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1. Introduction

All graphs considered in this paper are finite, undirected, and may contain loops. Let G be a graph
with vertex set V(G) = {v1, v2, ..., vn} and edge set E(G) = {e1, e2, ..., em}. For 1 ≤ i, j ≤ n, two vertices
vi and v j in G are adjacent (or neighbors) in G if vi and v j are endpoints of an edge e of G, and we
write vi ∼ v j if vi is adjacent to v j in G. The degree of a vertex v in G, denoted by deg(v), is the number
of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.
The adjacency matrix of G is the n × n matrix A(G) = (ai j), where ai j = 1 or 0 according to whether
vi ∼ v j is in G or not. The Laplacian matrix L(G) of G is defined by L(G) := D(G) − A(G), where
D(G) = Diag(d1, d2, ..., dn) is the diagonal matrix such that di are degrees of vertices of G. L(G) is a
symmetric, real, and positive semidefinite matrix; all eigenvalues of L(G) are real and nonnegative. For
a simple graph G, the sum of the entries in each row of L(G) is zero, and hence the smallest eigenvalue
of L(G) is 0. More literature about the Laplacian matrix of graphs can be seen in [7, 13].

The spectrum of a square matrix B, denoted by σ(B), is the multiset of all the eigenvalues of B.
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If µ1, µ2, ..., µt are distinct eigenvalues of B with respective multiplicities m1,m2, ...,mt, then we shall
denote the spectrum of B by

σ(B) =

{
µ1 µ2 ... µt

m1 m2 ... mt

}
.

For a graph G, the Laplacian spectrum of G is the spectrum of L(G), denoted by σL(G). The Laplacian
spectrum of graphs of rings has been widely studied in literature, see [3–5].

For a positive integer n, let Zn denote the ring of integers modulo n. In this paper, the elements of
the ring Zn are referred to as 0, 1, 2, and n−1. A nonzero element x ∈ Zn is a unit in Zn if x is relatively
prime with n: (x, n) = 1. In 1990, the unit graph was first introduced by Grimaldi [8] for Zn as follows:
the unit graph G(Zn) is the graph obtained by setting all the elements of Zn to be vertices and defining
distinct vertices x and y to be adjacent if and only if x + y is a unit in Zn. He discussed certain basic
properties of the structure of the unit graph G(Zn) and studied the covering number, the degree of a
vertex, the independence number, the Hamilton cycles, and the chromatic polynomial of the graph
G(Zn). More about the unit graph G(Zn) can be seen in [16, 17]. Later, Ashrafi et al. [2] generalized
the unit graph from G(Zn) to G(R) for an arbitrary ring R. They studied the chromatic index, diameter,
girth, and planarity of G(R). In addition, they defined the closed unit graph Ḡ(R) by dropping the word
“distinct” from the definition of the unit graph G(R), and stated that some of Ḡ(R)’s vertices may have
loops. Many properties of the unit graph G(R) were investigated in [1, 11, 18].

The remaining parts of the paper are organized as follows: In Section 2, we present some
preliminaries and deduce the Laplacian matrix of the direct product for graphs with loops. In Section 3,
we obtain the Laplacian spectrum of the graphs G(Zpq) and G(Z2pq), where p, q , 2 are distinct primes.
We deduce several consequences from these results, which include the determination of the Laplacian
spectrum of G(Zn) for n = p1 p2...pk, where pi are distinct primes and i = 1, 2, ..., k.

2. Laplacian matrix of the direct product of graphs with at most one loop at each vertex

Let us denote the graph with at most one loop at each vertex by Ḡ and let G be the simple graph
corresponding to Ḡ. For v ∈ V(G), we denote by N(v) the set of all neighbors of v in G. Note that, if v
has a loop, then v ∈ N(v) [15]. For graphs G and Ḡ we define the following matrices:

• M(Ḡ) = (mi j) is a diagonal matrix such that

mi j =

1 if i = j and vi is vertex has a loop,
0 otherwise.

Clearly, M(G) = 0.
• N(G) = (ni j) is a diagonal matrix defined by

ni j =

|N(vi)| if i = j,
0 otherwise.

So, N(Ḡ) = N(G) + M(Ḡ).

