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Abstract: In the present study, we propose and analyze a three-dimensional prey-predator model.
The prey grows logistically in the absence of the predator and their relationship follows the Crowley-
Martin type functional response. In this paper, we examine the impact of supply of the additional
food to the predators and the influence of fear in the prey population. Since the predator depends
partially on the provided other resources, we incorporate a novel parameter, the degree of dependence,
which basically demonstrates how dependent the predator is on the prey population. We investigate
the steady-state solutions, and their local and global behavior, which contributes to understanding the
long-term dynamics of the interaction. We have shown that the degree of dependence and the cost
of fear both can cause periodic orbits to appear in the system via a Hopf-bifurcation. Our findings
show that with the newly introduced parameter, we can control the oscillations from the system, which
helps to balance the ecosystem. The direction and stability have also been investigated using the center
manifold theorem and normal form theory. Last, we perform an extensive numerical simulation to
validate our theoretical findings. Our main goal of this work is to maintain the ecological balance in
the presence of fear effect and additional food for predators.
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1. Introduction

Predation is one of the most common phenomena for survival in the wilderness that connects all the
elements of a multispecies food web. It plays an essential role in maintaining stability and balance in
the nature. Mathematical models are the most effective tools to illustrate the relationship between two
or more species. Initially, the mathematical models for prey-predator interactions were explored by two
mathematicians, Alfred J. Lotla [1] and Vito Volterra [2], independently in the mid 1920s. They found
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periodic fluctuations of species around their steady states. Since then, ecologists and mathematical
biologists have been in practice with various models considering different essential parameters [3–6].
The dynamics of the prey-predator system are significantly influenced and become more realistic by
the incorporation of some notions such as functional response [7–11], stage structure [12,13], effect of
fear [14, 15] and time delay [5].

Understanding the complex dynamics of a population model depends on the functional response of
predators, which quantifies the prey captured by each predator during certain periods of time. It
significantly influences the dynamical features of the system. From an ecological perspective,
incorporating the functional response enhances the realism and accuracy of the model. In recent years,
numerous studies have been conducted to explore the effects of different functional responses
on the prey-predator system. These studies include the Holling type-II [7, 16, 17], Holling type-
III [8,18], Holling type-IV [6,12,19], Beddington-DeAngelis [9,20–22] and Crowley-Martin functional
responses [10, 11, 13, 23–27].

In recent decades, several researchers have deeply investigated the qualitative behavior of
prey-predator systems when supplementary nourishment sources are available for the predators
[17, 20, 28–32]. In particular, Sahoo [32] put forward and explored a model to investigate the
significance of supplementary nourishment within an eco-epidemiological system. The research
focused on managing chaotic population dynamics of predator-prey interactions by introducing
supplementary nourishment resources for top predators. To accomplish this, they developed a three-
species predator-prey model that specifically incorporates the provision of supplementary food to the
top predators. In another study, Thirthar et al. [20] focused on prey, predator and super predator within
a predator-prey system. In this study, predation interactions between prey and predator are regulated
by the Beddington-DeAngelis functional response, and the impact of predation fear in prey species
was also carried out. The authors assumed that the predator species offers protection to the super
predator species. It was anticipated that the super predators, driven by fear of predators and their refuge
behavior, would receive a constant supply of additional food, which in turn would benefit both the super
predators and the predators. Furthermore, the latest research by Kumar and Dubey [17] examined the
intricacies of a prey-predator model with the effect of supplementary nourishment, multiple delays,
and the interaction between the prey and predator was modeled using a Holling type-II response. The
provision of extra nourishment was specifically targeted toward the predator population, aiming to
reduce its dependence on the prey species. Srinivasu et al. [30] examine a modified predator-prey
model with the type II functional response to study how providing supplementary nourishment to the
predator impacts the behavior of the system. The research emphasizes that the handling times of the
available foods significantly influence the eventual state of the ecosystem. Ghosh et al. [31] investigate
the influence of providing supplementary nourishment to predators within an ecological model that
includes a prey refuge. The authors illustrate theoretically and numerically that species can co-exist
in oscillatory patterns when there is an availability of both abundant and high-quality supplementary
nourishment and prevent predator extinction in systems with high prey refuge, offering insights for
conservation biologists in real-world ecological systems.

Since predation events are obvious, our knowledge of the prey-predator system in forest provinces
has mostly concentrated on the direct killing of predators on prey populations. The effects of predators
on their prey can be physical as well as mental. Some recent studies have revealed a new perspective,
showing that predators not only reduce prey populations by directly killing prey but also by inducing
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fear in prey individuals, which results in a fall in the prey birth rate. Zanette et al. [33] carried out
research involving song sparrows, manipulating predation risk by playing predator sounds to some
species and non-predator sounds to others. Despite protecting nests from direct killing, the fear of
predators alone led to a significant 40% reduction in offspring production due to decreased egg laying,
lower hatching success and increased nestling mortality. Various anti-predator responses contributed to
these demographic effects. In another study by Cresswell [34], the impact of predators on population
size extends beyond direct lethal effects, as fear of predation leads to costly behavioral changes with
potentially significant population and community effects. The dominance of lethal or non-lethal
effects depends on factors such as resource constraints, prey vulnerability, trophic interactions, and
evolutionary history, making cases without any population effects due to predation or cases dominated
solely by lethal effects rare and specialized.

As a result of the fear induced by predators, prey individuals experience a restricted environment
for their activities, including mating, preventing them from freely accessing open habitats. The fear
inhibits them from venturing into open spaces, which reduces their ability to reproduce [33]. We
construct a function that represents the fear effect on the prey population. The reduction of birth
rate in the prey population depends on the number of predator individuals y and their nature. We
quantify the nature (aggressiveness, agility, etc.) of the predator in terms of a parameter k, which is
known as the cost of fear. Thus, the fear function f (y, k) is a function of y and k, which follows the
following characteristics:

(1) In the absence of predators or when the cost of fear is negligible, the impact on the reproduction
rate of the prey species remains same

f (0, k) = f (y, 0) = 1.

(2) The reproduction rate of prey approches zero at the high predator density or at the large cost of fear

lim
y→∞

f (y, k) = lim
k→∞

f (y, k) = 0.

(3) As the density of predators and the cost of the induced fear increase, the reproductive rate of prey
decreases

∂ f
∂y

< 0,
∂ f
∂k

< 0.

There may be several functions which follow all the conditions of a fear function, but commonly we
use following functions due to their simplicity

f (y, k) =
1

1 + ky
, f (y, k) = e−ky, f (y, k) =

1
1 + k1y + k2y2 .

The proposed prey-predator model incorporates the influence of fear on prey reproduction, suggesting
that high levels of fear can contribute to stabilizing the system by eliminating the periodic solutions.
In the study conducted by Wang et al. [14] on a terrestrial vertebrate, it was observed that fear of
predators alone had a significant impact on anti-predator defense, leading to a notable reduction in
prey reproduction. To capture the influence of fear on the population dynamics of terrestrial animals,
the authors developed a predator-prey model that incorporates the reproductive cost associated with
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fear. Dubey et al. [35] analyze the predator-prey model that accounts for fear-induced responses in
prey towards predators and anti-predator behavior exhibited by the prey. Additionally, the model
incorporates delays in fear response and gestation. They state that the system experiences Hopf-
bifurcation in the context of both delays.

Furthermore, Chen et al. [36] examined how the dynamics of predator-prey model behavior is
affected by the fear effect and the Leslie-Gower function. When fear intensifies, the system will
experience multiple dynamic behaviors, switching until the prey population is wiped out. However,
because there are availability of other prey sources, the predator population manages to endure. The
concept of effect of fear on the species dynamics has been utilized by various researchers to show the
efficacy of their respective models [15, 37–39]. Zhang et al. [38] examined anti-predator behavior
and fear on a Holling type-II predator-prey model with prey refuge. The study shows that fear
reduces the predator’s population density and stabilizes the system by preventing the existence of
periodic solutions, while the presence of prey refuge significantly affects the persistence of the predator
population.

