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1. Introduction

All graphs considered in this paper are finite, undirected, and may contain loops. Let G be a graph
with vertex set V(G) = {vy, vy, ...,v,} and edge set E(G) = {e}, ez, ...,e,}. For 1 <1, j < n, two vertices
v; and v; in G are adjacent (or neighbors) in G if v; and v; are endpoints of an edge e of G, and we
write v; ~ v; if v; is adjacent to v; in G. The degree of a vertex v in G, denoted by deg(v), is the number
of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.
The adjacency matrix of G is the n X n matrix A(G) = (a;;), where a;; = 1 or 0 according to whether
v; ~ v;isin G or not. The Laplacian matrix L(G) of G is defined by L(G) := D(G) — A(G), where
D(G) = Diag(d,,d,, ...,d,) is the diagonal matrix such that d; are degrees of vertices of G. L(G) is a
symmetric, real, and positive semidefinite matrix; all eigenvalues of L(G) are real and nonnegative. For
a simple graph G, the sum of the entries in each row of L(G) is zero, and hence the smallest eigenvalue
of L(G) is 0. More literature about the Laplacian matrix of graphs can be seen in [7, 13].

The spectrum of a square matrix B, denoted by o(B), is the multiset of all the eigenvalues of B.
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If py, po, ..., p, are distinct eigenvalues of B with respective multiplicities my, m,, ..., m,, then we shall
denote the spectrum of B by
o(B) = { Hio Hoee M }

my mp; .. m;

For a graph G, the Laplacian spectrum of G is the spectrum of L(G), denoted by o, (G). The Laplacian
spectrum of graphs of rings has been widely studied in literature, see [3-5].

For a positive integer n, let Z, denote the ring of integers modulo n. In this paper, the elements of
the ring Z, are referred to as 0, 1,2, and n— 1. A nonzero element x € Z, is a unit in Z, if x is relatively
prime with n: (x,n) = 1. In 1990, the unit graph was first introduced by Grimaldi [8] for Z, as follows:
the unit graph G(Z,) is the graph obtained by setting all the elements of Z, to be vertices and defining
distinct vertices x and y to be adjacent if and only if x + y is a unit in Z,. He discussed certain basic
properties of the structure of the unit graph G(Z,) and studied the covering number, the degree of a
vertex, the independence number, the Hamilton cycles, and the chromatic polynomial of the graph
G(Z,). More about the unit graph G(Z,) can be seen in [16, 17]. Later, Ashrafi et al. [2] generalized
the unit graph from G(Z,) to G(R) for an arbitrary ring R. They studied the chromatic index, diameter,
girth, and planarity of G(R). In addition, they defined the closed unit graph G(R) by dropping the word
“distinct” from the definition of the unit graph G(R), and stated that some of G(R)’s vertices may have
loops. Many properties of the unit graph G(R) were investigated in [1,11,18].

The remaining parts of the paper are organized as follows: In Section 2, we present some
preliminaries and deduce the Laplacian matrix of the direct product for graphs with loops. In Section 3,
we obtain the Laplacian spectrum of the graphs G(Z,,) and G(Z,,,), where p, g # 2 are distinct primes.
We deduce several consequences from these results, which include the determination of the Laplacian
spectrum of G(Z,) for n = pyp,...pr, where p; are distinct primes and i = 1,2, ..., k.

2. Laplacian matrix of the direct product of graphs with at most one loop at each vertex

Let us denote the graph with at most one loop at each vertex by G and let G be the simple graph
corresponding to G. For v € V(G), we denote by N(v) the set of all neighbors of v in G. Note that, if v
has a loop, then v € N(v) [15]. For graphs G and G we define the following matrices:

o M(G) = (m; ;) 1s a diagonal matrix such that

{1 if i = j and v; is vertex has a loop,
m,‘j =

0 otherwise.

Clearly, M(G) = 0.
e N(G) = (n;;) is a diagonal matrix defined by

0 otherwise.

{|N(v,->| ifi = j,
I’ll'j =

So, N(G) = N(G) + M(G).

