(r − ci)2

ρ2
i

)
,

f ′′i (r) =
4(r − (ci −

√
2

2 ρi))(r − (ci +
√

2
2 ρi))

ρ4
i

exp
(
−

(r − ci)2

ρ2
i

)
,

we can find f ′i (r) has one root ri = ci via solving the equation f ′i (r) = 0. Analogously, by addressing
the equation f ′′i (r) = 0, we can gain two roots of f ′′i (r):

C−i = ci −

√
2

2
ρi, C+

i = ci +

√
2

2
ρi.

For r ∈ (−∞,C−i )∪(C+
i ,+∞), f ′′i (r) > 0,with regard to r ∈ (C−i ,C

+
i ), f ′′i (r) < 0,we can conclude that

C−i and C+
i are the maximum and minimum points of f ′i (r), separately. The maximum and minimum
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values of f ′i (r) are f ′i (C−i ) =
√

2exp(−1/2)/ρi, f ′i (C+
i ) = −

√
2exp(−1/2)/ρi, respectively. For the

convenience of discussion, we define δi =
√

2exp(−1/2)/ρi, i = 1, 2, ..., n.
Since fi(r) ∈ (0, 1] for all i = 0, 1, ..., n, let

ši =

n∑
j=1, j,i

min
{
0, βi j

}
+

n∑
j=1, j,i

min
{
0, γi j

}
+

n∑
j=1, j,i

min
{
0, ϕi jτ̃ j

}
+ Ii,

ŝi =

n∑
j=1, j,i

max
{
0, βi j

}
+

n∑
j=1, j,i

max
{
0, γi j

}
+

n∑
j=1, j,i

max
{
0, ϕi jτ̃ j

}
+ Ii.

Define the boundary functions:

W−
i (xi(t)) = −ηixi(t) + βii fi(xi(t)) + ši,

W+
i (xi(t)) = −ηixi(t) + βii fi(xi(t)) + ŝi,

and simultaneously, we define

W̄i(xi(t)) = −ηixi(t) + βii fi(xi(t)) + s̄i,

where s̄i ∈ (ši, ŝi) is a constant. Then W−
i (xi(t)), W̄i(xi(t)), and W+

i (xi(t)) are vertical shifts toward each
other.

Let N = {1, 2, ..., n}. According to the specific values of the parameters ηi and βii, define

L1 =

{
i ∈ N| 0 <

ηi

βii
< δi

}
, L2 =

{
i ∈ N|

ηi

βii
> δi

}
,

L3 =

{
i ∈ N| − δi <

ηi

βii
< 0

}
, L4 =

{
i ∈ N|

ηi

βii
< −δi

}
.

Lemma 2.1 [16]. If i ∈ L1 or L3, then there are pi, qi such that W̄ ′
i (pi) = W̄ ′

i (qi) = 0, where pi < R−i <
qi < ci, if i ∈ L2 or L4, then W̄ ′

i (r) < 0 for r ∈ R.

For the sake of discussion, the subsequent subsets of L1 and L3 are considered:

L1
1 =

{
i = N| W+

i (pi) < 0,W−
i (qi) > 0

}
,

L2
1 =

{
i = N| W+

i (qi) < 0
}
,

L3
1 =

{
i = N| W−

i (pi) > 0
}
,

L1
3 =

{
i = N| W+

i (pi) < 0,W−
i (qi) > 0

}
,

L2
3 =

{
i = N| W+

i (qi) < 0
}
,

L3
3 =

{
i = N| W−

i (pi) > 0
}
.

Lemma 2.2 [16]. If i ∈ L1
1 ∪ L

1
3, then there exist three zeros ǔi, v̌i, λ̌i for W−

i (r) and three zeros ûi, v̂i, λ̂i

for W+
i (r), satisfying ǔi < ûi < pi < v̂i < v̌i < qi < λ̌i < λ̂i.

If i ∈ L2
1 ∪ L

2
3, then there exists one zero ǒi for W−

i (r), and one zero ôi for W+
i (r), satisfying

ǒi < ôi < pi.

If i ∈ L3
1 ∪ L

3
3, then there exists one zero ǒi for W−

i (r), and one zero ôi for W+
i (r), satisfying

qi < ǒi < ôi.

If i ∈ L2 ∪ L4, then there exists one zero ǒi for W−
i (r), and one zero ôi for W+

i (r), satisfying ǒi < ôi.
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3. Main results

3.1. Equilibrium points

In what follows, the number of equilibrium points of (2.1) is explored. Let card Q represent the
cardinality of a given set Q. Define µ = card(L1

1 ∪L
1
3), k = card (L2

1 ∪L
3
1 ∪L2 ∪L

2
3 ∪L

3
3 ∪L4), and let

L̄i = {[ǒi, ôi]} ,

L̃i =
{
[ǔi, ûi], [v̂i, v̌i], [λ̌i, λ̂i]

}
,

Θ =
{∏n

i=1li, li ∈ L̃i or li ∈ L̄i

}
.

The following assumption is required so as to ascertain the number of equilibrium points of (2.1).

Assumption 3.1. k + µ = n.

Consequently, it can be seen that there exist 3µ elements in Θ.

Theorem 3.1. Suppose Assumption 3.1 holds. Further assume that

n∑
j=1, j,i

δ j|βi j| +

n∑
j=1

δ j|γi j| +

n∑
j=1

δ j|ϕi j|τ̃ j < Fi, (3.1)

where i ∈ N , and Fi is given in Table 1. Then, neural network (2.1) has accurately 3µ equilibria in Rn.

