Research article

Covering cross-polytopes with smaller homothetic copies

Feifei Chen, Shenghua Gao and Senlin Wu

School of Mathematics, North University of China, Taiyuan 030051, China

* Correspondence: Email: wusenlin@nuc.edu.cn.

Abstract: Let C_n be an n-dimensional cross-polytope and $\Gamma_p(C_n)$ be the smallest positive number γ such that C_n can be covered by p translates of γC_n. We obtain better estimates of $\Gamma_2(C_n)$ for small n and a universal upper bound of $\Gamma_2(C_n)$ for all positive integers n.

Keywords: convex body; covering functional; Hadwiger’s covering conjecture; homothetic copy

Mathematics Subject Classification: 52A20, 52C17, 52A15

1. Introduction

Let K be a convex body in \mathbb{R}^n, i.e., a compact convex set having interior points. The set of convex bodies in \mathbb{R}^n is denoted by \mathcal{K}^n, and the set of convex bodies that are centrally symmetric is denoted by C^n. For each $x \in \mathbb{R}^n$ and each $\lambda > 0$, the set

$$x + \lambda K := \{x + \lambda y \mid y \in K\}$$

is called a homothetic copy of K; when $\lambda \in (0, 1)$, it is called a smaller homothetic copy of K. For each $K \in \mathcal{K}^n$, we denote by $c(K)$ the least number of translates of int K needed to cover K. Concerning the least upper bound of $c(K)$ in \mathcal{K}^n, there is a long-standing conjecture (see [1–6] for the origin, history, and classical known results concerning this conjecture):

Conjecture 1. *(Hadwiger’s covering conjecture [4])* For each $K \in \mathcal{K}^n$, we have

$$c(K) \leq 2^n,$$

and the equality holds if and only if K is a parallelotope.

Although many people have conducted in-depth research, this conjecture is confirmed completely only for the planar case [7]. In [8], Chuanming Zong proposed a four-step program to attack this
conjecture. In this program, it is important to estimate

\[\Gamma_m(K) := \inf \left\{ \gamma > 0 \mid \exists \{c_i \mid i \in [m]\} \subseteq \mathbb{R}^n \text{ s.t. } K \subseteq \bigcup_{i \in [m]} (c_i + \gamma K) \right\}, \]

i.e., \(\Gamma_m(K) \) is the smallest positive number \(\gamma \) such that \(K \) can be covered by \(m \) translates of \(\gamma K \). The map \(\Gamma_m(\cdot) : \mathcal{K}^n \rightarrow [0, 1], K \mapsto \Gamma_m(K) \) is called the covering functional with respect to \(m \), where \([m] := \{ i \in \mathbb{Z}^+ \mid 1 \leq i \leq m\}\). Clearly, \(c(K) \leq m \) if and only if \(\Gamma_m(K) < 1 \). For each \(m \in \mathbb{Z}^+ \), \(\Gamma_m(\cdot) \) is an affine invariant. More precisely,

\[\Gamma_m(K) = \Gamma_m(T(K)), \forall T \in \mathcal{A}^n, \]

where \(\mathcal{A}^n \) is the set of non-degenerate affine transformations from \(\mathbb{R}^n \) to \(\mathbb{R}^n \).

A compact convex set \(K \) is said to be an \(d \)-dimensional cross-polytope if there exist \(d \) linearly independent vectors \(v_1, \ldots, v_d \) such that

\[K = \text{conv}\{\pm v_1, \ldots, \pm v_d\}. \]

Clearly, any \(d \)-dimensional cross-polytope is the image of \(C_d = \left\{ (\alpha_1, \cdots, \alpha_d) \in \mathbb{R}^d \mid \sum_{i=1}^d |\alpha_i| \leq 1 \right\} \) under a non-degenerate affine transformation. Therefore, \(\Gamma_m(K) = \Gamma_m(C_d) \) holds for each pair of positive integers \(m \) and \(d \). In a recent work [9], Xia Li et al. obtained some estimations of \(\Gamma_m(C_d) \) for large \(d \). Moreover, they showed that, if \(P \in C^n \) is a convex polytope with \(2d \) vertices, then

\[\Gamma_m(P) \leq \Gamma_m(C_d), \] (1.1)

which shows the importance of estimating \(\Gamma_m(C_d) \).

