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1. Introduction

Nonlinear partial differential equations arised from many scientific fields, such as physics, biology
and so on. In recent decades, scientists devoted themselves to formulate methods to find the solutions
to the nonlinear problems [1–8]. It is well known that the sinh-Gordon equation is one of the essential
nonlinear equations in integrable quantum field theory, kink dynamics, and fluid dynamics [9–14].
The sinh-Gordon equation arises as a special case of the Toda lattice equation, a well-known soliton
equation in one space and one time dimension, which can be used to model the interaction of
neighboring particles of equal mass in a lattice formation with a crystal.

The sinh-Gordon equation [15] is

∂2Ω

∂x2 −
∂2Ω

∂t2 = [sinh(Ω)]. (1.1)

In recent years, many powerful mathematical methods have been proposed to derive soliton
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solutions for the sinh-Gordon equation, such as the Tanh method [16], bifurcation method [17], (G′/G)-
expansion method and Exp-function method [18], F-expansion method [19], and the homogeneous
balance method [20].

When the q-deformed hyperbolic function, proposed in the 19th century by Arai, was included in the
dynamical system, the symmetry of the system was destroyed and, consequently as was the symmetry
of the solution [21, 22]. Recently, there have been several solutions generated for the Schrödinger
equation and Dirac equation with q-deformed hyperbolic potential. q-deformed functions show
promise in modeling atom-trapping potentials or statistical distributions in Bose-Einstein condensates,
as well as exploring vibrational spectra of diatomic molecules [23, 24]. The generalized q-deformed
sinh-Gordon equation is

∂2Ω

∂x2 −
∂2Ω

∂t2 = [sinhq(Ωθ)]l − ω. (1.2)

This equation was introduced and studied in this form for the first time in 2018 by Eleuch [25].
Nauman et al. studied the equation via the exp(−ϕ(ξ))-expansion method [26]. Ali et al. employed the
extended tanh method to obtain the exact solutions of the equation [27].

In this paper, we shall consider the conformal time derivative generalized q-deformed sinh-Gordon
equation [28]:

∂2Ω

∂x2 −
∂2αΩ

∂t2α = [sinhq(Ωθ)]l − ω, (1.3)

where θ, l are constants, α ∈ (0, 1], and q ∈ (0, 1). q = 1 gives the standard sinh-Gordon equation. In
addition, we get the generalized q-deformed sinh-Gordon equation at α = 1. The equation also appears
in problems varying from fluid flow to quantum field theory. In this work, we analyze the conformal
time derivative generalized q-deformed sinh-Gordon equation with the aid of a conformable derivative
operator to find solitons using the complete discrimination system for the polynomial method.

This article is arranged as follows: In Section 2, we review the definition of conformable derivative
and introduce the complete discrimination system for constructing the exact traveling wave solutions of
fractional partial differential equation. In Section 3, we will apply this method to solve the conformal
time derivative generalized q-deformed sinh-Gordon equation. In Section 4, we draw the numerical
simulations. In Section 5, we present the concluding remarks.

2. Mathematical analysis

The conformable derivative of order α is defined as

Dα
t f (t) = lim

ε→0

f (t + εt1−α) − f (t)
ε

(2.1)

for all t > 0, α ∈ (0, 1].
The following transformation is used to determine the traveling wave solution of Eq (1.3):

Ω(x, t) = v(ξ), ξ = ρx − κ
tα

α
, (2.2)

and κ denotes the speed of the traveling wave.
Using Eq (2.2), Eq (1.3) becomes

(ρ2 − κ2)v
′′

(ξ) + ξ − [sinhq(v(ξ)θ)]l = 0. (2.3)
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Now, we take two cases for Eq (2.3).
Case one: Suppose l = θ = 1, ω = 0. Then, Eq (2.3) can be written as

(ρ2 − κ2)v
′′

(ξ) − sinhq(v(ξ)) = 0. (2.4)