Proof. We first demonstrate the existence of equilibrium points of (2.1) for any Θ(1) =
∏n

i=1 li =∏n
i=1[di, gi] ∈ Θ.
With regard to any given x = (x1, x2, ..., xn)T and index i ∈ N , define the following function:

Wi(r) = −ηir + βii fi(r) +

n∑
j=1, j,i

βi j f j(x j) +

n∑
j=1

γi j f j(x j) +

n∑
j=1

ϕi jτ̃ j f j(x j) + Ii.

Comparing Wi(r) with W+
i (r),W−

i (r), we can get that W−
i (r) ≤ Wi(r) ≤ W+

i (r) for r ∈ [di, gi]. Then,
two cases will be considered.

Case 1: when li = [v̂i, v̌i], we can obtain

Wi(di) ≤ W+
i (di) = 0,Wi(gi) ≥ W−

i (gi) = 0.

Case 2: when li , [v̂i, v̌i], we get

Wi(di) ≥ W−
i (di) = 0,Wi(gi) ≤ W+

i (gi) = 0.

Taken together, Wi(di)Wi(gi) ≤ 0, whereupon there exists a x̄i ∈ [di, gi] satisfying Wi(x̄i) = 0 for
i = 1, 2, ..., n. Define a continuous mapping Ξ : Θ(1) → Θ(1), Ξ(x1, x2, ..., xn) = (x̄1, x̄2, ..., x̄n)T . By
virtue of a fixed point theorem, we can assert the existence of a fixed point x∗ = (x∗1, x

∗
2, ..., x

∗
n)T of Ξ,

which also serves as an equilibrium point for (2.1).
Following that, we are prepared to certify the uniqueness of equilibrium points in Θ(1). For any

x, y ∈ Θ(1), hypothesize that Ξ(x) = x∗,Ξ(y) = y∗ and x∗, y∗ are both roots of Wi(r).
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Hence,

− ηix∗i + βii fi(x∗i ) +

n∑
j=1, j,i

βi j f j(x j) +

n∑
j=1

γi j f j(x j) +

n∑
j=1

ϕi jτ̃ j f j(x j) + Ii = 0, (3.2)

− ηiy∗i + βii fi(y∗i ) +

n∑
j=1, j,i

βi j f j(y j) +

n∑
j=1

γi j f j(y j) +

n∑
j=1

ϕi jτ̃ j f j(y j) + Ii = 0. (3.3)

Subtracting (3.3) from (3.2), it follows that

| − ηi(x∗i − y∗i ) + βii( fi(x∗i ) − fi(y∗i ))| = |ηi − βii f ′i (ξ∗i )||x∗i − y∗i |

≤

n∑
j=1, j,i

|βi j|δ j|x j − y j| +

n∑
j=1

|γi j|δ j|x j − y j| +

n∑
j=1

|ϕi j|τ̃ jδ j|x j − y j|,

where min(x∗i , y
∗
i ) ≤ ξ∗i ≤ max(x∗i , y

∗
i ). In the following, eight situations are discussed.

Case 1: i ∈ L1
1.

If ξ∗i ∈ [ǔi, ûi], we have f ′i (ξ∗i ) ≤ ηi
βii

and 0 < f ′i (ǔi) ≤ f ′i (ξ∗i ) ≤ f ′i (ûi); hence

|ηi − βii f ′i (ξ∗i )| = ηi − βii f ′i (ξ∗i ) ≥ ηi − βii f ′i (ûi) ≥ Fi.

If ξ∗i ∈ [v̂i, v̌i], we can get f ′i (ξ∗i ) ≥ ηi
βii

, and 0 < min
{
f ′i (v̌i), f ′i (v̂i)

}
≤ f ′i (ξ∗i ) ≤ δi, then

|ηi − βii f ′i (ξ∗i )| = βii f ′i (ξ∗i ) − ηi ≥ βiimin
{
f ′i (v̌i), f ′i (v̂i)

}
− ηi ≥ Fi.

If ξ∗i ∈ [λ̌i, λ̂i], we can obtain f ′i (ξ∗i ) ≤ ηi
βii

, and −δi ≤ f ′i (ξ∗i ) ≤ max
{
f ′i (λ̌i), f ′i (λ̂i)

}
, then

|ηi − βii f ′i (ξ∗i )| = ηi − βii f ′i (ξ∗i ) ≥ ηi − βiimax
{
f ′i (λ̌i), f ′i (λ̂i)

}
≥ Fi.

Case 2: i ∈ L2
1. In this case, ξ∗i ∈ [ǒi, ôi], we can know f ′i (ξ∗i ) ≤ ηi

βii
, and 0 < f ′i (ǒi) ≤ f ′i (ξ∗i ) ≤ f ′i (ôi).

Hence,
|ηi − βii f ′i (ξ∗i )| ≥ ηi − βii f ′i (ôi) ≥ Fi.

Case 3: i ∈ L3
1. In this case, f ′i (ξ∗i ) ≤ ηi

βii
and f ′i (ξ∗i ) ≤ max

{
f ′i (ǒi), f ′i (ôi)

}
. Hence,

|ηi − βii f ′i (ξ∗i )| ≥ ηi − βiimax
{
f ′i (ǒi), f ′i (ôi)

}
≥ Fi.

Case 4: i ∈ L2. In this case, ξ∗i ∈ [ǒi, ôi], f ′i (ξ∗i ) ≤ δi <
ηi
βii
, so we can get

|ηi − βii f ′i (ξ∗i )| = ηi − βii f ′i (ξ∗i ) ≥ ηi − βiiδi ≥ Fi.

Case 5: i ∈ L1
3.

If ξ∗i ∈ [ǔi, ûi], we have βii < 0, f ′i (ξ∗i ) ≥ ηi
βii

, and min
{
f ′i (ǔi), f ′i (ûi)

}
≤ f ′i (ξ∗i ) ≤ δi. Hence,

|ηi − βii f ′i (ξ∗i )| = ηi − βii f ′i (ξ∗i ) ≥ ηi − βiimin
{
f ′i (ǔi), f ′i (ûi)

}
≥ Fi.

