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1. Introduction

The study of various phenomena in science and engineering often leads to the formulation of
systems of fractional integro-differential equations (FIDEs). Examples of such systems can be found in
electric circuit analysis, the activity of interacting inhibitory and excitatory neurons [1], glass-forming
processes, non-hydrodynamics, drop-wise condensation, and wind ripple formation in deserts [2, 3].
Due to the presence of fractional derivative operators, obtaining analytical solutions for these functional
equations is generally infeasible, like the fractional derivative model of viscoelasticity, the so-called
fractional Zener model [4,5]. Consequently, researchers have refined existing methods to provide semi-
analytical or numerical solutions for FIDEs. For instance, Wang et al. proposed the use of Bernoulli
wavelets and operational matrices to solve coupled systems of nonlinear fractional-order integro-
differential equations [6]. Dief and Grace developed a new technique based on iterative refinement to
approximate the analytical solution of a linear system of FIDEs [7]. In [3], the single term Walsh series
(STWS) method was employed to handle second-order Volterra integro-differential equations. The
Muntz-Legendre wavelets were applied to find approximate solutions for systems of fractional integro-
differential Volterra-Fredholm equations [8]. Heydari et al. presented a Chebyshev wavelet method for
solving a class of nonlinear singular fractional Volterra integro-differential equations [9]. Mohammed
and Malik applied a modified series algorithm to solve systems of linear FIDEs [10]. In [11],
Genocchi polynomials combined with the collocation method were utilized to numerically solve a
system of Volterra integro-differential equations. Youbi et al. introduced an iterative reproducing kernel
algorithm to investigate approximate solutions for fractional systems of Volterra integro-differential
equations in the Caputo-Fabrizio operator sense [12]. Akbar et al. extended the optimal homotopy
asymptotic method to systems of fractional order integro-differential equations [13]. Wang et al.
combined a mixed element method with the second-order backward difference scheme to numerically
solve a class of two-dimensional nonlinear fourth-order partial differential equations [14].

Spectral methods offer semi-analytic approximate solutions to various functional equations by
expressing them as linear combinations of basis functions. The three main spectral methods are
collocation, Galerkin, and tau methods. Orthogonal polynomials serve as fundamental basis functions
in spectral methods. Classic polynomials such as Jacobi, Hermite, and Laguerre polynomials are
commonly employed for numerical solutions of diverse equations. For instance, Legendre polynomials
and Chebyshev polynomials of the first to sixth kind, which are special cases of Jacobi polynomials, are
applied in spectral methods for solving multidimensional partial Volterra integro-differential equations,
nonlinear fractional delay systems, distributed-order fractional differential equations, fractional-order
wave equations, population balance equations, fractional-order diffusion equations, and Volterra-
Fredholm integral equations [15–21].

While Gegenbauer polynomials, a specific form of Jacobi polynomials, are less commonly used
compared to their orthogonal counterparts, they have found applications in various areas. Usman et al.
utilized Gegenbauer polynomials to approximate solutions for multidimensional fractional-order delay
problems arising in mathematical physics and engineering [22]. Shifted Gegenbauer polynomials
have been employed in extracting features from color images [23]. Alkhalissi et al. introduced
the generalized Gegenbauer-Humbert polynomials for solving fractional differential equations [24].
Faheem and Khan proposed a wavelet collocation method based on Gegenbauer polynomials for
solving fourth-order time-fractional integro-differential equations with a weakly singular kernel [25].
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In [26], a Gegenbauer wavelets method was utilized to solve FIDEs.
In this study, we focus on solving a system of Caputo fractional-order Volterra integro-differential

equations with variable coefficients in the following form:

C
0 Dµr,n

x yr(x) +
n−1∑
k=1

ξr,k(x) C
0 Dµr,n−k

x yr(x) + ξr,nyr(x) −
2∑

j=1

νr, j

∫ x

0
κr, j(x, t) C

0 Dγr,2− j
t y j(t) dt − fr(x) = 0 (1.1)

where x ∈ I = [0, 1] and r = 1, 2 and the initial conditions are

dmr

dx
yr(0) = yr,mr , mr = 0, 1, . . . ,Mr−1, r = 1, 2 (1.2)

In (1.1), ξr,k ∈ C(R), ξr,0(x) = 1, r = 1, 2, k = 0, 1, . . . , n, µr,k, γr, j ∈ (0, 1], such that µr,n > µt,n−1 >