We can multiply both sides of Eq (2.4) by v
′

(ξ) and, after the integration, we get [28]

1
2

(ρ2 − κ2)(v
′

(ξ))2 − coshq(v(ξ)) − m = 0, (2.5)

where m is the integration constant.
Let

v(ξ) = ln(u(ξ)), (2.6)

and Eq (2.5) becomes

(ρ2 − κ2)u
′

(ξ)2 + 2mu2(ξ) + qu(ξ) + u3(ξ) = 0. (2.7)

Thus, we can solve Eq (2.7) using our method, and from Eqs (2.2) and (2.6), we can get the solution
of Eq (1.3) in the first case.

Case two: Suppose θ = 1, l = 2, ω = −q
2 . In this case, Eq (2.3) can be expressed as [28]:

(ρ2 − κ2)v
′′

(ξ) − (sinhq v(ξ))2 −
q
2
= 0. (2.8)

After simplifying Eq (2.8), we get

(ρ2 − κ2)v
′′

(ξ) −
1
2

coshq2(2v(ξ)) = 0. (2.9)

Let
v(ξ) =

1
2

ln(u(ξ)), (2.10)

and Eq (2.10) becomes

2(ρ2 − κ2)u
′

(ξ)2 − 2(ρ2 − κ2)u(ξ)u
′′

(ξ) + q2u(ξ) + u3(ξ) = 0. (2.11)

Thus, we can solve Eq (2.11) using our method and from Eqs (2.2) and (2.10) we can get the solution
of Eq (1.3) in the second case.

Equations (2.7) and (2.10) are usually reduced to

(u
′

(ξ))2 = G(u), (2.12)

where G(u) is a polynomial, then, integrating Eq (2.12) once, we can obtain

±(ξ − ξ0) =
∫

du
√

G(u)
, (2.13)

where ξ0 is an integral constant.
According to the above procedures, recent results have been reported via the complete

discrimination system [29, 30].
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3. Applications

In this section, the polynomial method applies to find the analytic solution to the two cases that
were imposed for Eq (1.3).
• The analytical solution of case one at l = θ = 1, ω = 0:
Based on Eq (2.7), we can get

(u
′

)2 =
1

ρ2 − κ2 u3 +
2m

ρ2 − κ2 u2 +
q

ρ2 − κ2 u. (3.1)

Making the transformation ψ = ( 1
ρ2−κ2 )

1
3 u, ξ1 = ( 1

ρ2−κ2 )
1
3 ξ, Eq (3.1) becomes

(ψ
′

)2 = ψ3 + p1ψ
2 + p2ψ, (3.2)

where p1 = 2m( 1
ρ2−κ2 )

1
3 , p2 = q( 1

ρ2−κ2 )
2
3 .

Integrating Eq (3.2), we have

±(ξ1 − ξ0) =
∫

du√
ψ3 + p1ψ2 + p2ψ

. (3.3)

According to the complete discrimination system, we give the corresponding single traveling wave
solutions to Eq (2.7).

Case 1.1. ∆ = 0, D1 < 0, and we have F(ψ) = (ψ − λ1)2(ψ − λ2), λ1 , λ2.
When ψ > λ2, we have

±(ξ1 − ξ0) =
∫

dψ
(ψ − λ1)

√
ψ − λ2

=


1

√
λ1−λ2

ln |
√
ψ−λ1−

√
λ1−λ2

√
ψ−λ2+

√
λ1−λ2

(λ1 > λ2),
2

√
λ2−λ1

arctan
√

ψ−λ2
λ1−λ2

(λ1 < λ2);
(3.4)

the corresponding solutions of Eq (1.3) are

Ω1(x, t) =
1
3

ln(ρ2 − κ2) + ln{(λ1 − λ2) tanh2[
√
λ1 − λ2

2
(

1
ρ2 − κ2 )

1
3 (ξ − ξ0)] + λ2} (λ1 > λ2); (3.5)