If ξ∗i ∈ [v̂i, v̌i], we can get βii < 0, f ′i (ξ∗i ) ≤ ηi
βii

, and −δi ≤ f ′i (ξ∗i ) ≤ max
{
f ′i (v̌i), f ′i (v̂i)

}
< 0. Then,

|ηi − βii f ′i (ξ∗i )| = βii f ′i (ξ∗i ) − ηi ≥ βiimax
{
f ′i (v̌i), f ′i (v̂i)

}
− ηi ≥ Fi.
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If ξ∗i ∈ [λ̌i, λ̂i], we can obtain βii < 0, f ′i (ξ∗i ) ≥ ηi
βii

, and f ′i (λ̌i) ≤ f ′i (ξ∗i ) ≤ f ′i (λ̂i) < 0. Then,

|ηi − βii f ′i (ξ∗i )| = ηi − βii f ′i (ξ∗i ) ≥ ηi − βii f ′i (λ̌i) ≥ Fi.

Case 6: i ∈ L2
3. In this case, βii < 0, ξ∗i ∈ [ǒi, ôi]. We can know f ′i (ξ∗i ) ≥ ηi

βii
, and min

{
f ′i (ǒi), f ′i (ôi)

}
≤

f ′i (ξ∗i ) ≤ δi. Hence,
|ηi − βii f ′i (ξ∗i )| ≥ ηi − βiimin

{
f ′i (ǒi), f ′i (ôi)

}
≥ Fi.

Case 7: i ∈ L3
3. In this case, βii < 0, f ′i (ξ∗i ) ≥ ηi

βii
and f ′i (ǒi) ≤ f ′i (ξ∗i ) ≤ f ′i (ôi) < 0. Hence,

|ηi − βii f ′i (ξ∗i )| ≥ ηi − βii f ′i (ǒi) ≥ Fi.

Case 8: i ∈ L4. In this case, βii < 0, ξ∗i ∈ [ǒi, ôi], and f ′i (ξ∗i ) ≥ −δi >
ηi
βii
, so we can get

|ηi − βii f ′i (ξ∗i )| = ηi − βii f ′i (ξ∗i ) ≥ ηi + βiiδi ≥ Fi.

Based on the above discussion,

||Ξ(x) − Ξ(y)|| = max1≤i≤n(|Ξi(x) − Ξi(y)|) ≤ max1≤i≤n(|x∗i − y∗i |)

≤max1≤i≤n

( 1
|ηi − βii f ′i (ξ∗i )|

( n∑
j=1, j,i

|βi j|δ j|x j − y j| +

n∑
j=1

|γi j|δ j|x j − y j| +

n∑
j=1

|ϕi j|τ̃ jδ j|x j − y j|

))
≤max1≤i≤n

(∑n
j=1, j,i δ j|βi j| +

∑n
j=1 δ j|γi j| +

∑n
j=1 δ j|ϕi j|τ̃ j

Fi

)
‖x − y‖

=∆ ‖x − y‖ ,

where ∆ = max1≤i≤n(
∑n

j=1, j,i δ j |βi j |+
∑n

j=1 δ j |γi j |+
∑n

j=1 δ j |ϕi j |τ̃ j

Fi
), and Fi is described in Table 1.

Recalling (3.1), ∆ < 1. Consequently, Ξ is a contraction mapping in Θ(1) ∈ Θ. Hence, a unique
equilibrium point exists within Θ(1). From Assumption 3.1, the number of elements of Θ is 3µ, so the
neural network (2.1) has exactly 3µ unique equilibrium points. �

Table 1. The value of Fi.

i Fi

i ∈ L1
1 min

{
βiimin( f ′i (v̌i), f ′i (v̂i)) − ηi, ηi − βiimax( f ′i (ûi), f ′i (λ̂i), f ′i (λ̌i))

}
i ∈ L2

1 ηi − βii f ′i (ôi)

i ∈ L3
1 ηi − βiimax

{
f ′i (ôi), f ′i (ǒi)

}
i ∈ L2 ηi − βiiδi

i ∈ L1
3 min

{
βiimax( f ′i (v̌i), f ′i (v̂i)) − ηi, ηi − βiimin( f ′i (ûi), f ′i (ǔi), f ′i (λ̌i))

}
i ∈ L2

1 ηi − βiimin
{
f ′i (ôi), f ′i (ǒi)

}
i ∈ L3

1 ηi − βii f ′i (ǒi)

i ∈ L2 ηi + βiiδi
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3.2. Multimode function multistability

From the discussion in the preceding subsection, we have obtained that there are exactly 3µ

equilibrium points. In this subsection, we will inquire into the multimode function stability of 3µ

equilibria for CGNNs with Gaussian activation functions and mixed time delays. For this purpose, the
invariant set needs to be specified.

Define
L̄
%
i = {[ǒi − %, ôi + %]} ,

L
%
i =

{
[ǔi − %, ûi + %], [λ̌i − %, λ̂i + %]

}
,

L̃
%
i =

{
[ǔi − %, ûi + %], [v̂i − %, v̌i + %], [λ̌i − %, λ̂i + %]

}
,

Θ
%
i =

{∏n
i=1li, li ∈ L

%
i or li ∈ L̄

%
i

}
,

Θ̃
%
i =

{∏n
i=1li, li ∈ L̃

%
i or li ∈ L̄

%
i

}
,

Θ̌
%
i = Θ̃

%
i − Θ

%
i ,

where 0 < % < min1≤i≤n(%i), and define

%i =


min(pi − ûi, λ̌i − qi), i ∈ L1

1 ∪ L
1
3,

pi − ôi, i ∈ L2
1 ∪ L

2
3,

ǒi − qi, i ∈ L3
1 ∪ L

3
3,

1, i ∈ L2 ∪ L4.

