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Abstract: This study presents a mathematical model capturing Malaria transmission dynamics in
Yemen, incorporating a social hierarchy structure. Piecewise Caputo-Fabrizio derivatives are utilized
to effectively capture intricate dynamics, discontinuities, and different behaviors. Statistical data
from 2000 to 2021 is collected and analyzed, providing predictions for Malaria cases in Yemen
from 2022 to 2024 using Eviews and Autoregressive Integrated Moving Average models. The model
investigates the crossover effect by dividing the study interval into two subintervals, establishing
existence, uniqueness, positivity, and boundedness of solutions through fixed-point techniques and
fractional-order properties of the Laplace transformation. The basic reproduction number is computed
using a next-generation technique, and numerical solutions are obtained using the Adams-Bashforth
method. The results are comprehensively discussed through graphs. The obtained results can help us
to better control and predict the spread of the disease.
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1. Introduction

Malaria, caused by the Plasmodium parasite and transmitted through infected mosquitoes, is a
significant global health concern [1]. The parasite enters the bloodstream, multiplying and infecting
red blood cells, resulting in symptoms like high fever, chills, and fatigue. Severe cases can lead to
organ failure and even death, particularly in vulnerable populations. Certain groups, such as those
with HIV/AIDS, young children, and pregnant women, are more susceptible [2, 3]. While Malaria
predominantly affects rural areas, urban residents benefit from improved housing and healthcare
services [4, 5]. Prevention and control strategies include raising awareness about the disease and
promoting preventive measures like bed nets and insecticides [6]. Public health campaigns play a
crucial role in educating communities and encouraging proactive measures. Eliminating mosquito
breeding sites and promoting environmental control further reduce transmission. Addressing
misconceptions and promoting behavior change are essential aspects of effective awareness
campaigns. By empowering individuals with knowledge, these efforts contribute to reducing the
disease burden, improving health outcomes, and saving lives [7, 8].

Fractional calculus, a branch of mathematics [9, 10], focuses on derivatives and integrals of
non-integer orders. This mathematical framework has gained considerable interest among researchers
due to its ability to model real-world phenomena that integer-order calculus cannot accurately
describe. Through the exploration of various fractional derivatives and integral operators, researchers
aim to enhance their understanding of complex systems and phenomena in real-world scenarios. This
approach enables more comprehensive and accurate mathematical modeling techniques.

Recent studies in fractional calculus have made significant contributions to the field. Caputo and
Fabrizio introduced a new fractional derivative with an exponential kernel, expanding the possibilities
for modeling phenomena with specific characteristics [11]. Atangana and Baleanu extended fractional
derivatives by considering Mittag-Leffler kernels and higher orders, broadening the understanding of
fractional calculus [12]. Adel et al. studied the Caputo-Fabrizio fractional COVID-19 model, providing
valuable insights into the virus’s multidimensional nature [13]. El-Mesady et al. [14] investigated
monkeypox spread using a Caputo fractional order epidemic model, considering population interaction
and control signals. Elsonbaty et al. [15] analyzed lumpy skin disease dynamics using a discrete
fractional model, discussing equilibrium points and stability. Wenjie Li et al. [16] examined avian
influenza transmission dynamics using a degenerate diffusion system, establishing the global stability
of the disease-free equilibrium. Furthermore, the dynamics of malicious signal transmission in wireless
sensor networks were studied, analyzing local stability and optimal control [17].

A novel technique involving piecewise differential and integral operators has been developed by
Atangana-Seda for the Caputo-Fabrizio fractional derivative [18]. This technique offers a fresh
approach to modeling some real-world problems and provides additional tools for researchers to
analyze and solve complex problems [19–25].

In the last few years, some researchers studied the behavior and properties of the mathematical
models of Malaria and provided important which offer more nuanced and comprehensive insights into
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the multidimensional nature of the virus’s behavior. For example, Sinan et al. [26] studied theoretical
properties such as existence, uniqueness, and Ulam-Hyers stability for the Malaria model with the
Atangana-Baleanu fractional derivative. Rezapour et al. [27] employed a mathematical framework to
examine the impact of control factors on the fractal-fractional hybrid Mittag-Leffler model of Malaria.
Abioye et al. [28] studied the important properties of a new mathematical model for Malaria and
COVID-19 co-infection dynamics. In [29] the authors proposed a mathematical model to reduce
Malaria by dividing the infected population into two sub-populations: unaware and aware individuals.
They assumed that awareness program growth is proportional to the number of unaware individuals
and that aware individuals avoid mosquito contact. Olaniyi et al. [30] studied a social
hierarchy-structured model to understand the dynamics of Malaria transmission, and they focused on
utilizing mathematical techniques to investigate the intricate relationships between social hierarchy
and the spread of Malaria. Basir and Abraha [31] studied the behavior and some properties of the
mathematical model and optimal control of Malaria using Awareness-Based interventions.
Muhammad et al. [32] studied the existence, uniqueness, and numerical algorithm of the Malaria
transmission model under piecewise derivatives with both kernels. They discuss the stability result for
the proposed model using Ulam-Hyers stability. The models mentioned above have successfully
investigated the qualitative aspects of Malaria, but the issue of crossover behaviors associated with the
disease remains unexplored by researchers thus far.

In this work, we investigate the dynamics of Malaria transmission within a social hierarchy
structure, conduct a comprehensive theoretical analysis, and explore the crossover effect within the
Malaria model by dividing the study interval into two subintervals. In the first subinterval, we employ
classical derivatives to examine the qualitative properties of the Malaria model, while in the second
subinterval, we utilize the Caputo-Fabrizio fractional differential operator to gain insights into the
interaction and influence of different scales on the overall behavior of the Malaria model.

The advantages of using piecewise Caputo-Fabrizio derivatives in mathematical models are their
ability to analyze systems with multi-scale dynamics and capture different temporal scales within a
single model. This enables a comprehensive understanding of system behavior across various time
domains. Incorporating these derivatives provides enhanced capabilities for analyzing and predicting
system behavior, leading to improved decision-making, optimization, and control in real-world
applications.

The novelty and contributions of this study include:

• Integration of piecewise derivatives: The study employs piecewise derivatives in the mathematical
model of Malaria, allowing for the analysis of multi-scale dynamics and the exploration of the
interaction and influence of different scales on the overall behavior of the model.
• Investigation of crossover effects: The study explores the crossover effects within the Malaria

model, shedding light on critical transitions and providing insights into the complex nature of the
disease. This expands knowledge and understanding of Malaria dynamics.
• Empirical analysis of real-world data: The study incorporates an analysis of statistical data on

Malaria cases diagnosed and confirmed by a laboratory in Yemen, providing valuable insights
into the practical implications of the model in a real-world context.
• Comprehensive theoretical analysis: The study conducts a thorough theoretical analysis of the

model, including identifying an invariant region, studying solution positivity, equilibrium points,
and the basic reproduction number. This contributes to a deeper understanding of the behavior
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and properties of the Malaria model within a social hierarchy structure.
• Fractional-order system analysis: The study extends the analysis to fractional calculus,

examining the fractional-order system. This demonstrates the existence, uniqueness, and
stability of solutions, providing insights into the system dynamics at finer temporal scales.
• Numerical solutions and graphical representations: The study presents numerical solutions and

graphical representations of the piecewise fractional-order model, enhancing the understanding
of the model’s behavior and facilitating result interpretation.

Our paper is structured as follows: In Section 2, we describe the mathematical model of Malaria
within the framework of piecewise derivatives. In section 3, we analyze the collected statistical data
on total cases of Malaria that were diagnosed and confirmed by the laboratory in Yemen. In section 4,
we present the behavior and properties of the model such as the identification of an invariant region
and the positivity of solutions as well as equilibrium point and basic reproduction number. The basic
definitions and results that will be necessary for later discussions are present in section 5. Moving on
to Section 6, we analyze the fractional-order system, demonstrating the existence and uniqueness of
the solution as well as stability analysis. Section 7 presents the numerical solutions of the piecewise
fractional-order model. Section 8 focuses on providing graphical representations of the Malaria model.
Finally, we conclude the paper with some concluding remarks. Here, we aim to generalize the Malaria
model studied by [30] within the framework of piecewise derivatives. By incorporating evolutionary
dynamics and examining the various dynamics between humans and mosquito populations within each
social class, our study will provide a comprehensive understanding of Malaria transmission dynamics.
This knowledge will inform the development of effective interventions and policies to control and
mitigate the impact of Malaria, ultimately aiming to reduce the disease burden and improve public
health outcomes. Our model can be expressed as follows:

PCF
0 Dϱ

τSL(τ) = ωRL + ηHSH + (1 − r) λh − ς1SLIv − +ωRL + σHSH (βh + ηL)SL,
PCF
0 Dϱ

τSH(τ) = rλh − bς1SHIv + εRH + ηLSL − (βh + ηH)SH,
PCF
0 Dϱ

τIL(τ) = ς1SLIv − (βh + γ + δ)IL,
PCF
0 Dϱ

τIH(τ) = bς1SHIv − (βh + α + ϕ)IH,
PCF
0 Dϱ

τRL(τ) = γIL − (ω + βh)RL,
PCF
0 Dϱ

τRH(τ) = αIH − (ε + βh)RH,
PCF
0 Dϱ

τSv(τ) = λV − ς2 (IL + θIH)Sv − βvSv,
PCF
0 Dϱ

τIv(τ) = ς2 (IL + θIH)Sv − βvIv,

(1.1)

with the initial conditions SL(0),SH(0),IL(0),IH(0)RL(0),RH(0),Sv(0),Iv(0) > 0. The schematic
diagram of our proposed model is given in Figure 1.