. . . > µr,1 > 0, γr,1 > γr,0 > 0, Mr = max{pr, j, qr,k}, qr,k −1 < µr,k ≤ qr,k, pr, j−1 < γr, j ≤ pr, j, r = 1, 2, j =
1, 2, k = 1, 2, . . . , n, yr(x), r = 1, 2 are real continuous functions, fr ∈ C[0, 1], κr, j ∈ C([0, 1] × [0, 1])
are known functions, νr, j ∈ R, r, j = 1, 2, and C

0 Dµx is the Caputo fractional derivative operator. A
rigid plate submerged in Newtonian fluid can be modeled using FIDEs like (1.1) [27]. Among the
important special cases of (1.1), the Bagley-Torvik equation with fractional-order derivative describes
the motion of physical systems in Newtonian fluids [28]. Structural dynamics most frequently use the
Kelvin-Voigt model, which is another special case [29].

The use of Gegenbauer polynomials in addressing various types of fractional equations, particularly
FIDEs, has been relatively limited (readers can refer to [22–26]). In this study, our objective is
to develop a combined approach using the tau method and Gegenbauer polynomials. Initially, we
investigate the existence and uniqueness of solutions to these equations by leveraging Krasnoselskii’s
fixed point theorem. Subsequently, we derive integral operational matrices of both integer and
fractional orders, as well as the operational matrix of the product, specifically tailored to Gegenbauer
polynomials. Through appropriate approximations utilizing these operational matrices, the original
system is transformed into an algebraic system. By employing the tau spectral method and the inner
product by basis functions, we eliminate the independent variable x and obtain a system of 2(N + 1)
algebraic equations that determine the coefficients of the series solutions. Solving this system allows
us to approximate the solutions of the main system. Additionally, we estimate an error bound for
the residual function within a Gegenbauer-weighted Sobolev space, which reveals that increasing the
number of basis functions in the series solutions leads to smaller errors.

The objectives of this paper can be summarized as follows:

• Investigating the existence and uniqueness of solutions for the system of FIDEs with variable
coefficients.
• Expressing the approximate solutions of the model (1.1) as linear combinations of shifted

Gegenbauer polynomials.
• Developing operational matrices for integration and product operations associated with

Gegenbauer polynomials.
• Estimating error bounds for the approximate solutions and residual functions within a

Gegenbauer-weighted Sobolev space.

The structure of this paper is as follows: Section 2 provides a brief review of relevant definitions in
fractional calculus. The existence and uniqueness of solutions to the system (1.1) are investigated
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in Section 3. In Section 4, the shifted Gegenbauer polynomials are introduced, their connection
to Jacobi polynomials is stated, and operational matrices for integration and product operations are
derived. Section 5 outlines the necessary approximations for the functions involved in the system (1.1).
Error bounds for the approximate solutions and residual functions are estimated in Section 6. The
effectiveness of the proposed method is demonstrated through two numerical examples in Section 7.
Finally, Section 8 provides concluding remarks.

2. Preliminaries

In this section, some definitions and properties of the fractional derivative and integral operators are
recalled.

Definition 2.1. The well-known non-integer derivative operator in the Caputo sense of the
differentiable function g of the order µ ∈ (0, 1) is defined below [30]:

C
0 Dµxg(x) =

1
Γ(1 − µ)

∫ x

0
(x − s)−µg′(s)ds, 0 < µ < 1 (2.1)

The following properties are achieved directly from Definition 2.1:

1) C
0 Dµxϱ = 0, ϱ ∈ R;

2) C
0 Dµx(λ1 g1(x) + λ2 g2(x)) = λ1

C
0 Dµxg1(x) + λ2

C
0 Dµxg2(x), λ1, λ2 ∈ R;

3) C
0 Dµx xν =

{ Γ(ν+1)
Γ(ν−µ+1) xν−µ, ⌊µ⌋ > ν,
0, otherwise

Definition 2.2. The Riemann-Liouville integral operator of the function g ∈ C[0, 1] of the order µ is
defined below [30]:

RL
0 Iµxg(x) =

1
Γ(µ)

∫ x

0
(x − s)µ−1g(s)ds, µ > 1 (2.2)

The following properties follow from Definition 2.2:

1) RL
0 Iµ1

x (RL
0 Iµ2

x g(x)) = RL
0 Iµ1+µ2

x g(x), µ1, µ2 ∈ R;
2) RL

0 Iµxg(x) = RL
0 Is−µ

x (Dsg(x)), s = ⌈µ⌉, Ds = ds

dxs ;

3) RL
0 Iµx xν =

{ Γ(ν+1)
Γ(ν+µ+1) xν+µ, ν, µ ∈ R+,
0, otherwise;

