AIMS Mathematics, 9(2): 4427-4550.
DOI: 10.3934/math.2024218
ATMS Mathematics Received: 27 November 2023
Revised: 27 December 2023
Accepted: 05 January 2024
http://www.aimspress.com/journal/Math Published: 18 January 2024

Research article

Uniform in number of neighbors consistency and weak convergence of ANN
empirical conditional processes and kNN conditional U-processes involving
functional mixing data*

Salim Bouzebda* and Amel Nezzal

LMAC (Laboratory of Applied Mathematics of Compiegne), Université de technologie de
Compiegne, France

* Correspondence: Email: salim.bouzebda@utc.fr.

Abstract: U-statistics represent a fundamental class of statistics arising from modeling quantities of
interest defined by multi-subject responses. U-statistics generalize the empirical mean of a random
variable X to sums over every m-tuple of distinct observations of X. Stute [182] introduced a class of
so-called conditional U-statistics, which may be viewed as a generalization of the Nadaraya-Watson
estimates of a regression function. Stute proved their strong pointwise consistency to: r™(g,t) =
Ele(Yy,..., Y)I(X1, ..., X,) = t], fort € X™. In this paper, we are mainly interested in the study of the
kNN conditional U-processes in a functional mixing data framework. More precisely, we investigate
the weak convergence of the conditional empirical process indexed by a suitable class of functions
and of the kNN conditional U-processes when the explicative variable is functional. We treat the
uniform central limit theorem in both cases when the class of functions is bounded or unbounded
satisfying some moment conditions. The second main contribution of this study is the establishment of
a sharp almost complete Uniform consistency in the Number of Neighbors of the constructed estimator.
Such a result allows the number of neighbors to vary within a complete range for which the estimator
is consistent. Consequently, it represents an interesting guideline in practice to select the optimal
bandwidth in nonparametric functional data analysis. These results are proved under some standard
structural conditions on the Vapnik-Chervonenkis classes of functions and some mild conditions on the
model. The theoretical results established in this paper are (or will be) key tools for further functional
data analysis developments. Potential applications include the set indexed conditional U-statistics,
Kendall rank correlation coefficient, the discrimination problems and the time series prediction from a
continuous set of past values.
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1. Introduction and motivations

U-statistics were first introduced by [115] in connection with unbiased estimators, following initial

(9]

work by [106]. In brief, U-statistics of order m and kernel & based on a sequence {X;},-;, of random
variables with values in a measurable space (S, ©) and a measurable function f : §” — R are given by

—m)!
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U, (h) is the nonparametric uniformly minimum variance estimator of 6 = E (h (X, ..., X,,)). It is the

minimizer with respect to « of

> X X)) - )

1<i|<<iy<n

Empirical variance, Gini’s mean difference, and Kendall’s rank correlation coefficient are common
examples of estimators based on U-statistics. The Wilcoxon signed rank test for the hypothesis of
the location at zero is a classical test based on U-statistics, as discussed by [190] in Example 12.4.
Asymptotic results for the case of independent and identically distributed underlying random variables
were first provided by [115], who also referred to related work by [57, 83, 172, 176]. Similar results
were obtained for V-statistics by [94, 198]. Extensive literature on the theory of U-statistics has
been developed, as reviewed by [10, 138, 176], and others. A detailed review and major historical
developments in this field can be found in the book by [20]. U-processes are sets of U-statistics indexed
by a family of kernels, which can be viewed as infinite-dimensional variants of U-statistics with a single
kernel or as stochastic processes that are nonlinear extensions of empirical processes. U-processes
have been applied to solve complex statistical problems such as density estimation, nonparametric
regression tests, and goodness-of-fit tests. Considering a large group of statistics instead of a single
statistic 1s more statistically interesting, and ideas from the theory of empirical processes can be used
to construct limit or approximation theorems for U-processes. However, obtaining results for U-
processes is not easy and requires significant effort and distinct methodologies. Generalizing from
empirical processes to U-processes is particularly difficult, especially in the stationary setting. U-
processes appear in statistics in many instances, such as the components of higher-order terms in von
Mises expansions, and play a role in analyzing estimators (including function estimators) with varying
degrees of smoothness. For instance, the product limit estimator for truncated data is analyzed in [183]
using a.s. uniform bounds for P-canonical U-processes. In addition, [11] introduce two new tests for
normality based on U-processes, while [173] use weighted L;-distances between the standard normal
density and local U-statistics based on standardized observations to propose new tests for normality,
utilizing the results of [101]. Moreover, in [122], the median-of-means approach, which is based on
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U-statistics, is introduced to estimate the mean of multivariate functions in case of possibly heavy-
tailed distributions. U-processes play a significant role in various statistical applications, including
testing for qualitative features of functions in nonparametric statistics [1, 100], cross-validation for
density estimation [157], and establishing limiting distributions of M-estimators [10, 68, 177]. [10]
provide necessary and sufficient conditions for the law of large numbers and sufficient conditions for
the central limit theorem for U-processes. For further references on U-statistics and U-processes,
interested readers may refer to [28, 40, 46, 47, 48, 54, 138, 179], while a comprehensive insight into
the U-processes theory is provided by [68]. U-statistics are also naturally found in other contexts, such
as the theory of random graphs, where they count occurrences of specific subgraphs like triangles,
as presented in [120]. In machine learning, U-statistics arise naturally in various problems such as
clustering, image recognition, ranking, and learning on graphs, where natural risk estimates take the
form of U-statistics, as discussed in [63]. For instance, the empirical ranking error of any given
prediction rule is a U-statistic of order 2, as stated in [62]. For U-statistics with random kernels of
diverging orders, readers may refer to [97, 112, 178, 180]. Infinite-order U-statistics are also useful
for constructing simultaneous prediction intervals that quantify the uncertainty of ensemble methods
like subbagging and random forests, as presented in [161]. The MeanNN approach estimation for
differential entropy, introduced by [90], is a particular application of the U-statistic. Additionally, [143]
proposed a new test statistic for goodness-of-fit tests using U-statistics. Moreover, [65] have explored
a model-free approach for clustering and classifying genetic data based on U-statistics, leading to
alternative ways of addressing genetic problems. Their motivation was based on the versatility and
adaptability of U-statistics to various genetic problems and different data types. [140] proposed using
the U-statistics, in a natural way, for analyzing random compressed sensing matrices in the non-
asymptotic regime. Extending the above exploration to conditional U-processes is practically useful
and technically more challenging.

We first introduce Stute’s estimators. Let us consider regular sequence of random elements
{(X;,Y)),i € N*} with X; € R? and Y; € Y some polish space and N* = N\{0}. Let o : Y" — Rbea
measurable function. In this paper, we are primarily concerned with the estimation of the conditional
expectation, or regression function, for t € R,

", t) = E(o(Yy,.... ) | Xi,.... X)) =t), (1.1)

whenever it exists, i.e.,
E(le(Y1,..., Yl < oo.

We now introduce a kernel function K : RY — R with support contained in [-B, B¢, B > 0, satisfying:

sup |[K(x)| =: k < o0 and fK(X)dX =1. (1.2)

x€R4

[182] introduced a class of estimators for r(’")(go, t), called conditional U-statistics, which is defined for

each t € R to be :
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where
Iom.n) ={i=(ir.....i): 1 <ij<n and ij#i, if j#r},

is the set of all m-tuples of different integers between 1 and n and {hx := h,},> 1S a sequence of positive
constants converging to zero at the rate nk’t — oo. In the particular case m = 1, the r™ (¢, 1) is reduced
to

rD(e, 1) = E(e(Y)X = 1),

and Stute’s estimator becomes the Nadaraya-Watson [153, 200] estimator of (¢, 1), refer to [50]
for details. The work of [175] was devoted to estimating the rate of the uniform convergence in
t of 7"(e, t;hg) to F(¢,t). In [165], the limit distributions of 7" (¢, t; hx) are analyzed and
compared to those derived by Stute. Under proper mixing settings, [111] extended the results of
[182] to weakly dependent data and applied their findings to validate the Bayes risk consistency of
the corresponding discrimination rules. As alternatives to the conventional kernel-type estimators,
[186] offered symmetrized closest neighbor conditional U-statistics. [98] evaluated the functional
conditional U-statistic and determined its finite-dimensional asymptotic normality. Nonparametric
estimate of the conditional U-statistics in a functional data context has gotten comparatively little
attention despite the subject’s significance. Recent developments are described in [42, 44, 45, 52, 56],
in which the authors examine challenges associated with the uniform in bandwidth consistency
in general settings. [119] evaluated the test of independence in the functional framework using
the Kendall statistics, which may be viewed as special cases of the U-statistics. [14] introduced
a comprehensive framework for clustering within multiple groups, employing a U-statistics-based
approach specifically designed for high-dimensional datasets. This method classifies data into three
groups while evaluating the significance of these partitions. In a related context, [128] focused on
dimension-agnostic inference, devising methods whose validity remains independent of assumptions
regarding dimension versus sample size. Their approach utilized variational representations of existing
test statistics, incorporating sample splitting and self-normalization to yield a refined test statistic
with a Gaussian limiting distribution. This modification of degenerate U-statistics involved dropping
diagonal blocks and retaining oftf-diagonal blocks. Exploring further, [59] delved into U-statistics-
based empirical risk minimization, while [121] examined asymmetric U-statistics based on a stationary
sequence of m-dependent variables, with applications motivated by pattern matching in random strings
and permutations. Additionally, [188] developed innovative U-statistics considering left truncation and
right censoring. As an application, they proposed a straightforward non-parametric test for assessing
the independence between time to failure and the cause of failure in competing risks, particularly when
observations are subject to left truncation and right censoring. In a different context, [136] investigated
the quadruplet U-statistic, offering applications in statistical inference for network analysis. It will be
interesting to find connection of the U-statistics with the problems investigated in [187, 201, 204, 205].
The extension of the preceding investigation to conditional empirical U-processes is both practically
beneficial and technically difficult.

Recently, there has been a growing interest in regression models in which the response variable
is real-valued and the explanatory variable is represented by smooth functions that vary arbitrarily
between repeated observations or measurements. This form of data, known as functional data, appears
in numerous disciplines, such as climatology (hourly concentration of pollutants), medicine (the
knee angle of children as functions of time), economics, linguistics, etc. Functional time series are
commonly encountered in practice, for example, when a long continuous time process is divided into
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smaller natural units, such as days. In this instance, every intraday curve is a functional random
variable. This paper focuses mostly on the instance of functional data and the theory of the U-
processes. We give an excerpt from [6]: Functional data analysis (FDA) is a branch of statistics
that focuses on the study of variables having an unlimited number of dimensions, such as curves, sets,
and images. It has had spectacular growth over the past two decades, fueled partly by technological
advances that have led to the “Big Data” revolution. FDA is today one of the most active and significant
disciplines of research in data science, despite its reputation at the turn of the century as a fairly obscure
area of study. The reader is recommended to the works of [167, 168], [91] for an introduction to
this field. These sources offer a variety of case studies in numerous fields, including criminology,
economics, archaeology, and neurophysiology, as well as basic analysis techniques. It should be noted
that the extension of probability theory to random variables with values in normed vector spaces (such
as Banach and Hilbert spaces), as well as extensions of certain classical asymptotic limit theorems,
predates the recent literature on functional data; the reader is referred to [7]. [99] examined density
and mode estimates for data occupying a normed vector space. This study examines the topic of the
curse of dimensionality for functional data and proposes solutions to the problem. In the context of
regression estimation, [91] examined nonparametric models. We may also refer to [21, 116]. [130]
provided a nice mix of foundational material, accessible theory, and practical examples. Recently,
the contemporary theory was used in the analysis of functional data. [93], who has provided the
consistency rates of several functionals of the conditional distribution, such as the regression function,
the conditional cumulative distribution, the conditional density, and others, uniformly over a subset of
the explanatory variable. [125] established the consistency rates for some functionals nonparametric
models, such as the regression function, the conditional distribution, the conditional density, and the
conditional hazard function, uniformly in bandwidth (UIB consistency). [35] extended these results to
the ergodic setting. [12] examined the issue of local linear estimation of the regression function when
the regressor is functional and demonstrated strong convergence (with rates) uniformly in bandwidth
parameters. [141] examined the k-nearest neighbours (kNN) estimate of the nonparametric regression
model for strong mixing functional time series data and demonstrated the uniform nearly complete
convergence rate of the kNN estimator under several moderate conditions. [30] provided several
limiting law results for the conditional mode in the functional setting for ergodic data; for more recent
references, see [3, 4, 5, 53, 55, 151].

The primary objective of this study is to examine a generic framework and characterize the weak
convergence and the uniform convergence of kNN conditional U-processes based on a regular sequence
of random functions. This is motivated by the fact that the k~-NN method is a fundamental statistical
method presenting several advantages. Recall that the k-NN method considers the k neighbors of
X; nearest to x with respect to some distance d(:,-). Although the local bandwidth of the k-NN is
random and depends on the data X; respecting the local structure of the data, which is essential in the
infinite dimension. Historically, the k-NN was first introduced by [95]-see also [96]-in the context of
nonparametric discrimination, and further investigated by [144], for more details, we refer to [17]. Itis
commonly used in practice (see [91]) and is simple to handle because the user has only one parameter
to control the number k of nearest neighbors, valued in a finite set. In addition, it allows us to build
a neighbor adapted to the data at any point. The k-NN method is widely studied if the explanatory
variable is an element of a finite-dimensional space, for instance, see [16, 64, 77, 104, 145]. In an
infinite dimensional space, i.e., a functional framework, there are three different approaches for the
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k-NN regression estimation. The first, published by [135], examines a k-NN kernel estimate when the
functional variable is an element of a separable Hilbert space H. In this approach, [135] established
a weak consistency result. The strategy of [135] is to reduce the infinite dimension of H by using a
projection on a finite dimension subspace by considering only the first m coeflicients of an expansion
of X in an orthonormal system of H and then applying the multivariate techniques on the projected
data to perform the k-NN regression. The second approach is based on the k-NN procedure and the
functional local linear estimation, the consistency with the convergence rate is obtained in [60] and
[142].

More precisely, in this paper, we are interested in establishing the a.co uniform consistency and
the a.co uniform in the number of neighbors (UINN) consistency of the nonparametric functional
regression estimator and also the functional conditional U-processes (statistics). [157] were the first
to introduce the notion of uniform in bandwidth consistency for kernel density estimators and they
applied empirical process methods in their study. This is motivated by a series of papers, among
many others, [15, 25, 33, 36, 37, 38, 42, 44, 51, 52, 54, 71, 78, 87, 88] the authors established
uniform in bandwidth (UIB) consistency results for such estimators in the i.i.d. finite-dimensional
setting, where h,, varies within suitably chosen intervals indexed by n. In the FDA, several authors
have been interested in studying non-parametric functional estimators. For example, [93] provided the
consistency rates of some functionals of the conditional distribution, including the regression function,
the conditional cumulative distribution, the conditional density, and some others, uniformly over a
certain subset of the explicative variable. [125] established the uniform consistency rate for some
conditional models, including the regression function, the conditional distribution, the conditional
density, and the conditional hazard function. The last mentioned paper is extended by [42]. [124]
and [3] established the almost complete convergence of the k-nearest neighbors (k-NN) estimators,
which are uniform in the number of neighbors, under some classical assumptions on the kernel and
on the small ball probabilities of the functional variable in connection with the entropy condition
controlling the space complexity. [12] considered the problem of local linear estimation of the
regression function when the covariate is functional and proved the strong uniform-in-bandwidth
(UIB) convergence. [141] investigated the k-NN estimation of the nonparametric regression model
for strong mixing functional time series data and established the uniform a.co convergence rate of
the k-NN estimator under some mild conditions. [158] stated some new uniform asymptotic results
for kernel estimates in the functional single-index model. Most of this literature focuses on UIB or
UINN consistency or on uniform consistency on some functional subset but never the both together,
which was investigated in [44] in the independent framework. We aim to fill this gap in the literature
by combining results from the FDA and the empirical processes theory in the dependent setting. The
second problem for the weak convergence that we investigate is not simple, and the main merits of
our contribution are the control of the asymptotic equi-continuity under minimal conditions in this
general setting, which constitutes a fundamentally unresolved open problem in the literature. We
intend to fill this gap in the literature by integrating the results of [8] and [27] with the strategies
described in [147] and [43] for handling functional data. But, as will be demonstrated in the following
section, the challenge requires much more than “just” merging concepts from the current outcomes.
In reality, intricate mathematical derivations will be necessary to deal with the typical functional data
in our framework. This necessitates the effective application of large sample theory tools, which were
established for dependent empirical processes and for which we have used results from the work of
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[8, 27, 43]. Even with i.i.d. functional data, no weak convergence for the kNN conditional U-processes
has been proven up to the present.

1.1. Paper contribution

The current paper looks into the challenges high-dimensional functional data presents and presents
important findings that are applicable to high-dimensional data models. This research expands the
classical kernel estimator beyond samples that are independent and identically distributed to include
stationary random processes. In addition, the main focus is on the kNN kernel estimator. It specifically
examines four fundamental aspects that pertain to the KNN kernel estimator for regression and its
uniform consistency. The study investigates the UINN and UIB scenarios to guarantee consistent
results within the domain of functional regression (the UIB in Theorem 3.3 and the UINN in
Theorem 3.1). The outcomes include the prediction of relative error, which enhances the overall
comprehension of the kNN kernel estimator’s performance (the UIB in Corollary 3.6 and and the UINN
in Corollary 3.5). The paper includes the kNN method’s for functional conditional U-statistics with
consistent results, thereby extending the application area of these estimators. The study additionally
investigates the uniform consistency and UINN consistency of functional conditional U-statistics,
offering a comprehensive assessment of their limiting behaviour (the UIB in Theorems 3.8-3.10 and
Corollary 3.12 and the UINN in Theorems 3.14, 3.16 and Corollary 3.18). In addition, the study
makes an advanced contribution to the field by establishing a uniform central limit theorem for classes
of functions that, subject to specific moment conditions, are either bounded or unbounded (for the
conditional process the Normality is provided in Theorem 4.1 and the equicontinuity in Theorem 4.2;
for the conditional U-process the Normality is provided in Theorems 4.5, 4.6 and the equicontinuity
in Theorem 4.7). The process of establishing our main results uses advanced methodologies, including
the k-nearest neighbours (kKNN) method, covering number, small-ball probability, the Hoeffding
decomposition, the decoupling methods, and the modern theory of the empirical process indexed by
functions. At this stage, we mention that the Hoeffding decomposition cannot be used directly in our
setting and needs some intricate preparation. All these results are established under fairly general
conditions on function classes and underlying distributions, the majority of which are derived from
prior works, thus guaranteeing their feasibility. The obtained results have the potential to be utilised in
numerous statistical domains, such as time series prediction, set-indexed conditional U-statistics, and
the Kendall rank correlation coefficient. Key technical tools in the proofs are the maximal moment
inequalities for U-processes, and [84]’s results on S-mixing.

1.2. Paper Organization

The layout of the present article is as follows. Section 2 is devoted to introducing the functional
framework and the definitions that we need in our work, we give the assumptions used in our
asymptotic analysis with a short discussion. Section 3 is devoted to the strong uniform convergence
with rate. Section 4.1 provides the weak convergence of empirical processes in the functional
framework. Section 4.2 gives the main results of the paper concerning the uniform TCL for the
conditional U-processes. In Section 5, we collect some potential applications, including the set
indexed conditional U-statistics in Section 5.1, Kendall rank correlation coefficient in Section 5.2,
the discrimination problems in Section 5.3 and the time series prediction from a continuous set of past
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values in Section 5.4. We discuss a bandwidth choice for practical use in Section 6. Some concluding
remarks and possible future developments are relegated to Section 7. To prevent interrupting the flow
of the presentation, all proofs, based upon modern empirical process theory, are gathered in Section 8.
Due to the lengthiness of the proofs, we limit ourselves to the most important arguments. A few
relevant technical results are given in the Appendix.

2. The functional framework

2.1. Generality on the model

Let {(X;,Y;) : i > 1} be a sequence of stationary’ random copies of the random vector [rv] (X,Y),
where X takes its values in some abstract space X and Y in the abstract space Y. Suppose that X is
endowed with a semi-metric d(-, -)* defining a topology to measure the proximity between two elements
of X and which is disconnected from the definition of X to avoid measurability problems. We are
mainly interested in establishing the weak convergence of the conditional U-process based on the
following U-statistic in the k-NN setting introduced in [44] by

d(tl’ Xil) d([m, Xi )
Z gp(Yl']"'"Y[m)K _— ...K _ T
i15eesim)EI(m,N) H, (1) H, i (ty)

Tt Ry () = - TS AT TN .o
i i,;um,n)K( H, (1) )K( H, (1) )
as an estimator for the multivariate regression function
r@,t) =E@X,....Y) | X1,....Xu=1t), (2.2)
where .
K =[] K@), v=01,...,v) € RY, (2.3)
i=1

and ¢ : Y" = Y x ... x Y — R is a symmetric measurable function belonging to some class of
functions .%#,,, and h,,(t) = (H,x(t1), . .., H,(t,)) is a vector of positive random variables that depend
on (Xi,...,X,) such that, forall x = (xy,...,x,) e X"and j=1,...,m:

i=1

H,;(x;) = min {h eR*: Z e, (Xi) = k}, (2.4)

where B(t,r) = {z € X :d(z,t) < r} is a ball in X with the center + € X and radius r, and 1, is the
indicator function of the set A. In fact, this k-NN estimate can be considered as an extension to the

In the case of the Hilbert space valued elements not necessarily strictly stationary is needed, a second order stationarity suffices. An
Hilbert space valued sequence {X,},.; is second-order (or weakly) stationary if E IIX,|]? < 00, EX, = u, and

E(X, - @ X — ) =E(Xy— — ) ® (Xo — ),

for all s, € Z. We say that {X,},.; is strictly stationary if the joint distribution of {X,],,..,X,”} and the joint distribution of

{X,l+h, .. ,X,n+h} coincide, forall ¢1,...,t, € Z,n>1,and h > 1.
A semi-metric (sometimes called pseudo-metric) d(-, -) is a metric which allows d(x;, x,) = 0 for some x; # x;.

AIMS Mathematics Volume 9, Issue 2, 4427-4550.



4435

random and locally adaptive neighbor of the functional conditional U-statistics estimate of 7" (¢, t)
defined for all r € X" as :

d(tl’Xn) d(tm’ )
Y.,....Y.) ) K K
2, @Yy ( (1) ) ( () )

(S im)EI(mJl)

hi(t1) hK(fm)

(i1 yeeeslm )EL(M,1)

T (@, t, hi(t)) = (2.5)

where hg(t) = (hg,(t)), ..., hga(ty)) =: (hg(ty), ..., hk(t,)) are positive real numbers decreasing to
zero as n goes to infinity. At this stage, we highlight that kernel estimation is popular since the
classical Akaike-Parzen-Rosenblatt kernel density estimation [refer to [2, 160, 171]]. However, the
first appearance of kernel estimators is likely to be [95]: as the original technical report is difficult
to find, it has been re-published as [96]. [160] has shown, under some assumptions on K(-), that
fx(-) 1s an asymptotically unbiased and consistent estimator for f(-) whenever s, — O, nhz — 00
and X is a continuity point of f(-). Under some additional assumptions on f(-) and 4,, he obtained
an asymptotic normality result, too. The kernel estimators have been extensively studied in the
literature, see, e.g., [28, 31, 34, 49, 73, 75, 76, 85, 86, 108, 154, 174, 199] and the references
therein. The k-NN method is a fundamental statistical tool with various advantages. Generally, the
procedure is computationally efficient and requires minimal parameter adjustment. In addition, the
k-NN approaches are nonparametric, which allows them to automatically adapt to any continuous
underlying distributions without relying on any particular models. The k-NN techniques were proven
consistent for various significant statistical problems, including density estimation, classification, and
regression, provided that a suitable k is chosen. It should be noted that since our objective is to
generalize the results obtained for the estimator defined in (2.5), and given the fact that one of the
main differences is that the smoothing parameter, h, ;(t) is a vector of random variables instead of
a univariate parameter hg our first course of action would be to extend the results of [42, 43] to the
multivariate setting. First, we need to introduce some notation. Let .%,, = {¢ : Y" — R} denote
a pointwise measurable class of real-valued symmetric functions on Y™ with a measurable envelope
function

F(y) = sup |e(y)l|, for y e Y™. (2.6)

V€T

For a kernel function K(-) and a subset S x C X, we define the pointwise measurable class of functions,
forl <m<n:

A = {(x],...,xm) . HK(d()Z’ti)), (hi, ... hy) € R™\ {0} and (t;,....1,) € Sg}}.

i=1 i

Statistical observations are not always independent but are often close to being so. Dependence may
lead to severe repercussions on statistical inference if it is not taken into consideration. The notion of
mixing quantifies how close to independence a sequence of random variables is, allowing us to extend
standard results for independent sequences to weakly dependent or mixing sequences. Let us specify
the dependence that will be the focus of this study. Let Z,Z,, ... be a stationary sequence of random
variables on some probability space (2, D, P) and let 0'{ be the o-field generated by Z,, ..., Z;, for
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i, j > 1. The sequence Z,, Z,, . . . is said S-mixing or absolute regular, refer to [170, 197], if :
B(s) = Esup{‘P (AloJl) - P(A)‘ 1A € oﬁs} — 0 as s — oo.
I>1

It should be noted that [118] obtained a complete description of stationary Gaussian processes
satisfying the last property. Throughout the sequel, we assume tacitly that the sequence of random
elements {(X;, ¥;),i € N*} is absolutely regular. The Markov chains, for instance, are S-mixing under
the milder Harris recurrence condition if the underlying space is finite [19, 46, 66, 180]. We also need
to introduce some concepts that are related to the topological structure of functional spaces. First, we
define the small-ball probability for a fixed ¢ € X and for all r > 0 by

P(X € B(t,r)) =: ¢.(7), 2.7)

this notion is widely used in nonparametric functional data analysis to avoid introducing density
assumptions on the functional variable X and address the issues associated with the infinite-
dimensional nature of the functional spaces. At this point, we can refer to [91, 99, 147]. We also
need to deal with the VC-subgraph classes (“VC” for Vapnik and Chervonenkis, for instance, see
[132, 193, 194]).

Definition 2.1. A class of subsets C on a set C is called a VC-class if there exists a polynomial B(-)
such that, for every set of N points in C, the class C picks out at most B(N) distinct subsets.

Definition 2.2. A class of functions ¥ is called a VC-subgraph class if the graphs of the functions in
F form a V-C class of sets, that is, if we define the subgraph of a real-valued function f on S as the
following subset Gy on S xR

Gr=1{(s,0): 01 < f(s) or f(s)<t<0},

the class {G; : f € #} is a VC-class of sets on § x R. Informally, a VC-class of functions is
characterized by having a polynomial covering number (the minimal number of required functions
to make a covering on the entire class of functions).

Definition 2.3. Let Sg be a subset of a semi-metric space & and N, a positive integer, a finite set of
points {ey,...,en} C Eis called, for a given € > 0, a e-net of Sg if :

Sg C Ui.vle(ej,s).

If N.(Sg) is the cardinality of the smallest e-net (the minimal number of open balls of radius &) in &,
needed to cover Sy, then we call Kolmogorov’s entropy (metric entropy) of the set Sg, the quantity

Use(€) = log Ne(Se).