Figure 1. Schematic diagram of our proposed model.
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To investigate the crossover effect within the Malaria model, we divide the interval of study [0,T ]
into two subintervals [0, τ1] and [τ1,T ] and consider that PCF

0 Dϱ
τ represents the classical derivative on

τ ∈ [0, τ1] and Caputo–Fabrizio fractional derivative on τ ∈ [τ1,T ]. Thus, the restructuring of the
model (1.1) as the following:

PCF
0 Dϱ

τY(τ) =
{ d

dτF (τ,Y(τ)) , τ ∈ [0, τ1] ,
CFDϱ

0F (τ,Y(τ)) , τ ∈ [τ1,T ] ,
Y(0) = Y0 > 0,

(1.2)

where

Y(τ) =



SL (τ) ,
SH (τ) ,
IL (τ) ,
IH (τ) ,
RL (τ) ,
RH (τ) ,
Sv (τ) ,
Iv (τ) ,

,Y(0) =



SL (0) ,
SH (0) ,
IL (0) ,
IH (0) ,
RL (0) ,
RH (0) ,
Sv (0) ,
Iv (0) ,

,F (τ,Y(τ)) =



F1 (τ,Y(τ)) ,
F2 (τ,Y(τ)) ,
F3 (τ,Y(τ)) ,
F4 (τ,Y(τ)) ,
F5 (τ,Y(τ)) ,
F6 (τ,Y(τ)) ,
F7 (τ,Y(τ)) ,
F8 (τ,Y(τ)) ,

(1.3)

and

F1 (τ,Y(τ)) = (1 − r) λh − ς1SLIv + ωRL + ηHSH − (βh + ηL)SL,

F2 (τ,Y(τ)) = rλh − bς1SHIv + εRH + ηLSL − (βh + ηH)SH,

F3 (τ,Y(τ)) = ς1SLIv − (βh + γ + δ)IL,

F4 (τ,Y(τ)) = bς1SHIv − (βh + α + ϕ)IH,

F5 (τ,Y(τ)) = γIL − (ω + βh)RL,

F6 (τ,Y(τ)) = αIH − (ε + βh)RH,

F7 (τ,Y(τ)) = λV − ς2 (IL + θIH)Sv − βvSv,

F8 (τ,Y(τ)) = ς2 (IL + θIH)Sv − βvIv. (1.4)

The model (1.1) includes a unique feature and distinguishing factors when compared to existing
models discussed in the current literature. The model (1.1) is a social hierarchy-structured system that
aims to examine the influence of social hierarchy on the dynamics of Malaria disease within
populations of humans and mosquitoes. The total human population in the model (1.1) is stratified
into two main social classes: low and high. This stratification reflects the division of individuals based
on their socioeconomic status, with the low social class representing individuals with lower
socioeconomic backgrounds and high social class representing those with higher socioeconomic
backgrounds. Due to differences in social and economic factors between social classes (Low and
High), such as access to health care, housing conditions, and preventive measures that may affect the
extent of susceptibility to Malaria infection, we divided the study population P(τ) in the model (1.1)
at time τ into two classes as follows:

• Total human population Ph(τ) which divided into three classes as follows

– susceptible humans which are divided into two classes as follows
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* Low social-class SL(τ).

* High social-class SH(τ).

– infectious humans which are divided into two classes as follows

* Low social-class IL(τ).

* High social-class IH(τ)

– recovered humans which are divided into two classes as follows

* Low social-class RL(τ).

* High social-class RH(τ).

• Total mosquito population Pv(τ) which divided into two classes as follows

– Susceptible mosquitoes Sv(τ).
– Infectious mosquitoes Iv(τ).

Hence, Ph(τ) = SL(τ) + IL(τ) + RL(τ) + SH(τ) + IH(τ) + RH(τ) and Pv(τ) = Sv(τ) + Iv(τ).
The model assumes that a portion r of the recruitment rate λh corresponds to the susceptible

individuals from the higher social class. These individuals have unrestricted access to medical
resources but are still susceptible to infection. On the other hand, the remaining fraction, 1 − r,
represents susceptible individuals from the lower social class who face limited or no access to
resources, making them highly vulnerable to Malaria disease. When these susceptible lower social
class individuals come into contact with infectious mosquitoes, they transition to the infectious state
with a transmission probability ς1. Lower-class individuals who become infected transition to the
infectious state and subsequently recover at a rate γ. Once they have recovered, these lower-class
individuals can become susceptible again due to temporary immunity acquired, which occurs at a rate
ω. Additionally, the Malaria-induced death rate for the lower social class population is denoted by δ.

On the contrary, susceptible individuals from the higher social class become infectious after
effective contact occurs at a rate bς1. Here, the modification parameter b represents a reduction in the
transmission of infection within the higher social class population, with 0 < b < 1. Infectious
individuals transition to the recovered state at a rate α, and the acquired immunity gradually
diminishes at a rate ε. For the higher social class population, the disease-induced mortality rate is
denoted by ϕ, where δ > ϕ. Additionally, the natural mortality rate for the human population as a
whole is represented by βh. Regarding the lower social class, susceptible individuals improve their
status at a rate ηL, indicating a potential upward movement within the social hierarchy. On the other
hand, susceptible individuals from the higher social class experience a decline in their social status at
a rate ηH. Both lower and higher social class individuals in the infectious state can transmit the
infection to susceptible mosquitoes with a transmission probability ς2. However, the transmission
from the higher social class is subject to a reduction determined by the modification parameter θ.

The model (1.1) allows for the examination of various dynamics between the human and mosquito
populations within each social class. It can capture interactions such as mosquito feeding preferences,
human mobility patterns, and the effectiveness of control measures in different social classes. By
analyzing the impact of social hierarchy on Malaria dynamics, we can gain insight into the complex
relationship between socioeconomic factors and disease transmission. This knowledge can inform
the development of targeted interventions and policies to reduce Malaria burden, particularly among
vulnerable populations.
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2. Statistical analysis

This section is devoted to analyzing the collected statistical data on total cases of Malaria that were
diagnosed and confirmed by the laboratory in Yemen [33]. Also, to predict the future instances of
the spread of Malaria to draw decision-makers and specialists’ attention to work on monitoring and
combating it. A brief discussion of the significant results obtained was presented. Now, we will
introduce definitions of the statistical methods used:

ARIMA model: ARIMA stands for autoregressive integrated moving average. It is a popular and
widely used time series forecasting model that incorporates autoregressive (AR), differencing (I), and
moving average (MA) components. The ARIMA model is designed to capture and forecast the patterns
and trends observed in time series data. The three components of the ARIMA model are the following:

(1) Autoregressive (AR): This component considers the relationship between the current observation
and a specified number of lagged observations (i.e., previous values in the series). It assumes that
the current value of the series can be predicted based on its past values.

(2) Integrated (I): This component involves differencing the series to make it stationary.
Differencing is the process of computing the differences between consecutive observations in the
time series. It helps remove trends and seasonality from the data, making it suitable for modeling
with AR and MA components.

(3) Moving Average (MA): This component considers the dependency between the current
observation and a residual error term based on a moving average of the lagged forecast errors. It
helps capture the short-term fluctuations and noise in the data.

The ARIMA model is typically denoted as ARIMA (p, d, q), where p represents the order of the
autoregressive component, d represents the order of differencing required to make the series stationary,
and q represents the order of the moving average component.

In the context of time series analysis, estimating coefficients refers to the process of determining
the values of the parameters in a given model. Two commonly used techniques for estimating
coefficients are:

Autocorrelation Function (ACF): The ACF is a statistical tool used to assess the correlation
between a time series and its lagged values. It measures the linear relationship between a time series
observation and its past observations at different lags. By examining the ACF plot, one can identify
the significant lags and infer the appropriate order of the autoregressive or moving average
components in a model.

Partial Autocorrelation Function (PACF): The PACF measures the correlation between an
observation and its lagged values while controlling for the influence of intermediate lags. It helps
identify the direct relationship between an observation and its specific lagged values, excluding the
influence of other lags. The PACF plot displays the partial correlation coefficients at different lags.

Estimating coefficients, whether through ACF or PACF involves finding the parameter values that
best fit the observed data. This estimation process is crucial for accurately modeling and forecasting
time series data and is typically performed using statistical techniques such as maximum likelihood
estimation (MLE) or least squares estimation (LSE).
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2.1. Significance of the statistical methods used

The usefulness of the methods used to predict the behavior of cases for different phenomena over
time to develop a system capable of predicting cases that will occur in the future. The models used in
predicting the future must be understandable and straightforward to be implemented by
decision-makers efficiently [34, 35]. By fitting an ARIMA model to historical time series data, one
can estimate the model parameters and use the model to make future predictions or forecast future
values of the series. The ARIMA model is widely used in various fields, including finance,
economics, and climate science, for analyzing and predicting time series data. Statistical modelling
plays a crucial role in the field of epidemiology, serving as a potent tool for examining the dynamics
of Malaria disease and forecasting potential future trends. The utilization of the ARIMA model is
particularly significant in predicting the occurrence of Malaria, as it leverages historical data to
generate forecast future patterns [36]. This predictive capability holds immense importance in public
health planning, enabling authorities to anticipate the likely occurrence of new cases. Consequently, it
facilitates timely interventions and the provision of healthcare services.

2.2. Descriptive data

Table 1 displays the total diagnosed and laboratory-confirmed Malaria cases, which were collected
from epidemiological surveillance data issued by the Central Bureau of Statistics. It is noted that the
fluctuation in the total cases examined by the laboratory increased and decreased. We find a decrease
in the total cases from 3246504 cases in 2000 to 51992 cases in 2004, with a relative decline (98.4%).
After that, the number of Malaria cases increased during the period (2005–2010), reaching 1988963
cases in 2010, then decreased cases during the period (2011–2015), and then rose again for the two
years (2016 and 2017). After that, it decreased continuously during the period (2018–2021), as the
year 2021 reached 212132 cases. We find that the total number of people infected with Malaria
decreased from 3246504 in 2000 to 212132 cases in 2021, with 93% during the entire
period (2000–2021). The graphical representation of this trend can be observed in Figure 2.

Table 1. Total clinically diagnosed and laboratory-confirmed malaria cases [33].