Let Θ
%
(1) =

∏n
i=1[∂̌i− %, ∂̂i + %] and Θ̌

%
(1) =

∏n
i=1[ε̌i − %, ε̂i + %] be elements of Θ

%
i and Θ̌

%
i , respectively.

Remark 3.1. Under the condition of Theorem 3.1, it is observed that there are exactly 2µ elements in
Θ
%
i and 3µ − 2µ elements in Θ̌

%
i .

Theorem 3.2. Suppose Assumption 3.1 holds. Then, Θ
%
(1) ∈ Θ

%
i is a positive invariant set for initial

state of (2.1) with φi(t0) ∈ Θ
%
(1).

Proof. For any initial value φi(s) ∈ C([−τ̃, 0],D), if φi(t0) ∈ [∂̌i − %, ∂̂i + %], we require that the
corresponding solution xi(t) of (2.1) meets xi(t) ∈ [∂̌i − %, ∂̂i + %] for all t ≥ t0. Otherwise, there must
exist an index i, t2 > t1 > t0, and ω which is an adequately small positive number, such that

xi(t1) = ∂̂i + %,

xi(t2) = ∂̂i + % + ω,

x′i(t1) ≥ 0.

(3.4)

On the other hand, it is not difficult to observe that for any element [∂̌i−%, ∂̂i+%] ∈ Θ
%
i , W+

i (∂̂i+%) < 0,
then

dxi(t)
dt
|t=t1 ≤ mi(xi(t1))W+

i (xi(t1)) < 0.

This is in contradiction to x′i(t1) ≥ 0. Then, xi(t) ≤ ∂̂i +%. Likewise, we can prove that xi(t) ≥ ∂̌i−%,
for t ≥ t0 and i = 1, 2, ..., n. Accordingly, each set in Θ

%
i is a positive invariant set. �
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Remark 3.2. From Remark 3.1, there exist 2µ elements in Θ
%
i , so the number of positively invariant sets

is 2µ for initial state φi(t0) ∈ Θ
%
(1) of neural network (2.1).

Below, we will investigate whether the equilibria located in the positive invariant sets are multimode
function stable for neural network (2.1). For this reason, we need to introduce the following assumption
and lemma.

Assumption 3.2. ~(t) is a monotonically continuous and non-decreasing function. It satisfies ~(t) > 0
for t ≥ 0, and ~(r) = ~(0), r ∈ [−τ̃, 0]. Further suppose

d~(t)
dt

/~(t) = ε − P(t), t ≥ 0,

holds, where P(·) is a monotonically nondecreasing nonnegative function, and ε > 0 is a constant.

Hence, it is easy to obtain that d~(t)
dt /~(t) ≤ ε.

Lemma 3.1 [26]. Suppose that Assumption 3.2 holds. Then,

~(t)
~(t − ζ)

≤
~(ζ)
~(0)

, t ≥ 0,

where ζ ∈ [−τ̃, 0] is a constant.

Let x∗ ∈ Θ
%
(1) be an equilibrium point of (2.1). Define

υ(t) = x(t) − x∗,

where x(t) = (x1(t), x2(t), ..., xn(t))T is the solution of neural network (2.1) and its initial condition
φ(r) ∈ Θ

%
(1), r ∈ [−τ̃, 0].

Thereupon,

dυi(t)
dt

=mi(υi(t) + x∗i )
(
−ηiυi(t) + βii( fi(υi(t) + x∗i ) − fi(x∗i )) +

n∑
j=1, j,i

βi j( f j(υ j(t) + x∗j) − f j(x∗j))

+

n∑
j=1

γi j( f j(υ j(t − τ j(t)) + x∗j) − f j(x∗j)) +

n∑
j=1

ϕi j

∫ t

t−τ̃ j

( f j(υ j(s) + x∗j) − f j(x∗j))ds
)
.

(3.5)

For convenience, let Fi(t) = fi(υi(t) + x∗i ) − fi(x∗i ). Hence, from (3.5)

d|υi(t)|
dt

=sign(υi(t))
dυi(t)

dt

=sign(υi(t))mi(υi(t) + x∗i )
(
−ηiυi(t) + βiiFi(t)

+

n∑
j=1, j,i

βi jF j(t) +

n∑
j=1

γi jF j(t − τ j(t)) +

n∑
j=1

ϕi j

∫ t

t−τ̃ j

F j(s)ds
)
.

(3.6)

Consider the following expression:

sign(υi(t))mi(υi(t) + x∗i )βiiFi(t) = mi(υi(t) + x∗i )βii|υi(t)|
Fi(t)
υi(t)

.
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When i ∈ L1
1, if li = [ǔi − %, ûi + %],

0 < f ′i (ǔi − %) <
Fi(t)
υi(t)

< f ′i (ûi + %),

and if li = [λ̌i − %, λ̂i + %],
Fi(t)
υi(t)

< max( f ′i (λ̌i − %), f ′i (λ̂i + %)).

When i ∈ L2
1, li = [ǒi − %, ôi + %],

0 < f ′i (ǒi − %) <
Fi(t)
υi(t)

< f ′i (ôi + %).

When i ∈ L3
1, li = [ǒi − %, ôi + %],

Fi(t)
υi(t)

< max( f ′i (ǒi − %), f ′i (ôi + %)).

When i ∈ L2 ∪ L4, li = [ǒi − %, ôi + %], −δi ≤
Fi(t)
υi(t)
≤ δi.