For any vertex v in G, we have deg(v) = |N(v)|, and hence N(G) = D(G). Let v ∈ V(Ḡ); if v has a
loop, then deg(v) = |N(v)| + 1, and hence D(Ḡ) = N(Ḡ) + M(Ḡ) = D(G) + 2M(Ḡ). Every loop in Ḡ is
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represented by a 1 in the main diagonal of A(Ḡ), so A(Ḡ) = A(G) + M(Ḡ). Now, L(Ḡ) = D(Ḡ) − A(Ḡ),
and using substitutions of D(Ḡ) and A(Ḡ), we get L(Ḡ) = L(G) + M(Ḡ).

From Figure 1, we can find the following:

M(Ḡ(Z3)) =


0 0 0
0 1 0
0 0 1

 , N(G(Z3)) =


2 0 0
0 1 0
0 0 1

 , and N(Ḡ(Z3)) =


2 0 0
0 2 0
0 0 2

 .
Note that, N(Ḡ(Z3)) = N(G(Z3)) + M(Ḡ(Z3)).

Figure 1. (a) The unit graph of the ring Z3. (b) The closed unit graph of the ring Z3.

In this section, we provide a formula for the Laplacian matrix of the direct product of graphs with
at most one loop at each vertex. Let us first recall that the Kronecker product A ⊗ B of a p × q matrix
A = (ai j) by an r × s matrix B is defined as

A ⊗ B =


a11B ... a1qB
...

...

ap1B ... apqB

 .
Other names for the Kronecker product are the tensor product or direct product. Let G1 and G2 be
two graphs; the direct product of G1 and G2 is a graph, denoted by G1 ⊗ G2, whose vertex set is
V(G1) × V(G2), and for which vertices (x1, y1) and (x2, y2) are adjacent if x1 and x2 are adjacent in G1,
and y1 and y2 are adjacent in G2.

Kaveh and Alinejad described the Laplacian matrix of G1 ⊗ G2 in terms of the Laplacian matrices
of G1 and G2, where G1 and G2 are simple graphs, as can be seen below [10].

Proposition 2.1. Let G1 and G2 be simple graphs. Then, the Laplacian matrix of G1 ⊗G2 is

L(G1 ⊗G2) = D(G1) ⊗ L(G2) + L(G1) ⊗ D(G2) − L(G1) ⊗ L(G2).

The following lemma describes the degree matrix and the adjacency matrix of Ḡ1 ⊗ Ḡ2.

Lemma 2.1. Let Ḡ1 and Ḡ2 be graphs with at most one loop at each vertex. Then,

(1) D(Ḡ1 ⊗ Ḡ2) = N(Ḡ1) ⊗ N(Ḡ2) + M(Ḡ1) ⊗ M(Ḡ2).
(2) A(Ḡ1 ⊗ Ḡ2) = (A(G1) + M(Ḡ1)) ⊗ (A(G2) + M(Ḡ2)).

Proof. (1) Suppose that Ḡ1 and Ḡ2 are two graphs with at most one loop at each vertex. If (x, y) ∈
V(Ḡ1 ⊗ Ḡ2), then N((x, y)) = N(x) × N(y) [12]. It follows that N(Ḡ1 ⊗ Ḡ2) = N(Ḡ1) ⊗ N(Ḡ2). By using
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the fact that (x, y) has a loop in Ḡ1⊗Ḡ2 if and only if x and y have a loop in Ḡ1 and Ḡ2, respectively [9],
then M(Ḡ1 ⊗ Ḡ2) = M(Ḡ1) ⊗ M(Ḡ2). Since D(Ḡ1 ⊗ Ḡ2) = N(Ḡ1 ⊗ Ḡ2) + M(Ḡ1 ⊗ Ḡ2), then

D(Ḡ1 ⊗ Ḡ2) = N(Ḡ1) ⊗ N(Ḡ2) + M(Ḡ1) ⊗ M(Ḡ2).

(2) For simple graphs G1 and G2 we have A(G1 ⊗ G2) = A(G1) ⊗ A(G2) [6]. If we agree on the
convention that a 1 diagonal entry in the adjacency matrix of Ḡi, i = 1, 2, means a loop, whereas a 0
means no loop, then the adjacency matrix of Ḡ1 ⊗ Ḡ2 still corresponds to the Kronecker product of the
adjacency matrices of A(Ḡ1) and A(Ḡ2). Thus,

A(Ḡ1 ⊗ Ḡ2) = A(Ḡ1) ⊗ A(Ḡ2)
= (A(G1) + M(Ḡ1)) ⊗ (A(G2) + M(Ḡ2)). �

The following theorem generalizes the result about the Laplacian matrix of the direct product of
simple graphs to the Laplacian matrix of the direct product of graphs with at most one loop at each
vertex.