For any vertex v in G, we have deg(v) = |N(v)|, and hence N(G) = D(G). Letv € V(G); if v has a
loop, then deg(v) = IN(v)| + 1, and hence D(G) = N(G) + M(G) = D(G) + 2M(G). Every loop in G is
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represented by a 1 in the main diagonal of A(G), so A(G) = A(G) + M(G). Now, L(G) = D(G) — A(G),
and using substitutions of D(G) and A(G), we get L(G) = L(G) + M(G).
From Figure 1, we can find the following:

000 200 200
MGZ)) =0 1 0 ,N(G(Z3)):[O 10 ,andN(G(Z3)):[O 2 o].
00 1 00 1 00 2
Note that, N(G(Z3)) = N(G(Z3)) + M(G(Z5)).
0 0

N

(a) : G(Zs) (b) : G(Z3)
Figure 1. (a) The unit graph of the ring Z;. (b) The closed unit graph of the ring Zs.

In this section, we provide a formula for the Laplacian matrix of the direct product of graphs with
at most one loop at each vertex. Let us first recall that the Kronecker product A ® B of a p X g matrix
A = (a;;) by an r X s matrix B is defined as

ClllB Clqu
A®B =
apB ... apB

Other names for the Kronecker product are the tensor product or direct product. Let G; and G, be
two graphs; the direct product of G; and G, is a graph, denoted by G, ® G,, whose vertex set is
V(G,) x V(G»), and for which vertices (x;, y;) and (x,, y,) are adjacent if x; and x, are adjacent in Gy,
and y; and y, are adjacent in G,.

Kaveh and Alinejad described the Laplacian matrix of G; ® G, in terms of the Laplacian matrices
of G| and G,, where G| and G, are simple graphs, as can be seen below [10].

Proposition 2.1. Let G| and G, be simple graphs. Then, the Laplacian matrix of G1 ® G, is
L(G1 ® G2) = D(G1) ® L(G2) + L(G1) ® D(G>) — L(G1) ® L(Go).

The following lemma describes the degree matrix and the adjacency matrix of G; ® G,.
Lemma 2.1. Let G, and G, be graphs with at most one loop at each vertex. Then,

(1) D((_;l ®G__z) = N(G/) ®N(Gg) + M(Gy) ®M(G_22-
(2) A(G ® Gy) = (A(G)) + M(G))) ® (A(G2) + M(G»)).

Proof. (1) Suppose that G, and G, are two graphs with at most one loop at each vertex. If (x,y) €
V(G ® G,), then N((x,y)) = N(x) x N(y) [12]. It follows that N(G; ® G,) = N(G,) ® N(G,). By using

AIMS Mathematics Volume 9, Issue 2, 4098—4108.



4101

the fact that (x, y) has a loop in G| ® G, if and only if x and y have a loop in G, and G, respectively [9],
then M(Gl ® G_z) = M(G_l) ® M(G_z) Since D(G_l ® Gz) = N(G_l ® Gz) + M(G_l ® Gz), then
D(G, ® G,) = N(G)) ® N(G,) + M(G)) ® M(G>).
(2) For simple graphs G; and G, we have A(G| ® G,) = A(G)) ® A(G,) [6]. If we agree on the
convention that a 1 diagonal entry in the adjacency matrix of G;, i = 1,2, means a loop, whereas a 0

means no loop, then the adjacency matrix of G; ® G, still corresponds to the Kronecker product of the
adjacency matrices of A(G,) and A(G>). Thus,

A(G1 ® Gy) = A(G) ® A(G»)
= (A(G)) + M(G)) ® (A(G2) + M(Gy)). O
The following theorem generalizes the result about the Laplacian matrix of the direct product of

simple graphs to the Laplacian matrix of the direct product of graphs with at most one loop at each
vertex.