Years Clinical and tested cases Years Clinical and tested cases
2000 3246504 2011 142152
2001 3000000 2012 153790
2002 1344495 2013 149433
2003 3000000 2014 788866
2004 51992 2015 741517
2005 156413 2016 1193908
2006 162270 2017 1193908
2007 155692 2018 192901
2008 155307 2019 369432
2009 134492 2020 216633
2010 198963 2021 212132
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Figure 2. Total clinically diagnosed and laboratory-confirmed malaria cases [33].

2.3. Forecasts and data analysis

The main purpose and benefit of time series models are to use them in the estimation process
of the variables’ behavior and various phenomena and their future trends in epidemiology, diseases,
economics, management, climate sciences, and other sciences. Recently, mathematical and statistical
modeling has been used to predict the behavior and trends of some diseases and epidemics [37]. These
models include four basic procedures for the prediction process: determining the model, followed by
estimation of unknown parameters, then the diagnostic process and the last stage is the prediction
process [38]. The models (MA, AR, ARMA, ARIMA) are within the time series models most used for
forecasting [39]. The data collected about the total Malaria cases from 2000 to 2020 were investigated.
The assumptions and tests for the stability of these data were examined to be used in the prediction
process. Estimating coefficients (APCF & ACF) and unit root testing Augmented, Dickey-Fuller &
Phillips-Perron showed that the time series is unstable, which means that the general trend exists, as
shown in Figure 2. After taking the first differences shown in Figure 3, as for the unit root test, the
calculated values are more significant than the critical values for all confidence levels shown in Table 2.

Figure 3. Transforming cases of malaria data to the first difference [33].

Table 2. The test statistic (Phillips-Perron & Augmented Dickey-Fuller).

Test critical values
Test T-Statistic Prob. 0.01 0.05 0.10
Phillips-Perron -8.040412 0.0000 -4.532598 -3.673616 -3.277364
Augmented Dickey-Fuller -7.955626 0.0000 -4.532598 -3.673616 -3.277364
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The probabilistic values (Prob. = 0.0000) are less than 5%. Therefore, the null hypothesis can be
rejected, which states that the time series has a unit root; the alternative hypothesis was accepted that
the time series does not have a unit root. Therefore the time series of Malaria cases is stable after
taking the first differences. Furthermore, we examined the autocorrelation and partial autocorrelation
functions, and the following models can be proposed for prediction: ARIMA(1,1,1), ARIMA(1,1,0),
ARIMA(0,1,1), and ARIMA(4,1,1). All coefficients of the proposed models have been estimated
using the method of ordinary least squares (OLS). The ARIMA (1,1,0) model which is considered the
best was selected according to specific criteria, including that the model’s coefficients are statistically
significant, and the coefficient of determination is greater than the rest of the models. It achieves the
slightest variance, less volatility, and the lowest value of the indicator AIC, as shown in Table 3.

Table 3. Result of ARIMA(p,d,q).

MODELS SIGMASQ Adjusted R2 AIC SC
ARIMA(1,1,1) 0.98 0.04 30.4 30.6
ARIMA(1,1,0) 0.56 0.20 30.1 30.3
ARIMA(0,1,1) 0.79 0.11 30.2 30.4
ARIMA(4,1,1) 0.96 0.08 30.3 30.5

In addition, we examined the best model through the residual test to determine the extent to which
the original observations match the estimated values from the candidate model and the validity of
the model’s hypotheses. The strength of the appropriateness of the selected statistical model was
also verified through residual randomness, the shape of the autocorrelation, and partial autocorrelation
functions. Figure 4 shows no autocorrelation between errors. That is, autocorrelation and partial
autocorrelation are within confidence limits, and it can be said that the residuals are white noise.

Figure 4. ACF and PACF of Malaria residual series.

The estimated and the actual values were verified by drawing them together as shown in Figure 5,
which shows the closeness of the estimated values to the actual values as well as to the quality of the
model. The selected and problem-free ARIMA (1,1,0) model was applied to predict the behavior and
future trends of the total Malaria cases of infected persons. A decrease in Malaria cases in Yemen was
observed in the future, as shown in Figure 6.
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Figure 5. Actual, fitted, and residual of the malaria.

Figure 6. Predicting the total malaria cases from 2022 to 2024.

3. Fundamental characteristics of the model (1.1)

The fundamental characteristics of the Malaria model (1.1), which incorporates social hierarchy
and tracks the interactions between humans and mosquito populations are established based on the
following outcomes: the identification of an invariant region and the positivity of solutions. These
results provide essential insights into the behavior and properties of the model.

3.1. Non-negativity and boundedness of the solutions

In this section, we discuss the effects of awareness on the transmission dynamics of Malaria,
represented by SL,IL,RL,SH,IH,RH,Sv,Iv that will be analyzed within a biologically and
mathematically feasible region such that this region should be suitable for the habitation of both
human and mosquito populations. In the following theorems, we demonstrate the boundedness and
positivity of solutions for the piecewise fractional model (1.1) within a viable region
Ω = Ωh ×ΩV ⊂ R

6
+ × R

2
+, where

Ωh =

{
(SL,IL,RL,SH,IH,RH) ;SL + IL + RL + SH + IH + RH ≤

λh

βh

}
,

and

ΩV =

{
(Sv,Iv) ;Sv + Iv ≤

λV

βv

}
.

Theorem 3.1. The region Ω is positively invariant with respect to the piecewise fractional model (1.1).
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Proof. First, at the time τ, the piecewise derivative of the total human population is

PCF
0 Dϱ

τPh(τ) = PCF
0 Dϱ

τ (SL(τ) + IL(τ) + RL(τ) + SH(τ) + IH(τ) + RH(τ))

= (1 − r) λh − ς1SLIv + ωRL + ηHSH − (βh + ηL)SL + rλh

−bς1SHIv + εRH + ηLSL − (βh + ηH)SH + ς1SLIv

− (βh + γ + δ)IL + bς1SHIv − (βh + α + ϕ)IH

+γIL − (ω + βh)RL + αIH − (ε + βh)RH + λV

−ς2 (IL + θIH)Sv − βvSv + ς2 (IL + θIH)Sv − βvIv

= λh − βhPh(τ) − (δIL + ϕIH) , (3.1)

where
Ph(τ) = SL(τ) + IL(τ) + RL(τ) + SH(τ) + IH(τ) + RH(τ).

Clearly,
λh − βhPh(τ) − (δIL + ϕIH) ≤ λh − βhPh(τ).

From (3.1), we have
PCF
0 Dϱ

τPh(τ) ≤ λh − βhPh(τ). (3.2)

By definition 4.1, the inequality (3.2), can be rewritten in two cases as follows:{ d
dτPh(τ) ≤ λh − βhPh(τ), τ ∈ [0, τ1] ,

CFDϱ
0Ph(τ) ≤ λh − βhPh(τ), τ ∈ [τ1,T ] .

Case (1): For τ ∈ [0, τ1], we have

d
dτ
Ph(τ) ≤ λh − βhPh(τ).

Thus,

Ph(τ) ≤ Ph(0)e−βhτ +
λh

βh

(
1 − e−βhτ

)
.

Consequently, Ph(τ) is bounded by λh
βh
.

Case (2): For τ ∈ [τ1,T ], we have

CFDϱ
0Ph(τ) ≤ λh − βhPh(τ). (3.3)

Apply the Laplace transform on both sides of (3.3), we obtain

L
[
CFDϱ

0Ph(τ)
]

(s) ≤
λh

s
− βhL [Ph(τ)] (s) .

Further simplification yields

sPh(s)
s + ϱ (1 − s)

+ βhPh(s) ≤ λhs−1 +
Ph(0)

s + ϱ (1 − s)
,
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where Ph(s) = L [Ph(τ)] (s) and Ph(0) is Ph at τ = 0. Thus,

Ph(s) ≤
λh (1 − ϱ) s0

(1 + βh − βhϱ)
(
s + βhϱ

(1+βh−βhϱ)

) + λhϱs1−2

(1 + βh − βhϱ)
(
s + βhϱ

(1+βh−βhϱ)

)
+

Ph(0)

(1 + βh − βhϱ)
(
s + βhϱ

(1+βh−βhϱ)

) .
Applying the inverse Laplace transformation yields

Ph(τ) ≤
λh (1 − ϱ) s0

(1 + βh − βhϱ)
E1,1 (−Mτ) +

λhϱ

(1 + βh − βhϱ)
τE1,2 (−Mτ)

+
Ph(0)

(1 + βh − βhϱ)
E1,1 (−Mτ) , (3.4)

whereM = − βhϱ

(1+βh−βhϱ) and Eα,ς is the Mittag-Leffler function with two parameters α, ς > 0. We utilize
the asymptotic behavior of the Mittag-Leffler function in the inequality(3.4). As τ → ∞, we conclude
that Ph(τ) ≤ λh

βh
. Consequently, Ph(τ) is bounded by λh

βh
.

From the above cases, we conclude that Ph(τ) is bounded by λh
βh

within the region Ωh. In the same
manner, we can prove that thePv(τ) is bounded within the regionΩV .As a result, the solution trajectory
of the model (1.1) is bounded within region Ω, demonstrating the positive invariance of the region
Ω. □

Theorem 3.2. Under the assumption of the specified set of non-negative initial conditions, the solutions
of the model (1.1) are positive.

Proof. Let us examine the first equation of model (1.1), which can be expressed as follows

PCF
0 Dϱ

τSL(τ) = (1 − r) λh + ωRL + ηHSH − (ς1Iv + βh + ηL)SL.

Then, we have
PCF
0 Dϱ

τSL(τ) ≥ − (ς1Iv + βh + ηL)SL. (3.5)

By definition 4.1, the inequality (3.5), can be rewritten in two cases as follows{ d
dτSL(τ) ≥ − (ς1Iv + βh + ηL)SL, τ ∈ [0, τ1] ,

CFDϱ
0SL(τ) ≥ − (ς1Iv + βh + ηL)SL, τ ∈ [τ1,T ] .

Case (1): For τ ∈ [0, τ1], we have

d
dτ
SL(τ) ≥ − (ς1Iv + βh + ηL)SL,

which on integration gives

SL(τ) ≥ SL(0) exp
(
−

∫ τ

0
(ς1Iv (x) + βh + ηL)SL

)
dx > 0.