The Beddington-DeAngelis functional response, formulated by Beddington [21] and
DeAngelis [22], introduces a predator-dependent functional response that incorporates predator
interference. It shares similarities with the Holling type II response, as it considers the interactions
between predators in addition to prey searching and processing activities. In this response, predators
form groups consisting of two or more individuals that not only engage in prey-related tasks but
also interact with each other. The Beddington-DeAngelis functional response suggests that as prey
abundance increases, the impact of predator interference on the feeding rate diminishes, implying
that the collective behavior of predators becomes less influential. In the study conducted by Crowley
and Martin [23], it was anticipated that predation would decrease as a result of high predator density,
which can lead to interference among individual predators. This interference occurs when predator
individuals interact with each other and it can reduce the overall predation rate even when there is
an abundance of prey available. The Crowley-Martin functional response describes the relationship
between prey biomass and the population of birds. In the Crowley-Martin functional response,
predator interference is taken into account, meaning that the presence of one predator can impede
the activity of another predator. This interference affects both the prey and predator population.
Many authors have used the Crowley-Martin functional response to demonstrate the effectiveness
of their models [11, 13, 21, 22, 24–27]. The difference between the Beddington-DeAngelis and
Crowley-Martin functional responses is how they consider the effects of predator interference. The
Beddington-DeAngelis type response suggests that in the case of abundant prey, the impact of predator
interference on the feeding rate becomes negligible. In contrast, the Crowley-Martin functional
response consistently considers the impact of interference on the feeding rate, regardless of prey
abundance. Experimental evidence supports the notion that mutual predator interference decreases the
feeding rate of predators [40, 41].

Maiti et al. [23] investigated a prey-predator model that includes prey refuge and a Crowley-Martin
type response to describe the interaction between unreserved prey and predators. The study focuses on
analyzing the dynamic of the system while considering delay as a parameter that can cause bifurcation.
Tripathi et al. [26] examined a two-dimensional predator-prey model with discrete delay and the
Crowley-Martin functional response, which incorporates mutual interference by predators at high
prey density. The authors analyze the impact of predator density dependence on system permanence
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and numerically describe Hopf-bifurcation in the non-delayed system. Moreover, Papanikolaou
et al. [27] found that the Crowley-Martin model outperforms other functional responses, including the
Beddington-DeAngelis, Hassell-Varley and Holling type-II functional responses. This finding further
highlights the effectiveness and relevance of the Crowley-Martin functional response in capturing the
dynamics of predator-prey interactions. Considering these insights, investigating the Crowley-Martin
type interaction between prey and predator can potentially reveal rich and complex dynamics within
the system.

As we mentioned earlier, fear is a psychological activity of prey in the presence of predators, which
was ignored in classical models. The prey shows anti-predator nature under fear, such as reducing the
foraging time, changing the living locality, adjusting reproduction strategies, etc. Due to all these, the
reproduction rate decreases. Therefore, it is reasonable to consider fear in the model. The additional
food is provided to predators to avoid the overexploitation of prey resources and maintain the ecological
balance. In the existing models, the additional food is provided at a constant rate, but it must vary with
the number of predators. In the present model, we introduce the additional food in a separate equation
and keep its quantity depending on the number of predators. Since the effect of fear varies with the
dependency of the predator on the provided food, we incorporated a new parameter, the degree of
dependency. To the best of our understanding a mathematical model with all the above points has
not been investigated. Keeping all these in view, in Section 2, we discuss the model construction. In
Section 3, we show our model is biologically well-behaved by proving the positivity and boundedness
of the solutions. We discuss various dynamical features of our system in Section 4. In Section 5, an
extensive computer simulation is carried out to validate our results. The study concludes with a few
final remarks.

2. Model formulation

We consider an ecological habitat where two species survive, one is prey and another is predator.
The prey population follows the logistic growth behavior when predators are absent. This is governed
by the equation below:

dx
dt

= rx − r0x − r1x2,

where x is the number of individuals in the prey population at time t, r and r0 are the birth rate and the
natural mortality rate of prey and r1 is the intra-specific interference among the prey individuals. In the
latest research, it was discoverd that the presence of predators induces fear within the prey population
which leads to a reduction in their reproduction rate. This fear-induced reduction in reproduction
rate is influenced by both the predator population y and a parameter k representing the cost of fear.
Consequently, the modified form of the prey population growth equation is as stated:

dx
dt

= r f (y, k)x − r0x − r1x2,

where f (y, k) is referred as fear function and r f (y, k) is the effective growth rate of prey under the
fear effect. In this study, we consider the influence of predation fear on the prey population when
predators are present. The cost of anti-predator defense is related to the predator population density.
To account for this, we replace the prey reproduction term rx by multiplying it with the fear function
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f (y, k) =
1

1 + ky
, emphasizing the costs carried on by predation fear. This modification allows us

to explore how predation fear affects the dynamics of the prey-predator system in the presence of
predators. The following system governs the prey-predator interaction in presence of fear effect.

dx
dt

=
rx

1 + ky
− r0x − r1x2 − Q(x, y)y,

dy
dt

= c1Q(x, y)y − δy − ey2,

(2.1)

where Q(x, y) is functional response of predator and c1 (0 ≤ c1 ≤ 1) is the conversion efficiency of y
on x. The parameters δ and e are the natural death rate of predators and the intra-specific interference
among predators.

The Holling type-II response is prey-dependent, indicating that the predator feeding rate declines
with increasing prey density due to handling and searching time. The Crowley-Martin response
characterizes the prey-predator interaction, predicting a decrease in predator density at high predator
concentrations due to resource competition. The Crowley-Martin response is formulated as

Q(x, y) =
αx

(1 + ax)(1 + by)
,

where α is the capture rate, a is the handling time and b is the degree of interference among predator
individuals. Additionally, it changes into mass action law (when a and b are zero) and Holling type-II
response (when a > 0, b = 0 or a = 0, b > 0). With the Crowley-Martin functional response, our model
implies the forthcoming form.

dx
dt

=
rx

1 + ky
− r0x − r1x2 −

αxy
(1 + ax)(1 + by)

,

dy
dt

=
c1αxy

(1 + ax)(1 + by)
− δy − ey2.

(2.2)

Additional food in a prey-predator system refers to providing extra nourishment resources to the
predator population, potentially beyond what is naturally available from their primary prey. This
additional food can have various effects on the dynamics of predator-prey interactions and may
influence population sizes, stability and coexistence patterns in the ecosystem. As a result, the equation
describing the relationship between the additional food resource and the predator population has been
modified as follows:

dA
dt

= λy − βA − φAy,

dy
dt

= c2φAy − δy − ey2,

where A is the quantity of additional food provided to the predator at time t. The parameters λ and β are
the maximum supply rate and the natural depletion rate of additional food, respectively. The parameter
φ is the consumption rate of additional food by predators and c2 (0 ≤ c2 ≤ 1) is the conversion
efficiency of y on A. The three-dimensional predator-prey model with additional food can be expressed
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as follows:

dx
dt

=
rx

1 + ky
− r0x − r1x2 −

αxy
(1 + ax)(1 + by)

,

dA
dt

= λy − βA − φAy,

dy
dt

=
c1αxy

(1 + ax)(1 + by)
+ c2φAy − δy − ey2.