Theorem 2.1. Let G, and G, be graphs with at most one loop at each vertex. Then, the Laplacian
matrix of G1 ® G, is
L(G, ® Gy) = N(G)) ® L(G,) + L(G) ® N(G,) — L(G) ® L(G,) + M(G) ® M(G>). (2.1)
Proof. By using the fact that L(G; ® G,) = D(G, ® G») — A(G, ® G,), Lemma 2.1, and applying the
properties of the direct product of matrices, we obtain
L(G1 ®G,) = N(G1) ® N(Gy) + M(G,) ® M(G»)
— [A(G1) + M(G)] ® [A(G) + M(G))]
= N(G1) ® N(G») — A(G1) ® A(Gy)
~A(G1) ® M(G) — M(G)) ® A(G).
By using A(G) = N(G) — L(G) — M(G), we have
L(G, ® G,) = N(G1) ® N(G) — [N(G)) — L(G1) — M(G))] ® [N(G>) — L(G>) — M(G»)]
~ [N(G1) = L(G1) = M(G)]® M(Gy) — M(G)) ® [N(G,) — L(G2) — M(G))]
= N(G1) ® N(G,) = N(G1) ® N(G,) + N(G)) ® L(G>) + N(G1) ® M(G)
+ L(G)) ® N(Gy) = L(G)) ® L(G2) = L(G1) ® M(G)
+ M(G,) ® N(G>) — M(G) ® L(G>) = M(G,) ® M(G>)
~ N(G1) ® M(Gy) + L(G1) ® M(Gy) + M(G1) ® M(G»)
— M(G)) ® N(G>) + M(G,) ® L(Gy) + M(G) ® M(G)).
Through basic cancellations, the result follows. O
Rezagholibeigia et al. [14] observed that G(R x S) = G(R) ® G(S), where R x S is the direct
product of the rings R and S. Motivated by their observations, we study the Laplacian matrix of
G(Zpy) = G(Z, X Z,) as the Laplacian matrix of G(Z,) ® G(Z,) after removing the loops of this graph

by deleting the matrix M (G(Zp)) QM (G_(Zq)) from Eq (2.1). So, we have the following consequential
result.

Corollary 2.1. The Laplacian matrix of G(Z,,), where p,q # 2 are primes, is
L(G(Zpy)) = N(G(Zp)) ® L(G(Zy)) + L(G(Z))) ® N(G(Z,)) — L(G(Z))) ® L(G(Z,)).
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3. Laplacian spectrum of G(Z,,)

Recall that Euler’s totient function, denoted by ¢(n), is the number of positive integers less than or
equal to n that are relatively prime to n. If p;, where i = 1,2, ..., k, are primes, then ¢(p;) = p; — 1 and
©e(p1pa---pr) = @(p1)(p2)...0(pr). If 2 ¢ U(R), then x + x = 2x for all x € R, and hence 2x ¢ U(R). So,
in G(R), no vertex has a loop. That means that G(R) = G(R), which is pointed out in [2]. If 2 € U(R),
then x + x = 2x is a unit in R for all x € U(R) and hence x has a loop. So, in this case, the number of
vertices in G(Z,), which has a loop, is ¢(n). The next result is derived from the previous discussion.

Proposition 3.1. The Laplacian matrix of G(Z,,), where p # 2 is prime, is
L(G(Zy))) = N(G(Zy)) ® L(G(Z,)) + L(G(Zy)) ® N(G(Z))) — L(G(Z,)) ® L(G(Z))).
Proof. Since 2 ¢ U(Zy), G(Z,) = G(Z5), then M(G(Z,)) ® M(G(Z,)) = 0. So,

L(G(Zyp)) = L(G(Zy X Zp)) = L(G(Zy X Zp))
= N(G(Z,)) ® L(G(Zp)) + L(G(Z2)) ® N(G(Z,))
- L(G(Z2) ® L(G(Zp)). O

The following results will be used in the next part.

Proposition 3.2. [2] Let R be a finite ring. Then, the following statements hold for the unit graph of
R:
(1) If 2 ¢ U(R), then the unit graph G(R) is a |U(R)|-regular graph;
(2) If 2 € U(R), then for every x € U(R) we have deg(x) = |U(R)| — 1, and for every x € R\U(R) we
have deg(x) = |U(R)|.