4) RL
0 Iµx(C

0 Dµxg(x)) = g(x) − g(0)

3. Existence and uniqueness

This section deals with the existence of unique solutions to system (1.1). By applying the Riemann-
Liouville integral operator of order µr,n ∈ (0, 1) to Eq (1.1), the following equivalent equation is
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achieved:

yr(x) = yr,0 −

n−1∑
k=1

1
Γ(µr,n)

∫ x

0
(x − t)µr,n−1ξr,k(t) C

0 Dµr,n−k
t yr(t) dt

−
1

Γ(µr,n)

∫ x

0
(x − t)µr,n−1ξr,n(t) yr(t) dt

+

2∑
j=1

νr, j

Γ(µr,n)

∫ x

0
(x − t)µr,n−1

∫ t

0
κr, j(t, s) C

0 Dγr,2− j
s y j(s) ds dt

+
1

Γ(µr,n)

∫ x

0
(x − t)µr,n−1 fr(t) dt

(3.1)

Now, suppose that C(I, X) is a Banach space of real-valued continuous functions from I = [0, 1]
into X ⊆ R equipped with the following norm

∥z∥C = max{sup
x∈I
|z(x)|, sup

x∈I
|C0 Dµxz(x)|}, ∀z ∈ C(I, X)

and the following assumptions hold for any x ∈ I and (x, t) ∈ I × I:

Mr, j = sup
(x,t)∈I
|κr, j(x, t)|, r, j = 1, 2,

Pr,k = sup
(x)∈I
|ξr,k(x)|, r = 1, 2, k = 1, · · · , n,

Fr = sup
(x)∈I
|fr(x)|, r = 1, 2

(3.2)

Theorem 3.1. Suppose that the assumptions in (3.2) and the following inequality hold

Pr,n

Γ(µr,n + 1)
< 1,

n∑
k=1

Pr,k

Γ(µr,n + 1)
+

2∑
j=1

|νr, j|Mr, j

Γ(µr,n + 2)
< 1 (3.3)

then, problems (1.1)–(1.2) have a unique solution on C(I, X).

Proof. Let Dq = {z ∈ C(I, X) | ∥z∥C ≤ q} subject to

q ≥
|yr,0| +

Fr
Γ(µr,n+1)

1 −
{ n∑

k=1

Pr,k

Γ(µr,n+1) +
2∑

j=1

|νr, j |Mr, j

Γ(µr,n+2)

} (3.4)

Then, Dq is a closed, bounded, and convex subset of C(I, X). The operators B1 and B2 are defined as
shown below:

B1yr(x) = yr,0 −
1

Γ(µr,n)

∫ x

0
(x − t)µr,n−1ξr,n(t) yr(t) dt +

1
Γ(µr,n)

∫ x

0
(x − t)µr,n−1 fr(t) dt

B2yr(x) =
2∑

j=1

νr, j

Γ(µr,n)

∫ x

0
(x − t)µr,n−1

∫ t

0
κr, j(t, s) C

0 Dγr,2− j
s y j(s) ds dt
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−

n−1∑
k=1

1
Γ(µr,n)

∫ x

0
(x − t)µr,n−1ξr,k(t) C

0 Dµr,n−k
t yr(t) dt

It’s necessary to be shown that B1 +B2 has a fixed point in Dq. The process of the proof is divided into
four stages:
Stage 1. It is shown that B1yr(x) + B2ur(x) ∈ Dq for every yr, ur ∈ Dq. Using (3.2) and (3.4), one
obtains the following:

∥B1yr + B2ur∥C ≤ |yr,0| +
Pr,n ∥yr∥C

Γ(µr,n + 1)
+

Fr

Γ(µr,n + 1)
+

2∑
j=1

|νr, j|Mr, j ∥ur∥C

Γ(µr,n + 2)
+

n−1∑
k=1

Pr,k ∥ur∥C

Γ(µr,n + 1)

≤ |yr,0| +
Fr

Γ(µr,n + 1)
+

{
Pr,n ∥yr∥C

Γ(µr,n + 1)
+

n−1∑
k=1

Pr,k ∥ur∥C

Γ(µr,n + 1)
+

2∑
j=1

|νr, j|Mr, j ∥ur∥C

Γ(µr,n + 2)

}
q

≤ q

Therefore, ∥B1yr + B2ur∥C ≤ q, which implies that B1yr + B2ur ∈ Dq for any yr, ur ∈ Dq.
Stage 2. It is shown that the operator B1 is a contraction mapping on Dq. For each yr, ur ∈ Dq and each
x ∈ I, one gets the following