Further, we introduce the degree of dependency in the prey-predator system, which refers to the reliance
or dependence of the predator population on its primary prey as a food source. The parameter A0 (0 ≤
A0 ≤ 1) is the degree of dependency of predators on prey or the dependency factor. If A0 = 1,
predators are fully dependent on prey and no additional food is necessary. If A0 = 0, predators are
completely dependent on supplementary nourishment, and the prey species increases logistically. If
A0 is in between 0 and 1, then the predator partially depends on prey and supplementary nourishment.
The predator depends partially on the prey and the degree of dependency A0, which depends on the
nature of the prey and provided additional food. Therefore, in the presence of additional food, the fear
function f (y, k) also depends on the degree of dependency A0. To modify the fear function f (y, k), we
consider the following points:

(1) When the predator completely depends on the additional food then no fear will be induced by the
predator, i.e., when A0 = 0 then f (y, k, A0) = 1.

(2) When the predators are fully dependent on prey then induced fear is maximum, i.e., A0 = 1 then
f (y, k, A0) is maximum and same as the fear function discussed in the introduction.

(3) The amount of fear monotonically increases with respect to A0, i.e.,
∂ f
∂A0

> 0.

These points lead us to the following modified fear function, f (y, k, A0) =
1

1 + kA0y
.

Considering the points mentioned above, our mathematical model can be described as follows:

dx
dt

=
rx

1 + kA0y
− r0x − r1x2 −

αA0xy
(1 + ax)(1 + by)

,

dA
dt

= λ(1 − A0)y − βA − φAy,

dy
dt

=
c1αA0xy

(1 + ax)(1 + by)
+ c2φAy − δy − ey2,

x(0) ≥ 0, A(0) ≥ 0, y(0) ≥ 0.

(2.3)

The biological description of the parameters in the system (2.3), including their units and values, is
provided in Table 1.

Remark 1. From the first equation of the above system,
dx
dt
≤ (r − r0)x, which implies limt→∞ x(t) = 0

if r < r0 and consequently, limt→∞ y(t) = 0 at low supply rate of additional food. This is a trivial case
from a biological perspective, to avoid this case we consider r > r0 throughtout this paper.
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Table 1. Parameters and their biological meaning.

Parameter Biological Description Units Values

x Density of prey population biomass -
A Quantity of additional food biomass -
y Density of predator population biomass -
r Birth rate of prey time−1 3
r0 Natural mortality rate of prey time−1 0.2

r1
Intra-specific interference
among prey individuals

biomass−1.time−1 0.01

k Cost of fear in prey biomass−1 5
α Attack rate of predator on prey biomass−1.time−1 0.8
a Handling time biomass−1 0.1

b
Magnitude to interference
among predator individuals

biomass−1 0.1

A0
Degree of dependency factor of
predators on prey

Constant and 0 < A0 < 1 0.2

λ
Maximum supply rate of
additional food

time−1 1.5

β
Natural depletion rate of
additional food

time−1 0.32

φ
Consumption rate of additional
food by predators

biomass−1.time−1 0.7

c1 Conversion efficiency of y on x Constant and 0 < c1 < 1 0.5
c2 Conversion efficiency of y on A Constant and 0 < c2 < 1 0.4
δ Mortality rate of predators time−1 0.35

e
Intra-specific interference
among predators

biomass−1.time−1 0.025

3. Boundedness and persistence of the system

A biological model must carry some essential characteristics such as positivity and boundedness of
the solutions, persistence of the species. The existence of the species is demonstrated by the positivity
and the boundedness of the solutions represents a natural restriction on species to grow exponentially.
Both these characteristics are followed by the system (2.3) and have been shown by the theorem below.

Theorem 1. The set

Ω =

{
(x, A, y) : 0 ≤ x ≤

r
r1
, 0 ≤ c1x + c2A + y ≤

1
σ

[
c1r2

4r1
+

c2
2λ

2(1 − A0)2

4e

]}
,

where σ = min{r0, β, δ}, is a positive invariant set for all solutions of the system (2.3) that start in the
interior of the positive quadrant.

Proof. We write the system (2.3) in matrix form

Ẋ = G(X),
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where X = (x, A, y)T ∈ R3 and G(X) is given by

G(X) =


G1(X)
G2(X)
G3(X)

 =


rx

1+kA0y − r0x − r1x2 αA0 xy
(1+ax)(1+by)

λ(1 − A0)y − βA − φAy
c1αA0 xy

(1+ax)(1+by) + c2φAy − δy − ey2

 .
The fundamental theorem of ordinary differential equation ensures the local existence and uniqueness
of the solution because X(0) = X0 ∈ R3

+ and G : R3 → R3
+ are locally Lipschitz-continuous in Ω.

It follows that X(t) ≥ 0 for all t ≥ 0 because [Gi(X)]xi(t)=0,X∈R3
+
≥ 0. In fact, from the first and third

equations of system (2.3), it can easily be seen that ẋ|x=0 ≥ 0, ẏ|y=0 ≥ 0 and hence x(t) ≥ 0, y(t) ≥ 0 for
all t ≥ 0, second, Ȧ|A=0 = λ(1 − A0)y ≥ 0 for all t ≥ 0 (as y(t) ≥ 0 for all t ≥ 0) and hence A(t) ≥ 0 for
all t ≥ 0. Therefore, for system (2.3) x(t), A(t), y(t) all are positive.
Now, we express the first equation of system (2.3) as follows:

dx
dt
≤ rx − r1x2,

which implies
lim
t→∞

sup x(t) ≤
r
r1
.

Now, we construct a function
W(t) = c1x(t) + c2A(t) + y(t),

which on differentiation
dW(t)

dt
= c1

dx
dt

+ c2
dA
dt

+
dy
dt
≤ c1rx − c1r1x2 + c2λ(1 − A0)y − ey2 − σW

≤ c1r
r

4r1
+

c2
2λ

2(1 − A0)2

4e
− σW,

where σ = min{r0, β, δ}. Thus, it is evident that

lim
t→∞

sup W(t) ≤
1
σ

(
c1r2

4r1
+

c2
2λ

2(1 − A0)2

4e

)
=: ys,

and we observe that, if x(t) ≥
r
r1

and W(t) ≥
1
σ

[
c1r2

4r1
+

c2
2λ

2(1 − A0)2

4e

]
, then

dx(t)
dt
≤ 0,

dW(t)
dt

≤ 0.

This demonstrates that the system (2.3) solutions are bounded and remain in Ω for all t > 0 if
(x(0), A(0), y(0)) ∈ Ω. �

The persistence of a system indicates that all species will survive in the future and none will
wipe out if they are initially present in the system. In the following theorem, we will establish some
requirement for the uniform persistence of the system (2.3).

Theorem 2. The system (2.3) is uniformly persistent under the following conditions and is satisfied.

r > (r0 + αA0ys)(1 + kA0ys),
c1αA0xi

(1 + axi)(1 + bys)
> δ,

where xi and yi are defined in the proof.
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Proof. If M1 and M2 are positive constants that satisfy each positive solution X(t) = (x(t), A(t), y(t)) of
the system with positive initial conditions, then the system (2.3) is said to have uniform persistence.

M1 ≤ lim
t→∞

inf X(t) ≤ lim
t→∞

sup X(t) ≤ M2.

Now, we define

M2 = max
{

r
r1
,

ys

c2
, ys

}
.

As a result, Theorem 1 implies that
lim
t→∞

sup X(t) ≤ M2.

This further demonstrates that for any sufficiently small ε > 0, there exists a T > 0 such that for
all t ≥ T , the following hold

x(t) <
r
r1

+ ε, A(t) <
ys

c2
+ ε, y(t) < ys + ε.