Theorem 3.1. [16] Suppose q is an odd prime and suppose that n is a positive integer. Then, G(Z,)’s
Laplacian spectrum is given by

n n—1 n—1

0 ¢ q"—q q" —2q
o.(G(Zyp)) =

-1 \ qg-1
K 2

Note that in the above theorem, if ¢ = 2, then G(Z;) is a complete bipartite graph® by
Remark 3.6 [2]. So, G(Zy») is isomorphic to Kyi-1 5n-1, and thus 0,(G(Z,)), which is the well-known

0 (K1 n1), 18 given by
O 2n—l on
1 227'=-1 1"

Lemma 3.1. Let p, q, p;, where i = 1,2, ..., k, be primes such that p, p; # 2. Then,

(1) N (G(Zq)) = @(g)l, where I is a g X q identity matrix.
(2) N(G(Zzp)) = @(p)I, where I is a 2p X 2p identity matrix.

*A complete bipartite graph K,,, is a graph that has its vertex set partitioned into two subsets of m and n vertices, respectively, with
an edge between two vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.
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(3) If n = p1pr...pr, N(G(Z,)) = o(p1)@(p2)...0(pi)l, where I is an n X n identity matrix.
(4) If n = 2p\ps...pi, N(G(Z,)) = o(p1)@(p2)...o(pi)l, where I is an n X n identity matrix.

Proof. (1) If g # 2, then 2 € U(Z,), and hence all units of Z, have loops. The set of units in Z, is
Z, — {0}. By Proposition 3.2, for v € V(G_(Zq)), suchthat 1 < v < g—1, [NW)| = deg(v) +1 =
UZ)I -1+ 1. Ifv = 0, [INW)| = |U(Z,)|. Therefore, IN(v)| = |U(Z,)| = ¢(g) for all v € V(G(Z,)),
and hence N(G(Z,)) = ¢(¢)I. Now, if g = 2, then N(0) = {1} and N(1) = {0} in G(Z,), and hence
N(G(2y)) = L.

(2) Since 2 ¢ U(Zy,), then G(Z,,) = G(Z,,). By Proposition 3.2, [IN(v)| = |U(Z,,)| for
v € V(G(Z,p)). So, IN(W)| = ¢(2p) forall v € V(G(Zzp)), and hence N(G_(Zzp)) = p(p)l.

(3) By Proposition 3.2, if 2 € U(Z,), IN(v)| = deg(v)+1 = |U(Z,)|—1+1 for every unit v of Z,. Also,
if v is non-unit in Z,, then [N(v)| = deg(v) = |U(Z,)|. So, INW)| = [U(Z,)| = ¢(n) = ¢(p)¢(p2)...¢(pi)
for all v € V(G(Z,)), and hence N(G(Z,)) = ¢(p1)¢(p2)...o(pi)l.

(4) The proof is similar to that of 3.1. O

Theorem 3.2. If p, q # 2 are primes, then the Laplacian spectrum of G(Z,,) is

0 [e(p)—1le(q) [e(g)—1le(p) e(p)e(@) —1 @(p)e(g) + 1

Z =
o1(G(Zyy)) 1 ¢(p) o(q) o(p)p(q) o(p)p(q)
2 2 2 2

(3.1)
e(ple(q) + 11 e(@le(p) + 1]

v(q) @(p)

2 2

Proof. By using Corollary 2.1 and Lemma 3.1, we have
L(G(Zpy)) = ¢(p)] ® L(G(Zy)) + L(G(Z))) ® p(g)] = L(G(Zp)) ® L(G(Z)).

Now, to determine the spectrum of L(G(Z,,)), we suppose that X; and Y; are eigenvectors of L(G(Z,))
and L(G(Z,)) according to the eigenvalues A; and u;, respectively. That is, L(G(Z,))X; = 4;X;, X; # 0
and L(G(Zq))Y] = ,LIJY], Y] # 0. Thus,

L(G(Zp)(X; ® Y)) = [¢(P)] ® L(G(Zy)) + L(G(Z))) ® p(q)]
- L(G(Z)y)) ® LGZX; ® Y))
= [e(P)] ® LGZ)I(X: ® Y))
+[L(G(Z)) @ o(I(X; ® Y))
- [L(G(Z))) ® LGEZNI(X;® Y))
= e(P)X; ® ;Y + 4Xi ® (@)Y — L Xi ® Y.