When i ∈ L1
3, if li = [ǔi − %, ûi + %],

min
{
f ′i (ǔi − %), f ′i (ûi + %)

}
<

Fi(t)
υi(t)

< δi,

if li = [λ̌i − %, λ̂i + %],

f ′i (λ̌i − %) <
Fi(t)
υi(t)

< f ′i (λ̂i + %).

When i ∈ L2
3, li = [ǒi − %, ôi + %],

min
{
f ′i (ǒi − %), f ′i (ôi + %)

}
<

Fi(t)
υi(t)

< δi.

When i ∈ L3
3, li = [ǒi − %, ôi + %],

f ′i (ǒi − %) <
Fi(t)
υi(t)

< f ′i (ôi + %).

Taking into account these cases, we can get

sign(υi(t))mi(υi(t)+x∗i )βiiFi(t) ≤ βiimi(υi(t)+x∗i )|υi(t)|Ψi, (3.7)

where Ψi is described in Table 2.

AIMS Mathematics Volume 9, Issue 2, 4562–4586.



4573

Table 2. The value of Ψi.

i Ψi

i ∈ L1
1 max

{
f ′i (ûi + %), f ′i (λ̌i − %), f ′i (λ̂i + %)

}
i ∈ L2

1 f ′i (ôi + %)

i ∈ L3
1 max

{
f ′i (ôi + %), f ′i (ǒi − %)

}
i ∈ L2 δi

i ∈ L1
3 min

{
f ′i (ûi + %), f ′i (ǔi − %), f ′i (λ̌i + %)

}
i ∈ L2

3 min
{
f ′i (ôi + %), f ′i (ǒi − %)

}
i ∈ L3

3 f ′i (ǒi − %)

i ∈ L4 −δi

Theorem 3.3. Assume the conditions of Assumptions 2.1–3.2 are satisfied. Further suppose that there
are n positive constants σ1, σ2, ..., σn such that

(
ηi − βiiΨi −

1
σi

n∑
j=1, j,i

|βi j|Ψ jσ j − ε
)
−

1
σi

n∑
j=1

|γi j|Ψ jσ j
~(τ̃)
~(0)

−
1
σi

n∑
j=1

|ηi j|Ψ jσ j
~(τ̃ j)τ̃ j

~(0)
> 0, (3.8)

holds for i = 1, 2, ..., n. Then, there are 2µ equilibria which are locally multimode function stable, and
3µ − 2µ equilibrium points are unstable in (2.1).

Proof. Based on the analysis in the previous subsection, there exist exactly 2µ equilibria in Θ
%
i . Our

objective now is simply to prove 2µ equilibria are multimode function stable in Θ
%
i , while other

equilibria in Θ̌
%
i are unstable.

Take

$(t) = max1≤i≤n(
|υi(t)|
σi

),

$̃(t) = ~(t)$(t),
$̂(t) = sup−τ̃≤r≤t$̃i(r),

and there must be some κ ∈ {1, 2, ..., n} such that $(t) =
|υκ(t)|
σκ
.

Under (3.6), we get

d$(t)
dt

=
1
σκ

d |υκ(t)|
dt

=
sign(υκ(t))

σκ

mκ(υκ(t) + x∗κ)
(
−ηκυκ(t) + βκκFκ(t) +

n∑
j=1, j,κ

βκ jF j(t)

+

n∑
j=1

γκ jFκ(t − τ j(t)) +

n∑
j=1

ϕκ j

∫ t

t−τ̃ j

F j(s)ds
)
.
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Note that

sign(υκ(t))
σκ

mκ(υκ(t) + x∗κ)
n∑

j=1, j,κ

βκ jF j(t) ≤
sign(υκ(t))

σκ

mκ(υκ(t) + x∗κ)
n∑

j=1, j,κ

|βκ j|Ψ jυ j(t)

≤
1
σκ

mκ(υκ(t) + x∗κ)
n∑

j=1, j,κ

|βκ j|Ψ j$(t)σ j,

sign(υκ(t))
σκ

mκ(υκ(t) + x∗κ)
n∑

j=1

γκ jF j(t − τ j(t)) ≤
1
σκ

mκ(υκ(t) + x∗κ)
n∑

j=1

γκ jΨ j|υκ(t − τ j(t))|

≤
1
σκ

mκ(υκ(t) + x∗κ)
n∑

j=1

|γκ j|Ψ jσ j$(t − τ j(t)),

and

sign(υκ(t))
σκ

mκ(υκ(t) + x∗κ)
n∑

j=1

ϕκ j

∫ t

t−τ̃ j

F j(s)ds ≤
1
σκ

mκ(υκ(t) + x∗κ)
n∑

j=1

|ϕκ j|Ψ j

∫ t

t−τ̃ j

(
|υ j(s)|
σ j

σ j)ds

≤
1
σκ

mκ(υκ(t) + x∗κ)
n∑

j=1

|ϕκ j|σ jΨ j

∫ t

t−τ̃ j

~(s)$(s)
~(s)

ds

≤
1
σκ

mκ(υκ(t) + x∗κ)
n∑

j=1

|ϕκ j|σ jΨ j$̂ j(t)
∫ t

t−τ̃ j

1
~(s)

ds.

Combining with the above calculation and (3.7), we can obtain

d$(t)
dt
≤ − mκ(υκ(t) + x∗κ)

(
ηκ − βκκΨκ −

1
σκ

n∑
j=1, j,κ

|βκ j|Ψ jσ j

)
$(t)

+
mκ(υκ(t) + x∗κ)

σκ

n∑
j=1

|γκ j|Ψ jσ j$(t − τ j(t))

+
mκ(υκ(t) + x∗κ)

σκ

n∑
j=1

Ψ j|ϕκ j|σ j

∫ t

t−τ̃ j

1
~(s)

ds$̂ j(t).