For any t ≥ T , we can write the first equation of the system (2.3).

dx
dt
≥

rx
1 + kA0(ys + ε)

− r0x − r1x2 − αA0x(ys + ε)

≥

( r
1 + kA0(ys + ε)

− r0 − αA0(ys + ε)
)
x − r1x2,

consequently, it follows

lim
t→∞

inf x(t) ≥
1
r1

( r
1 + kA0(ys + ε)

− r0 − αA0(ys + ε)
)
.

In the case of arbitrarily small ε > 0, we get

lim
t→∞

inf x(t) ≥
1
r1

( r
1 + kA0ys

− r0 − αA0ys

)
=: xi.

The prey species of the model (2.3) is persistent, if the inequality below holds true.

r > (r0 + αA0ys)(1 + kA0ys).

Now, the third equation of the model (2.3) implies

dy
dt
≥

c1αA0(xi + ε)y
(1 + a(xi + ε))(1 + b(ys + ε))

− δy − ey2,

it follows that
lim
t→∞

inf y(t) ≥
1
e

( c1αA0(xi + ε)
(1 + a(xi + ε))(1 + b(ys + ε))

− δ
)
.

In the case of arbitrarily small ε > 0, we get

lim
t→∞

inf y(t) ≥
1
e

( c1αA0xi

(1 + axi)(1 + bys)
− δ

)
=: yi.
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The predator species of the system (2.3) persists if the forthcoming conditions holds,

c1αA0xi

(1 + axi)(1 + bys)
> δ.

The second equation of the system (2.3) implies,

dA
dt
≥ λ(1 − A0)(yi + ε) − βA − φ(ys + ε)A,

consequently, it follows

lim
t→∞

inf A(t) ≥
λ(1 − A0)(yi + ε)
β + φ(ys + ε)

.

Again if ε is arbitrarily small then we have

lim
t→∞

inf A(t) ≥
λ(1 − A0)yi

β + φys
=: Ai.

Taking M1 = min{xi, Ai, yi}, the theorem follows. �

4. Dynamical analysis of the model (2.3)

4.1. Equilibrium points

The equilibrium points are the steady-state solutions for a system. From the ecological aspects,
their presence may determine whether the populations coexist, one species becomes extinct, or
both species collapse. We investigated that, the system (2.3) may have four equilibrium points:
trivial equilibrium E0(0, 0, 0), axial equilibrium E1(x∗, 0, 0), planar equilibrium E2(0, Ã, ỹ) and positive
equilibrium E∗(x∗, A∗, y∗). The equilibrium points E0(0, 0, 0) and E1(x∗, 0, 0) are always present in the

system without any restiction, where x∗ =
1
r1

(r − r0).

• Existence of E2(0, Ã, ỹ): Ã and ỹ are positive solutions of the forthcoming system of non-linear
equations

λ(1 − A0)y − βA − φAy = 0,
c2φA − δ − ey = 0.

(4.1)

According to the second equation of the above system

A =
δ + ey
φc2

.

When we plug the value of A into the first equation of the system (4.1), we obtain

φey2 + (φδ + βe − φc2λ(1 − A0))y + βδ = 0. (4.2)

We observed that, the Eq (4.2) has two positive roots, if

φc2λ(1 − A0) > φδ + βe,
(
φc2λ(1 − A0) − φδ − βe

)2
> 4φeβδ, (4.3)
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hold.
System (2.3) has two prey-free equilibriums: Ẽ2(0, Ã, ỹ) and Ê2(0, Â, ŷ) under the conditions
given in the Eq (4.3). Again, if φc2λ(1 − A0) < φδ + βe, the Eq (4.2) has no positive roots. As a
result, in this case E2 does not exist.

• Existence of positive equilibrium E∗(x∗, A∗, y∗): It is evident that x∗, A∗ and y∗ are the positive
solutions of the forthcoming system of non-linear equations:

r
1 + kA0y

− r0 − r1x −
αA0y

(1 + ax)(1 + by)
= 0,

λ(1 − A0)y − βA − φAy = 0,
c1αA0x

(1 + ax)(1 + by)
+ c2φA − δ − ey = 0.

(4.4)

We can obtain from the second equation of the system (4.4)

A =
λ(1 − A0)y
β + φy

.

On substituting A in the first and third equations of the system (4.4) the forthcoming equations
are obtained:

r
1 + kA0y

− r0 − r1x −
αA0y

(1 + ax)(1 + by)
= 0, (4.5)

c1αA0x
(1 + ax)(1 + by)

+
c2φλ(1 − A0)y

β + φy
− δ − ey = 0. (4.6)

From the Eq (4.5), we observe the following points:

(1) When y = 0, then
x =

r − r0

r1
=: x0.

(2) When x = 0, then the quadratic equation follows

m1y2 + m2y + m3 = 0, (4.7)

where

m1 = kA0(αA0 + br0) > 0, m2 = (r0(kA0 + b) − (br − A0α)), m3 = −(r − r0) < 0.

Equation (4.7) always has exactly one positive root (say y0).
(3) The slope of the curve is

dy
dx

= −

r1 −
αA0ay

(1 + ax)2(1 + by)(
rkA0

(1 + kA0y)2 +
αA0

(1 + ax)(1 + by)2

) .
It is evident that,

dy
dx

< 0 exists under the following inequlity

r1 >
αA0ays

(1 + bys)
. (4.8)
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From the Eq (4.6), we observe the following points:

(1) When y = 0, then

x =
δ

c1αA0 − aδ
=: x1.

(2) The slope of the Eq (4.6) at any point (x, y) is

dy
dx

=

c1αA0

(1 + ax)2(1 + by)(
c1αA0bx

(1 + by)2(1 + ax)
−

c2βφλ(1 − A0)
(β + φy)2 + e

) > 0.

It is evident that,
dy
dx

> 0 under the following inequlity,

c2φλ(1 − A0)β < e(β + φyi)2. (4.9)

From the above analysis, it is concluded that the curve of the Eq (4.5) comes into the first
quadrant through the y-axis intersecting at (0, y0) and it is monotonically decreasing under
the inequality (4.8) and then it leaves the first quadrant by intersecting the x-axis at (x0, 0). The
curve of the Eq (4.6) enters in the first qudrant through the x-axis intersecting at (x1, 0). Under
the inequality (4.9), the curve increases monotonically and approaches to its horizontal asymptote
which is depited in the Figure 1 by the dashed line. Both the curves (4.5) and (4.6) intersect in
the interior of first quadrant if

x0 > x1 (4.10)

hold. From the above discussion, the system (2.3) has a unique positive solution E∗ if the
inequalities (4.8) to (4.10) hold.

x

Equation (4.5)
Equation (4.6)

y

E*

y
0

x
0

x
1

Figure 1. The existence of unique interior equilibrium under the inequalities stated in
Theorem 3.

Consequently, we can formulate the following theorem.

Theorem 3. If (4.8)–(4.10) hold, the system (2.3) has a unique interior equilibrium, E∗(x∗, A∗, y∗).
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Remark 2. The number of positive equilibrium for the system (2.3) depends on values of
parameters, which we have chosen. Several possibilities are depicted in Figure 2.
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(c)
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(d)

Figure 2. Four possibilities of the prey and predator zero growth isoclines. We have selected
the forthcoming parameter values. r = 2, k = 0.01, A0 = 0.5, r0 = 0.5, r1 = 0.043, α =

0.3, a = 0.15, b = 0.02, c1 = 0.4, c2 = 0.5, δ = 0.3, e = 0.02, λ = 2, β = 0.32, φ = 0.7.We
vary the parameter δ. (a) For the parameter value δ = 0.2, there is no existence of a positive
equilibrium. (b) Positive equilibrium point exists uniquely when the parameter value δ = 0.3.
(c) There exists two positive equilibrium points for the parameter value δ = 0.271. (d) Three
positive equilibrium for parameter value δ = 0.26.