So,
L(G(Zp))X; ®Y)) = [p(p)u; + Lip(q) — Lip;](X; ® Y)).
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Therefore, the eigenvalues of L(G(Z,,)) are given by ¢(p)u; + Aip(q) — Aiptj, where 1 <i< pand1 <
J < q. By using Theorem 3.1, we have

0 p-2 p 0 g-2 ¢
o (G(Z),)) = 1 p—1 p—1 and 0(G(Z,)) = 1 g-1 g-1
2 2 2 2
So, the spectrum of L(G(Z,,)) consists of
0 0 wp—-1 ¢p)+1 0) [0 ¢(p)—1 w(p)+1
@(p) 1 +¢(q) e o) [~ Al ew o(p)
2 2 2 2
(g —1 0 e(p)—1 ¢(p)+1 (@ —-1) (0 o(p)—1 o(p)+1
U4 @p) o) +¢(q) e o [ ¢@ e o(p)
2 2 2 2 2 2
(g +1 0 op)—1 @(p)+1 @+ 1) (0 e(p)—1 @(p)+1
U4 e(p) o) +¢(q) e o) - og ], e o(p)
2 2 2 2 2 2
0 o(@le(p) — 1] o(@le(p) + 1] e(Ple(@) — 11 e(p)e(q) =1  e(p)e(q) + 1
= U
@(p) @(p) »(q) o(p), (@), op), ¢(q)
b 2 2 5 5
e(Ple(@) + 11 w(p)e(@) +1  w(p)e(q) — 1
@(q) o(p). w(@), ep) e@. |
— (2)(2)(2)(2)
Hence, the Laplacian spectrum of G(Z,,) is as in Eq (3.1). O

Theorem 3.3. Let p # 2 be a prime. Then, the Laplacian spectrum of G(Z,,) is

T1(GZ2)) :{ 1 o(p) @(p) 1

Proof. By applying Proposition 3.1 and Lemma 3.1, we have

0 -1 @(p)+1 2¢(p) }

L(G(Zy X Z,)) = L, ® L(G(Z,)) + L(G(Z2)) ® p(p)] = L(G(Z,)) ® L(G(Z,,)).

Then, proceeding similarly as with the proof of Theorem 3.2, the eigenvalues of L(G(Z,,)) are
given by u; + Aip(p) — Aipj, where A;, i = 1,2, and pj, 1 < j < p, are the eigenvalues of L(G(Z,))
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and L(G(Z,)), respectively. By using Theorem 3.1 and the argument after it, the Laplacian spectrum
of G(Z,,) is

0 -1 I 2
=3 70 7051 )

Corollary 3.1. Let p,q # 2 be primes. Then, the Laplacian spectrum of G(Z,p,) is

0 [e(p)—1le(q) [e(g) —1le(p) e(p)e(@) —1 @(p)e(g) + 1
O_L(G(Zqu)) =
1 @(p) v(q) e(P)e(q) o(p)e(q)

e(Ple(@) + 11 @(@le(p) + 11 2e(p)e(q)
) ¢(p) 1
Proof. Since G(Z,, X Z,) = G(Z,,) ® G(Z,), by using Corollary 2.1 and Lemma 3.1 we have
L(G(Zap X Z) = ¢(p)] ® L(G(Zy)) + L(G(Z3))) @ ()] — L(G(Z3))) ® LIG(Zy)).
Approaching the proof in a similar manner as with Theorem 3.2, the eigenvalues of L(G(Z,,,)) are
given by @(p)u; + Aip(q) — Aipj, where 4;, 1 < i < 2p, and uj, 1 < j < g, are the eigenvalues of

L(G(Z,,)) and L(G(Z,)), respectively. Thus, the result follows from Theorems 3.1 and 3.3. O

Example 3.1. 7o find the Laplacian spectrum of G(Zs), let p = 3 and q = 5. By using the above
theorem, we get

0 2-DG-1) @4-DH3-1) G-DHG-1H-1 B-DOS-DH+1

o.(G(Zs))) =
1 31 5-1 G-1DG5-1) GB-DG-1)

BG-D@E+1) G-DR2+1) 23-1)(S-1

5-1 3-1 1

046 7 9 10 12 16
1 2488 4 2 1

The following theorem gives the Laplacian spectrum of G(Z,) if n = pp»...px, where p; are distinct
primes and i = 1,2, ..., k.