Ω2(x, t) =
1
3

ln(ρ2 − κ2) + ln{(λ1 − λ2) coth2[
√
λ1 − λ2

2
(

1
ρ2 − κ2 )

1
3 (ξ − ξ0)] + λ2} (λ1 > λ2); (3.6)

Ω3(x, t) =
1
3

ln(ρ2 − κ2) + ln{(λ2 − λ1) tan2[
√
λ2 − λ1

2
(

1
ρ2 − κ2 )

1
3 (ξ − ξ0)] + λ2} (λ1 > λ2). (3.7)

Case 1.2. ∆ = 0, D1 = 0, then F(ψ) = (ω − λ)3 and the corresponding solutions of Eq (1.3) are

Ω4(x, t) = ln[4(
1

ρ2 − κ2 )−
2
3 (ξ − ξ0)−2 + λ]. (3.8)

Case 1.3. ∆ > 0, D1 < 0, then F(ψ) = (ψ − λ1)(ψ − λ3)(ψ − λ3), with λ1 < λ2 < λ3. Therefore,
we have

±(ξ1 − ξ0) =
∫

du√
(ψ − λ1)(ψ − λ1)(ψ − λ3)

. (3.9)
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When λ1 < ψ < λ3, the corresponding solutions of Eq (1.3) are

Ω5(x, t) =
1
3

ln(ρ2 − κ2) + ln[λ1 + (λ2 − λ1)sn2(
√
λ3 − λ1

2
)(

1
ρ2 − κ2 )−

1
3 (ξ − ξ0),m)]. (3.10)

When ψ > λ3, the corresponding solutions of Eq (1.3) are

Ω6(x, t) =
1
3

ln(ρ2 − κ2) + ln[
λ3 − λ2sn2(

√
λ3−λ1

2 ( 1
ρ2−κ2 )−

1
3 (ξ − ξ0),m)

cn2(
√
λ3−λ1

2 ( 1
ρ2−κ2 )−

1
3 (ξ − ξ0),m)

], (3.11)

where m2 = λ2−λ1
λ3−λ1

.
Case 1.4. ∆ < 0, then, F(ψ) = (ψ − λ)(ψ2 + b1ψ + b2), b2

1 − 4b2 < 0, and the corresponding
integral becomes

±(ξ1 − ξ0) =
∫

dψ
(ψ − λ)(ψ2 + b1ψ + b2)

. (3.12)

When ψ > λ, the corresponding solutions of Eq (1.3) are

Ω7(x, t) =
1
3

ln(ρ2−κ2)+ln[λ+
2
√
λ2 + b1λ + b2

1 + cn(λ2 + b1λ + b2)
1
4 ( 1

ρ2−κ2 )−
1
3 (ξ1 − ξ0),m)

−
√
λ2 + b1λ + b2], (3.13)

where m2 = 1
2 (1 − λ+

b1
2√

λ2+b1λ+b2
).

• The analytical solution of case two at l = 2, θ = 1, ω = −q
2 .

By our trial equation method, we have the trial equation

u
′′

= a0 + a1u + a2u2. (3.14)

Integrating Eq (3.14), we have

(u
′

)2 =
2
3

a2u3 + a1u2 + a0u + d. (3.15)

Substituting Eqs (3.14) and (3.15) into Eq (2.11),

r3u3 + r2u2 + r1u + r0 = 0, (3.16)

where r3 =
2
3 (ρ2 − κ2)a2 + 1, r2 = 4(ρ2 − κ2)a1, r1 = 2(ρ2 − κ2)a0 + q2, r0 = 2(ρ2 − κ2)d.

Thus, we have a system of algebraic equations from the coefficients of polynomial u. Solving the
algebraic equation system yields the following: a2 =

3
2(ρ2−κ2) , a1 is the constant, a0 = −

q2

2(ρ2−κ2) , d = 0.