(3.9)
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By invoking (3.9),

d$̃(t)
dt

=
d($(t)~(t))

dt
= $(t)

d~(t)
dt

+ ~(t)
d$(t)

dt

≤$(t)
d~(t)

dt
+ ~(t)

(
−mκ(υκ(t) + x∗κ)(ηκ − βκκΨκ −

1
σκ

n∑
j=1, j,κ

|βκ j|σ j)$(t)

+
mκ(υκ(t) + x∗κ)

σκ

n∑
j=1

|γκ j|Ψ jσ j$(t − τ j(t))

+
mκ(υκ(t) + x∗κ)

σκ

n∑
j=1

Ψ j|ϕκ j|σ j

∫ t

t−τ̃ j

1
~(s)

ds$̂ j(t)
)

≤ − mκ(υκ(t) + x∗κ)
(
ηκ − βκκΨκ −

1
σκ

n∑
j=1, j,κ

|βκ j|σ jΨ j −

d~(t)
dt

~(t)

)
$(t)~(t)

+
mκ(υκ(t) + x∗κ)

σκ

n∑
j=1

|γκ j|Ψ jσ j~(t)$(t − τ j(t))

+
mκ(υκ(t) + x∗κ)

σκ

n∑
j=1

Ψ j|ϕκ j|σ j

∫ t

t−τ̃ j

~(t)
~(s)

ds$̂ j(t).

From Lemma 3.1,

~(t)$(t − τ j(t)) =
~(t)

~(t − τ j(t))
~(t − τ j(t))$(t − τ j(t))

≤
~(t)
~(t − τ̃)

$̃(t − τ j(t)) ≤
~(τ̃)
~(0)

$̂(t),

∫ t

t−τ̃ j

~(t)
~(s)

ds ≤
∫ t

t−τ̃ j

~(t)
~(t − τ̃ j)

ds ≤
~(τ̃ j)τ̃ j

~(0)
.

Hence,
d$̃(t)

dt
≤ − mκ(υκ(t) + x∗κ)

(
ηκ − βκκΨκ −

1
σκ

n∑
j=1, j,κ

|βκ j|Ψ jσ j − ε
)
$̃(t)

+
mκ(υκ(t + x∗κ)

σκ

n∑
j=1

|γκ j|Ψ jσ j
~(τ̃)
~(0)

$̃(t)

+
mκ(υκ(t) + x∗κ)

σκ

n∑
j=1

|ϕκ j|Ψ jσ j
~(τ̃ j)τ̃ j

~(0)
$̃(t).

(3.10)

In the following, it is demanded that

$̃(t) ≤ $̃(0), t ≥ 0, (3.11)

and if not, there must be certain T ∗ > 0 satisfying

$̃(T ∗) = $̂(T ∗) > $̂(0) ≥ 0.
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In other words, $̃(t) < $̂(T ∗), t ∈ [−τ̃,T ∗],
$̃(t) = $̂(T ∗), t = T ∗,

which means that
d$̃(t)

dt
|t=T ∗ ≥ 0. (3.12)

From the above discussion and (3.10), we can derive

d$̃(t)
dt
|t=T ∗ ≤ − mκ(υκ(T ∗) + x∗κ)

(
(ηκ − βκκΨκ −

1
σκ

n∑
j=1, j,κ

|βκ j|Ψ jσ j − ε)

−
1
σκ

n∑
j=1

|γκ j|Ψ jσ j
~(τ̃)
~(0)

−
1
σκ

n∑
j=1

|ϕκ j|Ψ jσ j
~(τ̃ j)τ̃ j

~(0)

)
$̃(T ∗)

<0.

The result contradicts with (3.12). Hence, (3.11) holds, which implies

‖x(t) − x∗‖ = ‖υ(t)‖ ≤ σ̂max1≤i≤n(
|υi(t)|
σi

)

≤σ̂
$̃(t)
~(t)

≤ σ̂
$̃(0)
~(t)

≤ σ̂
sup−τ̃≤r≤0($(r)~(r))

~(t)

=σ̂~(0)
sup−τ̃≤r≤0$(r)

~(t)
≤
ι ‖φ − x∗‖τ̃
~(t)

,

where ι =
σ̂~(0)
σ̌
, σ̂ = max1≤i≤n(σi), σ̌ = min1≤i≤n(σi). The proof is accomplished. �

4. Numerical examples

We offer two numerical examples of 2-dimensional CGNNs with Gaussian activation functions and
mixed time delays to show the efficacy of theoretical results in this subsection.

Example 4.1. Consider the 2-dimensional CGNNs with Gaussian activation functions and mixed time
delays presented below:

dx1(t)
dt

=(4 + sin(x1(t))
(
−x1(t) + 3.3 f1(x1(t)) + 0.08 f2(x2(t)) − 0.03 f1(x1(t − τ1(t)))

+ 0.12 f2(x2(t − τ2(t))) + 0.01
∫ t

t−τ̃1

f1(x1(s))ds + 0.02
∫ t

t−τ̃2

f2(x2(s))ds − 2.5
)
,

dx2(t)
dt

=(5 + sin(x2(t))
(
−1.2x2(t) + 0.16 f1(x1(t)) + 1.1 f2(x2(t)) − 0.01 f1(x1(t − τ1(t)))

+ 0.02 f2(x2(t − τ2(t))) + 0.01
∫ t

t−τ̃1

f1(x1(s))ds + 0.01
∫ t

t−τ̃2

f2(x2(s))ds − 3
)
,

(4.1)

where Gaussian activation functions f1(r) = f2(r) = exp(−r2), τ1(t) = 1.5 + cos(t), τ2(t) = 2t
1+t , τ̃1 =

1.1, τ̃2 = 1.2.
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It can be gained apparently that

ρ1 = ρ2 = 1, c1 = c2 = 0,

δ1 = δ2 =
√

2exp(−1/2) ≈ 0.8578.