Theorem 2.1. Let Ḡ1 and Ḡ2 be graphs with at most one loop at each vertex. Then, the Laplacian
matrix of Ḡ1 ⊗ Ḡ2 is

L(Ḡ1 ⊗ Ḡ2) = N(Ḡ1) ⊗ L(G2) + L(G1) ⊗ N(Ḡ2) − L(G1) ⊗ L(G2) + M(Ḡ1) ⊗ M(Ḡ2). (2.1)

Proof. By using the fact that L(Ḡ1 ⊗ Ḡ2) = D(Ḡ1 ⊗ Ḡ2) − A(Ḡ1 ⊗ Ḡ2), Lemma 2.1, and applying the
properties of the direct product of matrices, we obtain

L(Ḡ1 ⊗ Ḡ2) = N(Ḡ1) ⊗ N(Ḡ2) + M(Ḡ1) ⊗ M(Ḡ2)
− [A(G1) + M(Ḡ1)] ⊗ [A(G2) + M(Ḡ2)]

= N(Ḡ1) ⊗ N(Ḡ2) − A(G1) ⊗ A(G2)
− A(G1) ⊗ M(Ḡ2) − M(Ḡ1) ⊗ A(G2).

By using A(G) = N(Ḡ) − L(G) − M(Ḡ), we have

L(Ḡ1 ⊗ Ḡ2) = N(Ḡ1) ⊗ N(Ḡ2) − [N(Ḡ1) − L(G1) − M(Ḡ1)] ⊗ [N(Ḡ2) − L(G2) − M(Ḡ2)]
− [N(Ḡ1) − L(G1) − M(Ḡ1)] ⊗ M(Ḡ2) − M(Ḡ1) ⊗ [N(Ḡ2) − L(G2) − M(Ḡ2)]

= N(Ḡ1) ⊗ N(Ḡ2) − N(Ḡ1) ⊗ N(Ḡ2) + N(Ḡ1) ⊗ L(G2) + N(Ḡ1) ⊗ M(Ḡ2)
+ L(G1) ⊗ N(Ḡ2) − L(G1) ⊗ L(G2) − L(G1) ⊗ M(Ḡ2)
+ M(Ḡ1) ⊗ N(Ḡ2) − M(Ḡ1) ⊗ L(G2) − M(Ḡ1) ⊗ M(Ḡ2)
− N(Ḡ1) ⊗ M(Ḡ2) + L(G1) ⊗ M(Ḡ2) + M(Ḡ1) ⊗ M(Ḡ2)
− M(Ḡ1) ⊗ N(Ḡ2) + M(Ḡ1) ⊗ L(G2) + M(Ḡ1) ⊗ M(Ḡ2).

Through basic cancellations, the result follows. �

Rezagholibeigia et al. [14] observed that Ḡ(R × S ) � Ḡ(R) ⊗ Ḡ(S ), where R × S is the direct
product of the rings R and S . Motivated by their observations, we study the Laplacian matrix of
G(Zpq) � G(Zp × Zq) as the Laplacian matrix of Ḡ(Zp) ⊗ Ḡ(Zq) after removing the loops of this graph
by deleting the matrix M(Ḡ(Zp)) ⊗ M(Ḡ(Zq)) from Eq (2.1). So, we have the following consequential
result.

Corollary 2.1. The Laplacian matrix of G(Zpq), where p, q , 2 are primes, is

L(G(Zpq)) = N(Ḡ(Zp)) ⊗ L(G(Zq)) + L(G(Zp)) ⊗ N(Ḡ(Zq)) − L(G(Zp)) ⊗ L(G(Zq)).
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3. Laplacian spectrum of G(Zpq)

Recall that Euler’s totient function, denoted by ϕ(n), is the number of positive integers less than or
equal to n that are relatively prime to n. If pi, where i = 1, 2, ..., k, are primes, then ϕ(pi) = pi − 1 and
ϕ(p1 p2...pk) = ϕ(p1)ϕ(p2)...ϕ(pk). If 2 < U(R), then x + x = 2x for all x ∈ R, and hence 2x < U(R). So,
in Ḡ(R), no vertex has a loop. That means that Ḡ(R) = G(R), which is pointed out in [2]. If 2 ∈ U(R),
then x + x = 2x is a unit in R for all x ∈ U(R) and hence x has a loop. So, in this case, the number of
vertices in Ḡ(Zn), which has a loop, is ϕ(n). The next result is derived from the previous discussion.