∥B1yr − B1ur∥C = ∥
1

Γ(µr,n)

∫ x

0
(x − t)µr,n−1ξr,n(t) (ur(t) − yr(t)) dt∥C

≤
Pr,n

Γ(µr,n + 1)
∥yr − ur∥C

From (3.3), this shows that B1 is a contraction mapping on Dq.
Stage 3. It’s shown that the operator B2 is compact and continuous. For yr ∈ Dq, one has

∥B2yr∥C =

∥∥∥∥∥ 2∑
j=1

νr, j

Γ(µr,n)

∫ x

0
(x − t)µr,n−1

∫ t

0
κr, j(t, s) C

0 Dγr,2− j
s y j(s) ds dt

−

n−1∑
k=1

1
Γ(µr,n)

∫ x

0
(x − t)µr,n−1ξr,k(t) C

0 Dµr,n−k
t yr(t) dt

∥∥∥∥∥
C

≤

2∑
j=1

|νr, j|Mr, j

Γ(µr,n + 1)
∥y j∥C +

n−1∑
k=1

Pr,k

Γ(µr,n + 2)
∥yr∥C

≤

{ 2∑
j=1

|νr, j|Mr, j

Γ(µr,n + 1)
+

n−1∑
k=1

Pr,k

Γ(µr,n + 2)

}
q

This shows that B2 is uniformly bounded on Dq. It remains to prove the compactness of the operator
B2. For x1, x2 ∈ I such that x1 < x2 and yr ∈ Dq, one has

B2yr(x2) − B2yr(x1) =
2∑

j=1

νr, j

Γ(µr,n)

∫ x2

0
(x2 − t)µr,n−1

∫ t

0
κr, j(t, s) C

0 Dγr,2− j
s y j(s) ds dt
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−

n−1∑
k=1

1
Γ(µr,n)

∫ x2

0
(x2 − t)µr,n−1ξr,k(t) C

0 Dµr,n−k
t yr(t) dt

−

2∑
j=1

νr, j

Γ(µr,n)

∫ x1

0
(x1 − t)µr,n−1

∫ t

0
κr, j(t, s) C

0 Dγr,2− j
s y j(s) ds dt

+

n−1∑
k=1

1
Γ(µr,n)

∫ x1

0
(x1 − t)µr,n−1ξr,k(t) C

0 Dµr,n−k
t yr(t) dt

=

2∑
j=1

νr, j

Γ(µr,n)

∫ x2

0

[
(x2 − t)µr,n−1 − (x1 − t)µr,n−1

] ∫ t

0
κr, j(t, s) C

0 Dγr,2− j
s y j(s) ds dt

+

2∑
j=1

νr, j

Γ(µr,n)

∫ x2

x1

(x1 − t)µr,n−1
∫ t

0
κr, j(t, s) C

0 Dγr,2− j
s y j(s) ds dt

−

n−1∑
k=1

1
Γ(µr,n)

∫ x2

0

[
(x2 − t)µr,n−1 − (x1 − t)µr,n−1

]
ξr,k(t) C

0 Dµr,n−k
t yr(t) dt

−

n−1∑
k=1

1
Γ(µr,n)

∫ x2

x1

(x1 − t)µr,n−1ξr,k(t) C
0 Dµr,n−k

t yr(t) dt

By taking norm, one gets

∥B2yr(x2) − B2yr(x1)∥C ≤
2∑

j=1

|νr, j|Mr, j q
Γ(µr,n)

∫ x2

0

[
(x2 − t)µr,n−1 − (x1 − t)µr,n−1

]
t dt

+

2∑
j=1

|νr, j|Mr, j q
Γ(µr,n)

∫ x2

0
(x1 − t)µr,n−1 t dt

+

n−1∑
k=1

Pr,k q
Γ(µr,n)

∫ x2

0

[
(x2 − t)µr,n−1 − (x1 − t)µr,n−1

]
dt

+

n−1∑
k=1

Pr,k q
Γ(µr,n)

∫ x2

x1

(x1 − t)µr,n−1 dt

Using a change of variable, one gets:

∥B2yr(x2) − B2yr(x1)∥C ≤
2∑

j=1

|νr, j|Mr, j q
Γ(µr,n)

{
−

∫ 0

x2

(x2 − u) uµr,n−1 du +
∫ x1−x2

x1

(x1 − u) uµr,n−1 du

−

∫ x1−x2

0
(x1 − u) uµr,n−1 du

}
+

n−1∑
k=1

Pr,k q
Γ(µr,n)