Since m1(x1(t)) = 4 + sin(x1(t)) ∈ [3, 5], m2(x2(t)) = 5 + sin(x2(t)) ∈ [4, 6], Assumption 2.1 is met.
Moreover τ̃ = 2.5, š1 = −2.53, ŝ1 = −2.276, š2 = −3.01, ŝ2 = −2.829. Hence, the boundary functions
are as follows:

W−
1 (r) = −r + 3.3exp(−r2) − 2.53,

W+
1 (r) = −r + 3.3exp(−r2) − 2.276,

W−
2 (r) = −r + 1.1exp(−r2) − 3.01,

W+
2 (r) = −r + 1.1exp(−r2) − 2.829,

where the graphs of these boundary functions are described as Figures 1 and 2.
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Figure 1. The bounding functions w−1 (r) and w+
1 (r) in Example 4.1.
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Figure 2. The bounding functions w−2 (r) and w+
2 (r) in Example 4.1.
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Additionally,

0 <
η1

β11
≈ 0.3030 < δ1 ≈ 0.8578,

η2

β22
≈ 1.0909 > δ2 ≈ 0.8578,

which demonstrates that 1 ∈ L1, 2 ∈ L2.

By means of further calculations, we can obtain that µ = 1. ǔ1 ≈ −2.5270, û1 ≈ −2.2570, v̌1 ≈

−0.9550, v̂1 ≈ −0.8480, λ̌1 ≈ 0.3629, λ̂1 ≈ 0.4364, p1 ≈ −1.5261, q1 ≈ −0.1441. Also, W+
1 (p1) =

−0.4285 < 0,W−
1 (q1) = 0.8463 > 0. Therefore, 1 ∈ L1

1.

Furthermore, ǒ2 ≈ −3.0699, ô2 ≈ −2.8286. f ′1(v̌1) = 0.6621, f ′1(v̂1) = 0.4270, f ′1(û1) = 0.1131,
f ′1(λ̌1) = −1.2914, f ′1(λ̂1) = −1.0235. By computation, F1 ≈ 0.4091, F2 ≈ 0.2564.

Then,

|β12|δ2 + (|γ11| + |γ12|)δ2 + (|ϕ11|τ̃1 + |ϕ12|τ̃2)δ2 = 0.2187 < F1,

|β21|δ1 + (|γ21| + |γ22|)δ1 + (|ϕ21|τ̃1 + |ϕ22|τ̃2)δ2 = 0.1827 < F2

are met. Hence, depending on Theorem 3.1, there are 3 equilibria for (4.1). By applying MATLAB,
we find that these equilibrium points are (-0.8174,-2.4286), (-2.4930,-2.4979), and (0.3674,-2.3795),
respectively.

Moreover, %1 = min(p1− û1, λ̌1−q1) ≈ 0.5070, %2 = 1, so let % = 0.1. From Theorem 3.2, there exist
two positively invariant sets, which are [−2.627,−2.156]× [−3.1699,−2.7286], and [0.3529, 0.5364]×
[−3.1699,−2.7286].

Next, we need to check out the stability condition (3.8) in Theorem 3.3. Select σ1 = σ2 = 1,
Ψ1 = max( f ′1(ûi + %), f ′1(λ̌1 − %) ≈ 0, f ′1(λ̂1 + %)) = 0.1589, Ψ2 ≈ 0 Now, we let ~(t) be an exponential
function with the expression ~(t) = exp(0.06t), so ε = 0.06. By further calculating

(1 − 3.3 × 0.1589 − 0.08 × 0.8578 − 0.06) − (0.03 × 0.1589 + 0.12 × 0.8578)exp(0.15)
− (0.01 × 0.1589 × exp(0.066) × 1.1 + 0.02 × 0.8578 × exp(0.072) × 1.2) = 0.1981 > 0,
(1.2 − 1.1 × 0.8578 − 0.16 × 0.1589 − 0.06) − (0.01 × 0.1589 + 0.02 × 0.8578)exp(0.12)
− (0.01 × 0.1589 × exp(0.066) × 1.1 + 0.01 × 0.8578 × exp(0.072) × 1.2) = 0.1364 > 0.

The result shows that (3.8) holds, that is, the equilibrium points (−2.4930,−2.4979)
and (0.3674,−2.3795) are multimode function stable, whereas the equilibrium point
(−0.8174,−2.4286) is unstable. The trajectory behavior of (4.1) and the equilibrium points are
illustrated by Figures 3–5.
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Figure 3. Transient behavior of x1 in Example 4.1.
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Figure 4. Transient behavior of x2 in Example 4.1.
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Figure 5. The transient behavior of (x1, x2) of (4.1).
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Example 4.2. Consider the 2-dimensional CGNNs with Gaussian activation functions and mixed time
delays presented below:

dx1(t)
dt

=(2 + sin(x1(t))
(
−x1(t) + 6.3 f1(x1(t)) + 0.2 f2(x2(t)) + 0.1 f1(x1(t − τ1(t)))

+ 0.5 f2(x2(t − τ2(t))) + 0.03
∫ t

t−τ̃1

f1(x1(s))ds + 0.02
∫ t

t−τ̃2

f2(x2(s))ds − 4.5
)
,

dx2(t)
dt

=(4 + cos(x2(t))
(
−1.5x2(t) + 0.66 f1(x1(t)) + 7.5 f2(x2(t)) + 0.1 f1(x1(t − τ1(t)))

+ 0.3 f2(x2(t − τ2(t))) + 0.02
∫ t

t−τ̃1

f1(x1(s))ds + 0.01
∫ t

t−τ̃2

f2(x2(s))ds − 4
)
,

(4.2)

where Gaussian activation functions f1(r) = f2(r) = exp(−r2), τ1(t) = 1 + 0.5sin(t), τ2(t) = t
1+t , τ̃1 =

1.15, τ̃2 = 1.22.
It can be gained apparently that

ρ1 = ρ2 = 1, c1 = c2 = 0,

δ1 = δ2 =
√

2exp(−1/2) ≈ 0.8578.