Making the transformation u = ( 2
3a2)−

1
3ϕ, ξ1 = (2

3a2)−
1
3 ξ, we have

±(ξ1 − ξ0) =
∫

dϕ√
ϕ[ϕ2 + q1ϕ + q2]

, (3.17)

where ξ0 is the integration constant.
Suppose that ∆ = q2

1−4q2, F(ϕ) = ϕ2+q1ϕ+q2, and there are four cases for the solutions of Eq (1.3).
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Case 2.1. ∆ = 0. Since ϕ > 0, we have

±(ξ1 − ξ0) =
∫

dϕ
√
ϕ(ϕ + q1

2 )
. (3.18)

If q1 < 0, Eq (3.18) becomes

±(ξ1 − ξ0) =

√
2
−q1

ln |

√
2ϕ −

√
−q1√

2ϕ +
√
−q1

|, (3.19)

and the traveling wave solutions of Eq (1.3) are

Ω8(x, t) =
1
3

ln
a1

2
(ρ2 − κ2) + ln tanh(

1
8

√
a1(ρ2 − κ2)

2
3 (ξ − ξ0)), (3.20)

Ω9(x, t) =
1
3

ln
a1

2
(ρ2 − κ2) + ln coth(

1
8

√
a1(ρ2 − κ2)

2
3 (ξ − ξ0)). (3.21)

If q1 > 0, Eq (3.18) becomes

±(ξ1 − ξ0) = −
√

q1

2
arctan

√
2ϕ
q1
, (3.22)

and the traveling wave solutions of Eq (1.3) are

Ω10(x, t) =
1
2

ln
a1

2
(ρ2 − κ2) + ln tan[

√
a1

2
(ρ2 − κ2)

2
3 (ξ − ξ0)]. (3.23)

If q1 = 0, Eq (3.18) becomes

±(ξ1 − ξ0) =
−1
√
ϕ
, (3.24)

and the traveling wave solutions of Eq (1.3) are

Ω11(x, t) =
1
2

ln
4

(ξ − ξ0)2 . (3.25)

Case 2.2. ∆ > 0, q2 = 0. Since ϕ > −q1, Eq (3.17) can be written as

±(ξ1 − ξ0) =
∫

dϕ
ϕ
√
ϕ + q1

. (3.26)

If q1 > 0, then, Eq (3.26) becomes

±(ξ1 − ξ0) =

√
2
q1

ln |

√
2(ϕ + q1) −

√
q1√

2(ϕ + q1) +
√

q1

|, (3.27)

and the traveling wave solutions of Eq (1.3) are

Ω12(x, t) =
1
2

ln
a1

2
(ρ2 − κ2) + ln tanh[

√
a1

2
(ρ2 − κ2)

2
3 (ξ − ξ0)] − a1(ρ2 − κ2)

2
3 ], (3.28)
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Ω13(x, t) =
1
2

ln
a1

2
(ρ2 − κ2) + ln coth[

√
a1

2
(ρ2 − κ2)

2
3 (ξ − ξ0)] − a1(ρ2 − κ2)

2
3 ]. (3.29)

If q1 < 0, then, Eq (3.26) becomes

±(ξ1 − ξ0) = −2

√
−

2
q1

arctan

√
2(ϕ + q1)
−q1

, (3.30)

and the traveling wave solutions of Eq (1.3) are

Ω14(x, t) =
1
2

ln{−
a1

2
(ρ2 − κ2)[

√
a1

2
(ρ2 − κ2)

2
3 (ξ − ξ0)] − a1(ρ2 − κ2)

2
3 }. (3.31)

Case 2.3. ∆ > 0, q2 , 0. Suppose α1 < α2 < α3, one of them is zero and the other two are the roots
of F(ϕ).