Proposition 3.1. The Laplacian matrix of G(Z2p), where p , 2 is prime, is

L(G(Z2p)) = N(Ḡ(Z2)) ⊗ L(G(Zp)) + L(G(Z2)) ⊗ N(Ḡ(Zp)) − L(G(Z2)) ⊗ L(G(Zp)).

Proof. Since 2 < U(Z2), Ḡ(Z2) = G(Z2), then M(Ḡ(Z2)) ⊗ M(Ḡ(Zp)) = 0. So,

L(G(Z2p)) = L(G(Z2 × Zp)) = L(Ḡ(Z2 × Zp))
= N(Ḡ(Z2)) ⊗ L(G(Zp)) + L(G(Z2)) ⊗ N(Ḡ(Zp))
− L(G(Z2)) ⊗ L(G(Zp)). �

The following results will be used in the next part.

Proposition 3.2. [2] Let R be a finite ring. Then, the following statements hold for the unit graph of
R:

(1) If 2 < U(R), then the unit graph G(R) is a |U(R)|-regular graph;
(2) If 2 ∈ U(R), then for every x ∈ U(R) we have deg(x) = |U(R)| − 1, and for every x ∈ R\U(R) we

have deg(x) = |U(R)|.

Theorem 3.1. [16] Suppose q is an odd prime and suppose that n is a positive integer. Then, G(Zqn)’s
Laplacian spectrum is given by

σL(G(Zqn)) =


0 qn qn − qn−1 qn − 2qn−1

1
q − 1

2
qn − q

q − 1
2

 .
Note that in the above theorem, if q = 2, then G(Z2n) is a complete bipartite graph∗ by

Remark 3.6 [2]. So, G(Z2n) is isomorphic to K2n−1,2n−1 , and thus σL(G(Z2n)), which is the well-known
σL(K2n−1,2n−1), is given by {

0 2n−1 2n

1 2(2n−1 − 1) 1

}
.

Lemma 3.1. Let p, q, pi, where i = 1, 2, ..., k, be primes such that p, pi , 2. Then,

(1) N(Ḡ(Zq)) = ϕ(q)I, where I is a q × q identity matrix.
(2) N(Ḡ(Z2p)) = ϕ(p)I, where I is a 2p × 2p identity matrix.
∗A complete bipartite graph Km,n is a graph that has its vertex set partitioned into two subsets of m and n vertices, respectively, with

an edge between two vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.
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(3) If n = p1 p2...pk, N(Ḡ(Zn)) = ϕ(p1)ϕ(p2)...ϕ(pk)I, where I is an n × n identity matrix.
(4) If n = 2p1 p2...pk, N(Ḡ(Zn)) = ϕ(p1)ϕ(p2)...ϕ(pk)I, where I is an n × n identity matrix.

Proof. (1) If q , 2, then 2 ∈ U(Zq), and hence all units of Zq have loops. The set of units in Zq is
Zq − {0}. By Proposition 3.2, for v ∈ V(Ḡ(Zq)), such that 1 ≤ v ≤ q − 1, |N(v)| = deg(v) + 1 =

|U(Zq)| − 1 + 1. If v = 0, |N(v)| = |U(Zq)|. Therefore, |N(v)| = |U(Zq)| = ϕ(q) for all v ∈ V(Ḡ(Zq)),
and hence N(Ḡ(Zq)) = ϕ(q)I. Now, if q = 2, then N(0) = {1} and N(1) = {0} in Ḡ(Z2), and hence
N(Ḡ(Z2)) = I2.

(2) Since 2 < U(Z2p), then Ḡ(Z2p) = G(Z2p). By Proposition 3.2, |N(v)| = |U(Z2p)| for
v ∈ V(G(Z2p)). So, |N(v)| = ϕ(2p) for all v ∈ V(Ḡ(Z2p)), and hence N(Ḡ(Z2p)) = ϕ(p)I.