Theorem 3.4. Let p; # 2 be distinct primes and k be a positive integer, 1 < i, j < k. Then:

AIMS Mathematics Volume 9, Issue 2, 4098—-4108.
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(1) If n = p1p,...py, the Laplacian spectrum of G(Z,) is

0 [e(p) =111 0P o)) £ 1] 11z o(Pn)
o.(G(Z,)) =

| @(pi) e(pe(p;)
2 2
(3.2)
[e(p@(P2)---p(pi-1) £ Lp(pr) [T Ti<ick (Pl £ 1
[1i<i<k1 (i) [Ti<i<k p(pi)
2 2
(2) If n = 2py ps...px, the Laplacian spectrum of G(Z,) is
0 [p(p) = 111 1ij 0P [e(Pde(p)) £ 1 11z (P1)
o(G(Zy) =
1 @(pi) e(pe(p))
(3.3)

[e(p)e(p2)...o(Pr-1) = Ho(p) [[Ti<icc PDT £ 1 2] 1<k (Pi)

[Ti<i<i1 ¢(pi) [Ti<i<k (P 1
Proof. (1) When n = p, by Theorem 3.1 we have

0 op)—1 ¢(p)+1

TuGZ,)) = ¢(p) @(p)

2 2

Therefore, the result of Eq (3.2) is valid for n = p.
Now we consider the case where i > 1. We claim that for n = p;p,...px_1, the Laplacian spectrum
of G(Z,) is
0 [e(p) =11 T1is; 0Py [e(Pde(p)) £ 1] 11z e(Pn)

| @(pi) ¢(p)e(p;)
2 2
(3.4)

[e(pD@(P2)...0o(pr2) = Lp(pi-1) [T T1<ick-1 (Pl £ 1

[1i<ick—2 9(P) [Ti<ici-1 (P
2 2
Since Zp,py..pp = Lpiprppy X Ly, then G(Zy,p,. ) = G(Zp,py..p, X Zp,). Proceeding in a manner
similar as with the proof of Theorem 3.2, the eigenvalues of L(G(Z,)) are given by [[[1<<x—1 ¢(pi)lu; +
@(pi)di — Aipj, where A;, 1 <1< pips...pr-y, and u;j, 1 < j < py, are the eigenvalues of L(G(Z,, p,..p, )
and L(G(Z,,)), respectively. By using Eq (3.4) and Theorem 3.1, we get Eq (3.2).
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(2) Since Zop, py..py = Zo X Zp,py...pi then G(Zop, p,. p) = G(Zy X Zp, .. p)- Using the Laplacian
spectrum of G(Z,) and the Laplacian spectrum of G(Z,,,,. ) that is given by Eq (3.2), the result
follows in a manner similar as with the proof of Theorem 3.2. m|

4. Conclusions

In this study, we discussed the degree matrix and adjacency matrix of the direct product of graphs
with at most one loop at each vertex, and then we deduced a formula for the Laplacian matrix of the
direct product of graphs with at most one loop at each vertex. Based on G(Z,%XZ,) = G(Z,)®G(Z,), we
obtained L(G(Z,,)) by using L(G(Z,) ® G(Z,)) after removing the matrix M(G(Z,))® M(G(Z,)) which
represented the loops. So, we determined the Laplacian spectrum of G(Z,, ,,. ), Where p; are distinct
primes and i = 1,2, ...,k. We have future plans to compute the Laplacian spectrum of G(Zp'l'l p;zmp;k),
where p; are distinct primes, r; are positive integers, and i = 1,2, ..., k.
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