This proves the positivity of solution SL(τ) in case τ ∈ [0, τ1] .
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Case (2): For τ ∈ [τ1,T ], we have

CFDϱ
0SL(τ) ≥ − (ς1Iv + βh + ηL)SL.

Since all solutions are bounded. Let the solution Iv is bounded by ℘. Then, we get

PCF
0 Dϱ

τSL(τ) ≥ −ℓSL, (3.6)

where ℓ = sup {ς1℘ + βh + ηL} .By applying the Laplace transform to both sides of equation (3.6), we
obtain

sL [SL(τ)] (s) − SL(0)
s + ϱ (1 − s)

≥ −ℓL [SL(τ)] (s) .

Thus, we get

L [SL(τ)] (s) ≥
SL(0)

(1 − ℓ − ℓϱ)
(
s + ℓϱ

1−ℓ−ℓϱ

) .
Applying the inverse Laplace transformation, we have

SL(τ) ≥
SL(0)

(1 − ℓ − ℓϱ)
E1,1

(
−

ℓϱ

1 − ℓ − ℓϱ
τ

)
.

Since SL(0) > 0 and 0 ≤ E1,1 ≤ 1, we conclude that SL(τ) is positive solution in case τ ∈ [τ1,T ] . Thus,
by above cases we conclude that SL(τ) is positive solution for τ ∈ [0,T ] . By same techniques, we can
prove that solutions of the model (1.1) are positive. □

3.2. Equilibrium point and basic reproduction number

The equilibrium points help characterize the stable states of disease dynamics, while the basic
reproduction number provides a measure of the disease’s transmission potential. Both concepts are
essential for understanding and managing infectious diseases, enabling informed decision-making in
public health interventions and control strategies [40]. The disease-free equilibrium point of
model (1.1) obtained by putting{

PCF
0 Dϱ

τSL(τ) =PCF
0 Dϱ

τSH(τ) =PCF
0 Dϱ

τIL(τ) =PCF
0 Dϱ

τIH(τ) = 0
PCF
0 Dϱ

τRL(τ) =PCF
0 Dϱ

τRH(τ) =PCF
0 Dϱ

τSv(τ) =PCF
0 Dϱ

τIv(τ) = 0.

In view of the above equations, the disease-free equilibrium point of model (1.1) is given as

ℓ0 =
(
S0

L,S
0
H,I

0
L,I

0
H,R

0
L,R

0
H,S

0
v ,I

0
v

)
=

(
λh

βh
−
λh

βh

[
rβh + ηL

ηL + ηH + βh

]
,
λh

βh

[
rβh + ηL

ηL + ηH + βh

]
, 0, 0, 0, 0,

λV

βv
, 0

)
.

To compute the value of R0 using the next-generation matrix method, let Y = (IL,IH,Iv)T be the
infected compartments 

PCF
0 Dϱ

τIL(τ) = ς1SLIv − (βh + γ + δ)IL,
PCF
0 Dϱ

τIH(τ) = bς1SHIv − (βh + α + ϕ)IH,
PCF
0 Dϱ

τIv(τ) = ς2 (IL + θIH)Sv − βvIv.
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Then, the above model can be written as PCF
0 Dϱ

τY (τ) =F (τ) −V (τ) , where

F (x) =


ς1SLIv

bς1SHIv

ς2 (Iv + θIH)

 ,V (x) =


(βh + γ + δ)IL

(βh + α + ϕ)IH

βvIv

 .
The expressions F (x) andV (x) represents the rate of new infection appearance in the population and
the rate of individuals’ transfer within the infectious classes, respectively. The Jacobian matrices F
and V , corresponding to F (x) andV (x) respectively, can be expressed as follows

F =


0 0 ς1S

0
L

0 0 bς1S
0
H

ς2S
0
v ς2θS

0
v 0

 ,

V =


βh + γ + δ 0 0

0 βh + α + ϕ 0
0 0 βv

 .
Therefore, using the fact that R0 = ρ

(
FV−1

)
, we obtain the basic reproduction number R0 for the

model (1.1)

R0 =

√
bς1S

0
Hς2θS0

v

(βh + α + ϕ) βv
+

ς1S
0
Lς2S

0
v

(βh + γ + δ) βv
. (3.7)

The Eq (3.7) defines the basic reproduction number R0, which quantifies the number of secondary
Malaria cases generated by a single infectious individual, regardless of their social class or mosquito
category, within populations where all individuals are susceptible to the disease. By examining the
parameters associated with R0, as defined in Eq (3.7), we can analyze their impacts and gain insights
into intervention strategies needed to control and prevent Malaria transmission within a population
structured by social hierarchy. Here in Figure 7, we describe 3D profile against various parameters of
the basic reproductive number computed in (3.7).
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Figure 7. 3D profile of R0.
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3.3. Stability analysis

Stability analysis in the Ulam sense plays a vital role in understanding and managing dengue
transmission. It facilitates epidemic control, prediction of outbreaks, development of optimal control
strategies, robustness assessment, and model validation. By studying the stability properties of the
dengue model, we gain valuable insights into the behavior of the disease and can make informed
decisions to prevent and control its spread. Before giving the fundamental theorem of stability, we
restructure the model (1.1) as a compact initial value problem as follows:

PCF
0 Dϱ

τY(τ) =
{ d

dτF (τ,Y(τ)) , τ ∈ [0, τ1] ,
CFDϱ

0F (τ,Y(τ)) , τ ∈ [τ1,T ] ,
Y(0) = Y0 > 0,

(3.8)

where Y(τ),Y(0) and F (τ,Y(τ)) are defined in (1.3) and (1.4). The system (3.8) can be converted into
the following fractional form (see [18])

Y (τ) =


Y (0) +

∫ τ

0
F (κ,Y(κ)) dκ, if τ ∈ [0, τ1] ,

Y(τ1) + 1−ϱ
Υ(ϱ)F (τ,Y(τ)) + ϱ

Υ(ϱ)

∫ τ

τ1
F (κ,Y(κ)) dκ, if τ ∈ [τ1,T ] .

Definition 3.3. The piecewise fractional model (1.1) of Malaria is Ulam-Hyers stable if there is a
constant number M > 0 such that, for each ε = max (ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8) > 0 and for each
Ỹ ∈ E of the inequality ∣∣∣PCF

0 Dϱ
τỸ(τ) − F(τ, Ỹ(τ))

∣∣∣ ≤ ε, (3.9)

there is Y ∈ E satisfying piecewise CF-fractional-order model (1.1) of Malaria with∥∥∥Ỹ − Y∥∥∥ ≤ Mε.
Remark 3.4. Ỹ ∈ E is a solution of the inequality∣∣∣PCF

0 Dϱ
τỸ(τ) − F(τ, Ỹ(τ))

∣∣∣ ≤ ε
if and only if there exists a small perturbation Z ∈ E such that for each τ ∈ J , |Z(τ)| ≤ ε, we have

PCF
0 Dϱ

τỸ(τ) = F(τ, Ỹ(τ)) + Z(τ),

where
Z(τ) = (z1(τ), z2(τ), z3(τ), z4(τ), z5(τ), z6(τ), z7(τ), z8(τ))T .

Lemma 3.5. Let ϱ > 0. For every ε > 0. Suppose that Ỹ ∈ E satisfies (3.9). Then, Ỹ satisfies the
following integral inequalities∣∣∣∣∣Ỹ(τ) − Ỹ (0) −

∫ τ

0
F
(
κ, Ỹ(κ)

)
dκ

∣∣∣∣∣ ≤ ετ1, τ ∈ [0, τ1] ,

and ∣∣∣∣∣∣Ỹ(τ) − Ỹ(τ1) −
1 − ϱ
Υ(ϱ)

F
(
τ, Ỹ(τ)

)
−

ϱ

Υ(ϱ)

∫ τ

τ1

F
(
κ, Ỹ(κ)

)
dκ

∣∣∣∣∣∣
≤ ε

(
1 − ϱ
Υ(ϱ)

−
ϱ

Υ(ϱ)
(T − τ1)

)
, τ ∈ [τ1,T ] .
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Proof. Since Ỹ satisfies (3.9), then by Remark 3.4, we have

PCF
0 Dϱ

τỸ(τ) = F(τ, Ỹ(τ)) + Z(τ).

It follows that

Ỹ (τ) =


Ỹ (0) +

∫ τ

0

(
F
(
κ, Ỹ(κ)

)
+ Z(κ)

)
dκ, τ ∈ [0, τ1] ,

Ỹ(τ1) + 1−ϱ
Υ(ϱ)

(
F
(
τ, Ỹ(τ)

)
+ Z(τ)

)
+

ϱ

Υ(ϱ)

∫ τ

τ1

(
F
(
κ, Ỹ(κ)

)
+ Z(κ)

)
dκ, τ ∈ [τ1,T ] .

Then, we estimate ∣∣∣∣∣Ỹ(τ) − Ỹ (0) −
∫ τ

0
F
(
κ, Ỹ(κ)

)
dκ

∣∣∣∣∣ ≤ ∫ τ

0
Z(κ)dκ, τ ∈ [0, τ1] ,

and ∣∣∣∣∣∣Ỹ(τ) − Ỹ(τ1) −
1 − ϱ
Υ(ϱ)

F
(
τ, Ỹ(τ)

)
−

ϱ

Υ(ϱ)

∫ τ

τ1

F
(
κ, Ỹ(κ)

)
dκ

∣∣∣∣∣∣
≤

1 − ϱ
Υ(ϱ)

Z (τ) −
ϱ

Υ(ϱ)

∫ τ

τ1

Z(κ)dκ, τ ∈ [τ1,T ] .