From its name, one can figure that this concept of metric entropy was introduced by Kolmogorov
[131] and was studied subsequently for numerous metric spaces. This concept was used by [80] to give
sufficient conditions for continuity of Gaussian processes, and was the basis for striking generalizations
of Donsker’s theorem on the weak convergence of the empirical process. Suppose that By and Sy are
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two subsets of the semi-metric space X with Kolmogorov’s entropy (for the radius €) y5, (¢) and ¥s,.(€)
respectively, then the Kolomogorov entropy for the subset By X Sy of the semi-metric space X? by :

’ﬁBXxSX(g) = lr//B,\f(S) + lr//SX(S)'

Hence, my s, (¢) is the Kolmogorov entropy of the subset S of the semi-metric space X™. Noting that
if we designate by d the semi-metric on X, then, we can define the semi metric on X™ by :

1 1
dxn (X,y) := —d (x1,y1) + -+ —d (X, Ym)
m m

for
X= (X3 Xm), Y = V1sevesYm) € X7

Notice that the semi-metric plays an important role in this kind of study. The reader will find useful
discussions about how to choose the semi-metric in [91] (see Chapters 3 and 13).

2.2. Conditions and comments
Let us present the conditions that we need in our analysis.

(C.1.) On the distributions/small-ball probabilities
(C.1.1) Fort = (ty,...,t,) € X" and h(t) = (hi(ty),. .., h,(t,)) € RT\ {0}, we have
d(h(t)) :=P(Xy € B(ty, hi(t1)), ..., Xn € B(ty, hiu(t)))
0 < Cig(h)fi(t) < ge(h(D) < C2p(h)fi(t) < oo,

where fi(t) is a non-negative functional in t = (¢,...,t,) € X", ¢é(h) = nqﬁ(hj(tj)) and
j=1

¢(0) = 0 and ¢(u) is an invertible function absolutely continuous in a neighbor of _the origin.

(C.1.2) Fori # j.letX; = (X;.....X;,). Xj = (X.....X;,) and t = (11,....1,) € X", we have

i#j

sup P {Xi e| [ B X €| | B, hia,-))} S OVACH
i=1 i=1

where f, (t) is a non-negative function, P(h(t)) := n W(hi(t;)) and P(h(t)) > 0asn — oo,
i=1

satisfying P(h(t)) [#*(h(t)) is bounded.
(C.2) On the smoothness of the model
(C.2.1) The regression satisfies for ¢(-) € .%,,and for | <m <n:
Fy >0, Vi, e S [, t) - (e, )| < Csdy, (t1, 1), for some y >0,

where for 1 <i<2:t; :=(t,...,t,) and the semi metric dxn (-, -) on X"

1 1
dxn (%,¥) := —d (x1,(Y)) + -+ + —d (X, Yn)
m m

forx = (x1,..., %),y =015, Ym) € X™.
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(C.2.2) The conditional variance, defined for u € X", Var [¢ (Y) |X = u] =: g5 (u, ¢) is continuous
in some neighborhood of t

sup g2 (t,¢) — g2 (u, )| = o(1) as n — oo,

dym (tW)<ry
Further, assume that for some p > 2, E|F (Y)|” < oo, and ¢(-) € .%,,,
g, (tu, @) :=E(|g(Y) - r(.0]"| X =u),

is continuous in some neighborhood of t.

(C.2.3) For u,v € X™, the function g, (t,u, v) does not depend on i, j and is continuous in some
neighborhood of (t, t)

8, (tu,v) :=E ((90 (Y — (g, t)) (cp (Yj) — (g, t)) | Xi=uX;= V) .

(C.3) On the kernel function

(C.3.1) The kernel functions K(-) is supported within [0, 1] and there exists some constants 0 <

K1 < Ky < o0, such that
1
f Kx)ydx =1,
0

0 < kil () £ K() £ k21o13().

and

(C.3.2) The kernel K(-) is a positive function and differentiable function on [0, 1 ] with derivative
K’(-) such that
—00 < k3 < K'(+) < k4 <O0. (2.8)

(C.4) On the classes of functions

(C.4.1) The class of functions .%,, is bounded and its envelope function satisfies for some 0 <
M < oo
Fy)<M, yeYy"

(C.4.2) The class of functions .%,, is unbounded and its envelope function satisfies for some
p>2:
0, :==supE (FF(Y)IX =t) < o0,

tesS’y

(C.4.3) The metric entropy of the class .%,, %™ satisfies, for some 1 < p < o0:
f (log N(u, Z, ", || - ||p))%du < oo,
0

where
T X" ={fg: feFnge X"}
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(C.4.4) The class of functions .#,,. 2™ is supposed to be of VC-type with envelope function
previously defined. Hence, there are two finite constants b and v such that:

DIFK" 1,0 )V

N (€&, T " | - y0) < ( c

for any € > 0 and each probability measure such that Q(F)? < co.
(C.5) On the dependence of the random variables

(C.5.1) Absolute regularity

(o)

D5 (log(s)™ 7P (B(5)) 7 < o,

s=1

forsome p >2andd > 1-2/p.

(C.5.2) There is a sequence of positive integers {s,},a such that, as n — oo,

n

¢(h(t))

1/2
Sp 00, s, = 0( n@(h(t))), ( ) B(s,) — 0.

(C.6.) On the entropy
For n large enough and for some w > 1, the Kolomogorov’s entropy satisfies :

(log n)? logn n

n¢(hK) <m Sx( ) < 10gn¢(hK)’ (29)
> exp {m(l — W, (k’f ”)} < o0, (2.10)
n=1

where Y5, (g) := log No(S x), and N(S x) is the minimal number of open balls of radius € in X,
needed to cover S x.

(C.7.) The sequences {El} and {i?,,} (resp. {h,.1} and {h,»}) verify

(logn/n)

}7,1 — 0 and ————
min{h;, ¢*(h,)}

—> Qasn — oo, (2.11)

(C.8.) There exist sequences {01, ..., 0nm} C (0, )", {ky,} € Z" and {ko,,} € Z* (k1 < k < ko) and

constants u = (uy,...,M,) and v = (vy,...,V,), such that
O<p;j<v;j<oo, forall j=1,...,m (and we note u <v),
and
n ik n n ik n _ k n — k n
K™ (p—’f - ) <4, (p—’f - ) and ¢,,.1( - ) <V 1( - ) (2.12)
n n Pn,jlt Pn, il
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-1 k2,n
¢ —0, (2.13)
Pn, il
1_n'kn 1_n'2kn
mind L2Pni ki A =pu) kin | o (2.14)
4 Inn  4p,; Inn
(logn/n)

— 0. (2.15)

min {,u ! (pn’jkl’n ) N (ﬂj¢_l (p—n’jkl’n ))}
n n

Additional/alternative conditions
(C.l’.) FOl‘Xi = (Xi19' .. ’Xim)’ XJ = (le” .. ’ij) and t — (tl’ . "tm) I Xm .
(C.1°.1) We have:
Pu(X) = $(X) i (t) < 00 as X — oo.

with x = (x1,...,x,) € RT, #(0) = 0, and ¢(u) is absolutely continuous in a neighborhood of
the origin.

(C.1°.2) we have:

supP {Xi e| [Banwy. X €| | B him))} S OVACH
i=1 i=1

i#]

where f; (t) is a non-negative function, P(h(t)) := n w(hi(t;)), and P(h(t)) » 0asn — oo,
i=1

satisfying P(h(t)) [#*(h(t)) is bounded.

(C.3’.) The kernel functions K(-) is supported within [0, 1] and there exists some constants 0 < «»,
0 < k| £« < oo, such that for j = 1,2:

1
h"(t)) fO K/(x)¢' (vhy)dv — K as n — o,

1
j(: K(x)dx = 1, K() < Kz]l[o’l]('), ¢(hK

Comments

In our nonparametric functional regression model, we deal with a complex theoretical challenge.
Mainly establishing functional central limit theorems for the conditional empirical processes and the
conditional U-process under functional absolute regular data. We also use random (or data-dependent)
bandwidths based on the k nearest neighbors (kNN) approaches. Although standard statistical methods
cannot be utilized in the functional setting, most imposed conditions overlap with some characteristics
of the infinite-dimensional spaces, such as the topological structure of X™, the probability distribution
of X, and the measurability concept for the classes ¥, and K™. It is worth mentioning that most of
the conditions that we will be using throughout this paper are inspired by [43, 91, 99, 141, 147]. Let
us start with assumption (C.1.1), which was adapted from [147], who in turn was inspired by [99].
As explained by [147], if X" = R™, then condition (C.1.1) coincides with the fundamental axioms
of probability calculus. Furthermore, if X is an infinite-dimensional Hilbert space, then ¢(hk) can
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converge to 0 exponentially as n — oco. Condition (C.1.1) can be considered a standard condition on
the small ball probability, which is used to control the behavior of ¢¢(-) around zero. It shows that
we can approximately write the small ball probability as a product of two independent functions ¢(-)
and fi(-); see, for instance, [148] for the diffusion process, [18] for a Gaussian measure, and [139]
for a general Gaussian process. The most frequent result available in the literature is of the form
w(&) ~ g()p(e) where ¢(e) = €’ exp(—C/e”) withy > 0 and p > 0. It corresponds to the Ornstein-
Uhlenbeck and general diffusion processes (for such processes, p = 2 and y = 0 ) and the fractal
processes (for such processes, y > 0 and p = 0 ). For more examples, refer to [92]. It is worth noting
that, in general, when we deal with functional data, we need some information about the variability of
the small-ball probability to adapt to the bias of nonparametric estimators; this information is usually
obtained by supposing that:

(C.1.1”)

Yue[0,1]: lim % = lim P(d(X, 1 < ur|d(X, 1) < r) =: 7,(u) < oo,
r—oo () r—o0
Condition (C.2) concerns the regularity of the model; it consists of mild conditions on the continuity
of certain conditional moments, in addition to the standard Lipschitz assumption on the regression
((C.2.1). Assumption (C.3) is another classical condition in nonparametric estimation models which
concerns the kernel function K(-). It should be noted that condition (C.3.1) can be replaced with
condition (C.3’) to find an expression for the asymptotic variance. We use condition (C.4.1) when
dealing with bounded functions. However, our interest also extends to conditional U-processes indexed
by an unbounded class of functions. In this case, we replace (C.4.1) by (C.4.2). Keep in mind that
there is a trade-off between the moment order p in (C.4.2) and the decay rate of the mixing coefficient
B(s) imposed in (C.5): the larger p is, the weaker the decay of S(s). Also note that if S(s) = e ™,
i.e, B(s) decays exponentially fast, then (C.5.) is automatically satisfied. Furthermore, this condition
is indispensable in our work since studying the weak convergence of the empirical processes entails
establishing asymptotic equi-continuity. For Assumption (C.4.4), see [163, Examples 26 and 38], [157,
Lemma 22], [82, §4.7.], [193, Theorem 2.6.7], [132, §9.1] provide a number of sufficient conditions
under which (C.4.4) holds, we may also refer to [70, §3.2] for further discussions. For instance, it is
satisfied, for general d > 1, whenever g(x) = ¢(p(x)), with p(x) being a polynomial in d variables and
¢(-) being a real-valued function of bounded variation, we refer the reader to [88, p. 1381]. We also
mention that the class of function is assumed to be in general pointwise measurable, that is satisfied
whenever K(-) is of bounded variation on R¢ (in the sense of Hardy and Kauser [110, 133, 195], see,
e.g., [61, 114, 156, 196]). The condition (C.6.) takes into account the topological considerations by
controlling the Kolmogorov entropy® of the set S, which is standard in nonparametric models when
we study the uniform consistency and the uniform in bandwidth consistency, we refer to [93] and [134]
for discussions. As mentioned in [134], there are special cases of functional spaces X and subsets S
where g (log(n)/n) > log(n). Some examples are the closed ball in a Sobolev space, the unit ball of
the Cameron-Martin space, and a compact subset in a Hilbert space with a projection semi-metric (see
[93, 131, 192], respectively, for further details). In all these cases it is easy to see that (C.6.) is verified

$The concept of metric entropy was introduced by Kolmogorov (cf. [131]) and studied subsequently for numerous metric spaces.
This concept was used by [80] to give sufficient conditions for the continuity of Gaussian processes, and was the basis for striking
generalizations of Donsker’s theorem on the weak convergence of the empirical process, refer to [191] for the connection of this notion
with Le Cam’s work.
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as soon as 3 > 2. Assumption (C.7.) is essential to establish the rates of convergence (consistency)
of the estimator defined in (2.5), while assumption (C.8.) adapts condition (C.7.) to the case of the
functional conditional U-statistics in the k-NN setting.

Remark 2.4. Note that the condition (C.4.2) may be replaced by more general hypotheses upon
moments of Y as in [70]. That is

(M.1)” We denote by {M(x) : x > 0} a nonnegative continuous function, increasing on [0, c0), and
such that, for some s > 2, ultimately as x T oo,

() x M) ;G x M) T (2.16)
For each t > M(0), we define M™(t) > 0 by M(M™(t)) = t. We assume further that:
EM(F(Y)D) < oo.

The following choices of M(-) are of particular interest:
(1) M(x) = x? for some p > 2;
(i) M(x) = exp(sx) for some s > 0.

3. Uniform consistency

For simplicity reasons, the condition (C.1.1) on the small ball probability will be replaced by:
(H.1) For h € R7\{0} and t € X™

0 < Ci¢(h) < ¢e(h(t)) < Crg(h) < oo, (3.1)

this standard condition can be considered an extension of the multivariate case where we assume that
the density function of the variable X is strictly positive. Also, it is worth mentioning that, if in
particular, we denote hg := (hg, ..., hg) € (ﬁn,l,ﬁn,z)m, we can find two positive constants C|, C}, such
that

0 < Cip(hx) < dulhg) < Cr(hg) < oo, (3.2)

which is similar to condition (C.1) used in [42, 181], so we will deal with ¢(hy) instead of ¢"(hy),
(whenever we encounter a similar situation in the proofs). This approach is not only for notational
purposes but also to make it easier to bridge the UIB and the UINN results.

3.1. Uniform consistency of the kNN kernel estimator for regression

In this section, we consider the uniform consistency of the functional regression operator in its
general form, which is given for all € X, by

- d(t,X;)

YHK|[—=2

;“"( ) (Hn,ka))
Hn,k(t)

i=1

70, t, Hyr(1) = (3.3)
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where k = k, depending on n and
ank(t) = min {I’l € R‘*’SUCh that Z ]]-B(t,h)(Xi) = k} .
i=1

In fact, the k-NN operator presented in (3.3) can be considered as a generalization of the usual kernel

regression
C d(t, X;)
D, so(Yi)K( - )
/’:ffll)(so, t’ hK) = it n
(d(t, Xi))
DK==
hy

i=1

, foreach re X, 3.4)

where the bandwidth hx € R* depends on n (but does not depend on 7).

3.1.1. UIB consistency for functional regression

Recall the bandwidths 4, ; and 4, given in the condition (C.7.). The following theorem will play
an instrumental role in the sequel.

Theorem 3.1. Under the assumptions (H.1.),(C.2.1), (C.3.1),(C.4.1),(C.4.3), (C.6.) and (C.7.) (for

m=1), we have, as n — oo,

sup  sup  sup [ (e, 15 hi) = (g, 1)] = O () + O,

(pKEg(:Jf/ hn,l ShKShnl ZESX

The following result gives uniform consistency when the class of functions is unbounded.

Corollary 3.2. Under the assumptions (H.1.), (C.2.1), (C.3.1),(C.4.2), (C.4.3), (C.6.) and (C.7.) (for

m = 1), we have
]

n¢(hn,1)

logn

sup  sup sup I’rfll)((,o, t;hg) — r'V(g, t)| =0 (hZ,z) + Oy o

wKeF A hp1<hg<h, t€S x

(3.6)

ILet (z,) for n € N, be a sequence of real r.v.’s. We say that (z,) converges almost-completely (a.co.) toward zero if, and only if, for
all

E>O,ZP(|1,,| > €) < 0.

n=1

Moreover, we say that the rate of the almost-complete convergence of (z,) toward zero is of order u, (with u, — 0 ) and we write
Zn = Ouco. (1) if, and only if, there exists € > 0 such that

ZP(W > €u,) < oo.

n=1

This kind of convergence implies both the almost-sure convergence and the convergence in probability.
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3.1.2. UINN consistency for functional regression

Now, we can state the main results of this section concerning the k-NN functional regression. Recall
the bandwidths k, ,, and k,, given in the condition (C.8.).

Theorem 3.3. Under the assumptions (H.1.), (C.2.1), (C.3.1),(C.4.1), (C.4.3), (C.6.) and (C.7.) (for
m = 1), if, in addition, condition (C.8.) is satisfied, then, we have

ko
sup sup  sup [0, 11 hug(0) = rVp. )| = 0(¢—1( 2 ) )

©0KeF A ki pn<k<ks, teSx Pnll
" logn
S
N\ n

-1 pnkl,n .
ol (45)

The following result gives uniform consistency when the class of functions is unbounded.

Corollary 3.4. Under the assumptions (H.1.), (C.2.1), (C.3.1),(C.4.2), (C.4.3), (C.6.) and (C.7.) (for
m = 1), and if condition (C.8.) is satisfied, then we have

+0a.co

[ knY
sup  sup sup|[Fi (e, £ () — Vg, 1) = 0(¢ 1( - ))
©wKeF K ki n<k<ks, teSx Pnlt

vs. (logn)
n
nk n ’

Recall that the operator m is usually estimated by minimizing the expected squared loss function
E [(Y —m(X))?* | X]. Nonetheless, this loss function, which is regarded as a measure of prediction
performance, may be inappropriate in certain circumstances. In fact, the application of least-squares
regression translates to giving all variables in the study equal weight. Consequently, the prevalence of
outliers can render results irrelevant. In this paper, we, therefore, circumvent the limitations of classical
regression by estimating the operator m with regard to the minimization of the mean squared relative
error (MSRE):

+0(l.C0 (3'7)

3.2. Relative-error prediction

E [((Y —m(X))/Y)* | X] for Y >0 a.s. (3.8)

This criterion is clearly a more meaningful measure of the prediction performance than the least
square error, in particular, when the range of predicted values is large. Moreover, the solution of (3.8)
can be explicitly expressed by the ratio of the first two conditional inverse moments of Y given X. In
fact, in order to construct the regression estimator allowing the best MSRE prediction, we assume that
the first two conditional inverse moments of ¥ given X, that is g,(x) :=E(Y™7 | X = x) fory = 1,2,
exist and are finite almost-surely (a.s.). Then, one can show easily, cf. [74, 123, 159], that the best
mean squared relative error predictor of Y given X is:

) =E(Y' | X=1)/E(Y? | X =1)= a()/e2(), as.
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Thus, we estimate the regression operator 7(-), which minimizes the MSRE by:

QIR (9.6
Z Y, K(—hK )

KDt hg) = = , foreach t € X, (3.9)
-2 (d(t’ Xl))
217K
i=1 hi
and
= dit, X,
Z l_lK( ( ’ l))
| =1 Hn,k(t)
POt hy) = = , foreach t e X. (3.10)
_ZK(d(t’ Xl)
! H, (1)

By considering the special cases ¢(y) = y~! and ¢(y) = y~2 in Corollaries 3.2 and 3.4, we obtain the
following results complementing the work of [22, 23, 24, 74].

Corollary 3.5. Under the assumptions (H.1.), (C.2.1), (C.3.1),(C.4.2), (C.4.3), (C.6.) and (C.7.) (for
m = 1), we have

logn

n¢(hn,1) '

sup sup sup
KeX h,1<hg<h,s teS x

KOGt ) = #0)] = O (1) + Ouco (.1

The following result is not considered in the literature.

Corollary 3.6. Under the assumptions (H.1.), (C.2.1), (C.3.1),(C.4.2), (C.4.3), (C.6.) and (C.7.) (for
m = 1), and if condition (C.8.) is satisfied, then we have

sup sup Ssup
Ke X ki p<k<k, t€Sx

wix(] o -1 k2,n 7
B0 hg) - KD = 0(¢ ))
ot
vs, (log n)
n

~1 pnkl,n .
ol (43)

3.3. Uniform consistency of the kNN functional conditional U-statistics

+Oa.co

(3.12)

In addition to the conditions imposed before, the following assumptions are essential to obtain
exponential inequalities for dependent data later in the proofs:

(A1) Assume {X;};o 1s strictly stationary, and there exists an absolute constant 6 > 1 such that for any
n > 1, we have the 8-mixing coefficient, corresponding to {X;},c-, satisfies S(n) < n=°.
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(A2) Assume, uniformly, for any integer J such that 1 < J < m — 1 and arbitrary 1 < i; < -+ <

i; < n, conditional on X;,...,X;,, the sequence {X,-}fii]+

corresponding to it,

, satisfies, for the a-mixing coefficient

a@(n; X, ..., X;,) = sup CY(O'j

ij+1°
jzis+l Y

O';j_n,P( | Xil’ .. "Xij))
< exp(—yn), a.s.

where P (- | X;,,...,X;,) stands for the conditional probability. In particular, we have, for the
a-mixing coefficient corresponding to {X;};qy- itself

a(n) s exp(~yn).

The S-mixing condition (A1) is typically necessary to obtain asymptotic normality for U-statistics
in the absence of a strict Lipchitz-continuity assumption for the kernel functions, for instance, see
[72, 203] and Remarks 2.2 and 2.3 of [107]. Assumption (A2) is often less restrictive than the ¢-
mixing condition. As will be shown in [107], finite-state and vector-valued absolutely continuous data
sequences of exponentially ¢-mixing decaying rate satisfy (A2). We note that this is more restrictive
than the polynomially mixing decaying rate. [203]. This is because we need to calculate higher
moments of the U-statistics to obtain sharp concentration inequality. The “exponentially decaying
rate” condition is routine in the literature of deriving concentration inequalities for weakly dependent
data, see [149] and Remarks 2.4 and 2.5 in [107].

This section considers the uniform consistency, the UIB, and the UINN consistency of the functional
conditional U-statistic given by (2.1). First, let’s introduce some notation. For some interval H."
R\ {0}, we denote

m

H o= | o, ),

J=1

where

0<hyj <MK, and limh,,;=limh, =0 Vj=1,..,m

i =
n—oco »J

In the sequel, we denote (unless stated otherwise)

7 . T ’
h, = min h,; and h, = max h,

1<j<m 1<j<m ™

Forallb = (by,...,b,) € (0,1)", let us denote

and

m

HY" = | | (s b)),

j=1

by := max b;.
1<j<m

For notational convenience, in the case of m = 1, we denote 7—(21) and 7—(&” simply H, and H,. The
same goes for other similar notation unless stated otherwise. Set

X := (Xl,...,Xm)EXm, YI:(Yl,...,Ym)Eym,
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Xi = (Xip""Xim)’ Yi = (Yiw" lm)
hnk(t) = (Hn,k(tl), ey Hn,k(tm)) fOI' t= (tl’ ey tm) € Sm,

- d (x;, 1))
e | K( i) )
Gon(x,y) = = for t,x e X",y e Y,

- d (X, 1;)
rl . [K( hi(t;) )]

i=1

G = (Gon(s) 0 € T, t= (01, 1) €X",

G = AmpnGoan( ) @ € Ty t=(t1,. 1)},
” (n—- m)
(@t ha () = 1 (Gyun,) = Y G, (X0, Y)),
iel(m,n)
and for some symmetric measurable function f(-) define the P-canonical function ., p = 1,...,m,

see [10] and [68] (we replace the index k with p to avoid confusing it with the smoothing parameter k),
by
7T[771’I1f(t1’ ey tp) = (61,1 — P) . e (6[]’ _ P)Pm—pf’

where for measures Q; on S we let

Q- th = f h(xi,..., xm)dQl(xl) t de(-xm)’
Sm
and 0, denote Dirac measure at point x € X. This decomposition follows easily by expanding
FXiyeo s Xpy) =0, X+ X0, f=((0x, —P)+P)X--- X ((6x, —P)+P) f,

into terms of the form
@%—mex@m—mxwﬁf

It is very simple to check that f(-) symmetric is P-degenerate of order 7—1'if = min {¢ > 0 : n,f # O}.
For example,
Ty mh(x) = E(h(Xy, ..., X)) [ X = x) = Bh(Xy,..., Xn).

Definition 3.7. A P"-integrable symmetric function of m variables, f : S™ + R, is P-degenerate of order r — 1,1 < r < m, if
[ F &1 X)) AP (X, LX) = [ fAP forall Xy, .., X,-1 € S whereas

then f(-) is said to be canonical or completely degenerate with respect to P. If f(-) is not degenerate of any positive order, we say it is
nondegenerate or degenerate of order zero.
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It’s clear that, for all € .%,, :

Uy (()0’ ta hn,k(t))
(1, t, By (1)

and u,(p,t,h, (1)) is a classical U-statistic with the U- kernel Gy, (X,y). However, the study
of the uniform consistency of 'rf,(m)@p,t;hn,k(t)) to ™(¢,t) can not be done with a straightforward
approach due to the randomness of the bandwidth vector h,, ;(t) which poses some technical problems.
To circumvent this, our strategy is first to study the uniform consistency of 72 (g, t; h), where
h = (h,...,hy,) € H™ is a multivariate bandwidth that does not depend on t and k. Hence, we
study the uniform consistency and the UIB consistency of u, (¢, t, h) to E(u,(¢, t,h)) when ¢ € .%,, and
when ¢ = 1, and we shall consider an appropriate centering factor than the expectation E (’r“,‘;(m)(go, t; h)),
hence we define :
E (ua(e, t, h))

E (u,(1,t, 1))’
The second step will be the use a general lemma given in [44], adapted to our setting, similar to that of
[134] (see Subsection 8.1.1) to derive the results for the bandwidth h,, 4 (t).

T (g, b hy (1)) =

E(r,"(¢.t:h)) = (3.13)

3.3.1. Uniform consistency and UIB consistency for a multivariate bandwidth

Next, we will give the UIB results for all t € S’ and h € H!™. We first start with announcing the
result concerning the uniform derivation of the estimate u,(¢, t, h) with respect to E (u,(¢, t,h)) when
the class of functions is bounded.

Theorem 3.8. Suppose that the conditions (H.1.), (C.3.1), (C.4.1), (C.4.4), (C.6.) and (C.7.) are
fulfilled, we infer that, as n — oo,

sup  sup sup [u,(@, t,h) — E (u, (¢, t, h)| = Oqco (3.14)

0KeF M heH™ teSy

The following result covers the uniform derivation of the estimate u,(¢,t, h) with respect to
E (u,(¢, t,h)) when the class of functions is unbounded satisfying general moments condition.

Theorem 3.9. Suppose that the conditions (H.1.), (C.3.1), (C.4.2), (C.4.4), (C.6.) and (C.7.) are
fulfilled. For all 0 < by < 1, we infer that, as n — oo,

sup  sup sup [u,(@, t,h) —E (u, (¢, t,h)| = Oqo (3.15)

oKeF '™ he?—(ém) teS’y

The following result handles the uniform deviation of the estimate ?:(m)(go,t;h) with respect to
E (/r”,kl(m)(go, t; h)) in both situations, where the class of functions is bounded or unbounded satisfying
a general moment condition.
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Theorem 3.10. Suppose that the conditions (H.1.), (C.3.1), (C.4.1), (C.4.4), (C.6.) an~d (C.7.) (or the
following (H.1.), (C.3.1), (C.4.2), (C.4.4), (C.6.) and (C.7.)) are fulfilled. For all 0 < by < 1, we infer,

as n — oo,

(3.16)

Sup  sup sup |7’;(m)(90, t;h) - E(?:;(m) (o, t; h))‘ = Ouco
¢Ke T " heH™ Sy

Theorem 3;11. Suppose that the conditions (H.1.), (C.2.1), (C.3.1) and (C.6.) are fulfilled. For all
0<h, <1,h, — 0,weinfer, asn — o,

>"n

sup  sup sup E(ﬁ(m)(¢, t; h)) — ™ (g, t)' = 0(}71) (3.17)

wl?e Fg M he‘}-{,(lm) teS {'\'Z

Corollary 3.12. Under the assumptions of Theorems 3.10 and 3.11 it follows that, as n — oo,

sup  sup sup m(m)((p, t;h) — F" (g, t)| =0 (i;'
oKeF, M heH™ teSTy

y) + Oa.co

n

(3.18)

Remark 3.13. As in [9, 27, 43], we will divide the U-statistics into different parts: some parts can
be approximated by U-statistics of independent blocks, while by conditioning on one block, others are
empirical processes of independent blocks. To prove the nonlinear terms are negligible, we will also
need some symmetrization and maximal inequalities, we refer to [10, 67].