(3) By Proposition 3.2, if 2 ∈ U(Zn), |N(v)| = deg(v)+1 = |U(Zn)|−1+1 for every unit v of Zn. Also,
if v is non-unit in Zn, then |N(v)| = deg(v) = |U(Zn)|. So, |N(v)| = |U(Zn)| = ϕ(n) = ϕ(p1)ϕ(p2)...ϕ(pk)
for all v ∈ V(Ḡ(Zn)), and hence N(Ḡ(Zn)) = ϕ(p1)ϕ(p2)...ϕ(pk)I.

(4) The proof is similar to that of 3.1. �

Theorem 3.2. If p, q , 2 are primes, then the Laplacian spectrum of G(Zpq) is

σL(G(Zpq)) =


0 [ϕ(p) − 1]ϕ(q) [ϕ(q) − 1]ϕ(p) ϕ(p)ϕ(q) − 1 ϕ(p)ϕ(q) + 1

1
ϕ(p)

2
ϕ(q)

2
ϕ(p)ϕ(q)

2
ϕ(p)ϕ(q)

2

ϕ(p)[ϕ(q) + 1] ϕ(q)[ϕ(p) + 1]

ϕ(q)
2

ϕ(p)
2

 .
(3.1)

Proof. By using Corollary 2.1 and Lemma 3.1, we have

L(G(Zpq)) = ϕ(p)I ⊗ L(G(Zq)) + L(G(Zp)) ⊗ ϕ(q)I − L(G(Zp)) ⊗ L(G(Zq)).

Now, to determine the spectrum of L(G(Zpq)), we suppose that Xi and Y j are eigenvectors of L(G(Zp))
and L(G(Zq)) according to the eigenvalues λi and µ j, respectively. That is, L(G(Zp))Xi = λiXi, Xi , 0
and L(G(Zq))Y j = µ jY j, Y j , 0. Thus,

L(G(Zpq))(Xi ⊗ Y j) = [ϕ(p)I ⊗ L(G(Zq)) + L(G(Zp)) ⊗ ϕ(q)I
− L(G(Zp)) ⊗ L(G(Zq))](Xi ⊗ Y j)

= [ϕ(p)I ⊗ L(G(Zq))](Xi ⊗ Y j)
+ [L(G(Zp)) ⊗ ϕ(q)I](Xi ⊗ Y j)
− [L(G(Zp)) ⊗ L(G(Zq))](Xi ⊗ Y j)

= ϕ(p)Xi ⊗ µ jY j + λiXi ⊗ ϕ(q)Y j − λiXi ⊗ µ jY j.

So,
L(G(Zpq))(Xi ⊗ Y j) = [ϕ(p)µ j + λiϕ(q) − λiµ j](Xi ⊗ Y j).
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Therefore, the eigenvalues of L(G(Zpq)) are given by ϕ(p)µ j + λiϕ(q) − λiµ j, where 1 ≤ i ≤ p and 1 ≤
j ≤ q. By using Theorem 3.1, we have

σL(G(Zp)) =


0 p − 2 p

1
p − 1

2
p − 1

2

 and σL(G(Zq)) =


0 q − 2 q

1
q − 1

2
q − 1

2

 .
So, the spectrum of L(G(Zpq)) consists of ϕ(p)


0

1

 + ϕ(q)


0 ϕ(p) − 1 ϕ(p) + 1

1
ϕ(p)

2
ϕ(p)

2

 −


0

1




0 ϕ(p) − 1 ϕ(p) + 1

1
ϕ(p)

2
ϕ(p)

2




∪

 ϕ(p)


ϕ(q) − 1

ϕ(q)
2

 + ϕ(q)


0 ϕ(p) − 1 ϕ(p) + 1

1
ϕ(p)

2
ϕ(p)

2

 −

ϕ(q) − 1

ϕ(q)
2




0 ϕ(p) − 1 ϕ(p) + 1

1
ϕ(p)

2
ϕ(p)

2




∪

 ϕ(p)


ϕ(q) + 1

ϕ(q)
2

 + ϕ(q)


0 ϕ(p) − 1 ϕ(p) + 1

1
ϕ(p)

2
ϕ(p)

2

 −

ϕ(q) + 1

ϕ(q)
2




0 ϕ(p) − 1 ϕ(p) + 1

1
ϕ(p)

2
ϕ(p)

2




=


0 ϕ(q)[ϕ(p) − 1] ϕ(q)[ϕ(p) + 1]

1
ϕ(p)

2
ϕ(p)