It is well known that \(\Gamma_2([-1, 1]^n) = 1/2, \forall n \geq 2 \). It is interesting to ask whether there exists a universal upper bound for \(\Gamma_2(C_n) \). In this paper, by using elementary yet interesting observations and refining techniques used in the recent works [9, 10], we get better estimates of \(\Gamma_2(C_n) \). Based on this, we present the first nontrivial universal upper bound of \(\Gamma_2(C_n) \) for all positive \(n \). By (1.1), results mentioned above yield also estimates of covering functionals of convex polytopes with few vertices.

Throughout this paper, the dimension \(n \) of the underlying space is at least 3.

2. Covering functionals of cross-polytopes

For each \(n, k \in \mathbb{Z}^+ \), we put

\[M(n, k) = \left\{ (\alpha_1, \cdots, \alpha_n) \in \mathbb{Z}^n \mid \sum_{i=1}^n |\alpha_i| \leq k \right\}. \]

It is known that (cf. [11] or [12])

\[\#M(n, k) = \sum_{i=n-k}^n 2^{n-i} \binom{n}{i} \binom{k}{n-i}. \]
Lemma 1. Let \(n, k \in \mathbb{Z}^+ \). If \(k \leq \frac{n}{2} \), then
\[
(n+k)C_n \subseteq nC_n + S_k,
\]
where
\[
S_k = \left\{ (\alpha_1, \cdots, \alpha_n) \in \mathbb{Z}^n \mid \sum_{i \in [n]} |\alpha_i| = k \right\} \cup \{o\}.
\]
Moreover,
\[
\#S_k = \sum_{i=1}^{k} 2^i \binom{n}{i} \left(\frac{k-1}{i-1} \right) + 1.
\]
Proof. Let \((\alpha_1, \cdots, \alpha_n)\) be an arbitrary point in \((n+k)C_n\). Then
\[
\sum_{i \in [n]} |\alpha_i| \leq n+k.
\]
If \(\sum_{i \in [n]} |\alpha_i| \leq n\), then \((\alpha_1, \cdots, \alpha_n) \in nC_n \subseteq nC_n + S_k\). Otherwise, there exists \(m \in [k]\) such that
\[
n + m - 1 < \sum_{i \in [n]} |\alpha_i| \leq n + m.
\]
On the one hand, since \(\sum_{i \in [n]} (|\alpha_i| - |\alpha_i|) < n\), we have \(\sum_{i \in [n]} |\alpha_i| \geq m\). Then there exist integers \(\beta_1, \cdots, \beta_n \geq 0\) such that
\[
\beta_i = |\alpha_i|, \forall i \in [n] \quad \text{and} \quad \sum_{i \in [n]} \beta_i = m.
\]
Clearly, we have
\[
\sum_{i \in [n]} |\alpha_i - \text{sgn} \cdot \beta_i| = \sum_{i \in [n]} (|\alpha_i| - \beta_i) \leq n.
\]
Therefore,
\[
(\alpha_1, \cdots, \alpha_n) = (\alpha_1 - \text{sgn} \cdot \beta_1, \cdots, \alpha_n - \text{sgn} \cdot \beta_n) + (\text{sgn} \cdot \beta_1, \cdots, \text{sgn} \cdot \beta_n) \in nC_n + S_m.
\]
On the other hand, set
\[
m_i = \begin{cases}
|\alpha_i|, & \text{if } |\alpha_i| - |\alpha_i| < \frac{1}{2}, \\
|\alpha_i| + 1, & \text{if } |\alpha_i| - |\alpha_i| \geq \frac{1}{2},
\end{cases} \quad \forall i \in [n].
\]
We have
\[
(\alpha_1, \cdots, \alpha_n) = (\alpha_1 - \text{sgn} \cdot m_1, \cdots, \alpha_n - \text{sgn} \cdot m_n) + (\text{sgn} \cdot m_1, \cdots, \text{sgn} \cdot m_n).
\]
By the Triangle Inequality, we have
\[
n - \sum_{i \in [n]} m_i < \sum_{i \in [n]} |\alpha_i| - \sum_{i \in [n]} m_i \leq \sum_{i \in [n]} |\alpha_i - \text{sgn} \cdot m_i| = \sum_{i \in [n]} |\alpha_i - m_i| \leq \frac{n}{2}.
\]
Thus,
\[m_1 + \cdots + m_n > \frac{n}{2} \geq k. \]