3.4. Uniform consistency and UINN consistency of functional conditional U-statistics
Let 0 < u* < v* < oo be some constants and p; € (0, 1) is a sequence chosen in such a way that

. _ pn,'kl,n s g — szl,n
e 2] 2

1<j<m n

max v¢~! ( k2. ) =y (an)
1<j<m Pn, il Pl
The following result deals with the uniform deviation of the estimate u,(¢p, t, h, x(t)) with respect to
E (u,(p, t, h, (1)) when the class of functions is bounded.
Theorem 3.14. Suppose that the conditions (H.1.), (C.3.1), (C.4.1), (C.4.4),(C.6.) and (C.7.) are
fulfilled. If in addition assumption (C.8.) holds, we infer that, as n — oo,

(g, 8,1, (0) — E (g, t, By (1))

and

sup sup  sup
guEEészm kl,nSkSkz.n tES:\'ﬁ

Vs, (logn)
n
*k Y :
né ('u* 5! (Pnnl, ))
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The following result deals with the uniform deviation of the estimate u, (¢, t, h, x(t)) with respect to
E (u,(p, t, h, (1)) when the class of functions is unbounded satisfying general moments condition.

Theorem 3.15. Suppose that the conditions (H.1.), (C.3.1), (C.4.2), (C.4.4),(C.6.) and (C.7.) are
fulfilled. If in addition assumption (C.8.) holds, we infer that, as n — oo,

sup  sup  sup [u(e, t (1) — E (a(p, t, hy(t))|

¢ﬁ€<g’,1fm kin<k<ks, t€S:\'ﬁ

Vs, (logn)
n
*k . *
né ('u* 5! (Pnnl, ))

The next results give uniform consistency when the class of functions is bounded or unbounded.

= Ou.co (3.20)

Theorem 3.16. Suppose that the conditions (H.1.), (C.3.1), (C.4.1), (C.4.4), (C.6.) and (C.7.) (or the
following (H.1.), (C.3.1), (C.4.2), (C.4.4), (C.6.) and (C.7.)) are fulfilled. If in addition assumption
(C.8.) holds, we infer that, as n — oo,

sup sup sup ’7’;('”)(90, t;h, () — E(ﬁ(m)(so, t; hn,k(t)))‘

oKe Tt m kin<kska, teS'y

Vs, (log n)
n

* 1—1 pl*zkl»n ’
ol (0)

Theorem 3.17. Suppose that the conditions (H.1.), (C.2.1), (C.3.1) and (C.6.) are fulfilled. If in
addition assumption (C.8.) holds, we infer that, as n — oo,

= Oa.co

(3.21)

sup sup sup
oRe T m kin<k<ko, teSy

Y
E (7" (. b)) -7 (0] = O (qu (%) ) . (3.22)

Corollary 3.18. Under the assumptions of Theorems 3.16 and 3.17 it follows that, as n — oo,

sup sup sup m('")(w, t; h, (1) — (g, t)|
(pl?eegmt%/m kin SkSkz,n tES?

logn
k Y wSX
-1 2.n n
-ofs (2]} o I
p;’in % g — pn l,n
n
Remark 3.19. The choice of the parameters u* and p;, defined in a similar way as in condition (C.8.)

affects the rate of convergence of the k-NN estimator. We can choose these parameters depending on
the small ball probability function ¢,(h).

(3.23)
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Remark 3.20. The present work largely extends and completes the work of [42, 44] in several ways.
There are basically no restrictions on the choice of the kernel function in our setup, apart from
satisfying some mild conditions that we will give after. The selection of the bandwidth or the number of
neighbors, however, is more problematic. It is worth noticing that the choice of bandwidth is crucial to
obtain a good rate of consistency, for example, it has a big influence on the size of the estimate’s bias.
In general, we are interested in the selection of bandwidth and neighbors that produce an estimator
that has a good balance between the bias and the variance of the considered estimators. It is then
more appropriate to consider the bandwidth and neighbors varying according to the criteria applied
and to the available data and location which cannot be achieved by using the classical methods. The
interested reader may refer to [34, 146] for more details and discussion on the subject. In the present
section, we have provided a response to this delicate problem in the FDA associated with the dependent
data setting. In the present setting, we divide the U-statistics into different parts: some parts can be
approximated by U-statistics of independent blocks, while by conditioning on one block, others are
empirical processes of independent blocks. This decomposition is the key tool but makes the proof very
involved which is the price of the extension to the dependent framework. This, allows us to use, in a
nontrivial way, the techniques used for independent variables and mostly we will be using the results
of [44]. We highlight that in the present paper, we have used a novel exponential inequality of [107]
tailored to the dependent framework.

4. Uniform central limit theorems

4.1. kNN conditional empirical process

We define the functional conditional empirical process for univariate bandwidth /g by:
i 1) = Nk(FOW, ) = r O, 0) v € Z), @4.1)

where 72 (y, t; hy) designates (2.5) when m = 1, and FV(y, f) refers to the regression function (2.2),
with

() e FH = FH" = {go(-)K(d;’t)) TQE ﬁl,K(dZ’t)) € %1}.

K K
If, for Py = f YwdP, where P is the probability measure and, for each (x,y),

sup [Y(x,y) — Pyl < oo,
veF K

then {v,(¥ | 1) : ¥ € ¥ %} is a random element with values in [,(-% ¢"), consisting of all functional
Veo ON .% ¢ such that

sup Ve (¥)| < oo.
YeFH

Then, it will be important to investigate the following weak convergence

e |0 € FH €]} = (GW) 1y € FH) in (FH).

It is known that the weak convergence to a Gaussian limit with a version of uniformly bounded and
uniformly continuous paths (with respect to the ||||») is equivalent to the finite-dimensional convergence
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and the existence of pseudo-metric dj,, on # % such that (#.%,d, ) is totally bounded pseudo-
metric space and

=0 e dp (W1 2)<r

lim lim sup P*{ sup v, (Y1 — ) | D] > 8} =0. “4.2)

) d .
Below, we write Z = N(u,X?) whenever the random vector Z follows a normal law with vector

expectation y and matrix variance ¥?, — denotes the convergence in distribution. The following
theorem is adapted from [147] to the setting of the k-NN estimators. The main objective of this section
is to investigate the central limit theorems for the functional conditional empirical process defined by

[ Hux0) 1) = Nk (7O, 6 Hoa0) = 1O, 1) ,w € Z). (4.3)

Theorem 4.1. Let consider the class of functions 7 %, suppose that conditions (C.1°.), (C.1.2),
(C.2.1), (C.2.2), (C.3’.), (C.5.) and (C.8.) hold. and if the smoothing parameter k satisfies for all
v>0

we getfor: [ > 1:yq,...,Y¥n € FH,
i HoeO) [0 i = 1,1 =5 N (0.3),

.....

o= Kﬁ”(l)(%‘ﬁj’ 1) — ”(1)(901',0’”(1)(90}" )
e K, f1(2)

Theorem 4.2. Suppose that the conditions (C.3.1), (C.4.2)-(C.5.1), and (C.8.) hold and for each
pEeF,
E(p* (Y1) < co.

Then, we have
lim lim sup P sup v, (W =) | t)|>€ep =0.

b=0 " pseo g1 =)l p<b
U e F K

The two previous theorems can be summarized as follows:

Theorem 4.3. Under conditions (C.1°.), (C.1.2), (C.2.), (C.3.1), (C.3.), (C.4.4) (C.5.1), (C.5.2) and
(C.8.), then the process, as n — oo,

vl Huat)) | 0) = Ve (FOW, 5 Hy0) = rOwe0) 1w e F27},
converges in law to a Gaussian process {G,(¥) : ¥ € % ¢} that admits a version with uniformly
bounded and uniformly continuous paths with respect to || - ||,-norm.

Remark 4.4. We mention that other types of applications can be obtained from Theorem 4.3 including
the conditional distribution, conditional density, and conditional hazard function. This, and other
applications of interest, will not be considered here due to lack of space.
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4.2. kNN conditional U-processes

In this section, we are interested in studying the weak convergence of conditional U-processes under
absolute regular observations. Recall the class of functions considered is .%,, 2™ given in Section 2.
The conditional U-process indexed by %, ¢ ™ :

{U,am(so, th(V) = ndh®) (7" (e, t; h(©) - '"(p, t))} , (4.4)
T M

The U-empirical process is defined by

tn(p, & h(D)) := [nd(h(t)) {u, (¢, t; h(t)) — E(u,(p, t; h(1))} .

It should be noted that to establish the weak convergence of (4.4) it is first necessary to go through that
of (4.6), below. Indeed, we will develop some details that will be used later. Because condition (C.6.)
is satisfied, for each A > 0, we have

G(p,t,h(X’ y) = th,t,h(x’ Y)]l{

KWF(y)S/l(n/(;ﬁ(h))I/Z(p_])}

+Gpn(x,y)1 {

@ F>A(n/dm) "
=: G(T)h(x y) + G(R)h(x y). 4.5)

We can write the U-statistic as follows
e th(®) = \ndm®) {ul” (G1)) - B (" (G1)))))

+\nd®) fu” (Gh) =B (" (1))
= nh(®) {«" (. t.h(t) - B (u" (¢, t, h(t))}
+nd(h(t) {uP (e, t () - E (u® (e, t, h(t)}
= 4", t;h(t) + uP(p, t h(D). (4.6)

We call the first term of the right side of (4. 6) ,u(T)(go, t; h(t)) truncated part and the second ,u,(f) (¢, t; h(t))
remainder part. First we are interested in 1, t; h(t). An application of Hoeffding’s decomposition
gives

u" (g, t, h(t))