Thus ∣∣∣∣∣Ỹ(τ) − Ỹ (0) −
∫ τ

0
F
(
κ, Ỹ(κ)

)
dκ

∣∣∣∣∣ ≤ ετ1, τ ∈ [0, τ1] ,

and ∣∣∣∣∣∣Ỹ(τ) − Ỹ(τ1) −
1 − ϱ
Υ(ϱ)

F
(
τ, Ỹ(τ)

)
−

ϱ

Υ(ϱ)

∫ τ

τ1

F
(
κ, Ỹ(κ)

)
dκ

∣∣∣∣∣∣
≤ ε

(
1 − ϱ
Υ(ϱ)

−
ϱ

Υ(ϱ)
(T − τ1)

)
, τ ∈ [τ1,T ] .

□

Theorem 3.6. Assume that for any Y1,Y2 ∈ E and τ ∈ J , there exists constant number ψ > 0 such
that

|F(τ,Y1(τ)) − F(τ,Y2(τ))| ≤ ψ |Y1(τ) − Y2(τ)| . (3.10)

If

M = max
{
τ1ψ,

1 − ϱ
Υ(ϱ)

ψ +
ϱ

Υ(ϱ)
(T − τ1)ψ

}
< 1,

then the piecewise fractional model (1.1) of Malaria will be UH stable.

Proof. Let ε > 0 and Ỹ ∈ E be satisfying (3.9) and let Y ∈ E be the unique solution of piecewise
fractional model (1.1) of Malaria. It implies that

Y (τ) =


Y (0) +

∫ τ

0
F (κ,Y(κ)) dκ, τ ∈ [0, τ1] ,

Y(τ1) + 1−ϱ
Υ(ϱ)F (τ,Y(τ)) + ϱ

Υ(ϱ)

∫ τ

τ1
F (κ,Y(κ)) dκ, τ ∈ [τ1,T ] .
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Thus ∣∣∣Ỹ (τ) − Y(τ)
∣∣∣ = ∣∣∣∣∣Ỹ (τ) − Y (0) −

∫ τ

0
F (κ,Y(κ)) dκ

∣∣∣∣∣ , τ ∈ [0, τ1] , (3.11)

and

∣∣∣Ỹ (τ) − Y(τ)
∣∣∣ = ∣∣∣∣∣∣Ỹ (τ) − Y(τ1) −

1 − ϱ
Υ(ϱ)

F (τ,Y(τ)) −
ϱ

Υ(ϱ)

∫ τ

τ1

F (κ,Y(κ)) dκ

∣∣∣∣∣∣ , τ ∈ [τ1,T ] . (3.12)

Hence, from (3.10) and Lemma 3.5, we have two cases as follows:
Case (1): τ ∈ [0, τ1] . The equation (3.11) becomes

∣∣∣Ỹ (τ) − Y(τ)
∣∣∣ ≤ ∣∣∣∣∣Ỹ (τ) − Ỹ (0) −

∫ τ

0
F
(
κ, Ỹ(κ)

)
dκ

∣∣∣∣∣
+

∫ τ

0

∣∣∣∣F (κ, Ỹ(κ)
)
− F (κ,Y(κ))

∣∣∣∣ dκ
≤ ετ1 + ψ

∥∥∥Ỹ − Y∥∥∥ τ1,

which implies ∥∥∥Ỹ − Y∥∥∥ ≤ ετ1

1 − ψτ1
. (3.13)

Case (2): τ ∈ [τ1,T ] . The equation (3.12) becomes

∣∣∣Ỹ (τ) − Y(τ)
∣∣∣ ≤ ∣∣∣∣∣∣Ỹ (τ) − Ỹ(τ1) −

1 − ϱ
Υ(ϱ)

F
(
τ, Ỹ(τ)

)
−

ϱ

Υ(ϱ)

∫ τ

τ1

F
(
κ, Ỹ(κ)

)
dκ

∣∣∣∣∣∣
+

1 − ϱ
Υ(ϱ)

∣∣∣∣F (τ, Ỹ(τ)
)
− F (τ,Y(τ))

∣∣∣∣
+

ϱ

Υ(ϱ)

∫ τ

τ1

∣∣∣∣F (κ, Ỹ(κ)
)
− F (κ,Y(κ))

∣∣∣∣ dκ
≤ ε

(
1 − ϱ
Υ(ϱ)

−
ϱ

Υ(ϱ)
(T − τ1)

)
+

[
1 − ϱ
Υ(ϱ)

+
ϱ

Υ(ϱ)
(T − τ1)

]
ψ

∥∥∥Ỹ − Y∥∥∥ ,
which implies ∥∥∥Ỹ − Y∥∥∥ ≤ ε

(
1−ϱ
Υ(ϱ) −

ϱ

Υ(ϱ) (T − τ1)
)

1 −
[

1−ϱ
Υ(ϱ) +

ϱ

Υ(ϱ) (T − τ1)
]
ψ
. (3.14)

From (3.13) and (3.14), we get ∥∥∥Ỹ − Y∥∥∥ ≤ Mε,
where

M = max

 τ1

1 − ψτ1
,

(
1−ϱ
Υ(ϱ) −

ϱ

Υ(ϱ) (T − τ1)
)

1 −
[

1−ϱ
Υ(ϱ) +

ϱ

Υ(ϱ) (T − τ1)
]
ψ

 > 0.

Hence, the piecewise fractional model (1.1) of Malaria is UH stable. □
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4. Existence and uniqueness of model (1.1)

In this part, we address the existence and uniqueness of the solution for piecewise fractional
model (1.1) of Malaria by utilizing the fixed point technique. We present some definitions and basic
auxiliary results of piecewise derivative and integral with classical and Caputo-Fabrizio that are
required throughout our paper. Let J = [0, τ] ⊂ R+, we define the Banach space
E = C (J ,R+) ×C (J ,R+) ×C (J ,R+) ×C (J ,R+) ×C (J ,R+) ×C (J ,R+) ×C (J ,R+) ×C (J ,R+)
under the norm

∥Y∥ = ∥SL,SH,IL,IH,RL,RH,Sv,Iv∥

= sup {|SL(τ)| + |SH(τ)| + |IL(τ)| + |IH(τ)| + |RL(τ)| + |RH(τ)| + |Sv(τ)| + |Iv(τ)|} ,

where SL,SH,IL,IH,RL,RH,Sv,Iv ∈ C (J ,R+) .

Definition 4.1. [18] The piecewise derivative, incorporating both classical and Caputo-Fabrizio can
be defined as follows:

PCF
0 Dϱ

τY(τ) =
{ d

dτY(τ), τ ∈ [0, τ1] ,
CFDϱ

0Y(τ), τ ∈ [τ1,T ]

where
i) PCF

0 Dϱ
τY(τ) represents the classical derivative on τ ∈ [0, τ1] and Caputo–Fabrizio fractional

derivative on τ ∈ [τ1,T ].
ii) d

dτY(τ) is the classical derivative on τ ∈ [0, τ1] .
iii) CFDϱ

0Y(τ) is the Caputo–Fabrizio fractional derivative on τ ∈ [τ1,T ] .

Definition 4.2. [ [18] Definition 8] Let f be continuous. A piecewise integral of f with respect to Y is
given as

PCF
0 IϱτY(τ) =

{ ∫ τ

0
Y(τ)dτ, τ ∈ [0, τ1] ,

CFIϱY(τ), τ ∈ [τ1,T ] ,

where
i) PCF

0 Iϱτ represents classical integral on τ ∈ [0, τ1] and Caputo–Fabrizio fractional integral on
τ ∈ [τ1,T ].

ii)
∫ τ

0
Y(s)ds is the classical integral on τ ∈ [0, τ1].

iii) CFIϱY(τ) = 1−ϱ
Υ(ϱ)Y(τ) + ϱ

Υ(ϱ)

∫ τ

τ1
Y(s)ds is the Caputo–Fabrizio integral on τ ∈ [τ1,T ].

Clearly, the model (1.2) can be converted into the following fractional form (see [18]):

Y (τ) =

 Y (0) +
∫ τ

0
F (κ,Y(κ)) dκ, if τ ∈ [0, τ1] ,

Y(τ1) + 1−ϱ
Υ(ϱ)F (τ,Y(τ)) + ϱ

Υ(ϱ)

∫ τ

τ1
F (κ,Y(κ)) dκ, if τ ∈ [τ1,T ] .

(4.1)

To transform the model (1.2) into the fixed point problem, we define the operator Q : E → E by

Q (Y (τ)) =

 Y (0) +
∫ τ

0
F (κ,Y(κ)) dκ, if τ ∈ [0, τ1] ,

Y(τ1) + 1−ϱ
Υ(ϱ)F (τ,Y(τ)) + ϱ

Υ(ϱ)

∫ τ

τ1
F (κ,Y(κ)) dκ, if τ ∈ [τ1,T ] .

(4.2)

In the following theorem, we shall apply the Schauder fixed-point theorem to prove the existence
result.
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Theorem 4.3. Assume that the function F : J × E → R is continuous and there exist two constants
µ, ℏ > 0 such that

|F (τ,Y(τ))| ≤ µ + |Y(τ)| ℏ.

Then, the piecewise fractional model (1.1) of Malaria has a solution, provided that

0 < max
{
ℏ∗τ1,

(
1 − ϱ
Υ(ϱ)

+
ϱ

Υ(ϱ)
T
)
ℏ∗

}
< 1.

Proof. First, we will prove that Q : E → E defined by (4.2) is a completely continuous operator. By
considering the definition of the operator Q and the continuity of the functions F, we can conclude that
Q is continuous. Let Q ⊂ E be a bounded set. Then, for all Y ∈ Q, there exists ∆ > 0, such that
|F (τ,Y(τ))| ≤ ∆, τ ∈ [0,T ] .Thus, for any Y ∈ Q, we have two cases as follows:

Case (1): For τ ∈ [0, τ1] and Y ∈ Q, we have

∥Q (Y)∥ ≤ |Y (0)| + ∆τ1 < ∞. (4.3)

Hence, the operator Q is uniformly bounded for any τ ∈ [0, τ1] .
Case (2): For τ ∈ [τ1,T ] and Y ∈ Q, we have

∥Q (Y)∥ ≤ |Y(τ1)| +
(
1 − ϱ
Υ(ϱ)

+
ϱ

Υ(ϱ)
(τ − τ1)

)
∆ < ∞. (4.4)

Hence, the operator Q is uniformly bounded for any τ ∈
[
ϱ1,T

]
.