2

 ∪

ϕ(p)[ϕ(q) − 1] ϕ(p)ϕ(q) − 1 ϕ(p)ϕ(q) + 1

ϕ(q)
2

(
ϕ(p)

2
)(
ϕ(q)

2
) (

ϕ(p)
2

)(
ϕ(q)

2
)



∪


ϕ(p)[ϕ(q) + 1] ϕ(p)ϕ(q) + 1 ϕ(p)ϕ(q) − 1

ϕ(q)
2

(
ϕ(p)

2
)(
ϕ(q)

2
) (

ϕ(p)
2

)(
ϕ(q)

2
)

 .
Hence, the Laplacian spectrum of G(Zpq) is as in Eq (3.1). �

Theorem 3.3. Let p , 2 be a prime. Then, the Laplacian spectrum of G(Z2p) is

σL(G(Z2p)) =

{
0 ϕ(p) − 1 ϕ(p) + 1 2ϕ(p)
1 ϕ(p) ϕ(p) 1

}
.

Proof. By applying Proposition 3.1 and Lemma 3.1, we have

L(Ḡ(Z2 × Zp)) = I2 ⊗ L(G(Zp)) + L(G(Z2)) ⊗ ϕ(p)I − L(G(Z2)) ⊗ L(G(Zp)).

Then, proceeding similarly as with the proof of Theorem 3.2, the eigenvalues of L(G(Z2p)) are
given by µ j + λiϕ(p) − λiµ j, where λi, i = 1, 2, and µ j, 1 ≤ j ≤ p, are the eigenvalues of L(G(Z2))
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and L(G(Zp)), respectively. By using Theorem 3.1 and the argument after it, the Laplacian spectrum
of G(Z2p) is

σL(G(Z2p)) =

{
0 ϕ(p) − 1 ϕ(p) + 1 2ϕ(p)
1 ϕ(p) ϕ(p) 1

}
. �

Corollary 3.1. Let p, q , 2 be primes. Then, the Laplacian spectrum of G(Z2pq) is

σL(G(Z2pq)) =


0 [ϕ(p) − 1]ϕ(q) [ϕ(q) − 1]ϕ(p) ϕ(p)ϕ(q) − 1 ϕ(p)ϕ(q) + 1

1 ϕ(p) ϕ(q) ϕ(p)ϕ(q) ϕ(p)ϕ(q)

ϕ(p)[ϕ(q) + 1] ϕ(q)[ϕ(p) + 1] 2ϕ(p)ϕ(q)

ϕ(q) ϕ(p) 1

 .
Proof. Since Ḡ(Z2p × Zq) � Ḡ(Z2p) ⊗ Ḡ(Zq), by using Corollary 2.1 and Lemma 3.1 we have

L(Ḡ(Z2p × Zq)) = ϕ(p)I ⊗ L(G(Zq)) + L(G(Z2p)) ⊗ ϕ(q)I − L(G(Z2p)) ⊗ L(G(Zq)).

Approaching the proof in a similar manner as with Theorem 3.2, the eigenvalues of L(G(Z2pq)) are
given by ϕ(p)µ j + λiϕ(q) − λiµ j, where λi, 1 ≤ i ≤ 2p, and µ j, 1 ≤ j ≤ q, are the eigenvalues of
L(G(Z2p)) and L(G(Zq)), respectively. Thus, the result follows from Theorems 3.1 and 3.3. �

Example 3.1. To find the Laplacian spectrum of G(Z30), let p = 3 and q = 5. By using the above
theorem, we get

σL(G(Z30)) =


0 (2 − 1)(5 − 1) (4 − 1)(3 − 1) (3 − 1)(5 − 1) − 1 (3 − 1)(5 − 1) + 1

1 3 − 1 5 − 1 (3 − 1)(5 − 1) (3 − 1)(5 − 1)

(3 − 1)(4 + 1) (5 − 1)(2 + 1) 2(3 − 1)(5 − 1)

5 − 1 3 − 1 1



=


0 4 6 7 9 10 12 16

1 2 4 8 8 4 2 1

 .
The following theorem gives the Laplacian spectrum of G(Zn) if n = p1 p2...pk, where pi are distinct

primes and i = 1, 2, ..., k.