Il
~~~
E
“B
‘:’

=§

\31

3

Q
23
=
N—

G(T)h (X', Y’)+Z T (mpmGL2). 4.7)

where {(X[, Y/)}ien 18 a sequence of 1.1.d. r.v. with £ (X: , Y:) = L(X;,Y,;) foreach i, and X" and Y’ are
respectively defined as X and Y. In view of (4.7), we have

(m — p)| Uk (ﬂPmGsoTt)h) (u,(f)(go,t))},

1 (@, () = [nd(h(t)) {EG”)(X' Y)+ Z
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the stationarity assumption and some algebras show that
E (u"(¢. . h(1)) = EGY) (X', Y").

Therefore,

(¢, £ h(t)

V”¢(h(t {Z (m — p)v 5117) ”P'71G<(th)h)}

p=1

= \[nd(h(v)) { D (1 nGoy) + 2 Ty up (. mG;TBh)} (4.8)
By the fact that ﬂp,mth)’h is P-canonical, we have to show that
[ \nd(h(t)) Z P (,mG), } 0.
So that to establish the weak convergence of the U-process {,u,(f) (o, t; h(t))}%%m, it is enough to show

m AU (11,Gy) =5 Glp) in e (mGD),

where {G(¢)},,gn is a Gaussian process indexed by mG'"", and for2 < p <m

H./n(p(h(t 'l (7, G )

We have to prove after, that the remaining part is negligible, in the sense that

”\/’WT“ P (e, t.h(t)) - B (u (R)(go,th(t)))}H o

Jg/m

)
— 0.
T ™M

Nevertheless, when we have to deal with finite-dimensional convergence, the truncation does not
matter. Which means that establishing the finite-dimensional convergence of 1, (¢, t; h(t)) is equivalent
to establishing that of ,u(T)(go, t; h(t)).

Theorem 4.5. (a) Under conditions (C.1°.), (C.1.2), (C.2.), (C.3".), (C.5.1), (C.5.2) and if r™ (¢, t) is

continuous at t, then, as n — oo,

n(h(t) (77 (p. t: h(t) — E (un(e. :h(1)) — N (0.07). (4.9)
where
P = (e ee) - 2 e 0ok D + (M7 ) 3L D), (4.10)
O-f (‘101" ‘10]) = ,11_)1?0 ¢(h)E (ﬂ'l man,tha T chthh)
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(b) If, in addition, the smoothing parameter k satisfies the condition (C.8.), then we have, as n — oo,
Vi TR (700, B (1)) = B (1. t i (8)) = N (0.07). (4.11)

where p? is defined as in (4.10), with
t (e ;) = 21_{?0 a mE T1.mG g ths T1mGy,th ) -
v n

Corollary 4.6. Under conditions (C.1°.), (C.1.2), (C.2.), (C.3’.), (C.5.) and ifnﬁ’?@(h(t)) — 0as

n — oo, then we infer that:
Vi T (700, 8,40 = F7(p,8)) —5 N (0,07). (4.12)

Theorem 4.7. Under conditions (C.I°.), (C.1.2), (C.2.), (C.3’.), (C.5.1), (C.5.2), (C.8.) and
nﬁ’iyé(h(t)) — O0asn — oo. Let F, %™ be a measurable VC-subgraph class of functions from
(X", Y™) — R such as condition (C.4.2) is satisfied and, if the B-coefficients of the mixing stationary
sequence {(X;, Yi)} i fulfill:

Bss" — 0, as s — oo, (4.13)

for some r > 1, then {U (m)(go,t h, k(t))} o converges in law to a Gaussian process {G(¢)} z »Which
has a version with uniformly bounded and uniformly continuous paths with respect to || - ||,—norm.

Remark 4.8. It is worth noting what is the price to pay by the nice features of the k-NN-based
estimators: remembering that H, ;(X) is a random variable (which depends on (X, ..., X,), one should
expect that additional technical difficulties will appear along the proofs of asymptotic properties. To fix
the idea on this point, note that the random elements involved in (2.1), m = 1, can not be decomposed as
sums of independent variables (as it is the case for instance with kernel-based estimators), and hence
its treatment will need more sophisticated probabilistic developments than standard limit theorems for
sums of i.i.d. variables. Also, the Hoeffding decomposition can not be applied directly to (2.1), which
is the main tool for the study U-statistics. The first step in proving Theorem 4.7 is the extension of
[27, 43] to the multivariate bandwidth problem. In addition, we have considered new applications:
the set indexed conditional U-statistic, Kendall rank correlation coefficient and time series prediction
from a continuous set of past values. Another delicate problem lies in the fact that some maximal
inequalities and symmetrisation techniques of [10, 67] are not applicable directly in our framework,
making the proof quit lengthy, in particular, the equicontinuity of the empirical processes.

Remark 4.9. It is straightforward to modify the proofs of our results to show that it remains true when
the entropy condition is substituted by the bracketing condition: For some Cy > 0 and vy > 0,

N[ ] (e, ym%m,Lz(P)) <Che™ 0<e<.
Refer to p. 270 of [190] for the definition of N (¢, %, %", L,(P)).

AIMS Mathematics Volume 9, Issue 2, 4427-4550.



4456

5. Some potential applications

Although only four examples will be given here, they stand as archetypes for a variety of problems
that can be investigated in a similar way.

5.1. Set indexed conditional U-statistics

We aim to study the links between X and Y, by estimating functional operators associated to the
conditional distribution of Y given X such as the regression operator, for C; X --- X C,, ;= Cinaisa
class of sets €,

G"™(Cyx-xCp|t)y=E H Tyveey | (Xih. s X)) = t] fort e X™.
i=1

We define metric entropy with the inclusion of the class of sets €. For each & > 0, the covering number
is defined as :

N, €,GV(1x) = inflneN: 3C,,...,C,e € suchthat VC e €A1 <i,j<n
with C; c C ¢ Cjand G(C;\ C; | x) < &},

the quantity log(N(e, 4, GV(- | x))) is called metric entropy with inclusion of ¢ with respect to
GW(- | x). The quantity log N(g,%€,GV(- | x)) is called metric entropy with inclusion of € with
respect to G(- | x). Estimates for such covering numbers are known for many classes, (see, e.g., [81]).
We will often assume below that either log N (g, ¢, GV (- | x)) or N(g, ¢, GV (- | x)) behave like powers
of &7': we say that the condition (R,) holds if

log N(e,¢,G(- | x)) < H,(g), forall & > 0, (5.1)

where
_ | log(Ae) if y =0,
H(S)_{As_y if y>0,

Y
for some constants A,r > 0. As in [164], it is worth noticing that the condition (5.1), ¥ = 0, holds
for intervals, rectangles, balls, ellipsoids, and for classes which are constructed from the above by
performing set operations union, intersection and complement finitely many times. The classes of
convex sets in RY (d > 2) fulfill the condition (5.1), ¥ = (d — 1)/2. This and other classes of sets
satisfying (5.1) with ¥ > 0 can be found in [81]. As a particular case of (2.5), we estimate G™(C; X

- d(n, X;,) d(tm, Xi,)
l_[ ]l{yi.ec_/}K(l—) . K(—)
. ~ (i sesigyel(myn) j=1 / Hn,k(tl) Hn,k(tm)
G(C0 = A1, X)) At X,) (5-2)
Z K( 1s ZI)K( ms iy, )
(i1 yoimyel (1) Hn,k(tl) Hn,k(tm)

One can apply Corollary 3.18 to infer that

sup sup sup @ﬁlm)(@, t) — G(’")(@ | t)‘ — 0 a.co. (5.3)

Exﬁe%mt%/m kl,n Skﬁkz,n tES’;
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Remark 5.1. Another point of view is to consider the following situation, for a compact J C R,

G, ym 1) = E(l—[ Liyepy | (X1 X)) = t) fort e X", (y1,...,ym) €J.
i=1

Let L(-) be a distribution in R? and ﬁn,k(ti) is the number of neighborhoods associated with Y;s. One
can estimate G™(y1, ...,y | t) = G™(y | t) by

G"(y,t)

=Y tn =Y, d(t, Xi,) d(t, Xi,)

Z Ll2—nl... | K g il

Grotmetonmy  \H,3(1) H, w(ty) H, () Hy i (tn)
d(h’Xil)) . K(d(tm’ Xim))

K(— i, Xiy)
G ) H, (1)) H, i (1)

One can use Corollary 3.18 to infer that, as n — oo,

sup  sup supsup G;"”(y, t) - G (y | t)| — 0 a.co. 5.4

Ke ™ ky y<kksky, t€S% YEI

5.2. Kendall rank correlation coefficient

To test the independence of one-dimensional random variables Y; and Y, [127] proposed a method
based on the U-statistic K,, with the kernel function :

@ ((s1,11), (52, 1)) = Li=s)t2-1)>0) = Lisa=s1)(t2—=11)<0} - (5.5)

Its rejection on the region is of the form { VnkK, > y}, for more general tests, refer [29, 32]. In this
example, we consider a multivariate case. To test the conditional independence of €,;7 : Y = (&,1)
given X, we propose a method based on the conditional U-statistic :

1 . d(t, X)) d(tZan))
D7) 2 G

i#j
Z": K(d(tlaXi))K(d(ZZ’Xj))
Hn,k(tl) Hn,k(tZ)

i#]

TD(@, t;h, () =

where t = (¢;,,) € I ¢ R? and ¢(-) is Kendall’s kernel (5.5). Suppose that & and 7 are d; and d,-
dimensional random vectors respectively and d; + d, = d. Furthermore, suppose that Yy,...,Y, are
observations of (&, 1), we are interested in testing :

Hy : ¢ and p are conditionally independent given X. vs H, : Hy is not true. (5.6)

Leta = (a;,a;) € R?such as ||Ja|| = 1 and a; € R%, a, € R%, and F(-), G(-) be the distribution functions
of € and 5 respectively. Suppose F“'(-) and G**(-) to be continuous for any unit vector a = (a;, a,) where
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F1 () =P (ang-‘ < t) and G*2(f) = P (azT n< t) and aT means the transpose of the vector a;,1 < i < 2.
Forn =2, let YV = (.f(l), 1](1)) and Y® = (f(z), 1](2)) such as £” € R® and 5 € R® fori = 1,2, and :

o (YO, Y2) = o ((a] £, an™). (a7£2, a17®)).
An application of Corollary 3.18 gives, as n — oo,

sup sup sup |’rf,(2)(90“, t; h, . (t) — P (¢, t)| — 0, a.co. 5.7

pKeFp 02 kinskskon tes?,

5.3. Discrimination problems

Now, we apply the results to the problem of discrimination described in Section 3 of [185], refer to
also to [184]. We will use a similar notation and setting. Let ¢(-) be any function taking at most finitely
many values, say 1,..., M. The sets

Aj:{(Yb-u,)’k)3¢(Y1,-~-,Yk):j}, IS.]SM,

then yield a partition of the feature space. Predicting the value of ¢(Yy,...,Yy) is tantamount to
predicting the set in the partition to which (Yy,...,Yy) belongs. For any discrimination rule g, we

have
M

P(g(X) = ¢(Y)) < Z f max D/ (t)dP(t),

=1 Jes=j)

where
M) =PeY)=j|X=t), te X"

The above inequality becomes equality if
- J
go(t) = arg 1%2(4 M/ (t).

go(+) is called the Bayes rule, and the pertaining probability of error
L' =1-PX)=¢(Y)=1-E { max I/ (t)},
1<j<M

is called the Bayes risk. Each of the above unknown functions 9t/’s can be consistently estimated by
one of the methods discussed in the preceding sections. Let, for 1 < j < M,

Ue(Y;,....Y) = ]}K(M)K(M)

M (1) = (i)l (m,1) H, i (t1) H, i (t,) .
n K(d(“’X"')) K(d(tm,x,.m)) :
o tton \ Hnk (tr) H, i (1)

Set
8on(t) = arg max im{;(t).
1<j<M
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Let us introduce
L, = P(g0,(X) # ¢(Y)).

The discrimination rule g ,(-) is asymptotically Bayes’ risk consistent, as n — oo,
L —L".

This follows from Corollary 3.18 and the obvious relation

o] < 2E| max |0(X) - M/ (X)||.
1<j<M

5.4. Time series prediction from a continuous set of past values

Let {Z,(?), t € R},>; denote a sequence of processes with value in R. Let s denote a fixed positive
real number. In this model, we suppose that the process is observed from ¢ = 0 until # = #,,,«, and
assume without loss of generality that t,,x = nT + s < 7. The method ensures splitting the observed
process into n fixed-length segments. Let us denote each piece of the process by

={Z®),( - DT <t <iT}.
The response value is therefore Y; = Z(iT + s), and this can be formulated as a regression problem:
CZ(T+5),.... Lt +9) = r'Z(0),...,Z(1), for T-T <1< (5.9)
provided that we assume that a function of this kind, r, does not depend on i (which is satisfied if the

process is stationary, for example). Because of this, when we get to time 7, we can use the following
predictor, which is directly derived from our estimator, to predict the value that will be at time 7 + s

o(Zi(t+5),....Z,(T+ s))K(

k . (i1 yererip)EI(M,1)
(e, z;m,) =

d( I’Xu) d(tm’ lm)
K
nk(tl) ) ( n,k(tm) )
(d(rl, )) _ K(d(tm,xi,n)) ’
(i1 iyl (1m10) n,k (tl) Hn,k(tm)

.....

where z = (zy,...,2) = {(Z(¥),...,Z(1)), fort — T <t < 7}. Corollary 3.12 provides mathematical
support for this nonparametric functional predictor and extends previous results in numerous ways
in [56, 91]. Notice that this modelization encompasses a wide variety of practical applications, as this
procedure allows for the consideration of a large number of past process values without being affected
by the curse of dimensionality. We believe that our findings will find applications beyond the scope of
this work, in particular, because many popular measures of dependence, such as distance covariance
and the Hilbert-Schmidt independence criterion can be estimated using U-statistics.

In the next section, we provide more details about how some of the methodologies of a number of
neighbor choices in the literature can be combined with our results.
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6. The bandwidth selection criterion

Many methods have been established and developed to construct, in asymptotically optimal
ways, bandwidth selection rules for nonparametric kernel estimators especially for Nadaraya-Watson
regression estimator we quote among them [15, 44, 45, 50, 105, 109, 166]. This parameter has
to be selected suitably, either in the standard finite-dimensional case or in the infinite-dimensional
framework to ensure good practical performances. However, according to our knowledge, such studies
do not presently exist for treating a such general functional conditional U-statistic (unless the real
case we could find in the paper of [79] a paragraph devoted to the selection of the number k).
Nevertheless an extension of the leave-one-out cross-validation procedure allows to define, for any
fixedi=(iy,...,i,) € I(m,n) :

d(tl, ) d(tma jm))
LY - K
Z ‘)0( Ji° s ]m) ( n’k(tl)) ( n,k(tm)

Jely (@)

ZK(d(n, )) K(d(tm, ,,n)) :
jerr H, (1) H, 3 (jm)

V(1) :={j € I(m,n) and j # i} = I(m, n)\({i}.

7 (e, thy (1)) = (6.1)

where

The Eq (6.1) represents the leave-out-(Xj, Y;) estimator of the functional regression and also could be
considered as a predictor of ¢ (Y;). In order to minimize the quadratic loss function, we introduce the
following criterion, we have for some (known) non-negative weight function ‘W(:) :

CVipk) = Y (V) =74 (0. Xi, by (X)) W (X0, (6.2)

iel(m,n)
where

W(t) = ]_[ W(t,).
i=1

Following the ideas developed by [166], a natural way for choosing the bandwidth is to minimize the
precedent criterion, so let’s choose k € [k ,, k] minimizing among k € [k, k2] :

sup CV(p,k),
oKeFn ™

we can conclude, by Corollary 3.18, that, as n — oo,

sup sup|r F(m)(¢,t h,z(t)) - (g, t)| — 0, a.co.
SOKEJmJ{/m tES

The main interest of our results is the possibility of deriving asymptotics for any automatic data-driven
parameters. Let K’(-) be a density function in RY and H » i (t:) 1s the number of neighborhoods associated
with ¥;s. One can estimate the conditional density f™(y;,...,y, | t) = f"(y | t) by

1y, t)
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,(tl_Yil ) ,(tm_Yi ) (d(fl,Xi,)) (d(tm’Xim))
Z K|—=|K K N il
Hn’kl(tl) Hn,k’(tm) Hn,k(tl) Hn,k(tm)

(i1yoonsim) el (1)
d(t, X; d(t,, X;
5 K( ¢ ))K( ( m>)
H, (1)) H, i (1)

(i] ----- im)EI(mJl)

Hence, the leave-one-out estimator is given by

Z K/ ( tl,_ Yfl ) . Kl (tm - ij ) K(d(tl’X]l)) . K(d(tm’X/m))
..... Jm)El (i) Hn,k’ (tl) Hn,k/(tm) Hn,k(tl) Hn,k(tm)

Z K(d(tl’le))'..K(d(tm’X/'m))
Hn,k(tl) Hn,k(tm)

(1,eesim)EI(m,1)

1y, 1)

n,i

(1

While the cross-validation procedures described above aim to approximate quadratic errors of
estimation, alternative ways for choosing smoothing parameters could be introduced aiming rather
to optimize the predictive power of the method. The criterion is given by

2
oI — : N “plm)
(k,k') = arg min Z (90 (Y;) — arg nyngxfn,i (y t))) .

knskskon, K, <K<k, iel(m,n)

7. Concluding remarks

In this paper, we consider the kNN kernel type estimator for conditional U-statistics, with the
Nadaraya-Watson estimator as a special case, in a functional setting with regular datasets. To obtain
our results, we need some regularity on the conditional U-statistics and conditional moments, decay
rates on the probability of variables belonging to shrinking open balls, and convenient decreasing rates
on mixing coefficients. In particular, the conditional moment assumption allows unbounded classes of
functions to be considered. The proof of weak convergence adheres to a standard method: convergence
of finite dimensions and the intricate equicontinuity of conditional U-processes. Approaching
independence with a block decomposition technique, and then proving a central limit theorem for
independent variables leads to finite-dimensional convergence. The equicontinuity requires more
intricate control, and the details are lengthy due to the general and complex framework we have
considered and will be presented in the following section. Observe that mixing is a type of asymptotic
independence assumption that is commonly used to seek simplicity, but can be implausible when
there is a strong dependence between the data. In [69] it is argued that S-mixing is the weakest
mixing assumption that allows for a ”complete” empirical process theory that incorporates maximal
inequalities and uniform central limit theorems. There exist explicit upper bounds for S-mixing
coeflicients for Markov chains (cf. [113]) and for so-called V-geometric mixing coefficients (cf. [169]).
For several stationary time series models like linear processes (cf. [202] for @-mixing), ARMA
(cf. [189]), nonlinear AR (cf. [126]). A common assumption in these results is that the observed
process or, more often, the innovations of the corresponding process, have a continuous distribution.
This is a crucial assumption to handle the relatively complicated mixing coefficients defined over a
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supremum over two different sigma-algebras. A relaxation of S-mixing coefficients was investigated
by ([103], Theorem 1) and is specifically designed for the analysis of the EDF, for more details, refer
to [162]. The application of non-parametric functional concepts to general dependence structure is
a relatively underdeveloped field. Notably, the ergodic framework eschews the commonly employed
strong mixing condition and its variants for measuring dependence, as well as the extremely involved
probabilistic calculations that this condition necessitates. It would be interesting to extend our work to
the case of functional ergodic data, but this would require nontrivial mathematics and is well outside
the scope of this paper. The primary obstacle lies in the necessity of formulating novel probabilistic
results, as the ones employed in our current work, as demonstrated in [8], are tailored specifically for -
mixing samples. Another direction is to consider reducing the predictor’s dimensionality by employing
a Single Functional Index Model (SFIM) to estimate the regression [53]. SFIM has demonstrated its
effectiveness in enhancing the consistency of the regression operator estimator. Change-point detection
is widely employed to pinpoint positions within a data sequence where a stochastic system undergoes
abrupt external influences. This method finds application across various scientific disciplines. The
identification of these changes is crucial for exploring their diverse causes and enables appropriate
responses. The challenge of detecting disruptions in a sequence of random variables has a rich
historical background, refer to [26, 39, 41]. It would be of interest to find applications of our results in
this direction.

8. Mathematical developments

This section is devoted to the proof of our results. The aforementioned notation is also used in what
follows. The proof of Theorems are quite involved and will decomposed in several lemmas proved in
Section A.

8.1. Proofs of uniform consistency results
8.1.1. General Lemma

We present Lemma 8.1 in a general setting, for instance, see [44], which could be useful in many
other situations than ours; this is a generalization of a result obtained in [58]. More generally, this
technical tool could be useful for dealing with random bandwidths.

Let (A;, B)),>1 be n random vectors valued in (Q" X Q™ o/ X %), a general space. Let S be a
fixed subset of Q2 and we note that G : R X (§Sq X Q) — R" a function such that, YVt € Sq, G (-, (¢,-)) is
measurable and Vx, x’ e R :

(Lo)
x<xX=>G(xz)<G(x,z) ,VZ€SqXxQ.

We define the pointwise measurable class of functions, for 1 < m < n:

Ggm = {(xl,...,xm) - HG(h,-,(x,-,t,-)),(hl,...,hm) e R'\{0} and (11,...,t,) € Sg}
i=1

Let (D,,4(t)), be a sequence of random real vectors (r.r.v.) in such a way that forall t = (7,,...,1,) €
Sas Dpi(t) = (Dyi(t1), ..., Duy(ty)), and ¢ : Q™ — R be a measurable function belonging to some
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class of functions %, and let M™ : F,, x S o — R be a nonrandom function such that,

sup sup [ (g, t)| < co.

OEFm teS

Now, forall t € S¢, ¢ € ¥, and n € N\ {0} we define

m

> ey, B, | |G (Hy @A)
E]thlm)(gp, t: h) _ i€l(m,n) _ j=1 ’
> 1 6(H,@4:))

iel(mnn) j=1
where h = (H,,...,H,) € RY, and G = l—[ G(hi, (xi, 1)), t = (t1,...,ty) €54.
i=1

Lemma 8.1. Let (U,,) e be a decreasing positive sequence such that lim U, = 0. If, for all increasing

sequence &, € (0,1) with &, — 1 = O(U,), there exist two sequences of r.r.v. (D’;’k(é:n’t))neN and
(D;,k(fn, t))nEN such that

(Ly)
VneN and te Sp, Dy t) < Dint) Vj=1,...,m,
(L)
H ]l{D,;k<.fn,z,«>sDn,k(r,->sD;k(fn,z,«)] — 1, a.co, VteSg.
=1
(L3)
D, [ 16(Dnnt.a.4:)
sup sup fefom) ];1 - fn = Oa.co(ﬂn),
Gegm teS™
o ? Z HG(D;,k(fmtj), (tj’Ai,j))
ielimn) j=1
(Ls)
sup  sup [T (i, D}, (£,. ) = M, )] = Oy,
tpéeymgm tesS g
(Ls)

sup  sup [ (5,6 D (£, ) = M, 0] = Ouco(Uy).

‘paeym%m teSg

Then, as n — oo,
sup  sup [ (g, t; D, k(D) — M (@, )] = O o (U)- (8.1)

(péeg‘mgm tESg

We refer to [44] for proof of this lemma.
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Proof of Theorem 3.1

In order to establish the convergence rates, the following notation is necessary. For all ¢ € § x, set

At (D) = K(d(X:, 0)/hx(D)),
1 n
/~(1) . (r
(. 15 hie () A hK(t)));M)Al(t,hK(t»,
1 n
7 (t
(1,13 h (1) T Z Ai(t: hy(2)).

This allows us to write

0, 1 hi(0) =T, 1 he )7 (1, 15 by (1)).

Now, let us consider the following decomposition

1
T, k(@) = Ve, t) = ————— (P (0. 1 he(1) — E [F) (0, 15 hy (1))
r ‘;0 K r ‘10 ?f’:l)(gp, [’ hK(l’)){ ‘)0 K [ 90 K ]}

1
*”(so,t hi (1))
rD(g, 1) (1
(e, 1 hg (1)

(B [F)(e. t: hx@)| = rV(p, 1))
=T, 15 (@)

Therefore, the proof of (8.2) is based on the following lemmas.

Lemma 8.2. Under assumptions (C.1.1), (C.3.1), (C.4.1), (C.5.1), (C.5.2°), (C.6.) and (C.7.), we have,

asn — oo,

logn
Usy ;
sup sup  sup [P, 1, he(0) — B (7, £, k()| = Oueo | \ ——L |, (82)
OKEF A hpy<hg<hns t€Sx | ng(hy, 1)
and
logn
T
sup  sup sup [P, k(D) = 1] = O | | ——— |- (8.3)

n¢(hn, l)

0KeF A hp1<hg<h,» t€S x