By (4.3) and (4.4), we conclude that the operator Q is uniformly bounded in the interval [0,T ] .
Now, we show that Q is equicontinuous. We have two cases as follows:

Case (1): For τ ∈ [0, τ1] , 0 ≤ τa < τb ≤ τ1 and Y ∈ Q, we have

∥Q (Y (τb)) − Q (Y (τa))∥ ≤ (τb − τa)∆. (4.5)

It is clear that, when τb − τa → 0, the right-hand sides of Eq (4.5) tend to zero.
Case (2): For τ ∈ [τ1,T ] , τ1 ≤ τa < τb ≤ T and Y ∈ Q, we have

∥Q (Y (τb)) − Q (Y (τa))∥ ≤
ϱ∆

Υ(ϱ)
(τb − τa). (4.6)

It is clear that, when τb − τa → 0, the right-hand sides of Eq. (4.6) tend to zero. Thus, from Eqs (4.5)
and (4.6), we conclude that the operator Q is equicontinuous and therefore it is completely continuous.
Finally, we show, the following set Z is bounded

Z = {Y ∈ Q : Y (τ) = ϵQ (Y (τ)) , 0 ≤ ϵ ≤ 1} .

Case (1): For τ ∈ [0, τ1] and Y ∈ Z, we have

|Y (τ)| = |ϵQ (Y (τ))| ≤ |Y (0)| +
∫ τ

0
|F (κ,Y(κ))| dκ

≤ |Y (0)| + (µ + ∥Y∥ ℏ) τ1

≤ |Y (0)| + (µ∗ + ∥Y∥ ℏ∗) τ1. (4.7)
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Consequently, for all τ ∈ [τ1,T ], we have

∥Y∥ ≤
|Y (0)| + µ∗τ1

1 − ℏ∗τ1
. (4.8)

Thus, the set Z is bounded in case τ ∈ [0, τ1] .
Case (2): For τ ∈ [τ1,T ] and Y ∈ Z, we have

|Y (τ)| ≤ |Y(τ1)| +
(
1 − ϱ
Υ(ϱ)

+
ϱ

Υ(ϱ)
T
)

(µ∗ + ∥Y∥ ℏ∗) . (4.9)

Consequently, for all τ ∈ [τ1,T ], we have

∥Y∥ ≤
|Y(τ1)| +

(
1−ϱ
Υ(ϱ) +

ϱ

Υ(ϱ)T
)
µ∗

1 −
(

1−ϱ
Υ(ϱ) +

ϱ

Υ(ϱ)T
)
ℏ∗

. (4.10)

Hence, from (4.8) and (4.10), we conclude that the set Z is bounded in the interval [0,T ] . in view of
Schauder fixed point theorem, the operator Q has at least one fixed point. Therefore, the piecewise
fractional model (1.1) of Malaria has at least one solution. □

Theorem 4.4. Assume that the function F : J × E → R is continuous and there exist constant ψ > 0
such that

|F (τ,Y1(τ)) − F (τ,Y2(τ))| ≤ ψ |Y1(τ) − Y2(τ)| ,Y1,Y2 ∈ E.

If

0 < max
{
ψτ1,

ψ (1 − ϱ)
Υ(ϱ)

+
ϱ(T − τ1)ψ
Υ(ϱ)

}
< 1, (4.11)

then, the piecewise fractional model (1.1) of Malaria has unique solution.

Proof. Take the operator Q : E → E defined by (4.2).
Case (1): For τ ∈ [0, τ1] , Y1,Y2 ∈ Ψζ , we have

|QY1(τ) − QY2(τ)| ≤ sup
τ∈[0,τ1]

∫ τ

0
|F(κ,Y1(κ)) − F(κ,Y2(κ))| dκ

≤ ψ

∫ τ

0
|Y1(κ) − Y2(κ)| dκ.

Thus
∥QY1 − QY2∥ ≤ ψτ1 ∥Y1 − Y2∥ .

Case (2): For τ ∈ [τ1,T ] , Y1,Y2 ∈ Ψζ with (H2), we have

|QY1(τ) − QY2(τ)| ≤
1 − ϱ
Υ(ϱ)

|F(τ,Y1(τ)) − F(τ,Y2(τ))|

+
ϱ

Υ(ϱ)

∫ τ

τ1

|F(κ,Y1(κ)) − F(κ,Y2(κ))| dκ

≤
1 − ϱ
Υ(ϱ)

ψ |Y1(τ) − Y2(τ)| +
ϱψ

Υ(ϱ)

∫ τ

τ1

|Y1(κ) − Y2(κ)| dκ.
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Hence

∥QY1 − QY2∥ ≤

[
ψ (1 − ϱ)
Υ(ϱ)

+
ϱ(T − τ1)ψ
Υ(ϱ)

]
∥Y1 − Y2∥ .

From the above cases, we get

∥QY1 − QY2∥ ≤ max
{
ψτ1,

ψ (1 − ϱ)
Υ(ϱ)

+
ϱ(T − τ1)ψ
Υ(ϱ)

}
∥Y1 − Y2∥ .

Thus, Q is contraction due to (4.11). Consequently, the piecewise fractional model (1.1) of Malaria has
a unique solution. □

5. Numerical scheme with piecewise derivative

The use of numerical schemes with piecewise derivatives is important due to their ability to
accurately simulate complex phenomena, improve accuracy and efficiency, offer flexibility and
facilitate the development of new models and algorithms. These schemes play a crucial role in
advancing scientific research, engineering design, and decision-making processes across various
disciplines. This section presents the numerical resolution of the adopted fractional order model (1.1).
By applying the piecewise integral, we have

SL(τ) =


SL(0) +

∫ τ

0
((1 − r) λh − ς1SLIv + ωRL + ηHSH − (βh + ηL)SL) dκ,

SL(τ1) + 1−ϱ
Υ(ϱ) ((1 − r) λh − ς1SLIv + ωRL + ηHSH − (βh + ηL)SL)

+
ϱ

Υ(ϱ)

∫ τ

τ1
((1 − r) λh − ς1SLIv + ωRL + ηHSH − (βh + ηL)SL) dκ,

SH(τ) =


SH(0) +

∫ τ

0
(rλh − bς1SHIv + εRH + ηLSL − (βh + ηH)SH) dκ,

SH(τ1) + 1−ϱ
Υ(ϱ) (rλh − bς1SHIv + εRH + ηLSL − (βh + ηH)SH)

+
ϱ

Υ(ϱ)

∫ τ

τ1
(rλh − bς1SHIv + εRH + ηLSL − (βh + ηH)SH) dκ,

IL(τ) =


IL(0) +

∫ τ

0
(ς1SLIv − (βh + γ + δ)IL) dκ,

IL(τ1) + 1−ϱ
Υ(ϱ) (ς1SLIv − (βh + γ + δ)IL)

+
ϱ

Υ(ϱ)

∫ τ

τ1
(ς1SLIv − (βh + γ + δ)IL) dκ,

IH(τ) =


IH(0) +

∫ τ

0
(bς1SHIv − (βh + α + ϕ)IH) dκ,

IH(τ1) + 1−ϱ
Υ(ϱ) (bς1SHIv − (βh + α + ϕ)IH)

+
ϱ

Υ(ϱ)

∫ τ

τ1
(bς1SHIv − (βh + α + ϕ)IH) dκ,

RL(τ) =


RL(0) +

∫ τ

0
(γIL − (ω + βh)RL) dκ,

RL(τ1) + 1−ϱ
Υ(ϱ) (γIL − (ω + βh)RL)

+
ϱ

Υ(ϱ)

∫ τ

τ1
(γIL − (ω + βh)RL) dκ,
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RH(τ) =


RH(0) +

∫ τ

0
(αIH − (ε + βh)RH) dκ,

RH(τ1) + 1−ϱ
Υ(ϱ) (αIH − (ε + βh)RH)

+
ϱ

Υ(ϱ)

∫ τ

τ1
(αIH − (ε + βh)RH) dκ,

Sv(τ) =


Sv(0) +

∫ τ

0
(λV − ς2 (IL + θIH)Sv − βvSv) dκ,

Sv(τ1) + 1−ϱ
Υ(ϱ) (λV − ς2 (IL + θIH)Sv − βvSv)

+
ϱ

Υ(ϱ)

∫ τ

τ1
(λV − ς2 (IL + θIH)Sv − βvSv) dκ,

and

Iv(τ) =


Iv(0) +

∫ τ

0
(ς2 (IL + θIH)Sv − βvIv) dκ,

Iv(τ1) + 1−ϱ
Υ(ϱ) (ς2 (IL + θIH)Sv − βvIv)

+
ϱ

Υ(ϱ)

∫ τ

τ1
(ς2 (IL + θIH)Sv − βvIv) dκ.