4.2. Stability behavior

In ecology, an equilibrium point is said to be stable if a population settle and if the initial population
is near to the equilibrium point. It is known that the local behavior of a system near an equilibrium
point is the same as the corresponding linearized system. Hence, we investigate the stability behavior
of the equilibrium points of the non-linear system (2.3).
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Theorem 4. A necessary and sufficient condition for the negativity of the real parts of all the roots of
the polynomial L(ω) = ωn

1 + a1ω
n−1
1 + ..... + an with real coefficient is the positivity of all the principal

diagonals of the minors of the Hurwitz matrix

Hn =



a1 1 0 0 0 0 0 .... 0
a3 a2 a1 1 0 0 0 .... 0
a5 a4 a3 a2 a1 0 0 .... 0
. . . . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 0 0 0 0 .... an


.

For a proof of this theorem, see Bellman [42].

We calculate the variational matrix of the system and conclued the following point.

• The equilibrium point E0(0, 0, 0) is always saddle point having stable manifold along the A and y
axes and unstable manifold along the x axis.
• The equilibrium point E1(x∗, 0, 0) is

– locally asymptotically stable if δ >
c1αA0x∗
(1 + ax∗)

hold.

– saddle point having stable manifold along the A and x-axes and unstable manifold along the

y-axis if δ <
c1αA0x∗
(1 + ax∗)

hold.

– stable if δ =
c1αA0x∗
(1 + ax∗)

hold.

• The Jacobian matrix examined at the prey-free equilibrium point E2(0, Ã, ỹ) can be obtained by

J|E2 =



r
1 + kA0ỹ

− r0 −
αA0ỹ

(1 + bỹ)
0 0

0 −
λ(1 − A0)ỹ

Ã
λ(1 − A0) − φÃ

c1αA0ỹ
(1 + bỹ)

c2φỹ −eỹ


.

The characteristic equation of the above matrix can be obtained by(
ζ −

(
r

1 + kA0ỹ
− r0 −

αA0ỹ
(1 + bỹ)

))
(
ζ2 +

(
λ(1 − A0)ỹ

Ã
+ eỹ

)
ζ +

((
λ(1 − A0)ỹ

Ã
(eỹ)

)
− c2φỹ

(
λ(1 − A0) − φÃ

)))
= 0.

(4.11)

The roots of the Eq (4.11) have negative real parts, under the following conditions

r < (1 + kA0ỹ)
(
r0 +

αA0ỹ
(1 + bỹ)

)
, λ(1 − A0) < φÃ. (4.12)
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Hence, using the Routh-Hurwitz criterion Ẽ2(0, Ã, ỹ) is locally asymptotically stable under the
conditions in (4.12).
The roots of the Eq (4.11) have both positive and negative real parts if

λ(1 − A0)ỹ
Ã

(eỹ) < c2φỹ
(
λ(1 − A0) − φÃ

)
. (4.13)

Therefore, Ẽ2(0, Ã, ỹ) is a saddle point under the inequlity in (4.13).

Remark 3. Similar analysis supports the stability behavior of Ê2(0, Â, ŷ) on replacing Ã by Â and
ỹ by ŷ.

• The Jacobian matrix at the unique positive equilibrium point E∗(x∗, A∗, y∗) is given by

J|E∗ =



−r1x∗ +
αA0ax∗y∗

(1 + ax∗)2(1 + by∗)
0 −

rx∗kA0

(1 + kA0y∗)2 −
αA0x∗

(1 + ax∗)(1 + by∗)2

0 −
λ(1 − A0)y∗

A∗
λ(1 − A0) − φA∗

c1αA0y∗

(1 + ax∗)2(1 + by∗)
c2φy∗ −

c1αA0bx∗y∗

(1 + ax∗)(1 + by∗)2 − ey∗


.

The characteristic equation of the above matrix is,

η3 + A1η
2 + A2η + A3 = 0, (4.14)

where

A1 =r1x∗ −
αA0ax∗y∗

(1 + ax∗)2(1 + by∗)
+
λ(1 − A0)y∗

A∗
+

c1αA0bx∗y∗

(1 + ax∗)(1 + by∗)2 + ey∗,

A2 =

(
λ(1 − A0)y∗

A∗

)[ c1αA0bx∗y∗

(1 + ax∗)(1 + by∗)2 + ey∗
]
− c2φy∗

(
λ(1 − A0) − φA∗

)
+

(
r1x∗ −

αA0ax∗y∗

(1 + ax∗)2(1 + by∗)

)[ c1αA0bx∗y∗

(1 + ax∗)(1 + by∗)2 + ey∗
]

+

( rx∗kA0

(1 + kA0y∗)2 +
αA0x∗

(1 + ax∗)(1 + by∗)2

)[ c1αA0y∗

(1 + ax∗)2(1 + by∗)

]
+

(
r1x∗ −

αA0ax∗y∗

(1 + ax∗)2(1 + by∗)

)(
λ(1 − A0)y∗

A∗

)
,

A3 =

(
r1x∗ −

αA0ax∗y∗

(1 + ax∗)2(1 + by∗)

)[(
λ(1 − A0)y∗

A∗

)( c1αA0bx∗y∗

(1 + ax∗)(1 + by∗)2 + ey∗
)

− c2φy∗
(
λ(1 − A0) − φA∗

)]
+

( rx∗kA0

(1 + kA0y∗)2 +
αA0x∗

(1 + ax∗)(1 + by∗)2

)
((
λ(1 − A0)y∗

A∗

)( c1αA0y∗

(1 + ax∗)2(1 + by∗)

))
.

By the Routh-Hurwitz criterion [42,43], all the characteristic roots of J|E∗ have negative real part
iff

A1 > 0, A3 > 0, A1A2 > A3. (4.15)

Thus, the following theorem can be stated.
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Theorem 5. The positive equilibrium point E∗(x∗, A∗, y∗) is locally asymptotically stable, if the
conditions in (4.15) hold.

It is shown that conditions in (4.15) hold true if

λ(1 − A0)
φ

< A∗, A0 <
r1(1 + ax∗)2(1 + by∗)

αay∗
. (4.16)

Remark 4. The model (2.3) is stable around its interior equilibrium E∗ if the conditions in (4.16)
hold.

In the next theorem, we provide a criterion for global asymptotic stability of the unique positive
equilibrium E∗(x∗, A∗, y∗) of the system (2.3).

Theorem 6. The positive equilibrium E∗(x∗, A∗, y∗) of the system (2.3) is globally asymptotically
stable below the forthcoming inequlities:

A0 <
r1(1 + ax∗)(1 + by∗)

αay∗
,(

rkA0

(1 + kA0y∗)

)2

< 4
(
r1 −

αA0ay∗

(1 + ax∗)(1 + by∗)

)(
L2

(
c1αA0bx∗

(1 + bys)(1 + ax∗)(1 + by∗)
+ e

))
.

(4.17)

Proof. We select an appropriate positive definite function about E∗ as

V(x, A, y) =

(
x − x∗ − x∗ ln

( x
x∗

))
+

L1

2
(A − A∗)2 + L2

(
y − y∗ − y∗ ln

( y
y∗

))
,

where L1 and L2 are positive constants and will be defined later. Now, we differentiate V in context
of t along the solutions of system (2.3), we obtain
dV
dt

=

( x − x∗

x

)dx
dt

+ L1(A − A∗)
dA
dt

+ L2

(y − y∗

y

)dy
dt

= −

[
r1 −

αA0ay∗

(1 + ax∗)(1 + by∗)(1 + ax)

]
(x − x∗)2 − L1(β + φy)(A − A∗)2

− L2

[ c1αA0bx∗

(1 + by∗)(1 + by)(1 + ax∗)
+ e

]
(y − y∗)2 +

(
L1(λ(1 − A0) − φA∗) + L2c2φ

)
(A − A∗)(y − y∗)

+

[
−

rkA0

(1 + kA0y∗)(1 + kA0y)
−

αA0

(1 + ax)(1 + by∗)(1 + by)

+
L2c1αA0

(1 + by)(1 + ax)(1 + ax∗)

]
(x − x∗)(y − y∗).