This lemma gives us the rates of consistency of the stochastic part when the class of functions .7 is
bounded. The following lemma will give us the result when the class of functions is unbounded.
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Lemma 8.3. Under assumptions the (C.1.1), (C.3.1), (C.4.2), (C.5.1), (C.5.2°), (C.6.) and (C.7.), we
logn

have, as n — oo,
Us

ng(hy,1)

sup sup  sup [P, 1, hie(0) — B (750, 1, k()| = Ouco

()OK€<?,)/V hn.l Sh[(Shnvz IESX

(8.4)

Finally, we only need the following result for the bias term. This lemma can be obtained similar
way as in [147], where more details are given.

Lemma 8.4. Under the condition (C.2.1), we have, as n — oo,

sup sup  suplB [F (e, 1 )] - 1V, )| = 00, (8.5)

oKeF A hp1<hg<h, t€S x

Proof of Theorem 3.3

Similar to [44], To prove Theorem 3.3 we need to check the conditions of Lemma 8.1 in the case of
m = 1. For that, we first identify the variables as follows: S = Sx, A; = X;, ¢(B;) = ¢(Y)),

G(H, (1,A)) = K(H'd({1 X)),
Dn,k(t) = Hn,k(t),
M (@, 1 Ho (1) = 730, 15 Hyi(1)),
M,n) = r'en.
Choosing D, (£, 1) and D; (&4, 1) such that
Wk
(D, 1 (&ns 1) = \/i_ ) (8.6)
¢(D;, (&, 1)) = ‘ (8.7)
N k\Sns - n\/éfn .

We denote h™(1) = D, (&, 1), h* (1) = Dy (£, 1) and

logn
:¢—1( ka.n )y+ lﬁsx( n )

o]

for all increasing sequence &, € (0, 1) such that &, — 1 = O(U,,). Note that for all &, € (0,1), ¢ € S x and

kin, <k < ky,, we have
VEK1n VEikan
n n ’

¢, <h (1)< ¢ (

AIMS Mathematics Volume 9, Issue 2, 4427-4550.



4466

-1 kl,n)<h+t < _l(kl,n)
¢, (n\/f_n_ 0 <¢, = A

using the condition (2.12) we can easily deduce that the bandwidths 4~ (#) and 4" (¢) both belong to the

interval
nk n — k n
[hn’l, hn’Z] B |:/l¢_1 (p—l,) ’ V¢ 1 ( 2, ):| .
n Pt

Checking the conditions (L) and (Ls)

Let us start with checking (Ls). The fact that &, is bounded by 1, and the local bandwidth A7 ()
satisfies the conditions of Theorem 3.1 gives

sup sup  sup
(pKEyf hn,] <h=(t)<hp» teSx

WD (.15 D5 Ens 1) = MOV, 1)

C d(t, X;)
2. Q"(Y")K( (0 )
= sup sup  sup =l - — 'V, 1)
OKEF A hy 1 <h=(D)<hy 1€8 x Z % d(t, X;)
h=(1)

i=1

= sup sup sup[R (e, h () - r Ve, D)

0KeF A hy1<h=()<h,, t€S x

— Y
- Oa.co hn,2 + Oa.co

b

which is equivalent to

sup  sup  sup[7 (e, s k(1)) — rV (g, )|

oKeF A ki n<k<kp, t€S x

(log n)
o ¢_1( k2,n )7 s wSX n
a.co \/é:_nn I’l¢ (ﬂ¢_l (pnklﬂ ))
n

We use the same reasoning to check (Ls) and we readily obtain

= Oa.co(ﬂn)-

sup  sup  sup | M@, 1 D} (& D) — M@, )| = Opco(Uy).

oKeF A ki n<k<kp, t€Sx
Hence, (L4) and (Ls) are checked.
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Checking the condition (L;)

To check (L,) we show that forall t € S x and g5 > O,

Z P{|1{D;k (&) < Hy(0) < Dfy (6D} 1> 60} < oo,

n>1

Let &y > O be fixed. Let {#, ..., ty,(s,)} be an e-net for Sy, for all # € § x, we have

F {’]1{D,,,k@n,z>an,k<z)SD;k<fm'>] - 1‘ g 80}

_ ankl n — k2 n
1 > 1 y
P(Hn’k(t) =% ( n )) ’ P(Hn’k(t) =9 ( \/é?nn))

IA

Nan (S X) k:kZ,n

> P(Hn,k(rf) <g,' ( LE ))

=1 k:kl,n n
Ne, (S x) k=ko

Y P(Hn,k(m > ¢, ( \sz_n))

IA

(=1 k=kiy
< NS B (ritr <7 Vo)
e
s 3 vzt (G2

(8.8)

Now, we use a lemma similar to [124] (see Lemma B.5). For completeness, we give their proof.

Making use of Lemma B.5, we infer that

kin -
#{aao <o (52)) - P{Z P (o)) "}

< exp{-(k—aky,)/4}.
This implies that
& ak
ACNDY P{Hn,km < ¢;l( nl)} < No (S ko exp{—(1 - a)ki,/4}
k=k1,

N, (S yn' -0

IA

In a similar way, we obtain

2
P{an(f) > ¢! (@)} < exp {_M}.
| an 2ak,

Y k
P {; 13(,,4,;1(0%,"))(&) > e a’k1,n}

(8.9)

(8.10)
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It follows that

kZ,n

Ne(Sx) D P {Hn,k(r) > ¢, (

k=ki »

k2,n

an

)} < Ne, (S ko exp {—(1 — @)k, /2a}

kZ,n
< Ns,, (S X)nl—{(l—(z)/Za}m )

Therefore, by that fact that k;,/ Inn — oo, i = 1,2, we obtain

ko
- k n k SN
Ne(Sx) ) P{Hn,k(t) <4 (“ 5 )} < N, (S,0n! 70O < oo, (8.11)
n
k:kl,n
k2,n k k
Ne(Sx) ). P{Hn,k(r) > ¢;1( 2)} < Ny (Sxn! 205 < oo, (8.12)
an
k:kl,n
Checking the condition (L3)
We consider the following quantities:
0, — MEDED)
e e
Ai(t, Dy (€0 1))
T D)
On = —f—— -1
P, 1 D5 (&0, 1)
A(t, Dy (& 1)
Qn3 = ! é‘: fn -1

A2, Dy, (&ns 1))

The condition (L3) can be written as

- ( d(t, X;) )
2K
L\ Dy )
- = &l <10l 1Qn2l + 10n1| Q03] -
d(t, X;)
Z K
L7\ D)
Hence, by the fact that &, — 1, our claimed result is
. dt, X;
Z K( (t’ 1) )
i=1 D;(é‘n, t)
sup sup sup|— =&l = Ouco(U). (8.13)
Ke ' kyn<k<ky, t€S x Z K di, X;)
Dy (&, 1)

i=1
The proof of (8.13) is based on the following results

sup sup sup|Q.| < C, (8.14)
KeX kin<k<k,, teS x
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logn
e
sup sup Sup |Qn2| = Oa.co s (815)
Ke A kyp<k<k, 1€5 x _1 [Prkin
ne (ug
n
-1 k2,n y
sup sup sup|Qusl = Ol|¢ . (8.16)
KeX kin<k<k,, teS x Pnll
Proof of (8.14)
Using the condition (C.3.1) one has
d(Xl ’ t)
E|{K < h(t)).
( ( 0 )) k¢ (h(1))
Now using the condition (C.1.1) we directly obtain
sup sup sup|Qu| < C. (8.17)
Ke X ki <k<k,, teS x
Proof of (8.15)
We have
sup sup sup|Q,z| = sup sup sup M - 1'
Ket' kip<kskan €5 x Ket' kip<ksks, 1eSx | On(K, 1, h* (1))
1
< su sup sup|Q,(K,t,h (1) —1
inf inf inf |0, (K, 1, h+(t))| (Kejp( klvnskgkzi,, zesg 0 |
KeX ki n<k<k,, teS x
+sup sup sup|Ou(K,t, bt () — 1|). (8.18)
Ket kyn<k<ki, teSx
To prove this, we use Lemma 8.2, which gives
logn
C
sup sup sup |Qu(K,t,h™ (D) = 1| = Ouco : (8.19)
KeA kyp<k<k, 1€5 x _1 [Pk n
Voo ()
n
and
logn
]
sup sup sup |Qu(K,t,h* () — 1| = Oueo . (8.20)
Ket kin<k<ks, teS x -1 pnkl,n
Voo ()
n
Moreover, combining (8.19), (8.20) with the fact that
ce e
> P(;g} inf 7)o 1: D} (60.1)) < c) < oo, (8.21)

n>1
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it follows that

vs. (log n)
n

sup sup Ssup |Qn2| = Oa.co .
Ke# ki n<k<ky, t€Sx pnkl n
wolue (2]

(8.22)

Proof of (8.16)

[134] use in their proof of part the proof of Lemma 1 in [89], on the other, we will use some
computations similar to the steps of the proof of Lemma 5.7.0.3 in [42]. Let us consider the following
quantity:

rffz(so,t D (&,,1))]

B oK) = - (g, 1),
Elr, Lo, 1; D; (60, 1))]
d(t, X))
; BAD; 1) [K(D;@n,r))EWYI)'X”] 1
|B(t, oK) i e
¢i(D, (£ns 1)) E [ K( d(t, Xy) )]
Dy, (&n, 1)
1 ¢«(D, (£, 1)) d(t, X)) " ]
E|K Elp()i1X1] - O
E[K(d(z,xl) )] ¢(D} (&, 1)) [ (D;(fn,t))( [e(¥)i1Xi] = V(e t))
Dy, (&n, 1)
¢(D, (&, 1))

using the fact that = &, and supposing that the condition (C.2.1) holds which means

XOHED)
[FOC 1) - Ve, 0| < G (X, 1),

and assuming that the conditions (C.1.1) and (C.3.1) to be satisfied, then for all + € Sy, and
D, (é,,1) and Dj(&,,¢) in [h, 1, h,»], one gets

E[F) (@, 1; D} (60, D)] g ’t)‘ . Cwet,
E rn,l(go’ L D;(é:nat))] Kl¢t (D (é‘:n,t))

(B 5(u036.0) O (X, 1)

C3k2€, ¢ (D;; (6, 1)) &) 3K2§n

< (D, (&, 1) < ——=(D, (&, )"
K (D) ¢ Ci

< CD; (D).

Keeping in mind the condition (C.3.1) and the fact that £, — 1, we obtain
E[F5 (¢, 1 D} (€0, D)]
sup sup sup -V, 0| < C'R,. (8.23)
CKEF H (h=(0)r (0)elhn,1.hn 212 15 x | B[7 ,11(90,t D;, (&q,1))] ’

Finally, rewriting (8.23) with ¢ = 1 gives us

dt, X,)
sup sup sup - [K (D; Ll )]
CKeF X (h=(t),h*(t))€lhn,1,hn2]? 1€S X E [K( d(t’ Xl) )]
D;, (&, 1)

&-1<Chl,
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which is equivalent to

Y
sup sup supl|Q| = 0(¢_1 (ki;;) ) (8.24)

KeX kyp<k<k,, teS x n

Combining the results of (8.17), (8.22) and (8.24) and the fact that £, — 1, implies that

- ( d(t, X;) )

2K s

i=1 Dy (&, 1) £l = 0,1
su su su —GSn| = Yaco n).
KGJI?/ k.,,,skgkz,,, tesg z": © d(t, X;)

2"\ Dy

Hence, (L3) is checked. Note that (L) is obviously satisfied by (C.3.1), and that (L,) is also trivially
satisfied by construction of D, (¢,,t) and D (&,,1). So one can apply Lemma 8.1, and (8.1) with m = 1
is exactly the result of Theorem 3.3.

Preliminaries of the proofs

This part is mainly dedicated to the study of the functional conditional U-statistics. Just like in the

case of m = 1, where S x is covered by
Ne(S x)

| B,

=1
for some radius &. Hence, for each t € S, there exists €(¢) = ({(1),...,{(t,)) where V1 <i<m,1 <
£(t;) < Ng(S x) such that

m
te | | Bl e) and d(t, ) = argmin, g an 5,080 10).

i=1

So for each t € S, the closest center is t,) and the ball with the closest center

[ [ Bt := Bltew.or

i=1

The proofs of the UIB consistency for the multivariate bandwidth will follow the same lines as the
proofs of the UIB consistency for the univariate smoothing parameter in [42, 44]. Furthermore, as in
the proof of Theorem 3.1, we divide the sequence {(X;, Y;)} into v, alternate blocks, here the sizes
a,, b, are different satisfying

b, <a, w,—1)a,+b,)<n<uv,a,+Db,, (8.25)
and set, for 1 < j<uv,—1:
HY = {i: (= D(an+by) +1<i< (= 1)(an+by) +an},
T = {i: (= D@ +by) +ay+ 1 <i < (j = 1(ay+by) +a, + by},
HY = {i:@,— D@ +b)+1<i<nA@,—1)a,+b,)+a,},
TV = {i:(,— D, +by)+a,+1<i<n}.
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Proof of Theorem 3.8

In this section, we consider a bandwidth h = (hy,...,h,,) € 7’(,5’") . To prove Theorem 3.8, we can
write the U-statistic for each t € S’y as follows

i, (@, t; h) — E[u,(p, t; h)]|

(0, 6 h) = 1,0, by )| (8.26)
+ [Elun(@, taw; W] — Elun(p, t; h)]|

+ (@, tey: ) — Eluta(p, Loy )|

11 (0, )| + [t 1200, )| + |1, 1300, t: 1) (8.27)

IA

IA

, we have

= d(le’t) =z d( l]’té’(t))
so(nl,...,Yi,,,>{ K( ) l/—[K(h—)}l

j=1 J J

Let us begin with the term |u, 1 (g, t;

C(n —m)!
n!(h)

Up11(e, t; h)| <

iel(m,n)

By applying the Telescoping binomial, we get

m m d i ‘.
ﬂK(d(X”’t)) ]—[K(—( ’ht“’))) (8.28)

J=1 h;

2l <N

j=1
Jj—1 n d(Xips ts
)
g=1 p=j+1

From condition (C.4.1), we could claim that

j-1 j-1

d(Xl 7t ) i
(%5 ) = [Tty
q=1 i q=1

similarly, we have

T o (A Kipste,)\ i T
1—[ K(l’l—p) — K2 J l_[ ]lB(ff(tp),hp)(Xip)-

p=j+1 p=j+1

So, (8.28) satisfies :

m d(Xij, 1 = d(Xij, teay)
(5 - (5)

Jj=1 ] 1 J

1_[ ﬂB(lq h )(qu) l—[ B((tery) hp)( zp)}

p=j+1

I d(Xij, 1)) d(Xij, teuy)
< K57 Z:; [{K(h—J) - K(h—J Lpitj. b ) (Xij)
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j—1
n B(tg:h q)(X’q) 1_[ ILB(tm )h,,)( IP)}

g=1 p=j+1

Ms

Ki () ter)s
1

where

d(Xij, fj)) 3 K(d( Xijs teay)

() -1
Kij,h_,-(tj’ Z‘f)(fj)) = lgzn {K( h h )} ]1B(tj»hj)UB(t[(tj)»hj)(Xij)
J J

x ﬂ Loty i) | | Tty iy i

p=j+1

Therefore, we infer that

Cn-m! , I o
Up, ((P, t;h)| < (,D(Yl s Yim) Ki~ (ti, tg : )
11 | n'¢(h) 2 ie[(;n) 1 FZ] J’hj J (tj)
< C(fl m)‘ m | Z Z { (d(X,J,l'])) K(d(Xij, tt’(tj)))}
fl'¢(h) iel(m, n) j=1 h]
X]lB(tJ hj )UB(tg(, 3ahj )(th) l_[ ]13(; h )(qu) 1—[ B(tf(t )h,,)( zp) (830)
p=j+1
< M e > 1Zm1 &g (X))
< mMx — — g, (X
nt ’ it M Loy, BBty )RS
xl_[]IB(tq ) Xig) ]_[ L) ,p)} (8.31)
p=j+1

The transition from Eq (8.30) to (8.31) is done thanks to the fact that the kernel function K(-) is
Lipschitz. Uniformly ont € S’ and h € H™, we get

sup  sup sup |u,11(¢,t; h)|

OKEF ™ peq™ teSy

(n— m)v CmMK2 &,
< sup sup sup Z Z Lt ppuBar i (Xi)

PKEeFu ™ peq™ teSy ielGm, n) ¢(Hn)hn Jj
X n ]lB(l ]’l )(qu) rl B(l[(fp) /’lp)( tp)]
p=j+1
(n - m)‘ CmMK2 Eny
< sup sup sup Z Z Lty ppusiar i (Xi)
pKeF, M heﬂ(m) tES X i€l(m, n) j=1 ¢(Hl‘l)h

X 1—[ ]lB(’q hq)(X"]) l_[ ]IB(I[(,,,) hp)( lp)]

p=j+1
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(n— m)v CmMKY /<2 En
< sup sup sup Z Z Lty (Xi)
wKeZ, ™ hG(l‘((m) teS’y iel(m, n) 1 ¢(l’l )h

X l—[ ]lB(’ h )(X”I) rl ]lB(t[»(, )h,,)(sz)

p=j+1

by (3.2), where H,, = (h,4, ..., h,n) and ﬁn = (A}Z,,, ... ,E), with ﬁn < H,, component by component.
The idea is to apply Lemma B.6 on the function

" | CmMkT e,
Jen(Xj) = — Z ,—2]13(1, h)UBg k) (Xi) 1—[ Lp(1,.,)Xig) 1_[ L a4y, ) (X lp)]
C ¢(h )hn] p=j+1
which satisfies for all t € S'¢ :

CmMiy e,

0 <sup sup |finX)| < < Cte = C5.
teSy he (™ ¢(h )h
Notice that the existence of the constant C; on the last right side of the preceding inequality is deduced
from the condition (2.11). Now, we can apply Lemma B.6 with x = %X—(fn) En , which gives us
ng(hy)  hy
P sup  sup sup |u,11(e,t; h)| > l/’sngn) (8.32)
PKET A" peq™ teS" ng(hy,)
< P u, - 9| > wsxff’l) _g + Cy,m/ \/71
ng(h,)  hy
CI
< 2expi—— - <n 9, (8.33)
C5 + C7x(log n)(log,(n))

such that cey > 1. By developing the computation while respecting the imposed conditions, mainly
(C.6.) and (C.7.), we get

wSx(gn)} < 00 (834)

ZP{ sup  sup sup |u,11(e,t; h)| e
ng(hy)

=7 \eKeZn A hepm e

The study of the term u, 1, is deduced from the previous one. In fact:

|un,12(‘109 t; h)|
[E [, £ ) — 11,0, t: )|

C(n —m)! “ ( ijs )) = d(X,J, tf(t,))
e Elo(Y;,....Y; K K 8.35
S ,-e;m [90( ){]]—[ ]_[ (8.35)
C(n —m)! “ (d( ,,,r)) = d(Xl,,ta,,))
e Elo(Y,....Y; K K 8.36
T %ﬂ) o ){]]—1[ y H (8.36)
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To pass from (8.35) to (8.36), we apply Jensen’s inequality in connection with some properties of the
absolute value function. Then following the same way already taken, we get

t12(p, )| < C

”;1,12(907 5

where

, _ . (n—m)!
”n,12(¢,t,h)| = m | ; )
iel(mn

E|e(Y;,....Y; )ZK, U E

Notice that we have

’ : (n=—mt N d(Xij, 1)) d(Xij, tey)
Gale. W] < g 2 ZE‘{K(#)_K(T)}

iel(m,n) j—l J J

A

an(t,h)UB(,m)h>(X,,>]—[113(, 1) Xig) ]_[ L (i) Xi)

p=j+1
S (n m)Y Z Z [ B(tj,hj)UB(I[(, ),h/)(Xl])
iel(m, n) ¢(H”)h” J !
Xl—[]lB(Iq hq)(qu) l_[ ]IB(Z[(,I,) ]’lp)( lp))]
p=j+1
= " 'm)!m Z Zm: [ (ﬂB(fjsh/)UB(ff<r 2 (Xij)
n: il(m, n) j= Ci ¢(h )hnj !
X 1—[ ]lB(tq )(X“]) 1_[ B(t[(/ )hp)( ’P)]]
p=j+1
That implies
1 L1
sup  sup sup ()| < maig1 O ¢ ¢y 108
oKEFn ™ ey 1Sy nh, n¢(hn)
_ [ ws)xsn)]
ng(hy,)
This gives that
sup  sup sup |u,12(p,t; h)| = '//sxfn) . (8.37)
PKE T ™ pep teS" no(h,)

Continue, now with u, 3,

1330, ;)| = lu, (@, tes h) — Elu, (o, tr 0]

Supposing that the kernel function Gy, n(-) is symmetric, we need to decompose our U-statistic
according to [115] decomposition, we have

uni3(@, ) = u(e, te ) — Efun (o, tr; )]
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! (p) ﬂ. (G ))
u, p-m\F ot h
Z‘ (m—p)!

= i) (T Goaen)) + D o '), u? (Tpn(Gopan)) - (8.38)
2

Define new classes of functions, for h = (hy, ..., h,) € H™, £ € {1,...,N;,(Sx)}",and 1 < p<m:
(Zud ™7 = {7 (Gy)( ) for he HY™ and ¢ € F,,}.

These classes are VC-type classes of functions with the same characteristics and the envelope function
F, satisfying
F, < 2°KY|| Flloo.

Let us start with the linear term of (8.38), which is

mu (mm(G t,h) Zm (Gt n)(Xi, Y5).

j=1

From Hoeffding’s projection, we have

T1n(Gotm)6Y) = {B|Goton (6 Xas. ., X0), 0 Vs, Yo) | = Bl G (X, V)

= {ElGpun X YV)I(X1, V1) = (5, 3)] = E[Gyon X, V)1

One can see that {
muD (m1(G ) =t —=u(S 14,0):

Vn

is an empirical process based on a VC-type class of functions contained in m (%, % m)D with the same
characteristics and the elements are defined by:

S 1%, y) = memElGyn (X, Y) (X1, Y1) = (x,¥)].

Hence, the proof of this part is similar to that of the Lemma 8.2 and then:

1
sup sup sup 'uﬁl ) (m,m(G%tf,h))‘ = Ou.co
tES% hn<he<bg YEF

Pass now to the nonlinear terms. The purpose is to prove that, for 2 < p < m:

(p) 1) [ (7 G
sup  sup sup = Ou.co(1), (8.39)
¢KEF A" he(™ LSy logn
()
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m
to do that, we need to decompose the interval l_[(h ;) into smaller intervals. First, let us consider
=1

the intervals (hn,j, bj) forall j=1,...,m and b; € (0, 1), we note

n,j» n]

Hiy = [ |

where h;, = 27'h,; and = 2'h,; and we set Lin) = max{i:hlfj < 2bj}, and I; =

{ij 1 <i;< Lj(n)} . We can observe that

[owsye U []o

J=1 (i1 seenrim)EL 1% X Ty =1
and
log(b;/h,.;
Ljn) ~ % < L(n) =t max L;(n) for 1 < j<m. (8.40)

Now, we set the following new classes, for h = (hy,...,h,) € H™ and £ € {1,...,N,(Sx)}", 1 <j<
ml<i<Lmnand2<p<m:

(ﬁzmji/m)ijf = {¢t((h)G¢,t,,h(', -) where ¢ € .%,, and h € l—[ Wij} ,

J=1

(/ %m)([?)

{¢t[(h)ﬂp,m(G¢,tf,h)(" ) where @ € L%n and he l_[ 7'{ij} .

J=1

Thus, to prove (8.39), we need to prove thatfor 1 < j<mand € = ({y,...,¢,):

(17) 1) [0 (7 G )

max max sup sup sup = Oa.co( 1 ) .
1<€;<Ng, (S x) 1<i<L(n) henm ‘H OKE Ty K M teS™ log n

n

Notice that for each ¢y, 1 < j<mand € = ({y,...,{,), we have

() \ne (o) |us!
P4 sup sup sup

heH(™ teS"h pRe 7,0 (lo gn )
Sx

n

(ﬂp mGt,D,ti(t),h)‘
> EO

(p)
17 (ﬂp mG%tl,h)'
> EO

< Z Z P sup sup (';) o)

126N, (S x) 1<i=Lny | helljo Hij pKeZ, W (log n )
x\ "7
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< L(n)N](Sx) max max
" 1<€;<N,, (S x) 1<i<L(n)

8o e

(,,(’Zm,}g”’)ijj

At this stage, we will focus on studying the above equation for m = 2 to simplify the proof (the same
steps remain valid for m > 2). We have

uf) (7T2,mGt,0,t/,h) (l’l — ) Z 7r2m o,te,h ((Xl’ Y) ( ])) s
I<<i<j<n
and

> T2nGotn (K XD VYD) = DTS S anGten (6 X0, (YY)

i#] P#4 ieH\Y jeH

.\ Z > HanGon (X X)), (V. Y))

p=1izjijeH?

+zi > Z > onGten (X X)), (Y, ¥)))

p=lieq\" ¢la-p>2 jer

"‘22 Z Z Z TomGoyton ((Xi,Xj),(Yi’ Yj))
p=1 ier,U) q:lg—pI<1 jeT;U)

. Z 3 oGt (X0 X)) (¥ Y)

P4 7V jer )

S manGin (X X0, (YY)
p=1 iz ji jer"

= [+II+II+IV+V+ VL (8.41)

For m = 3 the formula becomes cumbersome and given by

D TemGoin (X Xj, X0, (Y, Y, Yo)

i#j#k

= Z Z Z Z 7T[7mG¢;,t,,h((Xi’Xjan)’(Yi,Yj’Yk))

P1#p2#p3 leH(U) ]eH(LZ’) keH(p?

+3 Z D 2 MG (X X X0, (Y YY)

PI#P2 iz ji. jeHy ) keHy)
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+ Z Z 7emGotn ((Xl, » Xi), (Y3, Y, Yk))

P=ligjski jkeH))

+3 Z > Z 2 TenGoten (X0 Xj. X, (Y Y. Y0)

P1#D2 ieH;Ll/) jeH;LZ/) p3ilp3—pil>2,i=12 kETx(g)

Un

B STS ST S G (6 X X0 (1, )

P1Ep2 iEH(U) jeH(U) p3:lp3—p1l>2.|p3—p2l<] keT(w

+3Z Z Z Z Z TemGotoh (Xz, Xk),(Yi’Yj’Yk))

Vien(? p3lp1=pil>24=2.3 jer() ket

B S S S rGoun (6 X X0, (57, 1)

p1= lleH(U) p3:lp3—p1l22.|p2—pi1I<] JeT(U) keTy,.)

+3Z ST ST S RenGnen (60X X0 (Y, 1)

”61—1([]) p2ilpa—p11>2 keT(U)

+3Z ST S G (KX X0 (Y, 1)

,eH(U) p2:lp2—pi1l>2 jkeT(U)

35T mGann (X X0 (Y, )

r=l1 ,'eH(U) p2:lp2-pil<l j,keT(U)

+3Z S DY TG (6 X5 X, 4 ¥, )

Vi jey) P2ip2=pil<l gery)

+ Z Z Z Z ﬂg’mG‘p,tt,,h((Xi,Xj,Xk),(YiaYj’Yk))

Pi#p2#p3 jer)) jeT) je T,(,l;)

33 S HenGonn (60X X0 (. 1)

Py#P2 jery) jkeTl)

+2 > G (X X X0, (Vi Y, V).

Pr=1 iz jki,jkeTy)

Let us start by considering the term I. Suppose that the sequence of independent blocks {&; = (i, {i)}ian
is of size a,. An application of (A.1), shows that

n(n—l)z DD mnGoun (X X)), (i, Y))

P24 icg® icg®
zeH _]EH (¢2%2)
it
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ﬁ i Z Z TomGotrn ((S’i, Sj)s (fi,fj))

i (ﬂQ%z)i.i,l

+2Un,8b,, .

We keep the choice of v, and b, such that v,b,” < 1, which implies that 2v,8, — 0asn — co, so the
term to consider is the second summand. the key idea is to apply Lemma B.4. We see clearly that the
class of functions (%, #™); , is uniformly bounded, i.e.,

Cosup (K| < M3
t,DKE(;ng)gz)ij’[

Moreover, by applying Proposition 2.6 of [10] we have for each (x;,y;) € Sx X Y and Rademacher
variables ¢; :

E nli D 2 Geten((5i5: 6 0))

P#4 ieHY jeH"

(<gzm=%/m)ij,t’
Up
-1
< 6E|n Zepeq Z Z Goan (i) (& 2))
Pra iy jet,” (P ™0
i
D2,n
< oF f logN(e, (7:7) f,dz,n)de, (8.42)
0 k
where )
Un
. 1/2) -2
D2,n .= Ee/ n Z 6176(] Z Z G(,D,t[,h ((gi’ g/)’ (gia gj))
il e .
i
and 5
Un
12) -2
doy =B ) ey D0 D Goun (5169, G )
p#q ieHY jen\”
We see that |
Dy, < n'——— M5 < nMi;.

(n-2)!
So, using the fact that .%,.#2 is a VC-type class of functions satisfying (C.4.4) which implies that the

class (ﬂg%/ 2)_ , is also a VC-type class of functions with the same characteristics as .%,.# 2, then,
ijs

E nlz D 2 Geten (65 6:0))

. U) . U
p*q lEH; )]EH,(] ) ((0;2(%/2).
Ij,l’
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D2,n
< CzEf IOgN (6, (yzejni/z) 0’ dz’n)dG
0 ,

Lj

< cnMC?. (8.43)

All the conditions of Lemma B.4 are fulfilled, so a direct application gives for each ¢,

ﬁ i Z Z TomGoyton ((Xi’Xj),(Yi’ Yj))

p#q ieH;,U> jeH‘(IU> (92%2)
ijt

< 2exp

< n %%, (8.44)

where |
g, = — > 0.

Next, let us study the same blocks II, we have

ﬁz’j Z 72mGotoh ((Xi,Xj)’(Yi’Yj))

p=1 ;1 icg®
l#jz,]EH,, (¢21/2)
tj,l’

ﬁ Z" Z 7T2,mG<p,tf,h ((Xl" Xj)’ Y, YJ))

p=1izjijen

(3/: 2 2);j,t’
+2Unﬁb,l-
Following the same argument as the blocks I, we obtain
Bl > > Geun (X X)), (Y5, Y))
pzl i£ji,j (U)
#ji,jeH, (gzjgz)ijl

Un

< oF n-‘zep Z Goten (X X)), (Y1, Y)))

p=lizjijeHy” )
I (T ™),z
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D)
< czEf logN(e,(g%Jifz). ,d;zr)l)de
0 ij,t >
< cnMC?, (8.45)
where
2
D2 =B D e Y G (X X)) (Y0 1))
p=l izjijeH\” o
ijs
and .
a3 =B n? Y 6 > Goun (X X)), (YY)
=l izjijeHV

Again, using Lemma B.4, we readily obtain

1 &
n01_1)23 25 ﬂlmG%mh«XﬁX%L(KyYﬂ) > &
P=lizjije” (#247),,
Ij,
< 2expl|-
b 2123c, MK
< (8.46)

The results for the remaining blocks can be obtained by following the same strategy above.
Consequently, we have

(2) \Jno(E

(02
Uy (ﬂp,mG%ti(t),h)‘

Z PJ sup sup sup Z €
n>1 | heH(" ST oKe Z, (log n)
Sx
n
< Z L(n)n~2Cn
n>1
< oo,
where |
ogn
&) = i, C,/n > 0.
n
This completes the proof of the theorem. [
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Proof of Theorem 3.10:

Notice that

7 0~ E (7" 6, t )|
u(p, th) B (.t h)
u,(1,th)  E(u,(1,t h))
_ I, th) — B (g, )
) (1, & )
B (ta(sp, & W) (1, £ 1) = B (i, (1, £, )|
(1, & B [E (i, (1, € )]

= I1+1IL
Under the imposed hypothesis and the previously obtained results, and for some ¢/, ¢}, we get that

sup sup |u,(1,t, h)| a.co

heH™ teS%
sup sup |E (u,(1,t,h))| ¢
e (<57

sup  sup sup [E (u,(g,t,h))|

oKeF M he‘H(()m) tesy

Il
O

o(1).

Therefore, we can now apply Theorem 3.8 to handle II and Theorems 3.8 and 3.9 to handle I,
depending on whether the class .%#,, satisfies (C.4.1) or (C.4.2), we get, for some ¢’ > 0 with

probability 1:
() 72", t0) - B (7" (o, )
sup  sup sup
Ke T " heH™ teS Vs (&n)

\ng(h,) (M)
sup  sup sup

< I
oKeFn ™ he(l—{(()'") teSh wS(\» (Sn)

\Jne(h,) (ID)
+ sup sup sup ——
oRe Tt m e 1S AW (€n)

<c”.

Hence, the proof is complete.

Proof of Theorem 3.11:
Under the conditions (C.3.1), we have

E[I/tn(()ﬁ, t’ h)] _ (m) '
‘E[una,t;h)] ey
< | CT Elua(e, t )] - 1 (g, 0)|
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IA

i | (2= m)! 1 = (d(Xi, )
K1 Cl IE[ Py Z ¢t(h)(p(Yll,,Y,m)l—[K(h—)]

iel(m,n) Jj=1 J

- r(”l) (‘P, t)

1 d(X;, t;
mC1¢(h) [‘P(Yb... m)n (( t))]—r(m)(%t)

= e C E[HK( h; )|” (9.X) = " (g, ) |

Taking in consideration the hypotheses (H.1), (C.2.1), (C.3.1) and (C.6.), we get Vh = (hy,...,h,) €

m

[ |-y and vt e 5% :
j=1
I T o (4K 1)
K"CTE (ua(, t, ) — r™ (o, 1) < K( ) (X, 1)
| 1 Ci Y ¥ | ¢t(h)K ll_—][ h; X
< _(d(Xl,tl) t +d(Xma tm))y
< 9(h]+ s+ By
m
G

= —(bi+...+b,) < C;b!,

where
by := max b..
1<j<m

This completes the proof of the theorem.

Proof of Corollary 3.18:

In this section, we will prove Corollary 3.18 using Lemma 8.1. Following the same reasoning as
the case of the functional regression, we use the notation: S = Sx, A; = X, ¢(B)) = ¢(Y)),

| [, a0 = || k@ dw A,
i=1 i=1

Doi(t) = Hut), Yt=(t,....t,) €S™ and j=1,...,m,
M@, 50,4 (0) = (@, 11,4 (8),

M(p, 1) = r(p, 0.

Choosing D, (&, 1) and D* i (&ns 1) such that forall j =1,...,m,

¢11(an(€mt )) = \/é":_—”,
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¢IJ(D+k(§l’l’t )) n\/—

where ¢, ; are increasing sequences that belong to (0, 1), and

é:n = ﬁ fn]
j=1

We denote h(t) = (h7 (1), ... 1, (t,)) and W*(0) = (A (1), 1 (t,)) , where
(1) = Dy (Ent)) and B (1)) = D}y, 1), forall j=1,....m

We can easily see that, forall j=1,...,m

¢;l(-l§%ffﬁf] <h(t) < ¢;l(-1§%§fif), (8.47)
_ kln _ an

¢,.l[—’]sh+(t~) < ¢,,1( : ) (8.48)
" \ny&., ! " \ny&,

Using the condition (2.12) one gets, for all j = 1,...,m, there exist constants 0 < u; < v; < oo, such

that . M b,
_ pn, j l,n pn 1,n
n Pn, J” Pn,jn

n ik n
we put 0, = f€njs huj = pjd”" (p ;1 - ) and fy, ; = v;¢' (

interval
m
( ) ’
o= | ()
j=1

We denote h = min h, ; and h’ = max /, ;, therefore,
l<]<m 1<J<m ]

= ) , thus h=(t) and h*(t) belong to the

n,jTt

hj(t;) € (I;l'na;n),vj =1,....,m
We also note for allb = (by,...,b,) € (0,1)™:

m

7_{(();11) = 1—[ (hn,j, bj) ,

J=1
and

bo = max b;.
1<j<m J

Finally, we can choose constants 0 < p* < v* < oo and a sequence {p;} € (0, 1), while respecting the

_ “fen ) —
condition (C.8.), in a way that makes &, = u*¢~"' (p”—l) W=V ( ) and
n
logn
k2 y wS,\/( n )
Pn + =1 [ Prnf1n
ol (52)
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It is clear that (L) is satisfied due to the condition (C.3.1), and from (8.47) and (8.48), we can easily
verify that the construction of h™(t) and h*(t) satisfies the condition (L;).

Checking the conditions (L) and (Ls)

A direct application of Corollary 3.12 gives

sup  sup  sup [, (e, & D} (& 1) — M, B)|
oKeF 0 h-(HyeH™ teS

which is equivalent to

sup sup sup |ED?,,(90, t; D, (&, ) — Di(y, t)|

oKe T M kinsk<kop t€S%

logn
k2 wSX ( n )
= aco ¢ ( ") + I (849)
pn pn 1 n
ol (52)
Applying the same reasoning with h*(t), we obtain
sup  sup  sup [, (i, ;D] (£,. 1) — M, 1)
‘pkag?m:%/m kl,nSkSkz.,, ZES%
logn
ks Usy ( ” )
= Opcod®” ( ") + 7 (8.50)
pn * g — pn I,n
oyt (22)
n
Thus, the conditions (L4) and (Ls) are checked.
Checking the condition (L;)
To check (L,) we show that for all &y > O and t = (¢,...,7,) € S :
— 1| > &gy < oo. 8.51
; {U Dy, (€0 1)) < Huslt) < DF (£015)) 0} (81

We have
m

gl

LMD (600) < a0 < D3 (601))

> 80}
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IA

IA

now, using

P {Hn,k(ff(t_,-)) < ¢;_[(l,j) (

and

Consequently, we obtain

Ne(Sx) kan

2 2 2F

kklnfl

<
<

and
No(Sx) kon

2 2 2F

k= kln

IA

IA

Thus (L,) is checked.

Checking the condition (L3)

Notice that

M (¢, 8 £,) — £,M™ (@, 1)

S et

iel(m,n)

m

m

j=1

rol

1,n

mN,, (S x )n

{(1-o) 2} 137

d(Xi;, 1))
;(tj)

P(Hn,k(ff(r_,-)) 2 ¢;_[(1,j) (

ak;, )}
< eXp
n
1 k2,n
P Hn,k(tf(lj)) = ¢tl’(tj) E

{ Hy (o) < %(l,j) (
mNg, (S x)ka., exp {— (1 — )k ,/4}

(-0 < o

-
( H, 1 (tew) = %(,j)[

N, (S x)konexp {—(1 — @)k ,/2a}
N, (S x )n

+ 2P

< exp

H, (1)) ¢ ( nk (fm tj) Dy (5’” tf))}
[ VEnikia
n

m

k2n
En it

oo (32

Jj=1

= n, k n
ZP[ ,,kum,))_qs,a,)( Venitt ]]
J=

k2,n

)

k — a'kl,n
4

{
(

} , (8.52)
(ko — k)

8.53
2&](2’” ( )

}.

akl,,,

)

n

(8.54)

k2,n

]]

2n
Tnn

< 00.

(8.55)

m

2 | |x

iel(mn) j=1

|
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Z oV V) ﬁ K(d(Xi_,-’ [j))
J=1

pe(h™ (1)) | de(h™ (1)) iciGnn) ) — (g, t)
¢e(h™ (1)) |pe(h™(t)) Z L K(d(Xi_/’tj)] ’
iel(mn) j=1 h;'(tj)
u(p, th™ (V) )
En o (LEI M) r (e, t)|. (8.56)

The study of (8.56) is similar to the proofs of Theorems 3.10 and 3.11, as we can clearly see that

un(p, (1) ) (0, th (1) Elua(e, th ()]
Blue. th )],
Elu,(1,t; h*(t))] r(e, t)‘ . (8.58)

Let us start with (8.57), we have

un(p, t;h (1)) Elu,(p, t;h™ (V)] ‘
(1,6 W7 (1)) Elu,(1, t;h*(1))]
|un (@, t, h™ (1) — E (u(p, t,h™(D)))|
|, (1, ¢, )]
|E (un(ep, t, W™ ()] - |un(1, £, 0") — B (u, (1, t, b7 (1))
| (L, ¢, h*(D)] - |E (u,(1, £, h*(1)))]

= I+IL
Applying the same calculation as in the proof of Theorem 3.10, it follows that:

un(p, th™ (1)

sup sup sup |-~ (LLh )

i r (e, t)|
PKEF ™ (- (1) I+ (1) eH " xH™ 1S}

Now, for (8.58), using the fact that
Elu,(1, t; h"(t))] > «]'Cy,

therefore,
u (g, t;h (1))
un(1, t;h* (1))

following the same steps as in Theorem 3.11, we can easily conclude that

Elu, (o, t;h™(t)]
E[u,(1, t; h"(t))]

(i, t;h (1) — r" (g, 1)

b

— " (p, t)| < K"C;!

=g, 1) = 0(I,).

n

sup sup
PKE T ™ (h=(t). i+ () eH xH™ €%
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Consequently, we have

u, (@, t;h™(t))

_ m t
Sup op WL thm) )|

PKEFn ™ (h= (). ()eH " xH™ 1S}

Since &, — 1, we can also conclude that

(Xi;» 1))
Yi,.. L
Z ¢(Y;, )l—[ ( ()
iel(m,n) (m)
sup sup sup - &r'" (e, t)
QKeF A (h= (1) (£)eH " xHI™ €Sy ( (Xi;, 1)) ]
+
ielmn) j=1 hj )

-7

= O(I,) + Ouco

which implies that

(Xi;» 1))
Yi,....,Y; K
Z ¢(Y;, ,,,)]—[ [ ()
iel(m,n) j=1 (m)
U R o (d(Xi;, 1)) a0
oKeF ot m kinskska, teS’y [ ij» )
K
ie%n:,n) ;[ h}r(tf)

(logn)
- 0(¢“ (kz’” )y) +0 T

- |- (8.59)
e (52)

Finally, by putting ¢ = 1 in (8.59), we get

o (dXit)
> (5]
sup sup  sup iel(mmn) j=1 A _ f
]?e_%/m klynSkSkz,n tGS% Z ﬁ K d(Xij’ t]) !
. . hi(t))
iel(m;n) j=1 J

vs. (log n)

n

ol ()
- ¢ * + Oa.co . (860)
Pyt </)(,u ¢ (pnkln))
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Hence, (L3) is checked. Now, with all the conditions of Lemma 8.1.1 satisfied, it follows that

sup sup sup  [MY (@, ; D, (0) — M (@, 8)] = Oy eo(U,),

0GeF,gm teS { kin<k<kon

which is exactly the desired result, hence, the proof is completed.

8.2. Proofs of weak convergence results
Preliminaries of the proofs

As mentioned before, a straightforward approach does not work when dealing with random
bandwidths. Therefore, we often use some general lemmas (see, for example, [44]) to be able to
use the results of the non-random bandwidths. In this section, we present the results of [147] and [43]
obtained for some positive bandwidth Ag. These results are key instrumental in the proofs. We denote
the bias term and the centered variate respectively the following quantities

E (RO, t; b)) = rV(p, 0E (7 (1, £ hy)

Bn(t; hK) = E(’fj:i(l’t’ hK)) s
Out:hx) = (F)(.t:hx) - B(F) (0. 1 hx)))

—rV(e.0) (7 (1,1 he) = B (7)) (1, 1: 1) ). (8.61)

n,

The decomposition (8.61) plays a key role in our proof. Indeed, following the method adopted by [147],
we will show that convergences in quadratic mean to 1, and that the bias satisfies

B,(t; hg) = o(1) as n — oo.

Lemma 8.5. Under conditions (C.1.), (C.3.1), and (C.5.1) (or equivalently (C.1°.), (C.3’.) and (C.5.1)),
and if ng(hg) — oo as n — oo, then, we have for each t € X:

(1 he) 5 1. (8.62)

Before we present the next result, the following notation is needed :

g1 (1) = E|(p (1) = 1V, 0) it i) (8.63)
Zoilhi) = (9 (V) = rp, 15 hi)) Adts hie) = i (85 b (8.64)
Set
1 n
0nltihi) = i ;Zn,th,
and

oot i) = Var [Z,,1(hg)] -

1
E? [A1(1; hy)]

Lemma 8.6. Under conditions (C.1.), (C.2.), (C.3.1) and (C.5.1) (with p = oo and 6 > 1 for condition
(C.5.1)), we have for ng(hy) — oo, t € X and positive constants Cy, Cs:
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82(1, ) P 821, ¢)
4 IA0) < ¢(hg)o;,o(1) < Cs 0 (8.65)
whenever fi(¢) > 0. We have
1 n n
m; ;COV [Zn,h Zn,j] = 0 (0"21’0(1‘)) . (866)
i#j
Var [Q,(t)] = 0',370(t)(1 + o(1))/n. (8.67)

Lemma 8.7. Under conditions (C.1°.), (C.2.), (C.3’.) and (C.5.1) (with p = co and & > 1 for condition
(C.5.1)), we have for n¢(hg) — oo asn — coand t € X:

K| gZ(ta (10)
hi)o (1) — — : 8.68
P(hg)o, o(1) < A (8.68)

whenever fi(f) > 0, and k|, &) are constants specified previously.

1 n n )
m; ;COV [Zn,i, Zn,j] = o0 (Gn,o(l)) , (8.69)
i#]
’ t,
nghiVar[0,(0] —> 182LE) (8.70)
Kz fl(t)

To unburden the notation a bit and for simplicity, we denote
a(1) = (K182(1,9)) /(K5 /(D) -

Lemma 8.8. Under conditions (C.1°.), (C.2.), (C.3".), (C.5.1) and (C.5.2), if np(hx)—co as n — oo,

then we have fort € X, as n — oo,

(ng(h)'"* Qu(t) — N (0,0°(1)). 8.71)

Lemma 8.9. Under conditions (C.1.), (C.2.), (C.3.1) and (C.5.1), and if

(ng(hx) [loglogn) — oo,

then we have, as n — oo,

( ng(hg)

172
) [V, 0) ~ re.1) ~ B,(1)] —> 0. (8.72)
loglogn

AIMS Mathematics Volume 9, Issue 2, 4427-4550.



4492

Proof of Theorem 4.1

Using the Cramér-Wold device, it is sufficient to prove the convergence of one-dimensional
distribution in order to prove Theorem 4.1. Indeed, by the linearity of v,(¥; kg | t) if suffices to
show that

V(D3 Hy i (1) | 1) = N(O, (@, 1)),

for all @ of the form
L
(D:Zcpw, Cloo s CLER, Wy, W, € FH
p=1

Therefore, we shall only demonstrate convergence in a single dimension. Remember that we’re dealing
with

VEFED W, 1, () — rV(e, 1)
it (VDK (d(Xi, O/ Hui (D) 4 )
\/%( Yy K(d(Xi, 1)/ Hy i (1)) ren).

Vn(w;Hn,k(t) | t)

(8.73)

Set

en(Y) = o(X)Lipy)<m).

To obtain the desired result, we write

TV (@, t; Hox () — rV (e, 1)

ffl) H
_ L 2.1 Hu(0) Dot
”‘ (1,1 Hyg(0)

1

= A Hy (a6 5 Has ) =T s Hig )

(4 -5 Hus)
+ (B (7D ous 1: Hos @) — E (700, 1: Hos0))))

+ (P ous s Hoa(0) = B (R o 15 Hux @) = Ve, ) (711 (1 15 Hya ) = 1))
1
= L) (t; Hypo) + L(t Hyg)]
41)(1 " an([)) [ l(t ,k) + 2(t ,k)]

where

Il (t; an)

(R0, 15 Hus0) =70 o, 15 Hus(0)) =B (S 1(85 Hog)
S1(6:Hpk)
+E(F) (e 1 Hu(0)) - V(. 1), (8.74)

So(t;Hn k)
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and

L(t; Hog) = (R (a5 Hos0) = B (R (s s Hos0) = ¥V, 0 (7L 15 Hux(0) = 1)) (8.75)
To obtain the desired results, we follow the strategy of [152].

Lemma 8.10. Under the assumptions (C.2.1), (C.2.2), (C.3.2), (C.4.2) and (C.8.), we have

VR (6, Hop(£) — 0, as 1 — oo

Lemma 8.11. Under the assumptions (C.1°.), (C.2.1.), (C.2.2.), (C.3’.) and (C.5.) and if

2y
k(qb‘l (E)) — 0asn — oo,

n

we have
VkIy(p, 1, Hyu(t)—=N (0,0°()),  asn — o,

Lemma 8.12. Under the assumptions (C.1), (C.3.1), and (C.5.1) (or equivalently (C.1°.), (C.3’.) and
(C.5.1)), and if

then we have for eachr € X :
/”fif(l,t, H, (1) -1 S 0asn— oo

Lemma 8.13. Under conditions (C.1.), (C.3.1), and (C.5.1) (or equivalently (C.1’.), (C.3’.) and
(C.5.1)), and if ng(hg) — oo as n — oo. Then we have for each t € X:

e 1) =BG (0,15 7)), (8.76)

asn — oo.

We highlight that this lemma is more general than Lemma 8.5. This result is slightly weaker than
the uniform, almost complete convergence with the rate that we obtained in Section 3.14. However,
the conditions imposed in this lemma are less restrictive.

Proof of Theorem 4.2

In this section, we will use the same method as in [43] and earlier [8], that is using the blocking
approach which entails breaking down a strictly stationary sequence (Xi,...,X,), into 2v,, equal-
sized blocks, that each one is of length n — 2v,a,, keeping in mind the notation given in the proof of
Lemma 8.2. In order to establish the asymptotic equi-continuity of the conditional empirical process

1) = V(R W, 1 Hos0) = (e, 1)) .y € F A 0 € F.
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Let us introduce, for any 9K € .# % and t € X,

. N e [AXLD) d(X,.1)
Walt, @3 Hop(1) = ;so(Yl)K(Hn’k(t)) nE{s@(Yl)K( o )} (8.77)
vilp 1) = k(R (e, 1 Hya0) = r(p, 1)
= Vk(F Wt o) - 1. 1), (8.78)

Then, we have
v 1) = VEGD (W, t, Ho(0) — 1V (p, 1)
D @YK (d(Xi, 1)/ Hyx(1))

_ \/l_c i=1 . _ ,.(1)(90’ )
D K (d(Xi,0)/H,u(0)
i=1
1 1 EGF Do, t; Hoy(0) 1
= —(Wn(l‘, ;Hn, (t)) - - _(Wn(ta laHn (t))
At Hu ) Nk A DR .1 Ho0) VR k

— VB, (t; H, (1)),
where for hx > 0, we have

(1
Kot hg) -

1 n
) Zl (V)AL hy),

1 n
_ Ai(t, hy).
i) 200

We study the asymptotic equi-continuity of each of the previous terms. For a class of functions ¥,
let @,(-) be an empirical process based on (X, Y1),. .., (X,, Y,) and indexed by ¥:

DA, hy)

n,1

@,(8) = ESLﬂXﬁK)—E(ﬂXﬁKD}, with  |la.()lly = sup la.(g)I,
i=1

1
Vn 4 =9

and for a measurable function ¢(-) and ¢ € X, set

d(u,t)
h

Mok (U, v, hg) = SO(V)K( ), for u,v e X.

That implies
1
le(t9 @, hK) = —an(nn,t,go,K)'

1
vne (hg) vV (hg)

a.co k
Again, keeping in mind that 1 {D;<Hu(0<D}} 1 when — — 0. We will establish the asymptotic
n=Ip, =n n

n
{\/;a'n(nn,t,go,l() . nn,t,q),K € f%} s
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which means, for every £ > 0, that

hm limsupP { \/7 ‘

o — .
FH v,y = {Un,r,¢.,K1 Ttk |

ay nntgoK >egr=0,
FH bIHp)

where

a
Mt K1 — nn,t,m,Kz”p <b, MnierKis Mnter Ko € J%}

The idea is to work with the independent block sequence {f = ,-,gj)}; instead of working on
dependent one, which is possible through (A.1), then we have

n d(X;,t
P k_l/z Z QD(Y])K I‘g k(f)) - P(nnt(pK(an(t)))] >0
j=1 ’ FH b Jp)
-1/2 d(gl’ ) /
< 2P k Z Z ({f,)K (t ) P(nn,t,ga,K(Hn,k(ta g))) >0
J=1 ieH; Hu FH b
+2(v, — DB, (8.79)
where H,, (¢, ¢) is defined by
H,(t,¢) = min {h ER: ) Lpun(s) = k}, (8.80)
i=1

We choose

= [(logn)™' (n"~2¢" (hg))"** V] and v, = [Zn ] .
Ay
Note that a, in our setting is equivalent to:
a, = (logn) ™1 (n2kP)1/2P=1),

Making use of the condition (C.5.1), we get (v, — 1)B,, — 0 as n — 0, then it’s just a matter of
the right side term of (8.79). Let us begin with, the blocks being independent, we symmetrize using a
sequence {€;} jen- Of 1.1.d. Rademacher variables, i.e., r.v’s with

P(ej = 1) = P(e; = —1) = 1/2.

It should be noted that the sequence {€;};ay- is independent of the sequence {€; = (si, i)}, thus it
remains to establish, for all 6 > O,

Do o)

=1 ieH;

>0, =0.

FH bIHp)

lim lim sup P

b—0

n—oo
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a.co

k
Again, using the fact that that 1 (Di<H(t)<D;) — 1 when — — 0 and (A.9), it suffices to show that
"= n

lim lim sup P k-”22 Z( (g)K(d(g”t))) > 8% =0.

n—oo .
1 icH; D, ,
= FH bp)

Since the p™-conditional moment satisfies (C.4.2), we can truncate and we get, for each 4 > 0, as
n — oo,

n

k_l/Z Z E (K2F(§[)]l{F(&.)ZA(M”)I/Z(p—])}) (881)

=1

k—l/zvf0 P(KzF]I{FZ,l(Mn)l/zw—n} > l‘)dt
A(M,)! 26D

= k—l/zf P(F > A(Mn)l/z(p_l))dt
0

+k712 f P(F > t)dt

A(M)/2p=1

— 0. (8.82)

n—oo

Hence,
3/1,, - 0: k_l/zE (K2F]l{FZ/IH(M")I/Z(P—I)}) — 0.

n—o00 n—00

Then, it suffices to show

. VRN d(s:1)
1/2 is B
lb% limsup P4 ||k E E ( (&; )K( D; )) IL{KQF({i)S/lnMVI,/Z(P_I)} >0p=0.

n—oo .
=1 i€eH; y
/ i FH bp)

We have the following

Un

_ d(s;t
Vi Oniei) = 1/22 Z((p({ K ( ( ))) L rcpamze)-

j=1 i€H;

This is done by using the chaining method. [8] gave b, = b27, g =0, ..., g, where g,
27" 2,(log ()™ < b, < A,(log (n)~", (8.83)
and let the class .# %", of measurable functions of .7 %

#FH =Ny, :=Nby, FH,1,) sup min

Mgy Ky €F H Tntpy Ko FH

Nnter Ky — Un,z,¢2,K2||p < bq.

There is a map n, : ¥ % — ¥ ¢, that takes each n,,,, x € .# % to its closest function in .# ¢,
such that

nn,t,cp,K - ﬂ'q(nn,t,tp,K)”p < bq-
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Applying the chaining method

(2)
sup Vi (Mg ki = Mty k)
TMn.tey Ky 5Tt Ky eFH

||7In,r,1pI Ky 7ty Ky ||p5b

(2)
= sup Y (nnJ»(Pl,Kl - nn,t,tpz,Kz)
Mty Ky Mntey.Ky eFH

||’In,[.ap1 K1 7M.ty Ky ||p§b4n
dn

2
+2 E sup Vi (nagr ki = Mntgn k)
q:l nn,t,wl,Kl J]n,t,apz,Kze(y%)q—]
Mt Ky "ty Ko | |p <3bg

2
+ sup Vﬁ; )(nn,t,npl,Kl - nn,t,goz,Kz)‘ (884)
Tntp1 Ky Mnter Ky &(FH )

”'7"%‘#1 Ky Tlintgn Ky | |pS2b
Let 6, be in such a way that
6= (b)) vV (Bby(8 + ¢ ) *(log N)'?). (8.85)

Let r be chosen so small in such a way that

+00
2 Z 5, <0
q=1
Therefore, from (8.84), we readily infer that
g su v - ) > 36
p n nn,t,gol,Kl nn,[,(pz’]{z =
M.ty Ky Tt Ky eFH
””"NM K| 7n.ty Ky | |p§b
(2)
= P Sup Vi (nn,l,w,lﬁ - 77n,t,<p2,1(2) >0
Mty Ky Mty Ky €F K
||’In.t,(p1 K1 "t Ky ||p£bqn
q)l
(2)
+2 Z P sup V, (77n.r,¢1,1<1 - 77n,z,¢2,1<2) > 5(]
g=1 TNn.t Ky sTn.tey . Ky E(zg,%/)q_l
Mntp1 Ky Ity Ko | |p53bq
(2) .
P sup Vn (n"J#Pl,Kl - 77n,t,<p2,K2) >0, ="A+B+C.

7711,!,¢1,K1 ,7]",;@2,1(26(9%)0
”'7"##1 Ky Tty Ky ||pS2b
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1/2(p=1)

By the fact that the terms composing Ve (nn 1¢.,k) are bounded by a,4,M, , and by applying the

Bernstein’s inequality, we obtain

B<2 3 2log N, 62k
< —
- ;eXP 08 N b2 pﬁ + (4/3)8 4, AP 2P~V p(fye ) P=2/2p=D)

By using (8.83), we have
SqanAun” PV (h) P20V = (4/3)5,4,k(log (n))™" < (8/3)nb6, < 8nby,

that means
dn 52 qn 62
B < 2 ) exp|2logN, - —q) <2 exp[——q]
4 [ T8+ c2 b2 g 28 + ¢ b2
2 3 2 0 b—0 8.86
< exp|l-————| — — 0. .
; 26+ b @ (8.86)

In view of (8.85), we assume that 6 < 3. In a similar way, we have

2
(8 + cf,ﬁ)b2

Finally, by (8.83) it suffices to prove, for each ¢ > 0,

lim P{ » > 5} =0.
n—o0 (lfl/z(log(n)) 172 llp)

CSZexp(ﬂogNo— ]—)O as b—0.

F

Making use of the square root trick (Lemma 5.2 [102]) and see also [137] in similar way as in [8], we

get
P {

o fen(2)

j=1 i€H;
XL o g <nttothe 2o '>}“ a > 25
7 M2 og(m)=1/2 JHIp)
S d(si1)
< P!k K L 8.87
{ ; ZH] PEIK| = (8.87)

X]l{KzF@,-)san(nm(hK))1/2<v-'>}“ > 26,

M2 og(m)=1/2 JHIp)

2
N d(g;.1)
2,{2, P(ENK ( D | LeF@saiomoy o)

j=1 \ieH n

FH
@2 10gm) =12 1p)

< 644,c; (log ()™
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+P

2
Y d(si1)
k IZ[Zcﬁ({i)K ( D | LieF@<imioun o)

j=l iEH_/'

@2 10gm)=1/2 1)

> 644,c; s(log ()

= P(A)) +P(A,).

Let us introduce the semi-norm

%,z =k i Z

j=1 ieH;

1/2

2
nn,t,t,al,Kl (gi’ é‘z) - r]n,t,tpz,Kz (gia {1)| 5

and the covering number defined for any class of functions & by
Nup2(1t, &) := Nug o(tt, & g ).
By the latter we can bound P (A ), (the calculations are detailed in [27]). In the same way, as in [27]

and before in [8], as a result of the independence between the blocks and condition (C.4.3), we apply
again Lemma 5.2 in [102] and get

P(A;) — 0.

Therefore, the theorem is proved.
Proof of Theorem 4.5

Lemma 8.14. Under assumptions of Theorem 4.5, we have

\ndm®) (7, () - E [u,(p. . h®)]) -5 N (0.0% (4.9)). (8.88)

and, if in addition, condition (C.8) is satisfied, then we have
N T (7 (g, 1, (0) — E [ua(e, ()]} -5 N (0,170 (6, 9)). (8.89)

Lemma 8.15. Under the assumptions of Theorem 4.5, we have

\ () (uy (@1, £, h) = E (uy(1, 6. h) , s, (02, £ h) = E (u, (2, £, h)) LN ©,3), (8.90)

where

> = (mza_% (‘Pi’ 90/))1',1':1,2 '
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Proof of Theorem 4.5

As mentioned earlier, the study of the weak convergence of the conditional U-process is based on
the study of two parts: the truncated part and the remainder part.

Lemma 8.16. Let .%,,. ™ be a uniformly bounded class of measurable canonical functions from X™ X
Y" — R, m > 2. Suppose that there are finite constants a and b such that the 7, %" covering
number satisfies:

N(Ea gm%m, ” . ”Lz(Q)) < ae—b, (891)

for every € > 0 and every probability measure Q. If the mixing coefficient S of the stationary sequence
{Zi = (X, Y))}ien- fulfills
Bss" — 0, as s > o (8.92)

for some r > 1, then
=3m+ P
nE N Goan, (X5 Y0) — 0.
iGI,’,l, %11'_%/771
Proof of Theorem 4.7

It is known that the weak convergence of an empirical process is obtained from its finite-dimensional
convergence and its asymptotic equi-continuity (while respecting certain criteria). Theorem 4.5 gives
the finite-dimensional convergence of the conditional U-process {u,(¢, t,h(t))} z -, sO what remains
to be seen is its asymptotic equi-continuity. We decompose the U-process u,(¢,t) into two parts
truncated and remainder part:

(. t.h(D) = pD (g, t () + 1V (o, t (D)),
Following the same reasoning to obtain (A.48), we also know that:
fn(, ;D7) < (@, hy1(0) < (0, £ D). (8.93)

Therefore, it suffices to prove the weak convergence of u,(¢, t; D;) and 1, (¢, t; D) instead of studying

(o, t; h, 1 (1)). The steps of the proof are similar to [43] while taking into account a multivariate

bandwidth h(t) instead of a univariate bandwidth /. In this section we only show the proof for
(T)(go, t; D,), the process can be replicated for ,uff)((p, t; D).

As shown earlier, the truncated part um(go, t,h(t)) is decomposed according to the Hoeffding’s

decomposition:

(T) (- (1) (1) ! u' ) (1)
(p.t,D;) = \/"¢(Dn){m” Gng Z m—p™" w TpnGyen, )}
We shall first investigate the linear term m / m/J(D )u(l) ( l,mG(Tt)D—)- Notice that

m AJngD;)u'd (71 G(T) ¢( Z m mG(T)(X,, Y)
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We can write

TGy () =BG (6, X, Xo), 00 X, -, X) | =BG, (XY
=E[G), X, V)|(X,, V1) = (5, »)| - E|GY) ) (X, V)]

D, »,t.D;

We need to introduce a new function

S(p,t,h: AxY —R

~(d(t, X)

(x,y) — mE [gp(y)K ho )1(X1,Y1> = (x,y)]-

Hence,
mmy G (x,3) = 7' D) (S ey (5.3) — B[S pom; (1.3)]).

The linear term of the process is given by

O (11,60 = e 3 (S (Ko Y~ B[S s (X 1))

N mE

ap (S otD;, )

Therefore, the linear term of the U-process {u,(¢,t,D, )}z, »» 1s an empirical process indexed by the
class of functions S defined by

S={Spen(+) @ € Fut = (t1,....1,) € X"},

therefore, its weak convergence may be established in a similar way as in the proof of Theorem 4.5.
It’s clear that S ¢ mG". We consider now the nonlinear part, we have to show that

| Ve (.2, )

This is a consequence of the Lemma 8.16. Note that the choice of the number and size of the blocks
must be made in such a way that the terms I — VI converge to 0. We need to prove that

P
— 0, for 2<p<m.
U,dzml)i/m

7|

uP(p,t,D;) P e /l} — 0 as n — oo.

Again, for clarity purposes, we restrict ourselves to m = 2. We have
1P, t.D;)

V1)) (1P e, . D)~ E (1P (e, t, D))}

\19D;) Z {

nn-1)

G, (X X). (¥ 7)) ~E[GR (X0 X)), (¥ V)]
i*]

Un

1
=22 2
\oD;) P4 iew? jen
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ST 3 a0 [0 (% 30.01%) - E[6, (6. 10,00 1))

I’l¢(D ) p=1 l¢]l]€H(U)

3T DT a6 (%00 - [0, (069, 1))

np(D;) p=1 icH" a:la=p>2 jer(¥

T

S

1

Up

ST S a6, (%3, 015) [0, (6. 3000 1))

nd(D;) p=1 ieH\" a:la=pI<1 jer(®

55 3 a6y (500 - 2[5, (06,39, 01)]

nd(D;) v#4 ier® jery?

1

1

3(D; )Z‘ 2, 4O (Gtn: (% X0, 07, 7))) = B[ G, (06 X)), (1, )}
n p t#}zJeT(U

= I'+II'+1I' +IV + V' + VI.

T

We will use blocking arguments and treat the resulting terms. We start by considering the first I’. We

have
1 Un
>0
Fr 2

{ P

nd(D;) r#a eV jenV’

< P 1 Z > a0 (G0 (5060 @) ~ B[R (560 G 0))]) > 6
\JnoD;) p#a ieHY jeH S

+2vn,8b” .

O (G, (X0 X, (0 Y,)) = B| G, (i X, (1))

Notice that (4.13) readily implies that v,3, — 0 and recall that for all ¢ € .%,,

X, t
xteXyed a1 d(xt><hKF<y>>¢<y)K( (h )).
K

By the symmetry of the function F'(-), it holds that