Without loss of generality, assume that \(\alpha_1, \cdots, \alpha_n \geq 0, \) and
\[\alpha_1, \cdots, \alpha_{n_0}^c \geq 1, \quad \alpha_{n_0+1}', \cdots, \alpha_m \in \left[\frac{1}{2}, 1 \right), \quad \alpha_{m_0+1}', \cdots, \alpha_n \in \left[0, \frac{1}{2} \right). \]

By (2.1), we have
\[\beta_i \leq \lfloor \alpha_i \rfloor \leq \lceil \alpha_i \rceil, \quad \forall i \in [n_0], \]
\[\beta_i = 0 < 1 = m_i, \quad \forall i \in [n_0] \setminus [n_0], \]
\[\beta_i = m_i = 0, \quad \forall i \in [n] \setminus [n_0]. \]

Then there exist integers \(m_i', \cdots, m_n' \) such that
\[\beta_i \leq m_i' \leq m_i, \quad \forall i \in [n] \quad \text{and} \quad \sum_{i \in [n]} m_i' = k. \]

Set, for each \(i \in [n], f_i(\lambda) = |\alpha_i - \lambda|. \) Then \(f_i \) is decreasing on \([\beta_i, [\alpha_i]].\) We claim that
\[f_i(\beta_i) \geq f_i(m_i'), \quad \forall i \in [n]. \tag{2.2} \]

The case when \(m_i' \in [\beta_i, [\alpha_i]] \) is clear. If \(m_i' > [\alpha_i], \) then \(m_i' = m_i = [\alpha_i] + 1 \) and \(1/2 \leq \alpha_i - [\alpha_i] < 1. \) Thus
\[f_i(\beta_i) \geq f_i([\alpha_i]) = \alpha_i - [\alpha_i] \geq \frac{1}{2} \geq 1 - (\alpha_i - [\alpha_i]) = f_i([\alpha_i] + 1) = f_i(m_i'). \]

Hence (2.2) holds as claimed. It follows that
\[\sum_{i \in [n]} |\alpha_i - m_i'| = \sum_{i \in [n]} f_i(m_i') \leq \sum_{i \in [n]} f_i(\beta_i) \leq n. \]

Therefore,
\[(\alpha_1, \cdots, \alpha_n) = (\alpha_1 - m_1', \cdots, \alpha_n - m_n') + (m_1', \cdots, m_n') \in nC_n + S_k. \]

Moreover,
\[
\#S_k = \#M_2(n, k) - \#M_2(n, k_1) + 1
\]
\[
= \sum_{i=0}^{n-k} 2^{n-i} \binom{n}{i} \binom{k}{i} - \sum_{i=n-k+1}^{n} 2^{n-i} \binom{n}{i} \binom{k-1}{n-i} + 1
\]
\[
= 2^k \left(\binom{n}{n-k} \binom{k}{k} + 2^{k-1} \binom{n}{n-k+1} \binom{k}{k-1} + \cdots + \binom{n}{n} \binom{k}{0} \right)
\]
\[
- 2^{k-1} \binom{n}{n-k} \binom{k-1}{k-1} - \cdots - \binom{n}{n} \binom{k-1}{0} + 1
\]
\[
= 2^k \left(\binom{n}{n-k} \sum_{i=1}^{k-1} 2^i \binom{n}{n-i} \binom{k-1}{i} \right) + 1
\]
\[
= 2^k \left(\binom{n}{n-k} \binom{k-1}{k-1} \right) + \sum_{i=1}^{k-1} 2^i \binom{n}{n-i} \binom{k-1}{i-1} + 1
\]
\[
= \sum_{i=1}^{k} 2^i \binom{n}{n-i} \binom{k-1}{i-1} + 1 = \sum_{i=1}^{k} 2^i \binom{n}{n-i} \binom{k-1}{i-1} + 1. \]

For each \(n \in \mathbb{Z}^+ \), let \(k_1(n) \) be the nonnegative integer satisfying
\[
\sum_{i=1}^{k_1(n)} 2^i \binom{n}{i} (k_1(n) - 1) + 1 \leq 2^n < \sum_{i=1}^{k_1(n)+1} 2^i \binom{n}{i} (k_1(n)) + 1.
\]
It is easy to prove that \(k_1(n) \leq \frac{n}{2} \).