If α1 < ϕ < α3, and take ϕ = α1 + (α2 − α1) sin θ, then, Eq (3.17) can be rewritten as

±(ξ1 − ξ0) =
2

α3 − α1

∫
dϕ√

1 − m2 sin2 θ
. (3.32)

Here, m2 = α2−α1
α3−α1

. According to the definition of Jacobian elliptic function sn, we obtain the solution
of Eq (1.3) in the following form:

Ω15(x, t) =
1
2

ln{(ρ2 − κ2)[α1 + (α2 − α1)sn2(
√
α3 − α1(ξ − ξ0),m)]}. (3.33)

If ϕ > α3, and take ψ = −α2 sin2 φ+α3
cos2 φ

, the solution of Eq (1.3) can be constructed as follows:

Ω16(x, t) =
1
2

ln(ρ2 − κ2)
−βsn(

√
α3 − α1(ξ1 − ξ0),m) + α3

cn(
√
α3 − α1(ξ1 − ξ0),m)

. (3.34)

Case 2.4. ∆ < 0, ϕ > 0, and take the transformation

ϕ =
√

q2 tan2 φ

2
. (3.35)

Substituting Eq (3.35) into Eq (3.17),

±(ξ1 − ξ0) = q−
1
4

2

∫
dφ√

1 − k2 sin2 φ

, (3.36)

where k2 = 1
2 (1 − q1

2
√

q2
). From the definition of Jacobian elliptic function cn, we obtain

cn(2(q
1
4
2 )(ξ1 − ξ0),m) = cosφ. (3.37)

From Eq (3.35), we get

cosφ =
2
√

q2

ϕ +
√

q2
− 1. (3.38)

By using Eqs (3.37) and (3.38), the traveling wave solution of Eq (1.3) can be derived in the
following form:

Ω17(x, t) =
1
2

ln [
2q2

1 + cn(2
√

q2((ρ2 − κ2)−
1
6 )(ξ − ξ0),m)

− q2(ρ2 − κ2)
1
3 ]. (3.39)
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4. Graphical representation of the obtained solutions

In this section, the exact solutions of the conformal time derivative generalized q-deformed
sinh-Gordon equation are given. Through the above results, we get some new exact solutions,
such as solitary wave solutions Ω1(x, t),Ω2(x, t),Ω8(x, t),Ω9(x, t),Ω12(x, t),Ω13(x, t); rational function
solutions Ω4(x, t),Ω11(x, t),Ω14(x, t); trigonometric function solutions Ω3(x, t),Ω10(x, t); and Jacobi
elliptic function double periodic solutions Ω5(x, t),Ω6(x, t),Ω7(x, t),Ω15(x, t),Ω16(x, t),Ω17(x, t).
Furthermore, Ω1(x, t),Ω8(x, t),Ω12(x, t) are bounded solutions and Ω2(x, t),Ω9(x, t),Ω13(x, t) are
unbounded solutions. Using the mathematical software Maple, we plot some of these obtained
solutions, which are shown in Figures 1–3.

(a) (b)

Figure 1. The solitary wave solutionΩ8(x, t) for Eq (1.1) with ρ = 1, κ = 1
2 , a1 = −1, ξ0 = 0.

(a) Perspective view of the wave. (b) The wave along the z-axis.

(a) (b)

Figure 2. The solitary wave solutionΩ9(x, t) for Eq (1.1) with ρ = 2
3 , κ =

1
2 , a1 = −1, ξ0 = 0.

(a) Perspective view of the wave. (b) The wave along the z-axis.
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(a) (b)

Figure 3. The solitary wave solution Ω10(x, t) for Eq (1.1) with ρ = 1, κ = 1
2 , a1 = 1, ξ0 = 0.

(a) Perspective view of the wave. (b) The wave along the z-axis.

5. Conclusions

In this paper, the conformal time derivative generalized q-deformed sinh-Gordon equation has
been investigated via the complete discriminant system method. A range of new traveling wave
solutions is obtained, such as periodic solutions, rational wave solutions, Jacobi elliptic solutions,
triangular functions solutions, and hyperbolic function solutions. Comparing with other works [28],
these solutions have not been reported in the former literature. This also indicates that the complete
discrimination system for polynomial method is powerful in nonlinear analysis.
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