Since m1(x1(t)) = 2 + sin(x1(t)) ∈ [1, 3], m2(x2(t)) = 4 + cos(x2(t)) ∈ [3, 5], Assumption 2.1 is met.
Moreover τ̃ = 1.5, š1 = −4.5, ŝ1 = −3.7756, š2 = −5, ŝ2 = −4.217. Hence, the boundary functions are
as follows:

W−
1 (r) = −r + 6.3exp(−r2) − 4.5,

W+
1 (r) = −r + 6.3exp(−r2) − 3.7756,

W−
2 (r) = −r + 7.5exp(−r2) − 5,

W+
2 (r) = −r + 7.5exp(−r2) − 4.217,

where the graphs of these boundary functions are portrayed in Figures 6 and 7.
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Figure 6. The bounding functions w−1 (r) and w+
1 (r) in Example 4.2.
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2 (r) in Example 4.2.

Additionally,

0 <
η1

β11
≈ 0.1587 < δ1 ≈ 0.8578,

0 <
η2

β22
= 0.2 < δ2 ≈ 0.8578,

which implies that 1 ∈ L1
1, 2 ∈ L

1
1, and µ = 2.

By means of further calculations, ǔ1 ≈ −4.5, û1 ≈ −3.7756, v̂1 ≈ −0.8821, v̌1 ≈ −0.7135, λ̌1 ≈

0.4841, λ̂1 ≈ 0.6031, p1 ≈ −1.7400, q1 ≈ −0.1230. Also, ǔ2 ≈ −5, û2 ≈ −4.217, v̂2 ≈ −0.9039,v̌2 ≈

−0.7543, λ̌2 ≈ 0.5489, λ̂2 ≈ 0.6566, p2 ≈ −1.8380, q2 ≈ −0.02.
Furthermore, f ′1(v̌1) ≈ 0.8577, f ′1(v̂1) ≈ 0.8103, f ′1(û1) ≈ 0, f ′1(λ̌1) ≈ −0.7659, f ′1(λ̂1) ≈ −0.8384,

f ′2(v̌1) ≈ 0.7986, f ′2(v̂1) ≈ 0.8540, f ′2(û1) ≈ 0, f ′2(λ̌1) ≈ −0.8122, f ′2(λ̂1) ≈ −0.8533. By computation,
F1 = 1, F2 = 1.5.

Then,

|β12|δ2 + (|γ11| + |γ12|)δ2 + (|ϕ11|τ̃1 + |ϕ12|τ̃2)δ2 = 0.7368 < F1,

|β21|δ1 + (|γ21| + |γ22|)δ1 + (|ϕ21|τ̃1 + |ϕ22|τ̃2)δ2 = 0.9395 < F2

are met. Hence, according to Theorem 3.1, there are 32 = 9 equilibrium points for (4.2). Moreover, %1 =

min(p1 − û1, λ̌1 − q1) ≈ 0.6071, %2 = min(p2 − û2, λ̌2 − q2) ≈ 0.5689, so let % = 0.1. From Theorem 3.2,
there exist four positively invariant sets, which are [−4.6,−3.6756]× [−5.1,−4217], [0.3841, 0.7031]×
[−5.1,−4217], [−4.6,−3.6756] × [0.4489, 0.7566], [0.3841, 0.7031] × [0.4489, 0.7566]. By applying
MATLAB, the stable equilibrium points are (-4.441,-2.639), (0.498,-2.355), (0.5126,0.7593), and (-
4.193, 0.6693), respectively.

Next, we need to check out the stability condition (3.8) of Theorem 3.3. Select σ1 = σ2 = 1,
Ψ1 = max( f ′1(ûi + %), f ′1(λ̌1 − %), f ′1(λ̂1 + %)), Ψ2 = 0.8578. Now, we let ~(t) be a logarithmic function,
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where P(t) = ln(t + 8.0101), ε = 0.5, so ~(t) = 0.5 − 1
(t+8.0101)ln(t+8.0101) . By further calculating

η1 − ε = 0.5 > 0,
η2 − ε = 1 > 0.

The result shows that (3.8) holds, that is, equilibrium points (-4.441,-2.639), (0.498,-2.355),
(0.5126,0.7593), and (-4.193, 0.6693) are multimode function stable. The trajectory behavior of (4.2)
as well as the equilibrium points in this case are portrayed by Figures 8–10.
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Figure 8. Transient behavior of x1 in Example 4.2.
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Figure 9. Transient behavior of x2 in Example 4.2.
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Figure 10. The transient behavior of (x1, x2) of (4.2).

5. Conclusions

In this paper, we probe into multimode function multistability of CGNNs with Gaussian activation
functions and mixed time delays. Specifically, on account of the special geometric properties of
Gaussian functions, the state space of an n-dimensional CGNNs can be divided into 3µ subspaces
(0 ≤ µ ≤ n), further exploiting Brouwer’s fixed point theorem and contraction mapping, we conclude
that there exists an equilibrium point for each subspace, that is, there are exactly 3µ equilibria for
CGNNs with Gaussian activation functions and mixed time delays. Subsequently, by analyzing the
invariance sets, it is deduced that 2µ equilibrium points are multimode function stable, while 3µ − 2µ

equilibrium points are unstable. This work extends the existing results concerning the multistability
of multimode functions, offering effective assistance in the dynamic analysis of CGNNs with specific
activation functions and mixed time delays.
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