{ ∫ 0

x2

uµr,n−1 du

−

∫ x1−x2

x1

uµr,n−1 du +
∫ x1−x2

0
uµr,n−1 du

}
=

2∑
j=1

|νr, j|Mr, j q
Γ(µr,n)

( xµr,n+1
2

µr,n (µr,n + 1)
+

x1 (x1 − x2)µr,n

µr,n
−

(x1 − x2)µr,n+1

µr,n + 1
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−
xµr,n+1

1

µr,n (µr,n + 1)
−

x1 (x1 − x2)µr,n

µr,n
+

(x1 − x2)µr,n+1

µr,n + 1

)
+

n−1∑
k=1

Pr,k q
Γ(µr,n)

( xµr,n
2

µr,n
+

(x1 − x2)µr,n

µr,n
−

xµr,n
1

µr,n
−

(x1 − x2)µr,n

µr,n

)
=

2∑
j=1

|νr, j|Mr, j q
Γ(µr,n + 2)

(
xµr,n+1

2 − xµr,n+1
1

)
+

n−1∑
k=1

Pr,k q
Γ(µr,n + 1)

(
xµr,n

1 − xµr,n
2

)
As x2 tends to x1, the righthand side of the above inequality tends to zero and B2 is equicontinuous.

From Stages 1–3 along with the Arzela-Ascoli theorem, one deduces that the operator B2 is compact
and continuous [31]. Finally, by Krasnoselskii’s fixed-point theorem [32], problem (1.1) has at least a
set of solutions as (y1(x), y2(x)) on I.
Stage 4. Define Eyr(x) = B1yr(x) + B2yr(x). For any yr, ur ∈ C(I, X) and x ∈ I one has:

∥Eyr − Eur∥C =

∥∥∥∥∥ n−1∑
k=1

1
Γ(µr,n)

∫ x

0
(x − t)µr,n−1 ξr,k(t) C

0 Dµr,n−k
s (ur(t) − yr(t)) dt

+
1

Γ(µr,n)

∫ x

0
(x − t)µr,n−1 ξr,n(t) (ur(t) − yr(t)) dt

+

2∑
j=1

νr, j

Γ(µr,n)

∫ x

0
(x − t)µr,n−1

∫ t

0
κr, j(t, s) C

0 Dγr,2− j
s (u j(s) − y j(s)) ds dt

∥∥∥∥∥
C

≤

n−1∑
k=1

Pr,k

Γ(µr,n + 1)
∥yr − ur∥C +

Pr,n

Γ(µr,n + 1)
∥yr − ur∥C +

2∑
j=1

|νr, j|Mr, j

Γ(µr,n + 2)
∥yr − ur∥C

Imposing the hypothesis in (3.3) implies that E is a contraction mapping. It follows that E has a unique
fixed point, which is a solution of problems (1.1)–(1.2). □

4. Shifted Gegenbauer polynomials and their operational matrices

4.1. Shifted Gegenbauer polynomials

The shifted Gegenbauer polynomials (SGPs) Gσi (x), i = 0, 1, 2, · · · are orthogonal polynomials on
the interval [0, 1]
textcolorred, with respect to the weight function ωσ(x) = xσ−

1
2 (1 − x)σ−

1
2 , σ > −1

2 , that can be defined
by the following recurrence relation:

Gσi+1(x) =
2(i + σ)

i + 1
(2x − 1)Gσi (x) −

i + 2σ − 1
i + 1

Gσi−1(x), i = 1, 2, · · · , x ∈ I,

Gσ0 (x) = 1, Gσ1 (x) = 2σ(2x − 1)

where I = [0, 1]. If Gσi (x) and Gσj (x) are the Gegenbauer polynomials of degrees i and j, respectively,
then they satisfy the following relation:∫ 1

0
Gσi (x)Gσj (x)ωσ(x) dx =

{
0, i , j,
hσi , i = j

(4.1)
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where hσi is the normalizing factor as follows:

hσi =
Γ(σ + 1

2 )2 Γ(i + 2σ)
Γ(2σ)2 (2i + 2σ) i!

, i = 0, 1, 2, · · · (4.2)

These polynomials can be represented in series form as

Gσi (x) =
i∑

k=0

ρσk,i xk, x ∈ I (4.3)

where the coefficients ρσk,i, k = 0, 1, · · · , i are computed below

ρσk,i =
(−1)i−k Γ(σ + 1

2 )Γ(i + k + 2σ)

Γ(2σ)Γ(i + σ + 1
2 ) (i − k)! k!