At τ = τn+1, we write

SL(τn+1) =



SL(0) +
∑i

k=0

∫ τk+1

τk
((1 − r) λh − ς1SLIv + ωRL + ηHSH − (βh + ηL)SL) dκ,

SL(τ1) + 1−ϱ
Υ(ϱ) {(1 − r) λh − ς1SL(τn)Iv(τn) + ωRL(τn) + ηHSH(τn)

− (βh + ηL)SL(τn) − [(1 − r) λh − ς1SL(τn−1)Iv(τn−1) + ωRL(τn−1)
+ηHSH(τn−1) − (βh + ηL)SL(τn−1)

]}
+

ϱ

Υ(ϱ)

∑n
k=i+1∫ τk+1

τk
((1 − r) λh − ς1SLIv + ωRL + ηHSH − (βh + ηL)SL) dκ,

SH(τn+1) =



SH(0) +
∑i

k=0

∫ τk+1

τk
(rλh − bς1SHIv + εRH + ηLSL − (βh + ηH)SH) dκ,

SH(τ1) + 1−ϱ
Υ(ϱ) {rλh − bς1SH(τn)Iv(τn) + εRH(τn) + ηLSL(τn)

− (βh + ηH)SH(τn) − [rλh − bς1SH(τn−1)Iv(τn−1) + εRH(τn−1)
+ηLSL(τn−1) − (βh + ηH)SH(τn−1)

]}
+

ϱ

Υ(ϱ)

∑n
k=i+1∫ τk+1

τk
(rλh − bς1SHIv + εRH + ηLSL − (βh + ηH)SH) dκ,

IL(τn+1) =



IL(0) +
∑i

k=0

∫ τk+1

τk
(ς1SLIv − (βh + γ + δ)IL) dV,

IL(τ1) + 1−ϱ
Υ(ϱ) {(ς1SL (τn)Iv (τn) − (βh + γ + δ)IL (τn))[

ς1SL (τn−1)Iv (τn−1) − (βh + γ + δ)IL (τn−1)
]}

+
ϱ

Υ(ϱ)

∑n
k=i+1

∫ τk+1

τk
(ς1SLIv − (βh + γ + δ)IL) dκ,

IH(τn+1) =



IH(0) +
∑i

k=0

∫ τk+1

τk
(bς1SHIv − (βh + α + ϕ)IH) dκ,

IH(τ1) + 1−ϱ
Υ(ϱ) {(bς1SH (τn)Iv (τn) − (βh + α + ϕ)IH (τn))

−
[
(bς1SH (τn−1)Iv (τn−1) − (βh + α + ϕ)IH (τn−1))

]}
+

ϱ

Υ(ϱ)

∑n
k=i+1

∫ τk+1

τk
(bς1SHIv − (βh + α + ϕ)IH) dκ,
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RL(τn+1) =



RL(0) +
∑i

k=0

∫ τk+1

τk
(γIL − (ω + βh)RL) dκ,

RL(τ1) + 1−ϱ
Υ(ϱ) {(γIL (τn) − (ω + βh)RL (τn))

−
[
γIL (τn−1) − (ω + βh)RL (τn−1)

]}
+

ϱ

Υ(ϱ)

∑n
k=i+1

∫ τk+1

τk
(γIL − (ω + βh)RL) dκ,

RH(τn+1) =



RH(0) +
∑i

k=0

∫ τk+1

τk
(αIH − (ε + βh)RH) dκ,

RH(τ1) + 1−ϱ
Υ(ϱ) {(αIH (τn) − (ε + βh)RH (τn))

−
[
αIH (τn−1) − (ε + βh)RH (τn−1)

]}
+

ϱ

Υ(ϱ)

∑i
k=0

∫ τk+1

τk
(αIH − (ε + βh)RH) dκ,

Sv(τn+1) =



Sv(0) +
∑i

k=0

∫ τk+1

τk
(λV − ς2 (IL + θIH)Sv − βvSv) dκ,

Sv(τ1) + 1−ϱ
Υ(ϱ) {(λV − ς2 (IL (τn) + θIH (τn))Sv (τn) − βvSv (τn))

−
[
λV − ς2 (IL (τn−1) + θIH (τn−1))Sv (τn−1) − βvSv (τn−1)

]}
+

ϱ

Υ(ϱ)

∑i
k=0

∫ τk+1

τk
(λV − ς2 (IL + θIH)Sv − βvSv) dκ,

and

Iv(τn+1) =



Iv(0) +
∑i

k=0

∫ τk+1

τk
(ς2 (IL + θIH)Sv − βvIv) dκ,

Iv(τ1) + 1−ϱ
Υ(ϱ) {(ς2 (IL (τn) + θIH (τn))Sv (τn) − βvIv (τn))

−
[
ς2 (IL (τn−1) + θIH (τn−1))Sv (τn−1) − βvIv (τn−1)

]}
+

ϱ

Υ(ϱ)

∑i
k=0

∫ τk+1

τk
(ς2 (IL + θIH)Sv − βvIv) dκ.

By applying Newton Polynomial interpolation scheme we have

SL(τn+1) =



SL(0) +
∑i

k=2



5
12

(
(1 − r) λh − ς1SL (τk−2)IV (τk−2) + ωRL (τk−2)

+ηHSH (τk−2) − (βh + ηL)SL (τk−2)

)
∆τ

−4
3

(
(1 − r) λh − ς1SL (τk−1)Iv (τk−1) + ωRL (τk−1)

+ηHSH (τk−1) − (βh + ηL)SL (τk−1)

)
∆τ

+23
12

(
(1 − r) λh − ς1SL (τk)Iv (τk) + ωRL (τk)
+ηHSH (τk) − (βh + ηL)SL (τk)

)
∆τ

,

SL(τ1) +



1−ϱ
Υ(ϱ)


(1 − r) λh − ς1SL (τn)Iv (τn) + ωRL (τn)
+ηHSH (τn) − (βh + ηL)SL (τn)

−

[
(1 − r) λh − ς1SL (τn−1)Iv (τn−1) + ωRL (τn−1)

+ηHSH (τn−1) − (βh + ηL)SL (τn−1)

]


+
ϱ

Υ(ϱ)

∑n
k=i+3

5
12

(
(1 − r) λh − ς1SL (τk−2)Iv (τk−2) + ωRL (τk−2)

+ηHSH (τk−2) − (βh + ηL)SL (τk−2)

)
+

ϱ

Υ(ϱ)

∑n
k=i+3 −

4
3

(
(1 − r) λh − ς1SL (τk−1)Iv (τk−1) + ωRL (τk−1)

+ηHSH (τk−1) − (βh + ηL)SL (τk−1)

)
+

ϱ

Υ(ϱ)

∑n
k=i+3

23
12

(
(1 − r) λh − ς1SL (τk)Iv (τk) + ωRL (τk)
+ηHSH (τk) − (βh + ηL)SL (τk)

)
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SH(τn+1) =



SH(0) +
∑i

k=2



5
12

(
rλh − bς1SH (τk−2)Iv (τk−2) + εRH (τk−2)
+ηLSL (τk−2) − (βh + ηH)SH (τk−2)

)
∆τ

−4
3

(
rλh − bς1SH (τk−1)Iv (τk−1) + εRH (τk−1)
+ηLSL (τk−1) − (βh + ηH)SH (τk−1)

)
∆τ

+23
12

(
rλh − bς1SH (τk)Iv (τk−1) + εRH (τk)
+ηLSL (τk) − (βh + ηH)SH (τk)

)
∆τ

,

SH(τ1) +



1−ϱ
Υ(ϱ)


rλh − bς1SH (τn)Iv (τn) + εRH (τn)
+ηLSL (τn) − (βh + ηH)SH (τn)

−

[
rλh − bς1SH (τn−1)Iv (τn−1) + εRH (τn−1)
+ηLSL (τn−1) − (βh + ηH)SH (τn−1)

]


+
ϱ

Υ(ϱ)

∑n
k=i+3

5
12

(
rλh − bς1SH (τk−2)Iv (τk−2) + εRH (τk−2)
+ηLSL (τk−2) − (βh + ηH)SH (τk−2)

)
+

ϱ

Υ(ϱ)

∑n
k=i+3 −

4
3

(
rλh − bς1SH (τk−1)Iv (τk−1) + εRH (τk−1)
+ηLSL (τk−1) − (βh + ηH)SH (τk−1)

)
+

ϱ

Υ(ϱ)

∑n
k=i+3

23
12

(
rλh − bς1SH (τk)Iv (τk) + εRH (τk)
+ηLSL (τk) − (βh + ηH)SH (τk)

)

IL(τn+1) =



IL(0) +
∑i

k=2


5

12 (ς1SL (τk−2)Iv (τk−2) − (βh + γ + δ)IL (τk−2))∆τ
−4

3 (ς1SL (τk−1)Iv (τk−1) − (βh + γ + δ)IL (τk−1))∆τ
+23

12 (ς1SL (τk)Iv (τk) − (βh + γ + δ)IL (τk))∆τ
,

IL(τ1) +



1−ϱ
Υ(ϱ)

(
(ς1SL (τn)Iv (τn) − (βh + γ + δ)IL (τn))

− (ς1SL (τn−1)Iv (τn−1) − (βh + γ + δ)IL (τn−1))

)
+

ϱ

Υ(ϱ)

∑n
k=i+3

5
12 (ς1SL (τk−2)Iv (τk−2) − (βh + γ + δ)IL (τk−2))

+
ϱ

Υ(ϱ)

∑n
k=i+3 −

4
3 (ς1SL (τk−1)Iv (τk−1) − (βh + γ + δ)IL (τk−1))

+
ϱ

Υ(ϱ)

∑n
k=i+3

23
12 (ς1SL (τk)Iv (τk) − (βh + γ + δ)IL (τk)) ,

IH(τn+1) =



IH(0) +
∑i

k=2


5
12 (bς1SH (τk−2)Iv (τk−2) − (βh + α + ϕ)IH (τk−2))∆τ
−4

3 (bς1SH (τk−1)Iv (τk−1) − (βh + α + ϕ)IH (τk−1))∆τ
+23

12 (bς1SH (τk)Iv (τk) − (βh + α + ϕ)IH (τk))∆τ
,

IH(τ1) +



1−ϱ
Υ(ϱ)

(
(bς1SH (τn)Iv (τn) − (βh + α + ϕ)IH (τn))

− (bς1SH (τn−1)Iv (τn−1) − (βh + α + ϕ)IH (τn−1))

)
+

ϱ

Υ(ϱ)

∑n
k=i+3

5
12 (bς1SH (τk−2)Iv (τk−2) − (βh + α + ϕ)IH (τk−2))

+
ϱ

Υ(ϱ)

∑n
k=i+3 −

4
3 (bς1SH (τk−1)Iv (τk−1) − (βh + α + ϕ)IH (τk−1))

+
ϱ

Υ(ϱ)

∑n
k=i+3

23
12 (bς1SH (τk)Iv (τk) − (βh + α + ϕ)IH (τk)) ,
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RL(τn+1) =