Choosing L2 =
1 + ax∗

c1(1 + by∗)
and L1 =

L2c2φ

φA∗ − λ(1 − A0)
, we get

dV
dt

= −

[
r1 −

αA0ay∗

(1 + ax∗)(1 + by∗)(1 + ax)

]
(x − x∗)2 −

(1 + ax∗)c2φ

c1(1 + by∗)
(
φA∗ − λ(1 − A0)

) (β + φy)(A − A∗)2

−
1 + ax∗

c1(1 + by∗)

[ c1αA0bx∗

(1 + by∗)(1 + by)(1 + ax∗)
+ e

]
(y − y∗)2 −

rkA0

(1 + kA0y∗)(1 + kA0y)
(x − x∗)(y − y∗).

Using the Sylvester criterion [43], if the inequalities in (4.17) hold,
dV
dt

is negative definite.
Hence, E∗ is globally asymptotically stable above the inequalities in (4.17) [44]. �

AIMS Mathematics Volume 9, Issue 2, 4211–4240.



4228

4.3. Hopf-bifurcation and its properties

In dynamical system, Hopf-bifurcation is a occurrence in which stability of an equilibrium point
bifurcates into instability and periodic solutions on varing a parameter. The parameter A0 is crucial
in the system (2.3), we perform a Hopf-bifurcation analysis with A0 as the bifurcation parameter and
obtain a threshold value A0 = A∗0 where bifurcation occurs. The following are the necessary and
sufficient criteria for Hopf-bifurcation to occur at A0 = A∗0.
(a) A1|A∗0 > 0, A3|A∗0 > 0,
(b) f (A∗0) ≡ (A1A2 − A3)|A∗0 = 0,

(c) Re
[ dη j

dA0

]
A0=A∗0

, 0, where η j, j = 1, 2, 3 are the roots of Eq (4.14).

We obtain an equation in A0 from the expression A1A2 − A3 = 0 and assume it has at least one positive
root A∗0. Second, for some ε > 0, there is an interval containing A∗0, (A∗0 − ε, A

∗
0 + ε) such that A∗0 − ε > 0

and A2 > 0 for A0 ∈ (A∗0 − ε, A
∗
0 + ε). Therefore, Eq (4.14) is unable to have any real positive root for

A0 ∈ (A∗0 − ε, A
∗
0 + ε).

Therefore, when A0 = A∗0, we can write the Eq (4.14) as follows:

(η + A1)(η2 + A2) = 0

the above equation has the following three roots

η1,2 = ±ιµ, η3 = θ,

where, µ =
√

A2 and θ = −A1.
For A0 ∈ (A∗0 − ε, A

∗
0 + ε), above roots can be written as

η1,2 = k1(A0) ± ιk2(A0), η = −A1(A0).

The transversality criterion need to be verified. On differentiation of Eq (4.14) in context of the
bifurcation parameter A0, we get

[
dη

dA0

]
A0=A∗0

= −

[
Ȧ1η

2 + Ȧ2η + Ȧ3

3η2 + 2A1η + A2

]
η=ι
√

A2

= −

dR
dA0

2(A2
1 + A2)

+ ι

[ √
A2Ȧ2

2A2
−

A1
√

A2
dR
dA0

2A2(A2
1 + A2)

]
,

where R = A1A2 − A3 and Ȧs, s = 1, 2, 3 denote the derivative of As in context of time. Thus

Re
[

dη
dA0

]
A0=A∗0

= −

dR
dA0

2(A2
1 + A2)

.

Hence Re
[

dη
dA0

]
A0=A∗0

, 0 if
[

dR
dA0

]
A0=A∗0

, 0. This condition implies that the rate of change in the

real part of characteristic roots at the bifurcation point is non-zero. The forthcoming theorem can be
expressed as a result.
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Theorem 7. The system experiences a Hopf-bifurcation near the positive equilibrium E∗(x∗, A∗, y∗),
if the necessary and sufficient conditions (a)–(c) are satisfied. The threshold value of the bifurcation
parameter A0 is provided by the equation f (A∗0) = 0.

From Theorem 7, the system (2.3) experiences a Hopf-bifurcation at A0 = A∗0. Now we will
discuss the direction and stability of bifurcating periodic orbit [45]. The Eigenvectors v1 and v3 of
the variational matrix J|E∗ corresponding to the characteristic roots η1,2 = ±ιµ, and η3 = −A1

v1 =


r11 − ιr12

r21 − ιr22

r31 − ιr32

 , v3 =


r13

r23

r33

 ,
where

r11 = 1, r12 = 0, r13 = 1,

r21 =
(a11a22 + µ2)a23a13

(a13a22)2 + (a13µ)2 , r22 =
(a22 − a11)a23a13µ

(a13a22)2 + (a13µ)2 , r23 =
(c11 + C1)c23

(c22 + C1)c13
,

r31 = −
c11

c13
, r32 = −

µ

c13
, r33 = −

(c11 + C1)
c13

.

Now, we consider the transformation in system (2.3) in terms of X, Y and Z with x = x∗+ r11X + r12Y +

r13Z, A = A∗ + r21X + r22Y + r23Z and y = y∗ + r31X + r32Y + r33Z, the system (2.3) simplifies

dX
dt

=
(r22r33 − r32r23)Λ1 + (r23r31 − r21r33)Λ2 + (r21r32 − r31r22)Λ3

Λ
≡ Θ1(X,Y,Z),

dY
dt

=
(r23r31 − r21r33)Λ1 + (r33r11 − r31r13)Λ2 + (r21r13 − r23r11)Λ3

Λ
≡ Θ2(X,Y,Z),

dZ
dt

=
(r21r32 − r22r31)Λ1 + (r12r31 − r11r32)Λ2 + (r11r22 − r12r21)Λ3

Λ
≡ Θ1(X,Y,Z),

(4.18)

where Λ = r22r33 − r32r23 + r21r32 − r31r22,

Λ1 =
r(x∗ + X + Z)

1 + kA0(y∗ + r31X + r32Y + r33Z)
− r0(x∗ + X + Z) − r1(x∗ + X + Z)2

−
αA0(y∗ + r31X + r32Y + r33Z)(x∗ + X + Z)

(1 + a(x∗ + X + Z))(1 + b(y∗ + r31X + r32Y + r33Z))
,

Λ2 = (λ(1 − A0)(y∗ + r31X + r32Y + r33Z)) − β(A∗ + r21X + r22Y + r23Z)
− (φ(A∗ + r21X + r22Y + r23Z)(y∗ + r31X + r32Y + r33Z)),

Λ3 =
αc1A0(y∗ + r31X + r32Y + r33Z)(x∗ + X + Z)

(1 + a(x∗ + X + Z))(1 + b(y∗ + r31X + r32Y + r33Z))
+ (c2φ(A∗ + r21X + r22Y + r23Z)(y∗ + r31X + r32Y + r33Z))
− δ(y∗ + r31X + r32Y + r33Z) − e(y∗ + r31X + r32Y + r33Z)2.
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The system (4.18) has an equilibrium point (0, 0, 0), and the variational matrix calculated at this point
is as follows