, i = 0, 1, · · · , k = 0, 1, · · · , i (4.4)

Remark 4.1. The shifted Gegenbauer polynomials are classified as an especial case of the classic
Jacobi polynomials. The relation between these polynomials is as [34]:

Gσi (x) =
i!Γ(σ + 1

2 )

Γ(i + σ + 1
2 )
J
σ− 1

2 ,σ−
1
2

i (x) (4.5)

where Jα,βi (x) is the shifted Jacobi polynomials of the degree i. The normalizing factor of the shifted
Jacobi polynomials regarding the weight function wα,β(x) = xβ(1 − x)α is

ς
α,β
i =

Γ(i + α + 1)Γ(i + β + 1)
(2i + α + β + 1)Γ(i + 1)Γ(i + α + β + 1)

, i = 0, 1, 2, · · · (4.6)

and the l-th derivative of Jα,βi (x) w.r.t. x is

dlJ
α,β
i (x)

d xl =
Γ(l + i + α + β)
Γ(i + α + β + 1)

J
α+l,β+l
i−l (x) (4.7)

The square-integrable function y ∈ L2(I) can be considered as a linear combination of the SGPs,
that is

y(x) =
∞∑

k=0

yk G
σ
k (x) (4.8)

where the coefficients yk, k = 0, 1, · · · are calculated by the following relation:

yk =
1
hσk

∫ 1

0
y(x)Gσk (x)ωσ(x) dx. (4.9)

To use the shifted Gegenbauer polynomials as basis functions and present approximations in matrix
form, a finite form of the series in (4.8) is considered:

y(x) ≈ yN(x) =
N∑

k=0

yk G
σ
k (x) = YT Λσ(x) = ΛσT (x) Y, (4.10)

where Y and Λ(x) are (N + 1) × 1 vectors as follows

Y = [y0, y1, y2, · · · , yN]T , Λσ(x) = [Gσ0 (x),Gσ1 (x),Gσ2 (x), · · · ,GσN(x)]T (4.11)
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4.2. Operational matrices

To deduce computational time and avoid multiplying or integrating the basis functions, introducing
and using operational matrices are recommended.

4.2.1. Operational matrix of the integration with the integer order

Consider the vector Λσ(x) in (4.11); the integral of this vector can be represented in a matrix form.
To compute the integral operational matrix, the i-th component of Λσ(x) is first considered. Using the
series given by (4.3), the integral of Gσi (x) can be computed as follows:

∫ x

0
Gσi (s) ds =

i∑
k=0

ρσk,i

∫ x

0
sk ds =

i∑
k=0

ρσk,i
xk+1

k + 1
(4.12)

Now, xk+1 is approximated in terms of the Gegenbauer polynomials:

xk+1 ≈

N∑
j=0

dσj,k+1G
σ
j (x)

where

dσl,k+1 =
1
hσj

∫ 1

0
xk+1Gσj (x)ωσ(x) dx

=
1
hσj

j∑
l=0

ρσl, j

∫ 1

0
xk+1 xl xσ−

1
2 (1 − x)σ−

1
2 dx

=
1
hσj

j∑
l=0

ρσl, j
Γ(k + l + σ + 3

2 )Γ(σ + 1
2 )

Γ(k + l + 2σ + 2)

Therefore, the integral in (4.12) will be as

∫ x

0
Gσi (s) ds ≈

N∑
j=0

{ i∑
k=0

j∑
l=0

ρσk,i ρ
σ
l, j Γ(k + l + σ + 3

2 )Γ(σ + 1
2 )

hσj (k + 1)Γ(k + l + 2σ + 2)

}
Gσj (x), i = 0, 1, · · · ,N (4.13)

Thus, (4.13) can be written in matrix form as∫ x

0
Λσ(s) ds ≈ Θ(σ)Λσ(x) (4.14)

where Θ(σ) is called the operational matrix of the integration and its entries are calculated below:

Θ
(σ)
i, j =

i∑
k=0

j∑
l=0

ρσk,i ρ
σ
l, j Γ(k + l + σ + 3

2 )Γ(σ + 1
2 )

hσj (k + 1)Γ(k + l + 2σ + 2)
, i, j = 0, 1, · · · ,N
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4.2.2. Operational matrix of the integration with the fractional order

Similar to what was stated in the previous subsection, the Riemann-Liouville integral of the i-th
Gegenbauer polynomial, Gσi (x), can be calculated as follows:

RL
0 Iµx(Gσi (x)) =

i∑
k=0

ρσk,i
RL
0 Iµx(xk) =

i∑
k=0

ρσk,i Γ(k + 1)