Corollary 2. For each \(n \in \mathbb{Z}^+ \), we have
\[
\Gamma_{2n}(C_n) \leq \frac{n}{n + k_1(n)}.
\]

Remark 3. It can be verified that
\[
\sum_{i=1}^{k} 2^i \binom{n}{i} (k - 1) + 1 \leq 2^n \sum_{i=1}^{k} \binom{n}{i} (k - 1) = 2^n \sum_{i=1}^{k} \frac{n}{n - i} (k - 1)
\]
\[
= 2^n \left(\binom{n}{k - 1} \binom{0}{k - 1} + \cdots + \binom{n}{n - k} \binom{k - 1}{k - 1} \right)
\]
\[
= 2^n \left(\frac{n + k - 1}{n - 1} \right) \leq 2^n \left(\frac{n + k}{n} \right).
\]
For \(x \in (0, +\infty) \), we define
\[
g(x) = \frac{2^x (1 + x)^{1+x}}{x^x}.
\]
Clearly, \(g \) is strictly increasing on \((0, +\infty)\), and \(\lim_{x \to 0^+} g(x) = 1 \). For each \(t \in (1, +\infty) \), let \(b(t) \) be the solution to the equation \(g(x) = t \). Numerical calculation shows that \(b(2) \approx 0.205597 \). We can easily prove that, if \(k_2(n) \) is the integer satisfying
\[
2^{k_1(n)} \binom{n + k_2(n)}{n} \leq 2^n < 2^{k_2(n)+1} \binom{n + k_2(n) + 1}{n},
\]
then we have \(\lim_{n \to \infty} \frac{k_2(n)}{n} = b(2) \) \([9, 10]\). It can be verified that
\[
\lim_{n \to \infty} \frac{k_1(n)}{n} > b(2).
\]
Therefore, the estimate in Corollary 2 is slightly better than that given by \([9, \text{Proposition 5}]\) in the asymptotical sense, and it is much better for particular choices of small \(n \). For example, we have \(k_1(7) = 2 \) and \(k_2(7) = 1 \). It follows that
\[
\Gamma_{128}(C_7) \leq \frac{n}{n + k_1(n)} = \frac{7}{7 + 2} \approx 0.78,
\]
which is better than \(\Gamma_{128}(C_7) \leq \frac{n}{n + k_2(n)} = \frac{7}{7 + 1} \leq 0.875 \) \([9]\). See Table 1 for more examples.
Table 1. Comparison of estimates of $\Gamma_{2^n}(C_n)$.

<table>
<thead>
<tr>
<th>n</th>
<th>$k_2(n)$</th>
<th>$\frac{n}{n+k_2(n)}$</th>
<th>$k_1(n)$</th>
<th>$\frac{n}{n+k_1(n)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>0.875</td>
<td>2</td>
<td>0.778</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>0.846</td>
<td>3</td>
<td>0.786</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>0.842</td>
<td>4</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>0.833</td>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>0.833</td>
<td>6</td>
<td>0.806</td>
</tr>
</tbody>
</table>

Theorem 4. For each $n \geq 3$, we have $\Gamma_{2^n}(C_n) \leq \frac{6}{7}$.

Proof. By numerical calculations, for each $3 \leq n \leq 49$, we have $\Gamma_{2^n}(C_n) \leq \frac{6}{7}$. Set $c = b(2) - 0.02$. Then for each $n \geq 50$, we have $cn \leq b(2)n - 1$, which shows that $(1 + c)n \leq n + \lfloor b(2)n \rfloor$. Therefore,

$$\Gamma_{2^n}(C_n) \leq \frac{n}{n + \lfloor b(2)n \rfloor} \leq \frac{n}{(1 + c)n} \approx 0.8435.$$

Thus, for each $n \geq 3$, we have $\Gamma_{2^n}(C_n) \leq \max\{\frac{6}{7}, 0.8435\} = \frac{6}{7}$. □

3. Conclusions

By refining techniques used in the recent works [9, 10], we get better estimates of $\Gamma_{2^n}(C_n)$ and the first nontrivial universal upper bound of $\Gamma_{2^n}(C_n)$. It is natural to find universal bounds of $\Gamma_{2^n}(B^n_p)$ for fixed $p \in (1, \infty)$, where B^n_p is the closed unit ball of $(\mathbb{R}^n, \|\cdot\|_p)$.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors are supported by the [National Natural Science Foundation of China] grant numbers [12071444] and the [Fundamental Research Program of Shanxi Province of China] grant numbers [202103021223191].

Conflict of interest

There is no conflicts of interest between all authors.

References

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)