J(0, 0, 0) =


0 −µ 0
µ 0 0
0 0 θ

 ,
where θ =

∂Θ3

∂y
. At A0 = A∗0 and (x, A, y) = (0, 0, 0), The values of g11, g02, g20, G21, e11, H101, H110,

e20, µ, κ20, κ11 and g21 can be calculated by following relations

g11 =
1
4

(
∂2Θ1

∂X2 +
∂2Θ1

∂Y2 + ι
(
∂2Θ2

∂X2 +
∂2Θ2

∂Y2

))
,

g02 =
1
4

(
∂2Θ1

∂X2 −
∂2Θ1

∂Y2 − 2
∂2Θ2

∂X∂Y
+ ι

(
∂2Θ2

∂X2 −
∂2Θ2

∂Y2 + 2
∂2Θ1

∂X∂Y

))
,

g20 =
1
4

(
∂2Θ1

∂X2 −
∂2Θ1

∂Y2 + 2
∂2Θ2

∂X∂Y
+ ι

(
∂2Θ2

∂X2 −
∂2Θ2

∂Y2 − 2
∂2Θ1

∂X∂Y

))
,

G21 =
1
8

(
∂3Θ1

∂X3 +
∂3Θ1

∂X∂Y2 +
∂3Θ2

∂X2∂Y
+
∂3Θ2

∂Y3 + ι
(
∂3Θ2

∂X3 +
∂3Θ2

∂X∂Y2 −
∂3Θ1

∂X2∂Y
−
∂3Θ2

∂Y3

))
,

µ = −
∂Θ1

∂Y
, e11 =

1
4

(
∂2Θ3

∂X2 +
∂2Θ3

∂Y2

)
, e20 =

1
4

(
∂2Θ3

∂X2 −
∂2Θ3

∂Y2 − 2ι
∂2Θ3

∂X∂Y

)
,

H110 =
1
2

(
∂2Θ1

∂X∂Z
+
∂2Θ2

∂Y∂Z
+ ι

(
∂2Θ2

∂X∂Z
−
∂2Θ1

∂Y∂Z

))
,

H101 =
1
2

(
∂2Θ1

∂X∂Z
−
∂2Θ2

∂Y∂Z
+ ι

(
∂2Θ2

∂X∂Z
+
∂2Θ1

∂Y∂Z

))
,

g21 = G21 + 2H110κ11 + H101κ20.

We can calculate the value for κ11 and κ20 by solving (θ− 2ιµ)κ20 = −e20 and θκ11 = −e11. Based on the
above analysis, we can compute the following quantities

C1(0) =
ι

2µ

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,

µ2 = −
Re[C1(0)][ dk1

dA0

]
A0=A∗0

,

β2 = 2Re[C1(0)],

T2 = −

Im[C1(0)] + µ2

[ dk2

dA0

]
A0=A∗0

µ
.

From the above analysis of Hopf-bifurcation, we now state the following theorem.

Theorem 8. (1) The Hopf-bifurcation curve exists for A0 > A∗0 (A0 < A∗0) if µ2 > 0 (µ2 < 0).
(2) The bifurcating perodic solutions are stable (unstable) if β2 < 0 (β2 > 0).
(3) The bifurcating perodic solution increases (decreases) if T2 > 0 (T2 < 0).
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5. Computer simulation

In this section, we will conduct computer simulations using MATLAB R2022a to confirm the
validity of our theoretical finidings discussed in the preceding sections. For the simulation, we have
selected the forthcoming parameter values.

r = 3, k = 5, A0 = 0.2, r0 = 0.2, r1 = 0.01, α = 0.8, a = 0.1, b = 0.1,
c1 = 0.5, c2 = 0.4, δ = 0.35, e = 0.025, λ = 1.5, β = 0.32, φ = 0.7.

(5.1)

For the above set of parameters, the inequalities in Theorem 3 hold true, therefore the positive
equilibrium point E∗(0.2863, 1.5289, 3.771) exist uniquely. Since the conditions in Theorem 5 are
also followed by E∗ (A1 = 3.0494 > 0, A3 = 0.0361 > 0, A1A2 − A3 = 0.3917 > 0), hence it is locally
asymptotically stable. The stability nature of E∗ is depicted in Figure 3. The left panel illustrates
the time series evolution of population and the right panel illustrates phase portrait in the xAy-space.
The figure illustrates that both species fluctuate around their equilibrium level for a finite time before
settling. It illustrates the local asymptotic stability of the system (2.3) around the interior equilibrium.
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Figure 3. Evolution of time series (a) and species phase portrait (b) for the set of parameters
selected in (5.1). Interior equilibrium point E∗ is locally asymptotically stable.

Now, to investigate the effect of the degree of dependency A0, we increase it keeping all other
parameters unchanged. We noticed that the transient period is increasing with A0, which indicates
a route to Hopf-bifurcation. At A0 = 0.2872(A∗0) the system undergoes a Hopf-bifurcation and
populations face perpetual oscillations. The necessary and sufficient conditions given in Theorem 5
are also satisfied. The bifurcation value of A0 can be calculated by solving the equation f (A0) = 0. For
further values of A0, the system has a limit cycle. In Figure 4, the unstable nature of E∗ and limit cycle
are plotted. A solution trajectory, which is initiated from near to the positive equilibrium is attracted
by the limit cycle around it (see Figure 4c). This shows that the Hopf-bifurcation is supercritical. If
we further increase the parameter A0 then at the higher dependency of predators on prey the system
again get back to its stability near E∗ via another Hopf-bifurcation. Beyond another critical value of
A0, A∗∗0 = 0.9291, the limit cycles leave the system and E∗ becomes stable. The stable behavior of E∗

at A0 = 0.955 > A∗∗0 is illustrated in the Figure 5.
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Figure 4. Unstable behavior of positive equilibrium point and existence of stable limit cycle,
when A0 = 0.5 > A∗0.
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Figure 5. Evolution of time series (a) and species phase portrait (b), when A0 = 0.955 > A∗∗0 ,
the interior equilibrium E∗ is stable.
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As we vary parameter A0, we can see that the system changes its stability twice. Thus, the Hopf-
bifurcation occurs multiple times in the full range of the dependency factor. In order to provide
a comprehensive representation of the Hopf-bifurcation, we have constructed a three-dimensional
bifurcation diagram as depicted in Figure 6. This diagram illustrates the attractors of the system in the
prey and predator plane for many values of parameter A0. It is remarkable that the positive equilibrium
point remains stable below the first critical value of A0. However, once the critical value is exceeded,
the trajectories are attracted toward a limit cycles. These stable limit cycles are represented by the
colored closed orbits displayed in the diagram. When A0 = 0.2872 = A∗0, we can see that all the
conditions of Theorem 7 are satisfied. Also we comutate that

C1(0) = −0.0009 − 0.0225i, µ2 = 0.016221 > 0, β2 = −0.0018 < 0, T2 = 0.1112 > 0.

By Theorem 8, this result implies that the Hopf-bifurcation taking place, is of supercritical nature, and
bifurcating periodic solutions are stable. When A0 = 0.9291 = A∗∗0 , Hopf-bifucation occurs and the
limit cycle disappears. We can see that the all conditions of Theorem 7 are satisfied and

C1(0) = −0.0004 − 0.0337i, µ2 = −0.02581 < 0, β2 = −0.000817 < 0, T2 = 0.06389 > 0.

By Theorem 8, this result implies that the Hopf-bifurcation taking place is of supercritical nature, and
bifurcating periodic solutions are stable.

From Figure 6, we observe that at the low degree of dependency, the predator has a higher
dependency on additional food, resulting in the system (2.3) being stable. However, as the dependency
factor gradually increases, the system (2.3) is unstable and forms a limit cycle. This indicates that the
predator’s dependence extends to both the prey and additional food resources. Finally, as we further
increase the value of A0, the predator’s reliance shifts more towards the prey, leading to the system (2.3)
returning to a stable state. Overall, the bifurcation diagram visually demonstrates how the system (2.3)
dynamics change as the dependency of predator on prey varies, showing the changes from stable to
unstable states as well as the effect of predator dependency factor on both prey and supplementary
nourishment.