Theorem 3.4. Let pi , 2 be distinct primes and k be a positive integer, 1 ≤ i, j ≤ k. Then:
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(1) If n = p1 p2...pk, the Laplacian spectrum of G(Zn) is

σL(G(Zn)) =


0 [ϕ(pi) ± 1]

∏
i, j ϕ(p j) [ϕ(pi)ϕ(p j) ± 1]

∏
h,i, j ϕ(ph) ...

1
ϕ(pi)

2
ϕ(pi)ϕ(p j)

2
...

[ϕ(p1)ϕ(p2)...ϕ(pk−1) ± 1]ϕ(pk) [
∏

1≤i≤k ϕ(pi)] ± 1∏
1≤i≤k−1 ϕ(pi)

2

∏
1≤i≤k ϕ(pi)

2

 .
(3.2)

(2) If n = 2p1 p2...pk, the Laplacian spectrum of G(Zn) is

σL(G(Zn)) =


0 [ϕ(pi) ± 1]

∏
i, j ϕ(p j) [ϕ(pi)ϕ(p j) ± 1]

∏
h,i, j ϕ(ph) ...

1 ϕ(pi) ϕ(pi)ϕ(p j) ...

[ϕ(p1)ϕ(p2)...ϕ(pk−1) ± 1]ϕ(pk) [
∏

1≤i≤k ϕ(pi)] ± 1 2
∏

1≤i≤k ϕ(pi)∏
1≤i≤k−1 ϕ(pi)

∏
1≤i≤k ϕ(pi) 1

 .
(3.3)

Proof. (1) When n = p, by Theorem 3.1 we have

σL(G(Zp)) =


0 ϕ(p) − 1 ϕ(p) + 1

1
ϕ(p)

2
ϕ(p)

2

 .
Therefore, the result of Eq (3.2) is valid for n = p.
Now we consider the case where i > 1. We claim that for n = p1 p2...pk−1, the Laplacian spectrum

of G(Zn) is 
0 [ϕ(pi) ± 1]

∏
i, j ϕ(p j) [ϕ(pi)ϕ(p j) ± 1]

∏
h,i, j ϕ(ph) ...

1
ϕ(pi)

2
ϕ(pi)ϕ(p j)

2
...

[ϕ(p1)ϕ(p2)...ϕ(pk−2) ± 1]ϕ(pk−1) [
∏

1≤i≤k−1 ϕ(pi)] ± 1∏
1≤i≤k−2 ϕ(pi)

2

∏
1≤i≤k−1 ϕ(pi)

2

 .
(3.4)

Since Zp1 p2...pk � Zp1 p2...pk−1 × Zpk , then G(Zp1 p2...pk) � G(Zp1 p2...pk−1 × Zpk). Proceeding in a manner
similar as with the proof of Theorem 3.2, the eigenvalues of L(G(Zn)) are given by [

∏
1≤i≤k−1 ϕ(pi)]µ j +

ϕ(pk)λi−λiµ j, where λi, 1 ≤ i ≤ p1 p2...pk−1, and µ j, 1 ≤ j ≤ pk, are the eigenvalues of L(G(Zp1 p2...pk−1))
and L(G(Zpk)), respectively. By using Eq (3.4) and Theorem 3.1, we get Eq (3.2).
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(2) Since Z2p1 p2...pk � Z2 × Zp1 p2...pk , then G(Z2p1 p2...pk) � G(Z2 × Zp1 p2...pk). Using the Laplacian
spectrum of G(Z2) and the Laplacian spectrum of G(Zp1 p2...pk) that is given by Eq (3.2), the result
follows in a manner similar as with the proof of Theorem 3.2. �

4. Conclusions

In this study, we discussed the degree matrix and adjacency matrix of the direct product of graphs
with at most one loop at each vertex, and then we deduced a formula for the Laplacian matrix of the
direct product of graphs with at most one loop at each vertex. Based on Ḡ(Zp×Zq) � Ḡ(Zp)⊗Ḡ(Zq), we
obtained L(G(Zpq)) by using L(Ḡ(Zp)⊗ Ḡ(Zq)) after removing the matrix M(Ḡ(Zp))⊗M(Ḡ(Zq)) which
represented the loops. So, we determined the Laplacian spectrum of G(Zp1 p2...pk), where pi are distinct
primes and i = 1, 2, ..., k. We have future plans to compute the Laplacian spectrum of G(Zpr1

1 pr2
2 ...p

rk
k

),
where pi are distinct primes, ri are positive integers, and i = 1, 2, ..., k.
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