LSS S e {68, (s @2) E[GS (6. @ 2)])

\/nd(D;) r*a i jeHV

T K2
1
< — Z Z Z {KZF(KI" gj)]l{KzF>/l(n/q~§(D;))1/2(p71)}
\PD;) P#a ien? jen?
- [KzF({i’ gj)]l{KzF >A(nf3D;))"! 2(””}]} ‘ : (8.94)
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We use while maintaining order, Chebyshev’s inequality and Hoeffding’s trick, then

1 Un { )
Pl PGy o

_E [KZF(&‘, gj)]l{K2F>/l(n/$(])n))1/2(p_1)}:|} >0

<67 '¢T (D) Var Z Z Z KzF(g"’gj)ﬂ{ﬂbﬂ(n/&(m))l/z(pfl)}

P#q ieHY jeH

<62Un6_2n—1$—1(D;)Var Z Z KZF(gi’4;)1{K2F>/1(n/($(l)_))1/2@71)}

p=1 jen\”
~ 2
< 2C2Un6_2n_2¢_1(D;)E [(KZF(éVl, 42)) 1{K2F>A(n/$(1)—))”2<””}] . (8.95)
Under (C.6.), we have foreach 4 > 0
- 2
20,6 °n ¢ (D,)E [(KzF({h §2)) H{K2F>A(n/$(1);))”2”"”}]
— 2251y~ - 2 2
=Cu,0 NP (Dn)jo\ P{(K F@b{z)) ]]‘{K2F>/l(n/é(]);))|/2(P—])} > l‘} dt

3 A(nfdD;)) 27 i .
= ¢0,67n ¢ (D)) f p{eF > a(nfomp) ™ ar
0

) " DP{(KZF)Z > t} dr,
nfdD;)) """

+ e, 2n 29 (D)) f
A(
which tends to 0 as n — oo. The terms II’, V" and VI’ are treated in the same way as the first, except that
for II', VI’ we do not need to apply Hoeftding’s trick because our variables {{;, {}}; ;cw (or (i (b jerw>
g P J<Lp

for VI’) are in the same blocks, and for the term IV’ we deduce its study from those of I’ and III'. Let
us consider the term III". As for the truncated part, we have

1 Un Un

Poal-m=—=). 2 2 2. ™), ((x.X).(.v)

— ),
W P=1ieq ¢la=-pI>2 jerV
-k [Gg,et),n,; ((X,-,Xj), ¥, Yj))]} >0
T2
1 v,

eSS S Y 500 (6%, (550 @0.5)

\JndM;) 171 e ala—pl2 jer®
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[G;RBD ((gt, gj) (gt’ 4] )]} >0

T H?

2
v,a,bnBy,

Jndm;)

We also have

(8.96)

el ST S S 6%, ((6rs0 @G 0) - E[G0, (osp @)l > 6

n$(D;,) ienV a:la-pl>2 jer® -
F9.

<pll—== 33 3 {6®, (5w &.0) ~E[6%, (ssn @) > st
NP, i jer” s

Since the Eq (8.94) is still satisfied, the problem is reduced to

1 o

P{|l— {KZF(&,é My e o
Wi§>;1~§m PR ersa(nfoi)) )

_E [KZF(Q‘, é‘uj)]l{/(zF>/l(n/¢~§(Dn))l/2(p1)}:|} >0

5207 gD;)Var| Y Z D KRF(G 1 R—

ieH\V 9=3 jeri¥

we follow the same procedure as in (8.95). The rest has just been shown to be asymptotically negligible,
so the process {u.(¢,t,D,)} 5 . converges in law to a Gaussian process which has a version with
uniformly bounded and uniformly continuous paths with respect to || - ||,—norm. By repeating the same
steps, this also holds true, for the process {u,(¢,t,D;)} > .. Consequently, by (8.93) it follows that
the process {u,(¢,t, h,k(t)} 7 ,-» also converges in law to a Gaussian process which has a version
with uniformly bounded and uniformly continuous paths with respect to || - |,—norm. In a similar
way, we treat {u,(1,t, h,x(t))} ., and about E(u,(p, t,h,x(t))), u,(1,t, h,(t)) and E(u,(1,t,h,,(t)))
the treatment is done as in the proof of Theorem 4.5.
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A. Proofs of lemmas

Proof of Lemma 8.2:

Following the same notation as [43], refer also to [27] and [8], the proof of this lemma is based
on the blocking approach, which consists of breaking down a strictly stationary sequence (X, ..., X,),
into 2v,,, equal-sized blocks, that each one is of length n — 2v,a, thatis, for 1 < j < v,,

= {i:2(j—Da,+1<
T, = {i:2j-Da,+1<i
{i: Quua,+1<i<

=
Il

The values of v,,a, are given in the following. Another important component in this proof is the
sequence of independent blocks (&1, ..., &,) satisfying

'L(é:l’ e ,gn) = -£(X1, e aXa,,) X L(Xa,ﬁl’ o ,X2an) Xoeee
As in [27, 43], applying the results of [84] on S-mixing, gives us for any measurable set A
|P {(619 e 9§an7§20n+1’ e ’6311”9 cee afZ(v,L—l)an+l9 e ’§2Una,,) € A}
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_P{(Xl’ cee 7Xan7X2a,,+l’ e 7X3a,,9 e 9X2(Un—l)a,,+l’ e ’XZU,,a,,) € A}|
< 2w, - 1)Ba.. (A1)

Let #1,...,tn,s,) be an e-net of S x and £(f) = argminge 2, n.s ) @ (2, t7). Observing the following
decomposition

sup sup sup [, 1, h(0) — B (7, 1, (1)
©KeF A hy1<hg<h,, t€Sx

< sup sup sup [FO(e. k(1) =T (@, tey, hx(80)]
tpKeyf h,|<h](<h,,2 teSx

G

+ sup sup  sup nz(‘P’ tuwy, Mk (te)) — (nlé (¢, tf(t),hl((té’)))‘

wKeF H hp1<hg<h, t€S x

Gy
+ sup sup  sup [B (7 (g, 10 (1)) — B (R 1 1) (A2)
(pKGﬁ-._%/ /’l,,y]S/’lKShn,z IGSX
Gs3

Let us start with the term G,. We need to prove that there exists 7 > 0 and by > 0, such that
logn

5]

ng(hy1)

< 00

S sup sup sup 7t (ot b () — B (7 (@ s Bk )| >

1 wKeF A hy1<hg<bg teS x

The key strategy here is to work with independent block sequence {§ =S j)}::l instead of dependent
once, this can be achieved by (A.1). Then we can clearly see that for 1 < € < N.(Sx) :

vs. (log n)
"7

n¢(hn,l )

PJ sup  sup sup nz(‘p’t{’(t)’hl((l)) E( (‘Patf(t)ahl((t)))‘

(pKefjﬂf hp,1<hg<bg teSx

dXi, d(X;,
(16 () Z(W)K( ( Kff)) E[QD(Y,-)K( ( re))])l

= P{ sup sup sup p
i=1 K

¢Ke. FH h,l 1<hg<bg teS x

logn

ng(hy1)

>1

IA

wKeF A hp1<hg<bj teS x

U d iy d is
(np,(hx))” ZZ( (§I)K( (gKt)) E[¢(§i)K( (ZKt))])I

j=1 ieH;

ZP{ sup sup sup
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logn

7]

n
mp(—hm]) + 2(Un - 1),861,,- (A3)

If we put

a, = [(logn)™ (n"2¢" (h))""**~"] and v, = [22 ] -1,

then, by condition (C.5.1), it follows that (v, — 1)5,, — 0 as n — 0. Hence, only the first term in the
right-hand side of (A.3) remains to be dealt with. Set

]’l](’j = 2jh,,,1, L(I’l) = max {] . hK,j < 2b0} and WK’J' = [hK,j—lahK,j]~

L(n)
Then, we have [h, 1, by] € U?—(K,j. The empirical measure on {a, (X;,Y;) : i =1,2,...,n} is defined
j=1

by:
1 n
“l8) =~ Z {e (x5, v3) = B (3, v))}-
For the original sequence, we write

Yie(X,) = > {g(x;.¥;) - E[g (x,. 1))}

IEHj

For the constructed independent block sequence &, define

Zig€a) = ) @ -Blg@I  and a0 =—= ) Z
1

i€Hy

<

Hence, we have

7,(11% (@, tewy, hx (1)) — E (/rf,l; (5 tewys hK(f))) = @,,(¢K).

1
\/ﬁ¢l((,>(hK)
We consider also the following class of functions for 1 < j < L(n)and 1 < £ < N, (Sx):

d(x,t;)

K

%;?,j = {(x, y) gp(y)K( ) where K € 7, ¢ € .% and hyg € WKJ} ,
Ne(S x)
with the envelope function fo,)gj, also keep in mind that S y C U B(t;, £). Now that we have all the

(=1
necessary elements and using the fact that we are now dealing with sums of independent blocks, we

can use the standard inequalities of independent setting. We have

vs. (log n)
_\nJ

n¢(hn,1)

PJ sup  sup sup |[(Vig(hy)) &, (0K)| > 17

oKeF A hy1<hg<boteS x
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Ng,, (S x) L(n) 1
< P max  max na, (K >n
; ; {\/”¢(h1<,j)¢’sx (£n) 1S(=Ney(Sx) 1<j<Lin) Vi )”g;g 77}
< LoON, (S0 max  max  P{|[Vad, @Ko > o Jndt s, (e
(2.8

1<j<L(n) 1<6<N, (S x)

n

< LN, (Sx) max  max P{max I \/13@%(<p1<)||%g > \/mp(h,(,j)lpsx (gn)}. (A.4)

1<j<L(n) 1<€<Ng, (S x) 1<p<n

Now, to bound the probability in (A.4), we apply Bernstein’s inequality with
ﬂn = E || \/ﬁaun(‘pK)”%%) K

and )
o =E(GhL (X.7) .

¥K,j

We know that the envelope function fo) » verifies

l
Gy (X, Y) < Mio1 g, (X).

Hence, by (C.1.1), (C.3.1), (C.4.1) combined with Lemma B.1 and Lemma B.2, we get that

pin = O \Jndlh)) and o = 0(g(h. )

Now, we can apply Bernstein’s inequality to the empirical processes, for

1/(q-2)
2= (7'/2) \Jng(hg j)Ws, (e,) and H =k, (E) , orsimply H =«, if g =2.

Making use of Lemma B.3, we get

P {{ngx INPaw, @Ky = 7 N (sn)}

< P {lmjlx | VP, @K e 2 1+ z} (A.5)
—(' [2)* \nys . (£2)
8K§ Vn + 417k —ﬁ’;g)
< n %o, (A.6)
log(bo/hy,1)

where C > 0. Moreover, from Eq (2.10), and the fact that L(n) ~ and by choosing

log(2)

eOZC > 1,g, =logn/n,

vs. (log n)
_\nJ

n¢(hn,1)

we get from (A.6) and (A.4),

< D CLIDN, (S o™ < co.

n>1
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Now, let us study the term G;. By conditions (C.4.1) and (C.3.1), for some constant C > 0, we have

sup  sup  sup [F (@, 1, hx(0) =T (¢t hi (1)

wKeF H hy1<hg<bg t€S x
d(X;, f)) 1 - (d(Xi, lf(t)))
i YD)K|———
Z ok ( > n%(fm);"”( K

= sup sup sup
KEF A hp1<hg<bo 1S x n¢z(h1<)

d(Xl’ t) - d(Xta té’(t)))
n¢t(hK) Z ( ) nfﬁzm) (hg) Z ( hk

(d(X,, t)) K (d(Xi, te(t)))
hg

IA

sup sup sup
Ke X h,1<hg<bg teS x

]]-B(Z,hK)UB(lf([),hK)(Xi)'

Using the fact that the kernel K(-) is supposedly Lipschitz, we obtain

1 n
G, < sup sup—Z

d(t, ter)) L (e ey uBCer ) (Xi)
i <hg <by tesx 1 4= hx@(hk) A

< sup su X
hy, 1<h,E)<b0 ZESE Z hK¢(l’l ) B(t hi)UB(teq), hK)( )
1 n
< sup sup — Z W,

By, <hg<bg teSx 1 =1

wherefor1 <i<n: e,

W= —
hx¢(hk)
Taking into account that hg € [h,,, h, 2] and using condition (C.7.), we get forg > 2 :

]]-B(t /’lK)UB(l‘[([) h[()(X )

EW)! <!

2(g-1)
! [ \/gb(hn,l)] ’

where we assume that C; is the bound of the sequence log n/nh,; which converges to 0. Hence, by
applying a standard inequality (see Corollary A.8 [91]), the conditions are satisfied here, uniformly on
t€ Sxandon hg,on:

(A.7)

Finally, we treat G. Noticing that

Gs < E( sup  sup sup nz(‘ﬁ,l hi (1) — nz(‘P’ te, )
tpKeyf hn1<hK<b0 teSx
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similar to the procedures of treating G, once again, it follows directly that

logn

)

G3 = Oa.co (AS)

Hence, by combining (A.2) and (A.8), we so obtain (8.2), as sought.

Proof of (8.3):

Notice that (8.3) is a direct result of (8.2) when the function ¢ = 1. This completes the proof of the
lemma.

Proof of Lemma 8.10
a.co k
Let us consider the term 1, (7, H,, (1)) such that 1y, y<pyy — 1 when — — 0, and making use
n
of condition (C.3.2), we have
T, ;D7) ST (@, 1 Ho(0) < T, 15D, (A.9)
We have
k(S (1, Hua(0) = E(S 1 (2, Hux(1))]
< Wk h (.15 Hox() = B (730, 1 Hoa0)| (A.10)
K |B (72 u 1 Hua0) = 73w, 5 Hop(0) (A.11)

= I (t, Hyx (1)) + 112 (2, Hy i (1)) .

The Eq (A.10) gives

VE 75, 5 Ha(0) = B (0,1 Ha0)|
Vk .. D)~ E (7. 1. D))
Vi1, D)) — B (7)1, D))
+VkE (F(e.1.D,)) - E(F)(¢.1.D))). (A.13)

|111 (t Hn,k(f))|

IA

IA

(A.12)

Similarly, (A.11) gives us:

Vi [ o 15 Ho(0)) = B () our, 1 Hoa0))|
Vi [ 1. D7) = B (70w 1. D))
+ VKE (R (eu. 1. D,)) - E (70w 1. D). (A.14)

|112 (¢ Hn,k(f))|

IA
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The following decomposition will be used to treat (A.12)

V., D) — B (7.1, D))

< Vi, t.D;) =T (em 1, (A.15)
+Vk[F w1, D) — B (7 ows 1, D)) (A.16)
+\/_']E, (7w, D)) — E (76,1, D; ))‘ (A1

For some &, € (0, 1), recall that D, and D; are defined in (8.6) and (8.7) respectively. Moreover,
observe that

B (7w 1, D)) - B (7.1, D))

1 —
nE (4 (¢, D;)) = (; YD yraponi (1, Dn)]

E (le()| LraypanAi (8, D)) (B (A (1,D;)))

IA

Under the assumptions (C.4.2) and (C.8.), using Holder’s inequality, for a; = % and a, such that
i + aiz = 1, we can write

Vi [E (7w 1, D)) ~ E (7.1, D))

Vk
¢ (Dy)
vk
¢(D;) "
C Vk
6.9*'7 (D;,)

1_2

ki)
1 - — 0asn — oo.
L7 Vg, \1

To obtain the convergence in probability of (A.15), it suffices to use the assumption (C.4.2), (C.8.),
and Markov’s inequality. Indeed, for all £ > 0, we obtain

_ Y gl [|F(Y) |1 (FOOP5.) ]El/az [Aaz (l D- )]

IA

——§, "BV (IF(Y)I” | X) ¢"/*2 (D)

IA

IA
S

P(Vk (e, t, Dy) =T (ou 1,

> Vie)

E(FM)I Ljrwypondi (2, D;)) (VksE (A (1, DZ)))_1
Cg''~e2/e2 (D;)

&6, Vk
C ¢77(Dy)
RN
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for some ¢,, large enough and by condition (C.8.). Now, for the second term of (A.14), Lemma 8.2

gives

m};(cpM, . D)~ E(7 (w1, D})) ' 50, a.co. as n — oo. (A.18)

Using the fact that k ((/)‘1 (ﬁ))27 — 0 and by condition (C.2.1), foru = u, = ¢! (5), (A.13) gives

Vk[E (R, D)) - B (7.1, D))

<

IA

IA

IA

IA

IA

VK [E (7)., D) = FV(. 1)
+ kB ( ”“)(go,t D) - (g, 1)

‘/_‘ A (1, DZ)SD(Y)) - e,

EAI( D;)

+\/" ( (A.19)

Py

=D, D+
\/%(C]IB(LD;) + Cl]lB(z,D;))d(f, X))
CVk((D;) +(D;))

2y
¢ k(¢‘1 (E)) — 0, asn — oo.
&7 n

I — + —_ D
E&(DﬂM@Dﬂﬂn)r(%ﬂ

EAI( )E'( 1, M)]lB(zu)( (QO’Xl)—”(])(SDJ)))‘

On the other side, recall that ¢)(Y) := @(Y)1ry)<m. then, using the fact that the regression function
satisfies the Lipschitz condition and under condition (C.4.1), we have

AIMS Mathematics

VB (7.1, D) = B (72w 1, DY)

<

IA

IA

IA

IA

VB (73w 1, ;) = 1o, 1)
+ 'E (72 ea . D)) = V(. t)‘

Vk

1
E(mAl (t, D) SDM(Y)) — rY(eum, 1)

+¢w

>

u=D;, ,D}}

Vk (C]IB(LD;) + C’ILB(I,D;)) d(t, X1)

2y
2 k(qb‘l (E)) — 0, asn — oo.
& n

A1 (t. D) 90M(Y)) -,

B A1 L (s X0 = )

Volume 9, Issue 2, 4427-4550.



4526

For the second term of the right-hand side of the Eq (8.74), we have

[S2 (0 Hu®) = [BED (ot Hua) = 10.0) (A21)
< [BFE2en D) - M@). (A22)

making use of the Lemma 8.2, we readily infer

VS5 (¢, Hy (1)) = 0[\/§7k (¢—1 (S))zy] (A.23)

The proof of S, (t, H, (1)) is complete. Hence, the convergence of I, (f, H, (1)) to O is complete
combining the result (8.74) and (A.18), (A.19), (A.20) and (A.23).

Proof of Lemma 8.3:

In this lemma, we suppose that the class of functions .# is not necessarily bounded but satisfying
condition (C.4.2). In order to prove Lemma 8.3, we proceed as follows, for an arbitrary 4 > 0 and
each function ¢ € .7 :

e(y) = SD(Y)]I[F@)SM}/P]+90(y)]l[F(y>>ﬂni/p]

= D) + P,
where we take 7, = n/ (logn)* . So, we write
1 4 d(X;, 1)
—~1) . (T) !
JLhg(D) = Y)K
PO, 1, hk (1) nE(A](t;hK(t)));(p (Y) ( s )

1 - R) Y. K(d(Xl’ t))
RGO 2 KT,

= 7@ 1) + 7,50, 1, he (1),

Let us start with the truncated part. Following the same reasoning as in the proof of Lemma 8.2, we
have:

sup sup sup [F 7, 1, he(0) — B (767, 1, )|
wKeF A hp1<hg<h, t€S x

< sup sup  sup PG 6 k() =) (67t ()

wKeF A hp1<hg<h, t€S x

Gir

+ sup sup  sup ””j,l% (‘P(T), Loy hK(tt’)) -E (/rf,lz) (QO(T), Loy hK(tt’)))'

wKeF A hp1<hg<h, t€S x

Gar

+ sup sup  sup(B(F (07, b, hi(tr))) - B (R0, 1 b (1)) -

oKeF X hy1<hg<h,s t€S x

(A.24)

Gsr
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First, let us start with the term G, 7, using the same notation as the proof of Lemma 8.2, we have:

(T) K).

7511; (‘P(T)’ tewys M (Z)) -E (/rf,li (SO(T), ey hK(l))) = &, (¢

1
\/ﬁ¢l‘{’(z) (hK)

where @,, (¢'I'K) is an empirical process indexed by the class of functions .% ¢~ S u,» Where we define
the class of functions of y € Y, .#,, by

Py = {]I[F(y)szln,l,/p} A> O} ,

where p being the moment order given in (C.4.2). We consider also the following class of functions,
forl <j<Lmn)and 1 <€ < N, (Sx),

d(x,tp)

%f}? = {(x,y) - tp(y)K( e )]l[F(y)SMnl/p] :Ke X ,pe.Z and hy € Hyg j, A > 0},

(,

that the envelope function is denoted by G -

}, then we have

1 T 1 T
Bl ap sup sup (67t ) ~ B (0 (6 )
©KeF A hy1<hg<bg teS x

< L(n)N, (Sx) max  max P{max ||\/13&U1)(¢(T)K)||g(2_ > \/nqs(h,(,j)wsx (gn)}. (A.26)

1<j<L(n) 1<C<Ng, (S x) 1<p<n

We apply Bernstein’s inequality to bound (A.26), so, we have to study the asymptotic behavior of the
quantities

,USzZ)T =E ” ‘/’_l@un(SD(T)K)”%%) .
and

E (G(‘)’T). (X, Y))2 .

@K, j

From condition (C.4.2), we remark that

GED(X,Y)< F (N2 Ly (O

@K, j F(y)<an,'”}>

so thanks to the condition (C.4.2), we get

2
B(GU 1) < 2t = o,

Furthermore, making use of Lemma B.1 in combination with Lemma B.2 in appendix, and since
condition (C.4.3) is satisfied, we infer that

12 =E| \/ﬁ&vn(go(T)K)”g(p < C'iy And(hy )y
[2.5%)
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which means that,

u) = ( \nd(h ;! ”)

Now, we can apply Bernstein’s inequality for empirical processes with:

z =1 \Jnd(hg ) Ws, (&),

in Lemma B.3, we obtain, for ¢’ > 0,

P{ lmlflx ||C~l/uk(<P(T)K)||g<2t) 2 77, n¢(hK,j)'7”Sx (8n)}
<k<n eK.j

)
(z T) ,un T + Z}

ng(hg s (&x)
2 Y + &\l s )
< nme (A.27)

log(bo/h, .
where C’ > 0. From Eq (2.10), and fact that L(n) ~ M and by choosing

log(2)
logn

En = 5
n

< P{ max

1<k<n

Ve 675,

< exp _n/Z

we get
logn

ng(hy1)

< Z CL(n)N,, (S x)n €™ < co.

n>1

Next, we prove that the result is valid for the term G, 7. By conditions (C.4.2) and (C.3.1), for some
constant C’ > 0, we have

hf%(so, () =7 (@, ey, b (20)

n

1 n o v K(d(Xl, [)) _ 1 ) % K(d(Xl, tf(l‘)))
i Zs@ (K| = T TT Zw (VK (=5

K

d(Xl’ t) d(Xia tf(t))
gt S

n¢(h1<)

where
F(T)(y) = F(y)]l[F(}')S/m'll/p].
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Observe that

sup sup sup’*ﬂz(so,t hi() =75 (@, tewy, hx(te))
¢ DKeF H Iy, hni<hx<bo 1€S x
d(X;, 1) d(Xi, ter)
< su sup  su FOw)| K | L ) K(— 1 (X0
¢(T>Ke§7]3£/.ﬂ,1,,n zesg hn,lshfsbo n¢(hK) Z | | hy B(t,hg)UB(t),hk)
= |E¢1’T|,

Furthermore, following the same steps as the proof of G, in the previous lemma’s proof, we have:

1< 1
|g1,T| < sup sup _Zlm|F(T)(Yi)|d(t,té’(t))]lB(t,hK)UB(t[(,),hK)(Xi)

teS x hy,1<hg<bo n

IA

I © &
Sup ~sup - = |FOy)|1 o) (Xi)
; . ; hK¢(hK) | | B(t,hg)UB(tz),hk)

teSx hn,lShKSbO n

n

1
= sup sup _ZWi’T’

1€S x Iy <hg<by 1 i=1

where, for 1 <i < n,
Wir =

- ¢(h1<)| DED| Loy e X0-

We get uniformly on 7 € S x and on Ay :

&
sup sup W,y < sup - ——=— FO)
teS x hy,1<hg<bg ZESX n, l¢(h ) | |

So, for 2 < g < p, we obtain

q
E(Wir)! < (8—) E(|FO |

hn,l¢(hn,l)
&) My vy —
< tsegg(hn@(hn’l)) E(|FOa|'|x =1) (A.28)
P q Qq/pgq 1 q-1
—  Jer=_r" ( ) . A.29
(hn,1¢(hn,l)) b hyql,1¢(hnl) ¢(hn,l) ( )

The transition from (A.28) to (A.29) is done by using Jensen’s inequality used for the concave function
7%, for 0 < a < 1. Moreover, from condition (C.7.), we deduce that the quantity &,/h, 1¢(h, ) is
bounded, then for g > 2

1 2(¢-1)
sup sup E(W.r)? < GHZ/"[—) ,

teS x hy,1<hg<bg \/ ¢(hn,l)

where € > 0. Hence, by applying a standard inequality (see Corollary A.8 [91]) that the conditions are
satisfied here, uniformly on 7 € S x, we get

logn

n¢(hn,1)

GI,T = Oa.co
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Finally, all that is left is to evaluate the term G3 7. We have

|E (’,;(1) (T) o hK(f[))) —_E (’rfng((p(T)’ t, hK(t)))’
‘E Gy SD(T), teo)s hK(fe)) —7’%(90(”, f, hK(t))H

AN d(X;, 1) d(Xi, ff(z))))
E(FP(Y)K - FO)K | ——=
n¢(h,<),z( ()(hx) ()( ik

]

which means that

sup  sup sup
¢DKeF H Sy, 1€5 x hn1 <hx<bo

B (7 (¢, tans hic10)) = B (756, 1, b (0)|

n
< sup sup sup ZE(|F(T)(Y,-)|
(p(T)[(eyj{jmn teS x hy,1<hg<bg n¢(hK) i1

d(X;, 1) d(X;, ter))
K ( hg ) K ( hk
=: |%,T(90K, t hK)| :

]]- B([,h[()UB(l‘[(,),h[()(Xi))

Let’s take a look at |§€1,T(¢K, t; hK)| and following the same steps, by the fact that K(-) is a Lipschitz
function, we get

|41 (K, 15 )|

IA

sup  sup Z p ¢(h) B (|F W] dt. 1) Lm0

teS x hy, 1<hg<by 1

IA

sup  sup —Z hK;(nh )E(|F(T)(Yi)| ]lB(t,hK)UB(tg(,),hK)(Xi))

teS x hy,1<hg<bg n

i, P ZhK¢(hK) (IF )

teS x hn 1<hK<b0

IA

IA

1 + &n
0, 40, 2 LT =)

n

1
= sup sup —ZWZBT), (A.30)
n

teS x hy,1<hg<bg =1

where, for 1 <i < n,

3 _ _ ©&n Dy
Wi,T - h ¢(hK) (|F ( l)|)

We get for g > 2 and uniformly on ¢ € S x and on hg :

q
sup sup E(Z8D) < su (8—) E(E(|FO)|"|x =+ (A31)
zesghn,lghfsbo ( l’T) zesg 1 p(hip1) ( (| 1| | ))
q Hq/pgz 1 q-1
(—'S” ) gur = 2 ( ) . (A.32)
hn,1¢(hn,1 ) hn,l ¢(hn,1 ) ¢(hn1 )
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The transition from (A.31) to (A.32) is done by using Minkowski’s and Jensen’s inequalities. Then,
, we get

sup  sup sup |%,T(90K, t hK)| = Ouco
(p(T)Keﬂ"_){,ﬂ/mn teS x hy,1<hg<bg

Therefore, the proof is done for the truncated part. Regarding the remainder term, the idea consists of
proving its asymptotic negligibility, that is

sup sup sup [, 1, k() = E (76, 1,k (0)| = 0aco(D),

hy1<hg<b, t€S x pKeF X

which could be derived directly from the proof of the remainder part of the U-statistics developed in
the sequel.

Proof of Lemma 8.11
We recall that

Iz(l, I/t)

o t,u) = B (Fh (e, t.w) = rO(0,0) (RO (1, w) - 1)
= [Fhtem t.w) = (e, 077 (1L t,w)| = B (R (o, 1 0) = ¥V, 07781 (1, 1))

Therefore, the proof of this lemma is based on the following decomposition:

VikD(p, 1, Hyx(0))
= V(B m t, Hyx®) = O, 007 (1, 1, Hoa(0) = B (Foa(ours 1, Hus0) = r 0, 0 (1, Hy 1(6))))

= Ve[ (e 1. Hua(®) = T2 (ou, 1, D))
+Vk 75w 1. D)) = 1V, 7 (1,1, D)) = E (R (w1, D) = PV, 671 (1 . D))
+ V[P, (7111 DY) - B(FN (1,1, DY)
+ Vi [rO(.0) (B (RN (11, Hop (1) =71 (1 1, Hoi (1))
+ Vk|E (7D om: 1. D)) = B (R (e 1. Hoa(2)) |
= Ji(x) + Jo(x) + J3(x) + J4(x) + J5(x). (A.33)

By the same arguments as those involved in the proof of I,(¢, t, H, x(t)). We get

i)l = VE[Rh o, t, Hur(0) =725 (ou, 1, D}y
< Vkfr 1)(90M,I’D;)_41)(90M’t D;
< Vk[iews 1. D7)~ E (7w, 1. D)))|
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+ VK [B (7w 1. D)) = o1, DY)

+Vk[B (RS em, &, D) — B (7.1, D))

(A.34)

and

Vi (E (7 (om 1. D)) = B (7 (0u. . Hus(0)))
Vk B (71, D)) = 7w 1, D)
+\/_"* (ou- 1. D7) = B (7 (o . H,,k(z)))' (A.35)
2VE[E (7)o, 1, D)) = T oms 1, D))

/5 (x)|

IA

IA

By combining (A.34) and (A.35) and by similar arguments used to treat the Iy;(y,t, H,x(¢)) and
Lia(p, 1, H, (1)), we get

@+ 5] < VK[ED Gt D7) = E (D 1. D))
+3\/_‘E A(l)((PM,t D*)) —F (w1, DY)
+ VK [B (Rhem. &, D) — B (7.1, D))

We then obtain that |J;(x) + Js(x)| tending to zero as n tends to infinity. We evaluate the term J,(x) on
the right side of (A.33). Let us introduce the following sum

1= 7
i=1

where

Vi
ViE (Ai(t, D))

((em¥D) = ¥ Vpr, ) At DY) = E ((omr(YD) = Vo, D) Ait, D)),

ni —

and
1(x) = Vi [P (e t. DY) = rV(@, 071, 1, D)) = B (R (e 1. D)) — rV(e. 71,1, D)) .

Thus, the claimed result now is
I(x) = N (0,0%(2)).

The asymptotic normality of J,(x) was proved in Lemma 8.8 by choosing the bandwidth parameter as
u = D;. For J5(x) and J4(x), we obtain by using Lemma 8.2 and the fact that E (’rfllf(l t, u)) = 1 with
u = Djor D}

J3() + Ja(x)| = \/%(|r“>(¢, D) [GHERA2WES -1 GR{CH tD+)))”)
V([ 0 [| B Gt Has) =700 1 ko)

AIMS Mathematics Volume 9, Issue 2, 4427-4550.



4533

< @‘r(”(go, 0 (71,1, D}) - 1)‘ + @‘rm(go, 0 (1-711,1.D))
< 2Vk |V (7,6 D) - 1))

Using Lemma 8.5, we get
Ve[, D} - 1| > 0as n — 0.

Consequently, we have
|/3(x) + J4(0)] = 0.

Hence, the proof is complete.

Proof of Lemma 8.12:

For the proof of this Lemma, it suffices to use the result of [58]) in inequality (A.9), Tchebychev’s
inequality and Lemma 8.2. For € > 0, we readily infer

P (Rt Hu(0) - 1] > 6)
Var (7!)(1,1,D;))

g2

< P(W{(l,t,Dg)—E(?f,f{(l,t,D;))

>8)S

Making use of the fact that
1
Var (7!)(1,1,D;)) = 0( )

ng (x, D)
We finally obtain
’rf:l)(l, t,H, (1)) — 1 — 0, in probability as n — oo
Hence, the proof is complete. n
Proof of Lemma 8.13:
We have

T 1, hi(D) = E (R (e, 1, hic (1))

1 n
= D HeDA(E (D) — E (YDA (5 hie())])
i=1

nE[A; (1, hg(1)]

1
nE[A, (7, hg(1))]

D2t hie0),
i=1

where
Zi(t, hg (1)) = (Y)Ai(t; hg (1)) — E [@(YDA(t; hg(2))] .

Taking into account condition (C.4.2) and using Holder’s inequality, for 2 < g < p such that i + 61[ =1,
we can write for all i # j:

E (YDAt hi(0)p(Y DA, (1 h ()]
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B[ At g 0)A (1 hi (0)E [@(Ye(Y)) | (X X |