The fear parameter k is also a vital parameter that significantly influences the dynamics of the
system. For the best illustration of varing k, we change the parameter A0 = 0.4, whereas other
parameters are the same as in (5.1). Initially, for lower values of k, the system is stable near its positive
equilibrium. Now, we start increasing the fear parameter, and this change in k opposes the stability
and at k = 2.5441(k∗), the system falls into the never ending oscillations via a Hopf-bifurcation. If we
choose k beyond k∗, then E∗ becomes unstable and the trajectory started from near by points approaches
a stable limit cycle. The unstable equilibrium point and stable limit cycle at k = 6 > k∗ are shown in
the Figure 7.
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Figure 6. Bifurcation diagram with respect to parameter A0, representing attractors
(equilibrium points and limit cycles).

Figure 7. Existence of limit cycle for k = 6 > k∗.

Figure 8 provides a comprehensive bifurcation diagram that illustrates the behavior changes as the
fear parameter k rises. It is evident from the figure that the system remains stable for lower values of
k. However, as k approaches its threshold value (k∗), the system destabilizes and experiences a Hopf-
bifurcation. Beyond the critical value, the equilibrium point becomes unstable and a periodic solution
appears in the system. When k = 2.552 = k∗, we can see that all the conditions of Theorem 7 are
satisfied. Also, we computate that

C1(0) = −0.0007 − 0.01665i, µ2 = 15.02683 > 0, β2 = −0.00145 < 0, T2 = 0.807699 > 0.

By Theorem 8, the bifurcating periodic solution exists for k < k∗, the bifurcating periodic solution
increases and bifurcating periodic solutions are stable.
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Figure 8. Prey and predator species bifurcation diagram in context of parameter k.

The behavior of system (2.3) experiences Hopf-bifurcation in the context of the parameters A0 and
k. Hence, A0k-plane can be divided into two types of regions, region of stability where the equilibrium
point is stable and the region of instability where the equilibrium point is unstable and limit cycle
presents in the system. Both the regions are separated by a curve, where the characteristic roots of
variational matrix are purely imaginary, known as Hopf-bifurcation curve. Previously, we noticed that
the system switches its stability twice on varying parameter A0, while only once on varying the fear
parameter k. Therefore, there are two stability regions and one instability region in the A0k-plane
separated by two Hopf-bifurcation curves. The stability and instability regions are represented in
Figure 9. When we consider a particular value of the cost of fear k = 3, there are two bifurcation points
for the parameter A0: A

′

0 = 0.3735 and A
′′

0 = 0.9418. System (2.3) remains stable until A
′

0 as depicted
in the Figure 9. However, when A0 exceeds A

′

0 (A0 > A
′

0), the system becomes unstable and enters a
limit cycle. If we further increase A0 beyond A

′′

0 (A0 > A
′′

0), the system (2.3) regains its stability.
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Figure 9. Stability and instability regions of the system (2.3) in A0k-plane.

Now, to maintain the equilibrium levels of prey (x∗ = 2) and predator (y∗ = 2), we vary the
parameters k and A0 whereas the other parameters are fixed (same as in (5.1)). We notice that we have
to decrease the value of parameter A0 as the parameter k increases to maintain the population density
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of prey or predator (refer the Figure 10).
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Figure 10. A graph in values of parameters A0 and k maintaining the prey and predators level
constant.

6. Conclusions

The prey-predator system in ecology describes the relationship between species, where the prey
population supports the predator population as a food source, and the predator population consumes
the prey population through predation. When additional food is introduced into a prey-predator
system, it can lead to growth in the prey population, which subsequently supports a larger predator
population due to more available food resources. This can result in a more stable or balanced system
compared to a system without additional food. Numerous studies [20, 30–32] have investigated the
effects of additional food in prey-predator systems, providing valuable insights into how this factor
can influence population dynamics and ecological interactions between the species involved. Recent
studies [37–39] have examined the effect of predator-induced fear on prey individuals, leading to a
reduction in their reproducion rate. The separation of the fear effect from direct killing by predators
was made feasible due to some extensive experimental efforts by various ecologists [33]. The Crowley-
Martin functional response model investigates how predator predation rates change with variations in
prey density and shows more realistic dynamics [13, 26, 27]. In this research, we examine a prey-
predator model that incorporates three important factors: Fear effect in the prey species induced by
predators, predator-prey interaction by the Crowley-Martin functional response, and the influence of
providing additional food to the predator. The presence of additional food may influence the predator’s
dependency on prey, which may lead to a significant difference in the dynamics of the system. It is
essential to understand how much the predator depends on prey and additional food. We introduced a
new parameter, the degree of dependency, which indicates the predator’s dependency on prey. After
conducting a thorough analysis, we have demonstrated that the proposed system is characterized by
positivity, boundedness and persistence, highlighting its ecological significance and well-posedness.
We conducted an analysis to examine how the number of interior steady states and their stability
characteristics change with variations in parameters. Our system exhibits four types of equilibria:
The trivial equilibrium E0(0, 0, 0), the axial equilibrium E1(x∗, 0, 0), two prey-free equilibria Ẽ2 and
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Ê2 under condition (4.3) and a unique positive equilibrium E∗ under conditions (4.8)–(4.10). We have
carried out the local and global stability of all existing equilibria in the system. With the stability
results, we conclude that the coexistence of both species depends on the equilibrium level of provided
additional food and the degree of dependency (refer to the set of inequalities in (4.16) and (4.17)). This
analysis carries various conditions with the stability of the equilibrium being influenced by the degree
of dependency.

We have shown that the degree of dependency plays a vital role in stabilize the system through Hopf-
bifurcation. The Hopf-bifurcation phenomenon has also been validated by a computer simulation. We
noticed, for a particular range of cost of fear, that the system switches its stability around the positive
equilibrium point multiple times (see Figure 9). This indicates that the system’s stability relies on
the absence or minimal degree of dependency between the two species. If the dependency exceeds a
certain initial threshold, both species begin oscillating around unstable steady states. However, if the
dependency attains another threshold, the system regains stability. This provides a clear demonstration
of how changes in the degree of dependency impact the ecological dynamics in the predator-prey
system.

Additionally, we explored the Hopf-bifurcation with respect to the fear parameter k and obtained
the threshold value k∗ = 2.58, where the system destabilizes. This shows that the system is stable if the
degree of fear is low, but if the fear is increased beyond a level, then both the species start oscillating
around their unstable steady state. From the ecological point of view, this nature can be justified.
Initially, when k is very small, both populations coexist with stability. Now, we start increasing the
cost of fear, which leads to a reduction in the reproduction rate of prey. Due to this, the prey population
starts decreasing and consequently, the predators also start decreasing due to the scarcity of food. At
the low density of predators, the fear effect gets weak and the prey population starts growing. Now, the
abundance of food predators also increases. After a certain level of cost of fear, both the populations
oscillate perpetually. This leads to limit cycles in the system at the higher values of cost of fear.

In conclusion, we find that predator-induced fear and the predator’s dependency on prey both are
effective in controlling the oscillations in the system, thereby playing a crucial role in stabilizing or
balancing the ecosystem. These factors contribute significantly to the regulation and persistence of
predator-prey dynamics, highlighting their importance in ecological stability. The outcome of our
study has an important effect on the conservation of prey populations, as they are supported by a
system with additional food for predators. We believe that our research will deepen the understanding
of how ecological dynamics change in the presence of fear effect, additional food resources, and degree
of dependency are added.
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