Γ(k + µ + 1)
xk+µ (4.15)

The function xk+µ can be approximated as follows

xk+µ ≈

N∑
j=0

bσj,k+µG
σ
j (x)

where

bσj,k+µ =
1
hσj

∫ 1

0
xk+µGσj (x)ωσ(x) dx

=
1
hσj

j∑
l=0

ρσl, j

∫ 1

0
xk+l+µ+σ− 1

2 (1 − x)σ−
1
2 dx

=
1
hσj

j∑
l=0

ρσl, j Γ(k + l + µ + σ + 1
2 )Γ(σ + 1

2 )

Γ(k + l + µ + 2σ + 1)

So, (4.15) is written as

RL
0 Iµx(Gσi (x)) ≈

N∑
j=0

{ i∑
k=0

j∑
l=0

ρσk,i ρ
σ
l, j Γ(k + 1)Γ(k + l + µ + σ + 1

2 )Γ(σ + 1
2 )

hσj Γ(k + µ + 1)Γ(k + l + µ + 2σ + 1)

}
Gσj (x), i = 0, 1, · · · ,N

Therefore, one gets
RL
0 Iµx(Λσ(x)) ≈ Θ(µ,σ)Λσ(x) (4.16)

where Θ(µ,σ) is called the operational matrix of the integration of the order σ and its entries are
calculated as

Θ
(µ,σ)
i, j =

i∑
k=0

j∑
l=0

ρσk,i ρ
σ
l, j Γ(k + 1)Γ(k + l + µ + σ + 1

2 )Γ(σ + 1
2 )

hσj Γ(k + µ + 1)Γ(k + l + µ + 2σ + 1)
, i, j = 0, 1, · · · ,N

4.2.3. Operational matrix of the product

After substituting appropriate approximations into Eq (1.1), terms like
∫ x

0
Λσ(t)ΛσT (t) V dt are

appeared where V is an (N × 1) vector. To reduce the computational time of the product of the vectors
Λσ(x) and ΛσT (x), an algorithm is suggested and this product is accomplished in a matrix form:

Λσ(x)ΛσT (x) V ≈ V∗Λσ(x) (4.17)

where V∗ is the (N × N) operational matrix of the product corresponding to the vector V . As an
approximate way of calculating its entries, the following steps can be proceeded:
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Step 1. If Gσj (x) and Gσk (x) are the Gegenbauer polynomials of degrees j and k, respectively, compute
their products as follows:

Gσj (x)Gσk (x) =
j+k∑
r=0

π( j,k)
r xr (4.18)

where coefficients π( j,k)
r , r = 0, 1, · · · , j + k are calculated as:

if j ≥ k then
for r = 0..k + j do

if r > j then

π
( j,k)
r =

k∑
l=r− j
ρσr−l, j ρ

σ
l,k

else
r∗ = min{r, k}

π
( j,k)
r =

r∗∑
l=0
ρσr−l, j ρ

σ
l,k

end if
end for

else
for r = 0..k + j do

if r ≤ j then
r∗ = min{r, j}

π
( j,k)
r =

r∗∑
l=0
ρσr−l, j ρ

σ
l,k

else
r∗∗ = min{r, k}

π
( j,k)
r =

r∗∗∑
l=r− j
ρσr−l, j ρ

σ
l,k

end if
end for

end if
Step 2. Using (4.18), compute the integral of the product of three Gegenbauer polynomials
Gσi (x)Gσj (x), and Gσk (x) as follows

qi, j,k =

∫ 1

0
Gσi (x)Gσj (x)Gσk (x)ωσ(x) dx

=

j+k∑
r=0

π( j,k)
r

∫ 1

0
xr Gσi (x)ωσ(x) dx

=

j+k∑
r=0

i∑
l=0

π
( j,k)
r ρσl,i Γ(r + l + σ + 1

2 )Γ(σ + 1
2 )

Γ(r + l + 2σ + 1)

(4.19)

Step 3. The entries of V∗ are calculated below:

V∗j,k =
1
hσk

N∑
i=0

Vi qi, j,k, j, k = 0, 1, · · · ,N (4.20)
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For more details, please refer to [33].