RL(0) +
∑i

k=2


5

12 (γIL (τk−2) − (ω + βh)RL (τk−2))∆τ
−4

3 (γIL (τk−1) − (ω + βh)RL (τk−1))∆τ
+23

12 (γIL (τk) − (ω + βh)RL (τk))∆τ
,

RL(τ1) +



1−ϱ
Υ(ϱ)

(
(γIL (τn) − (ω + βh)RL (τn))

− (γIL (τn−1) − (ω + βh)RL (τn−1))

)
+

ϱ

Υ(ϱ)

∑n
k=i+3

5
12 (γIL (τk−2) − (ω + βh)RL (τk−2))

+
ϱ

Υ(ϱ)

∑n
k=i+3 −

4
3 (γIL (τk−1) − (ω + βh)RL (τk−1))

+
ϱ

Υ(ϱ)

∑n
k=i+3

23
12 (γIL (τk) − (ω + βh)RL (τk)) ,

RH(τn+1) =



RH(0) +
∑i

k=2


5
12 (αIH (τk−2) − (ε + βh)RH (τk−2))∆τ
−4

3 (αIH (τk−1) − (ε + βh)RH (τk−1))∆τ
+23

12 (αIH (τk) − (ε + βh)RH (τk))∆τ
,

RH(τ1) +



1−ϱ
Υ(ϱ)

(
(αIH (τn) − (ε + βh)RH (τn))

− (αIH (τn−1) − (ε + βh)RH (τn−1))

)
+

ϱ

Υ(ϱ)

∑n
k=i+3

5
12 (αIH (τk−2) − (ε + βh)RH (τk−2))

+
ϱ

Υ(ϱ)

∑n
k=i+3 −

4
3 (αIH (τk−1) − (ε + βh)RH (τk−1))

+
ϱ

Υ(ϱ)

∑n
k=i+3

23
12 (αIH (τk) − (ε + βh)RH (τk)) ,

Sv(τn+1) =



Sv(0) +
∑i

k=2


5

12 (λV − ς2 (IL (τk−2) + θIH (τk−2))Sv (τk−2) − βvSv (τk−2))∆τ
−4

3 (λV − ς2 (IL (τk−1) + θIH (τk−1))Sv (τk−1) − βvSv (τk−1))∆τ
+23

12 (λV − ς2 (IL (τk) + θIH (τk))Sv (τk) − βvSv (τk))∆τ
,

Sv(τ1) +



1−ϱ
Υ(ϱ)

(
(λV − ς2 (IL (τn) + θIH (τn))Sv (τn) − βvSv (τn))

− (λV − ς2 (IL (τn−1) + θIH (τn−1))Sv (τn−1) − βvSv (τn−1))

)
+

ϱ

Υ(ϱ)

∑n
k=i+3

5
12 (λV − ς2 (IL (τk−2) + θIH (τk−2))Sv (τk−2) − βvSv (τk−2))

+
ϱ

Υ(ϱ)

∑n
k=i+3 −

4
3 (λV − ς2 (IL (τk−1) + θIH (τk−1))Sv (τk−1) − βvSv (τk−1))

+
ϱ

Υ(ϱ)

∑n
k=i+3

23
12 (λV − ς2 (IL (τk) + θIH (τk))Sv (τk) − βvSv (τk)) ,

and

Iv(τn+1) =



Iv(0) +
∑i

k=2


5

12 (ς2 (IL (τk−2) + θIH (τk−2))Sv (τk−2) − βvIv (τk−2))∆τ
−4

3 (ς2 (IL (τk−1) + θIH (τk−1))Sv (τk−1) − βvIv (τk−1))∆τ
+23

12 (ς2 (IL (τk) + θIH (τk))Sv (τk) − βvIv (τk))∆τ
,

Iv(τ1) +



1−ϱ
Υ(ϱ)

(
(ς2 (IL (τn) + θIH (τn))Sv (τn) − βvIv (τn))

− (ς2 (IL (τn−1) + θIH (τn−1))Sv (τn−1) − βvIv (τn−1))

)
+

ϱ

Υ(ϱ)

∑n
k=i+3

5
12 (ς2 (IL (τk−2) + θIH (τk−2))Sv (τk−2) − βvIv (τk−2))

+
ϱ

Υ(ϱ)

∑n
k=i+3 −

4
3 (ς2 (IL (τk−1) + θIH (τk−1))Sv (τk−1) − βvIv (τk−1))

+
ϱ

Υ(ϱ)

∑n
k=i+3

23
12 (ς2 (IL (τk) + θIH (τk))Sv (τk) − βvIv (τk)) .

6. Numerical Simulations and Discussion

We consider the initial data as
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SL(0) = 80,SH(0) = 70,IL(0) = 50,IH(0) = 60,Iv(0) = 10,RH(0) = 40,RL = 50,Sv(0) = 20.

In addition, we consider the following numerical values for the parameters involved in our proposed
model as described in Table 4.

Table 4. The parameters and their descriptions for the model under consideration.
Parameter Description Numerical estimation
λh Human recruitment rate 0.11day−1

ϕ The rate of disease-induced death of infectious humans 0.5day−1

δ Death rate 0.7day−1

βv Mortality rate of mosquitoes = 0.067day−1

βh Mortality rates of humans 0.0000548day−1

γ Infection recover rate 0.82day−1

α Recovery rate of individuals 0.88day−1

ηL Mobility rates of susceptible humans in social classes 0.55day−1

ηH Mobility rates of susceptible humans out of social classes 0.065day−1

(b, θ) Modification parameters to reduce infection (0.03, 0.65)
ς1 Transmission probability from mosquitoes 0.001
ς2 Transmission probability from humans to mosquitoes 0.002
λv Mosquitoes recruitment 100perday
r The high social-class fraction of humans recruitment 0.2

• We find that the total number of people infected with Malaria decreased from 3246504 in 2000
to 212132 cases in 2021, with 93% during the entire period (2000–2021). The graphical
representation of this trend can be observed in Figure 2.
• The assumptions and tests for the stability of these data were examined to be used in the prediction

process. Estimating coefficients (APCF & ACF) and unit root testing Augmented, Dickey-Fuller
& Phillips-Perron showed that the time series is unstable, which means that the general trend
exists, as shown in Figure 2. After taking the first differences shown in Figure 3, as for the unit
root test, the calculated values are more significant than the critical values for all confidence levels
shown in Table 2.
• Figure 4 shows no autocorrelation between errors. That is, autocorrelation and partial

autocorrelation are within confidence limits, and it can be said that the residuals are white noise.
• The selected and problem-free ARIMA (1,1,0) model was applied to predict the behavior and

future trends of the total Malaria cases of infected persons. A decrease in Malaria cases in Yemen
was observed in the future, as shown in Figure 6.
• When ϱ ∈ (0, 0.60]. We simulate the numerical solutions for different compartments using various

values of fractional orders lies in (0, 0.60]. Here, we see that solutions show crossover behaviors.
• When ϱ ∈ (0.60, 0.80]. We have presented the approximate solutions for various values of

fractional orders in (0.60, 0.80].
• When ϱ ∈ (0.80, 1.0]. Again, we simulate the numerical interpretations for various compartments

of the proposed model, we choose fractional orders values from (0.80, 1.0]. In Figures 8–13,
we have presented the graphical presentation for various compartments using different fractional
orders values. We have taken the domain as [0, 40], and (40, 120]. Three sets of fractional orders
have been used. The crossover dynamics in each compartment can be clearly observed.
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Figure 8. Numerical results for different values of fractional orders for classes
SL,SH,IL,IH.
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Figure 9. Numerical results for different values of fractional orders for classes
RL,RH,SV ,IV .
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Figure 10. Numerical results for different values of fractional orders for classes
SL,SH,IL,IH.
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Figure 11. Numerical results for different values of fractional orders for classes
RL,RH,SV ,IV .
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Figure 12. Numerical results for different values of fractional orders for classes
SL,SH,IL,IH.
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Figure 13. Numerical results for different values of fractional orders for classes
RL,RH,SV ,IV .
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7. Conclusions

The piecewise derivatives with classical and Caputo-Fabrizio is a powerful tool for capturing the
intricacies of functions and systems that exhibit diverse behaviors across different regions. Its inherent
flexibility and versatility make it an indispensable asset in mathematical analysis and modeling,
facilitating a deeper understanding of real-world phenomena.

In this study, we have investigated the dynamics of Malaria transmission within a social hierarchy
structure, employing piecewise Caputo-Fabrizio derivatives of fractional orders with both non-local
and singular kernels. On the other hand, we collected and analyzed statistical data on Malaria
prevalence in Yemen from 2000 to 2021. By utilizing the statistical analysis program Eviews and
employing ARIMA models, we present predictions for the approximate number of Malaria cases in
Yemen from 2022 to 2024.

Additionally, we examined the crossover effect within the Malaria model by dividing the study
interval into two subintervals. We established the existence and uniqueness of solutions for the model
in both intervals by employing fixed-point techniques and functional analysis. The positivity and
boundedness of the solutions are demonstrated using the fractional-order properties of the Laplace
transformation.

Furthermore, we computed the basic reproduction number for the model using a next-generation
technique, enabling us to handle the future dynamics of the pandemic effectively. To obtain numerical
solutions for the fractional model, we employed a computationally efficient Adams-Bashforth method.
These numerical results are thoroughly discussed and visually presented through graphs, providing
valuable insights into the dynamic behavior of the model. The model numerical demonstrated the
crossover effect in the dynamics using the time domain for transmission [0, 200] near the point where
t1 < 100.

The patients who have HIV/AIDS, children under five years of age, infants, and pregnant women
are more susceptible to Malaria than others. Malaria affects the poor in rural areas more than urban
residents due to the health services provided for urban residents. We concluded that decreasing the
mobility rate among individuals from high social-class populations and increasing mobility within
low social-class populations can potentially contribute to a decrease in the basic reproduction number
(R0) of malaria. By reducing R0, the burden of malaria transmission within the community can be
effectively reduced.
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