E[Adr: he (DAt h()E"? [F7(Y) | XJEV [FU(Y) | X1
CE | Ailt: () (12 h(1)]
CsupP{(X., X;) € B (t, h(1) X B (¢, he (1))}

i#j

CY(hg (1)) /D), (A.36)

A IA

IA

IA

the later inequality is due to condition (C.1.2). Next, we have

1
Var| LA G e )]
1 n
T B2 (A he(D)) Z Z Cov (‘P(Y DAt b (1), (Y AT, hK(;)))
1
= BBy A (D)
1

TE (A (1)

D2t h()
i=1

i=1 j=1

2 2 Cov (@Y e: hi(e)). oY A5 (1)

i=1 j=1
i#j
= Vi+V,.
Let us start with the term Vy, considering the conditions (C.1.1) and (C.3.1), it follows that
K|C1fi(0p(hi(1) < B (A](t, (1)) < C2fit)p(h(D)), (A.37)

and we have

Var (o(Y1)A(t; hi (1))

E @2 (VDAY hi(0)] - B2 [p(YDA (2, iy (0))]
E @’ (YDAL(, hi(0)]
E[E[FX(Y) | X] Al hi(0))]

P [FP(Y) | X1BY7|Al(t, hi(1)))
CHPCYUGH (i (D) £ (1).

IANIN A

IA

Hence, combining the later inequality with (A.37) gives us:

constl const?
<V Lf—
nfi(g(hg (1)) nfi(g(hg (1))

whenever fi(¢) > 0 and constl < const2. Next, we consider V,. We have

(A.38)

1

V» = n2E2 (A, (t, hx(1))) Z Z Cov (‘P(Yi)Ai(t; hg (1)), QD(Yj)Aj(t; /’LK(Z‘)))

i=1 j=1
0<li—jl<w,
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£ Cov (@YDt hi(0), (¥ DAt (1))

i=1 j=I
|i=jI>wn

=: V2’1 + VQ’Q, (A39)

whenever w, satisfies, w, = o(n), and by conditions (C.1.2)-(C.3.1), we readily infer that:

Cov (YDA hx (1), @(Y DA he(1)) < CR(hx(0) fo0) = CYPC3 5 (i () £ (1),

Thus, by the previous equation in combination with (A.39), we have

P(h (D) f2(t) — CHPCHUC i (1)) f2(1) -

n2E2 (A (1, hi(1))) "
K (0P (hg)w,
HE? (A (1, hg(1)))

2,1 =

— CHPCI U hi (1)) f2 (t)—

Making use of (A.37), we obtain

! Y(hg)w, o n
1

This when combined with (A.38) implies that

Va0 Yo,
Vi i) ¢(hk)
B0,
< const' =—=
fi@)  ¢lhk)
where w, is chosen in such a way that the above bound tends to 0 as n — oo. Now, let’s consider

V,,. For any two o-algebras A and B : a(A, B) € B(A, B), so by applying Davydov’s lemma on
strong-mixing sequences, and taking into account condition (C.4.2), we infer

— wu(hi) i (OCHPCY UG (hic (£) £ (D)

onst” w,d* (hi) f; (1),

Cov (@(Y)AI(E: hx(1)), (Y A (t; hx (1))

8 {E oY) A(t; i)Y' [B(li — jH1' 2

S{E[E[IF(Y)I | X] 1At hxeDP]Y? 18 — jH1' =7
C{E (1A hg )P I [B(i = D127

However, E (A;(t, hk(t))) satisfies (A.37), then we have

IANIN IA

Cov (@(Y)AE; hie(1)), (Y DA (t; hie(1))) < constf 7 (1) (i)Y [Bi = )17

Which involves f2/p(){ (hy))2/?
const D) {d(hk ShN
nZEzl(A1(t, h(1))) ZZ[’B(ll A

i=1 j=1
li—jI>wn

22 =
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Once more by using (A.37) and by a simple calculation (reduction of the double sum), we get:

const =
Voo < - [K°Bk)]' 7.
nwgfIZ(l l/p)(t) {¢(h[()}2(1_1/p) kzw;ﬂ

This latter, with the boundary on V; implies:

(o)

DK (ogk) P (BRI (A40)

=w,+1

Vo, const
— <

Vi wg (logw,)™ ™17 #1727 () {p(hi)) 27,

Choosing w, = {¢(hK)}_(]_2/ PI% and making use of condition (C.5.1), we get that:

o0

Voo const 5 8(1-1/p) 1-2/
< — k° (log(k)) (B(k)) /7
L T ) I 2
0. (A41)

By the same value chosen for w,:

Vo < const f>(t)¥(hg)
Vi A {ehe)Y
by the fact that W(hg)/¢*(hg) is assumed to be bounded and ¢(hx)w, — 0, then the first term of the last

inequality tends to O as n — oo. Furthermore, the second term also tends to 0, since 1 -(1-2/p)/é < 1.
Hence, the proof is complete.

wWap(hi) + {p(hg)} ~ P00

Proof of Lemma 8.14:
Based on (4.8), we have

/ln(QD, t’ h(t)) = \/ n&(h(t)) {mu(l) TTm (,oth Z (m p)' n ﬂp mGgo,t,h)} .
=2

Remark that the first term of the last sum is an empirical process indexed by mG", so from Section 4.1,

we have
\nd(h(t)mu' (ﬂ1,mG¢,t,h) N (O, m*o? (o, go)). (A.42)

So, it is enough to show, for 2 < p < m, that

1B (750G pin) — 0. (A43)

To avoid ambiguity, we consider the case where m = 2 (the other cases are treated in the same way).
Then, we have

l/tglz) (7T2,mG¢,a,t,h) Z 7T2m o,th ((Xta Y) ( J)) .

I<<i<j<n

(n—)
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The projections being P-canonical, then to show (A.43) it suffices to show that

E [u(z) (n27mG¢,t)]2 =o.

n

We have
B2 (nGol)] = 5 Y Y B G,

2 _ 2
n (I’L 1) I1<<i|<ip<n 1<<j1<ja<n

where
E ((ib l2); (jl’ ,]2)) = E [772,mGg0,t ((Xil > Yil )’ (Xi29 Yiz)) X 772,mG¢,t ((le 5 Yj2)9 (Xj29 Y]z))] .
We first remark that

B[n(n — DU (120G

_ Z Z E((i1, i2), (J1, J2))

1<ii<ipa<n 1<j1<j2<n

+

D B, (i)

1<ii<ji<ia<ja<n

IA

D Bl i), (i )

1<i|<iz<j1<ja<n

—+

DL Bl i) (i, o)

1<ij<iza<ja<n

+ Z E((ibiZ)’ (jl’jZ))

1<i|1<j<ja<ir<n

n

+ Z E((i1, ir), (i1, i2))

i1,i=1

Following similar reasoning to obtain (A.41), the following bound suffices to our need

D Bl i), (i)

1<ii<iza<ji<ja<n

IA

D, Bub). G|+ Y, Bl G j2)
1<ii<iz<ji1<jasn 1<ii<iz<ji1<jasn
ir—i12j2=j1 J2—j1>i—i

o0

25" (log()™ ™7 (B(s) P

s=1

n
const—

4

Treating the other terms as in Lemma 2 of [203] (refer for detailed proof in the conditional setting to
[13, Lemma 3]) we get

E[u? (m21Gos)| = 0 (nd0)~ — 0.

Hence, the proof of (8.88) is complete. The statement (8.89) is a direct consequence of (8.88) in
connection with condition (C.8).
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Proof of Lemma 8.15
For any two constants the sum of the product of these constants by the components of the

vector (8.90) is a centered U-statistic, i.e., for CV,C® e R,

C(l) [un(()ol’ ta h) - E (un(‘Pla t’ h))] + C(2> [un((;oZ, ta h) - ]E (un((Pz, t7 h))] = l/ln((P,, ta h) - E (un(()o,’ ta h)) 5
where
¢ = CVp +C%,.

So, by the Cramér-Wold theorem the proof of the present lemma is directly deduced from Lemma 8.14.
What remains to be done is to complete the proof of the theorem in question based on the two previous
lemmas. Indeed,

un(p, t, ) — u,(1,t, hE (u,(p, t, h))

7" (o, t;h) — E (u,(, t, h)) =

u,(1,t,h) ’
and because .
u,(p,t,h) — 1,
then all we have to do is prove that
N d
M) {u, (@, t, h) — u,(1, 6, DE (0, t, )} — N (o, pz) . (A.44)

We have

\/% {u,(p, t,h) —u,(1,t, h)E (u,(p, t, h))}
= (LE (e, t, ) \/’%{un(%t’h)—E(un(go,t,h))}
. m{un(l,t,h)—u ’

the latter, the fact that (¢, t) is continuous on t and E (u,(¢, t,h)) — r"(¢,t) leads to the desired
result.

Proof of Lemma 8.16:

For the clarity of the exposition, we present the proof for m = 2; this case already contains the main
idea. As in the proof of Theorem 4.2, we divide the sequence {(X;, Y;)} into v, alternate blocks, here
the sizes a,, b, are different satisfying

b, <a, W,—-1)a,+b,)<n<uv,a,+b,), (A.45)

and set, for 1 < j<v, —1:

HY = {i: (= Dan+by)+1<i< (= 1)(an+by) +an},
T = {i: (= D@ +by) +an+ 1 <i < (j = 1)(an +by) + @, + by},
HY = {i:@,— D@, +b)+1<i<nA,—1)a,+b,)+a,},
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TV = {i: (= D@ +b)+a,+1<i<n}.
Note that the notation b, used here and in the proof of Theorem 4.7 denotes the size of the alternative

blocks. However, in the proof of Theorem 4.2, it denotes the radius of the nets of the class of functions.

Then, we have

d (X, 1) (Xj’ f2)
; (YZ’Y)K( nk(l)) [ n,k(tz)]

Un

d (Xj, lz)

= 2.2,

H, (1))
P#q ieHY jeH" ’

d(Xi, t1)

3 . Yj)K(d(Xi, n)) K[

Hn,k(t2)

Un
*2

p=ljzji jen”

Y., Y)K
()0( ‘/) ( Hn,k(tl)

Un Un

2y D e, Y)K

p=ljeqV) qla-p2 je(V

Uy Uy

+2Z Z Z oY, Y)K

p=ljegV ¢la-pI<1 jer(V

d(Xi, 1)

B d(X;. tz)]

Hn,k(t2)

d (Xj, IQ)

Hn,k(t2)

d (Xj, IQ)

Hn,k(t2)

d (X, 11)) P
H, (1))

d (X, 11)) P
H, ()

5WIDI

P#q jeTV jer

(Y, Yj)K(

d(Xi, 1)

Hn,k(tl)

) K d (Xj, [2)
Hn,k(IZ)

d (Xj, lz)

Un
+D
p=lizjijerV

= I+0+UI+IV+V+ VL

Y., Y)K
()0( j) ( Hn,k(tl)

)

Hn,k(t2)

(A.46)

We have to treat each of the terms I-VI. The treatment of V and VI is readily achieved through similar

techniques used to investigate I and II, which we omit.

The same type of block but not the same block (I):

Suppose that the sequence of independent blocks {&; = (¢y, £}, 18 Of size a,. An application of

(A.1), shows that

o d(x, 1)) [d(Xnn)
1/2 i
g Z Z Z SD(Y”Y)K( nk(l)) H, (1) Z0
p#q zeH(w ]GH(U) ’ Ty K
I disn) \ [ d(sin)
< P2kt <p(§i,§j)1(( K > 6
pz;&:; iEHZ[(,;/) ];((IU) Hn,k(tl ) g) Hn,k(tZ’ g) P

+2v,,,8bn .
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We keep the choice of b, and v, such that :
ub, <1, (A.47)

which implies that 2v,5, — 0 as n — oo, so the term to consider is the second summand. For some
(én1,€n2) € (0,1)%, we choose D, = (D D) and D} = (D;,I,D;’z) such that for j = 1,2

n,1°

k
o(05) = NETE. 0(01)-

and 'fn = é‘:n,lgn,Z - 1,

k

a.co

then using the results of [44], we have ]1{ D, <Hyu(p<p? | 1 when — — 0 and making use of condition
n,j= KT =0 n
(C.3.2), we have :

un(0, t; D)) < uy(e, i hy, 1 (6) < uy(, t; D), (A.48)
where D, = (D, |, D, ,) and D;; = (D; |, D, ,). This implies that
8 dsot) \ [ d(s)
1/27-1 i
n "k so(éi,§~)K( K > 6
Z Z;, Z, U\ Hui(t,6) H, (1, ¢)
p#q zeHE, )]GH; ) Fon?
- (sn, 0 (gj’ fz)
< P{|n "2k )¢ .
<Piln ZZ PN s 55
p*q lEH<U) ]EH(U) n2 e

Now, combining Lemma A.1 of [67] with Proposition B.8 in the Appendix, we obtain

2S5 3 w252

D-
p#q leH(U) J€H<U> n,2

Fr A2
d(Sint) | [ 25 h
< oE | %! Z & > 90(43,{])K( 1 (D_ )
p#q ieHY jeH" D, 2 o
D(llil)
< oF f N (u, Z227.d,) ,)du, (A.49)
0
where D(U') is the diameter of .%,.%#"? according to the distance d’ h) > Which are defined respectively
by
i dGm)  [4(s:7)
D(Ul) = E I/Zk z K
b n Z#l €€, Z}w le (&, ¢)) D‘ D, )
P74 ieH,"’ jeH, ’ Ty
and

;l},lh)Kz (‘Plf(], 902E2)
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o d(an) . (4(s2)
= B |n"k 1Zep€q Z Z 901(§i,§jK1( D- K D-
PEq ieHY jeHV ! "
d(si, 1) d(gf’tz)
- sﬂz(éi,{')Kz( — | K> - :
! Dn,l Dn,2
Let consider another semi-norm cﬁl’fjl)K2
&2, (¢ k1. 0:k) Slec.cox (d(g”“))K o)
; 1K1, 92 K> — 1\6i> 67/ : -
h,2 n¢(Dn ) py / Dn,l Dn,2
()]
d(s.t)) . [dlsit
- i»6j K K
()02(5 g]) 2 [ D,:’l 2 D;,Z

One can see that we have
;121),(2 (¢1K1, 92K2) < an'kd5) 2 (@K1, 9 K5) .
We readily infer that

PR d(si, 1) d(g‘-,tz)
Bl Y ) 9"(5"’4')K(Hn,k(t1,1§))K[Hn,k(jt%g)]

P#4 el jeH

Ty K2

(%]
DnhK

< czEf N(ua,—lln_l/zk3 FrH?,d Aﬁl) 2)du
0

An
< czannl/zk_3P{ng;)a,’,lnl/zk_3 > /ln}+czann_3/2k_1f log u™'du,
0

where A4, — 0. Notice that as 1 — 0, we have

9
(f log u_ldu) (/llog/l_l) : — 0,
0

where a, and A, are chosen in such a way that the following relation will be fulfilled
a,A,n'* k3 log 41 — 0. (A.50)

Making use of the triangle inequality, in combination with Hoeffding’s trick, for instance, see [8,
page 62], we obtain readily that

an' Zk‘3P{Dflg;) > Aaun'! 2k‘3}

< A,%a,'n kB Z Z Z gp({,,é’,)K(d(g”tl)]

p#4 |iet V) jeH

2

Dn,2

O )]

Fr K2

AIMS Mathematics Volume 9, Issue 2, 4427-4550.
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2
o “" d(Gi )| o (451
< 2 -1, -1)2 j '
Covpd,"a, n kB Z; .Z;U) QO(ZI,K)K( D D, ; (A.51)
p= i,jeH), ’ ’ Fr 2
where {fl’ = (s, (] )}ieN* are independent copies of {&; = (¢, {i)};a-- By imposing
2a'n™ 'k — 0, (A.52)
we readily infer that
(s
Do g d(snt)) | NS0 t2
v 2a, kR & )K[ l
" 2‘ 2, K| D,
i,jeH, Ty 2

< O(/lzlr 1/2k)_

By symmetrizing the expression in the expression in (A.51) and applying again the Proposition B.8 in
the Appendix, we get

2
v A2 P RE Z Z Ep¢(§,,§)K(d(g’_’tl))K[ (g‘j,tz)]
p=

=1 1;: .. (1) n,l
l,jEH Ty K2

D%ﬁ) ~ 12
< GE f (log N(u, #,.47.d},,.,)) " |. (A.53)
0
where
a(s' )
o1, N d(sint)) [ 4S0t2
DY = [Ecjund e, n™ Pk ) | D 90(4,5)1(( ‘ - ,
p=1 i,jeH(U) n,l n2 g
and for QO]E],(pzf{z S ﬂz%z
d~:m,(,z(9011~(1, ¢:K>)
2
i, d(si,t)),, (4s)0)
= Ecjud’a,'n %k ) 6| ) sol(g,,{)m[ o )Kl( o
p=1 ; ]EH(U) n 1 n2
2
o (dan)) ., (4(sn)
- Z ‘Pz(fi,fj)Kz( D_l K, D
ije H;)U) n,1 n,2
The fact that
2

Ee Un/lZZaI;In—l/szn Gp Z Qp(é”l’é’ )K(d(ghtl))

p=1 i,jeH(U) n,l
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41172
) L L) d(s'n)
< 3/2/12 1 2k2 - K ,
A T ZZ G K| 5 o
p=1 i jenV n n,
SO,
a3 - 0, (A.54)

we have the convergence of (A.53) to zero. For the choice of a,, b,, and v,, it should be noted that all
the values satisfying (A.45), (A.47), (A.50), (A.52) and (A.54) are accepted.

The same blocks (II):

Remark that we have

-1/27-1 = : ) d(Xiatl)
e Z Z SD(Y”Y])K(Hn,k(ll) K

p=1izjijen

d (Xj, lz)

> A
H, (1)

FH?

< 2w Bl Y Y 90(§z,§,)K[d(g”t1)) (d@f’fz)) o al.

D-
p=1 tijtjeH(U) n,]

n2
T K2

In a similar way as in the preceding proof, it suffices to prove that

_ - d(gl’ tl) d(g’ t2)
E|[|n2k! Z > ¢(§,,§J)K( b, ) [ DJ;,Q ) - 0.

p=1 (U)
i#ji,jeH, Ty A

Because of computation by [138, p. 53] and the fact that the classes functions are uniformly bounded,
we obtain uniformly in .%,. %"

d(s;, d(gi,t
o 5, woon()e(t52) o

i#ji,jeH,

This implies that we have to prove that

_ — < d(gl’tl) d(g"tl)
 (Fes 3 oo

p=l izji jeH Y D

d(si,t1) d(gj,t1)
oty o o

Ty K2

Like for empirical processes, to prove (A.55), it suffices to symmetrize and show that

. ) [ d i»t d(g’t)
Ellln 1/2k IZ Z EI,QO({i,;j)K( (g— 1)]K( DJ;,QI ] -

=1 . :: . (U) n,1
I i#ji,jeH), T H?
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In a similar way as in (A.49), we infer that

12— d(si,t d(s;, 1)
Bl ), Y epso@,,g,)K( i ‘)) ( ;1)

p=1 z#]z]EH(U) n,l n2

Ty A
sz[/fi) 1/2
“E(fo (tog N (s, 724, ) d“)’

where

Dy = [ Y e, Y <p<4,§,->l<[d(1§i—’tl))l< [d(g—’ﬂ)] ,

p=l izjijeHY ml 2

Fr 2
and the semi-metric 3(3) , 1s defined by
aﬁ)&z (Q01E1 ) §02E2)
12 d(si, 1) d(gj 1)
= n k! Z €p Z (‘pl({ia{j)Kl ( D K, D+
- i#ji, ]EH(U) ml n.2
d(si, t1) d(sj, t1)
- Sﬂz(fi,{')Kz( — | K| ——
’ Dn,l Dn,Z
Since we are trading uniformly bounded classes of functions, we infer that
a1 N dist) ) o (d(s)> 11)
E, [n~?k! Z € Z gp(gi,gj)K( D, K D]—z
p=l izjijen” - s
1/2

(s, dis., 1)V
&2 2! Uazz Z [(p(g“,,{])K( (S‘_tl)] ((g—h)))

p=1 l;ﬁjl]GH(U) nl n2
< 0@l i),

Since &)*(n)"%k! > 0, fo}f;) — 0, we obtain IT = 0 as n — co.

Different types of blocks (III)

An application of (A.1), shows that

ZE SCIDYDIDY so(Y,,Y)K(d(X,,m) ((J}(;tz))

eH(U) q|q p\>2 ET(U)

T K2

o I N e
n,2

ieH\ ¢la-p>2 jer(”

T H?
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+n 212 anbnfa,,

by the last choice of the parameters a,, b,, v, and the condition (8.92) imposed on the S-coeflicients,
we have
n_l/zk_lvianbnﬁan - 0.

For p = 1 and p = v,, since we have independent exchangeable blocks, we infer that

o I T o I ey
n2

O glg-pl=2 ;e
i€H, JETy Ty K2

Un

= Bl ) ), so(a,gj)K(d(“’“))K(d(”’“))

D~ D~
ieHgi/) q:lg—pl>2 jET;U) n,1

n,2

Fr 2
— _ d(g’tl) d(g’tl)
= El|n %! W K | —= .
% % 3 vtk [ 3
ieH;’ 9=° jeT, ’ T 2
For2 < p <wv, — 1, we obtain
_ _ ~ d(gz,t ) d(g’ tl)
Bl Y ), D, so(g,g)K( =K | —E
ietV) alg-pl>2 jer® Dy Gl | P
P N d(si 1)), (d(sjsth)
= Bln Pk ) > D el K | =5 | K|
ieHiU) q=4 jeTf]w nl n.2 o
12— o d(si,t1) d(sj, 1)
< Bl % YN N el K s - |k e :
ieH" 473 jerV) nl n2 T

therefore, it suffices to treat the convergence

— - d is d(§9t)
By 2 Z > go({l,{J)K[ (g_ 1)] ( e ] — 0.

ieH\Y =3 jer{) n,2

T
By similar arguments as in [8], the usual symmetrization gives
iy N dsi )| o[ 4S5 1)
1/27 -1 j
Bllun 2k ) Z so(gl,g,)K[ K| =
ieHY =3 jer{) n,2 g
2
- d(sit) | d(s;, 1)
1/2 i j
< 2B v %Y Z > eqso(g,,g,)K( - D
eH(U) =3 jerV n’ " T 2
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_ _ d(gl,ll) d(ga tl)
_ no12 j
- 23 2IW) quo(fz’é“ﬂK[ ] ( D Loz
lEH(U) q=3 ]ET(U) " Fr 2
+2E n 121 Z Z Z ( K d(S’z,fl) d(g‘j,ll) 1
uyn 4 Gq‘P {l, {] D_2 {Di,l/f;) >V }
i€H; q=3 ET(U) s Ty N2
= 2III; + 2III,, (A.56)
where
2172
d(g,,tl) d(sj, 1)
(Us) _ j
D,V = |luun “H2pt Z Z ¢(§z,§j)K[ D-
9=3 \ jerl ien"’ n.2 P
Z,.
In a similar way as in (A.49), we infer that
I, < ¢ f (1og N (u, Zo2,d )" du, (A.57)
0
where
CAZ};,)KQ(% Ki,¢:K>)
_ _ d(gtat ) d(g7 tl)
= Ecjun k) Z D& [wlm,mm( = ) [ pe
leH(U) q=3 ]GT(U) nl n2
d(giatl) d(g/’tl)
- 902(4',(')[(2[ — | K> — .
! Dn,l Dn,2
Since we have
12— d(si, 1) d(sj, 1)
Be (v %) Z > eqw(g,mK( - ) ( P
lEH(U) q=3 jET(U> n,l n,2
NE
d(g;, t1) d(gj, 1)
123, 172 J
S e I S S I
ieH,”’ 9= 3 ET<U) = .
and by considering the semi-metric
21:(;),(,2(901&, 0:K>)
1 S [ d(si,t1) d(sj, 1)
= |V §01({i,{')K1( — | Ki =
aub,v, 3 (D7) me ; .Z(U) J Dy, D,,
i€eH,; JeTy
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1/2

disit)) . (s
AT LA PRECAN)
QOZ{ {/ 2 Dn,l 2 sz

We show that the expression in (A.57) is bounded as follows

”1/2bn|n1/2h ¥ 2
a0, [ (og 1 725°.5,.)) "t
0

by choosing y, = n™* for some a > (17r — 26)/60r, we get the convergence to zero of the previous
quantity. To bound the second term in the right-hand side of (A.56), we remark that

111,

(A.58)
= By 26! Z Z Z ol 0K d(s;,t1) d(gj,n) n
- " 0 AR _1 D~ ) {D;h;‘()>71}
ieH\" 4=3 jery" n n, Foi?
2
_ e _ d(g;,t d(s;, 1)
< anlbnn1/2¢ I(Dn)P U2n 3¢ (D )Z Z Z ‘p(é/l,é/j)K( (g 1)) [ D/_ 1 )
q=3 jET<U) EH(U) n2 g
>yt (A.59)

We now apply the square root trick to the last expression conditionally on HY. We denote by Er the

expectation with respect to U{(gj, {,) jeT,q> 3} and we get by (C.6.), for 2r/(r — 1) < s < oo, (in
the notation in Lemma 5.2 of [102])

2

vEr| Y Y so(gi,gj)K(d(lg)ljt‘))K(d(gf_’“)) ,
n2

.€T(U) .EH(U) n,1

M,

t o= a0 25Dy, p=A=2"y,a 0T D)), m=exp(ving(D,)b,?).

Since we need t > 8M,,, and m — oo, by similar arguments as in [8] page 69, we get the convergence
of (A.57) and (A.59) to zero.

Different types of blocks (IV)
We have :

Uy

n—1/2k—liz Z Z‘P(Yi,Yj)K(d(Xi,tl))K(d(Xj,tz))

H, (1 H, (¢
p=1 iV ¢lg=pI<1 jer(® nk(01) ni(12)

Ty K2
< b’k 50
< Uuya,bun — 0.

Hence, the proof of the lemma is complete.

AIMS Mathematics Volume 9, Issue 2, 4427-4550.



4548

B. Auxiliary results

This appendix contains supplementary information that is an essential part of providing a more
comprehensive understanding of the paper.

In the sequel, we define X, X, ..., X, to be i.i.d. random variables defined on the probability space
(Q, A, P) and taking values in some measurable space (¥, 8), and .# to be a P-measurable class of
measurable functions with envelope function F, such that :

E(F*(X)) < co.

We further assume that .%# has the following property:

e For any sequence of i.i.d. X-valued random variables Z;, Z,, ... it holds that

< VEIG @Dl 1<k<n,
G

E

k
D 18 (Z) —Eg ()
i=1

where C; > 1 is a constant depending on G only.

Lemma B.1 (Theorem 2.14.1 [193]). For an empirical process «,(f) indexed by the class of functions
F with the notation:

llan(PHll 7 = sup lan (I,

feF

and J(8, %) meaning

0
Supf \/1 +1og N (e, 7,1l - llLy0)de,
o Jo

we have, for p > 1,
llan(Dllz]|, < CIG F)IFlpys -

Lemma B.2 (Theorem 3.1 [78]). Let % be a pointwise measurable function class satisfying the above
assumptions. If we suppose that the empirical process a,(f) satisfies:

Ella,(Nll7 < ClIF], (B.1)

then for any measurable subset B € B:
Ella(f1p)llz < 2C|F 1|l

From Theorem 3.2 of [78] it follows that a VC-type class of functions satisfies, always, the condition
(B.1).

Lemma B.3 (Bernstein type inequality Fact 4.2 [78]). Assume that for some H > 0 and p > 2 the r.vs
X, X1, ..., X, satisfy:

AIMS Mathematics Volume 9, Issue 2, 4427-4550.
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E(FP(X)) < (p!/2)0?HP2, where o > E(F*(X)),
then foru/, = E (|| \/r_lan(f)”g), we have for any z > 0:

2
, —Z
> < _—
P{Fsll?é \/Eak(f)Hﬁ =t T Z} = AP (2110'2 + ZZH)
<ex < V ex (_—Z)
= Pl 402 P\am )
Lemma B.4 (Proposition 4. [9]). Let Xi,...,X,, be i.i.d. random variables with values in some

measurable space (S,S). Let .% be a class of symmetric functions f from S™ satisfying some
measurability conditions. Suppose that there exists a finite constant ¢y such that for each x; € §

we have:
E{ } < Co,

and that there is a finite constant b such that SUp e | f(X)| < b, a.s. Then for each u > 0:

P{

where the variables ; are a Rademacher variables.

I’ll_m Z §i| (izf(xil LA 'xim)

m
Iy

m

m un'’?
n \ T jm 2 <2 -,
Z (])u (ﬂj’ f)ng M} exp( 2m+5mm+lbco)

J=2

Lemma B.5 (Lemma 6.1 in [124], p.186). Let X1, ..., X,, be independent Bernoulli random variables
withP(X;= 1) = p, foralli=1,...,n.Set U = X; +---+X,, and u = pn. Then, for any w > 1, we have

— 1 2
P(U > (1 +wu) < exp{%},

and if w € (0, 1), we have

P(U < (1 - wip) < expf{-u(w?/2)}.

Lemma B.6. Let {X,},.; be a data sequence, along with the kernel function h(-), satisfying Assumptions
(Al)—(A3). We then have, there exist absolute constants C4,Cs > 0 only depending on vy and r, such
that, for any x > 0 and T sufficiently large,

B

Proposition B.7. Ler {Z,;,1 <i<n,n
variables, and let V be a o (Z,;,1 <i
IfE|V|P < 00 and E|W|? < oo, then:

2
U™ (h) — 6(h)| = CuM/ N + x) < 2exp (_ Csx*n )

M? + Mx(log n)(log log 4n)

1} a strong mixing non-stationary sequence of random
J)-measurable and W be a o (Z,;,i > j+ m)-measurable.

ASRY;
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whe

Cov (V, W) < [a(m)]"" {B|VP}'/P (B |W|7}'4,

re p,q,r > 0:
1 1 1
—+-+-=1
p q r

Proposition B.8 (Proposition 3.6 of [10]). Let {X, : t € T} be a process satisfying, form > 1:

and

_1 m/2
E X, - X" < (’q’j) EIX, - XN, 1<g<p<oo,

1/2
the semi-metric : p(s,t) = (E X, — Xsllz) ! . There exists a constant K = K(m) such that:

D
EsupliX, - Xl < K f [log N(e, T, p)}"de,
0

s,teT

where D being the p-diameter of T.

Remark B.9. In a similar way as in [35], Theorem 4.2 can be used to investigate the following
problems.

1) (Expectile regression). For p € (0,1), let y(T — @) = (p — {T — 0 < 0})|T — 6|, then the zero

of m(y, -) with respect to @ leads to quantities called expectiles by [155]. Expectiles, as defined
by [155], may be introduced either as a generalization of the mean or as an alternative to quantiles.
Indeed, classical regression provides us with a high sensitivity to extreme values, allowing for
more reactive risk management. Quantile regression, on the other hand, provides the ability to
acquire exhaustive information on the effect of the explanatory variable on the response variable
by examining its conditional distribution, refer to [3, 4, 150, 151] for further details on expectiles
in functional data setting.

2) (Quantile regression). For p € (0,1), let y(T' — 0) = p —{T — 6 < 0}. Then the zero of m(y, -)

with respect to 6 is the conditional p-th quantile, initially introduced in [129] in the real and linear
framework, for more general setting, refer to [35].

3) (Conditional winsorized mean). As in [117], if we consider Y(T —0) = -k, T —0,kif T — 0 < —k,

T — 6| < k, or T —8 > k, then the zero of m(y, ) with respect to @ will be the conditional
winsorized mean. Notably, this parameter was not considered in the literature on nonparametric
functional data analysis involving wavelet estimators. Our paper offers asymptotic results for the
conditional winsorized mean when the covariates are functions.
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