Remark 4.2. In the process of approximating the integral parts in system (1.1), the following integral
may be appeared:

∫ 1

0
ΛT (x) K W∗Θ(σ)Λ(x) dx

where K is an (N × N) known matrix, W∗ is the (N × N) product operational matrix corresponding to
the given W, andΘ(σ) is the integral operational matrix introduced in (4.14). The above integral can be
approximated as follows: ∫ 1

0
ΛT (x) K W∗Θ(σ)Λ(x) dx ≈ ∆ (4.21)

where ∆ is an (N × 1) vector with the following components:

∆s =

N+1∑
m=1

N+1∑
n=1

am,n qs−1,m−1,n−1, s = 1, 2, · · · ,N + 1,

am,n =

N+1∑
i=1

N+1∑
j=1

Km, j W∗
j,iΘ

(σ)
i,n , m, n = 1, 2, · · · ,N + 1

(4.22)

Remark 4.3. If Λ(x) is the basis vector in (4.11), one has

∫ 1

0
Λ(x)ΛT (x)ωσ(x) dx = Qσ (4.23)

where Qσ is the (N + 1) × (N + 1) diagonal matrix such that Qσi,i = hσi , i = 0, 1, · · · ,N.

5. Solution process

In this section, we proceed to approximate the functions and integral components of Eq (1.1)
by utilizing the operational matrices derived in Section 4. To this end, we apply the proposed
methodology to two distinct systems of fractional Volterra integro-differential equations featuring
variable coefficients.

5.1. System I

Consider the following system of fractional Volterra integro-differential equations with variable
coefficients:

C
0 D0.9

x y0(x) + C
0 D0.6

x y0(x) + 2x y0(x) −
∫ x

0
5 exp(x) C

0 D0.3
t y0(t) dt − f1(x) = 0,

C
0 D0.8

x y1(x) + x C
0 D0.5

x y1(x) −
∫ x

0
(sin(x) − t) C

0 D0.8
t y0(t) dt − f2(x) = 0

(5.1)

with the initial conditions y0(0) = 0, y1(0) = 1. According to the highest orders of derivatives in
Eq (5.1), the following approximations are considered:

C
0 D0.9

x y0(x) ≈ YT
0 Λ

σ(x), C
0 D0.8

x y1(x) ≈ YT
1 Λ

σ(x) (5.2)
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whereY0 andY1 are the vectors of unknown coefficients and must be determined. Integrating Eq (5.2)
along with the initial conditions leads to the following approximations:

y0(x) ≈ YT
0 Θ

(0.9,σ)Λσ(x) + y0(0) =WT
1 Λ

σ(x), W1 = Θ
(0.9,σ)T

Y0,

y1(x) ≈ YT
1 Θ

(0.8,σ)Λσ(x) + y1(0) = YT
1 Θ

(0.8,σ)Λσ(x) + ET
1 Λ(x) = ZT

1 Λ
σ(x), Z1 = E1 +Θ

(0.8,σ)T
Y1

(5.3)
For approximating other terms in (5.1), approximations in Eq (5.2) are written as follows:

C
0 D0.9

x y0(x) = C
0 D0.3

x (D0.6
x y0(x)) ≈ YT

0 Λ
σ(x) (5.4)

so, one has

C
0 D0.6

x y0(x) ≈ YT
0 Θ

(0.3,σ)Λσ(x) + C
0 D0.6

x y0(0) =WT
2 Λ

σ(x), W2 = Θ
(0.3,σ)T

Y0 (5.5)

Using the representation (5.4), one can get the following expressions:

C
0 D0.9

x y0(x) = C
0 D0.6

x (D0.3
x y0(x)) ≈ YT

0 Λ
σ(x) =⇒ D0.3

x y0(x) ≈ WT
3 Λ

σ(x), W3 = Θ
(0.6,σ)T

Y0,

(5.6)
C
0 D0.9

x y0(x) = C
0 D0.1

x (D0.8
x y0(x)) ≈ YT

0 Λ
σ(x) =⇒ D0.8

x y0(x) ≈ WT
4 Λ

σ(x), W4 = Θ
(0.1,σ)T

Y0 (5.7)

Similarly, one has

C
0 D0.8

x y1(x) = C
0 D0.3

x (D0.5
x y1(x)) ≈ YT

1 Λ
σ(x) =⇒ D0.5

x y1(x) ≈ ZT
2 Λ

σ(x), Z2 = Θ
(0.3,σ)T

Y1 (5.8)

Now, using (4.12) and (5.3) yields the following approximations for System I coefficients:

2 x ≈ F1Λ
σ(x), x ≈ F2Λ

σ(x),

2 x y0(x) ≈ F1Λ
σ(x)ΛσT (x)W1 ≈ F1W

∗
1Λ
σ(x),

x D0.5
x y1(x) ≈ F2Λ

σ(x)ΛσT (x)Z2 ≈ F2Z
∗
2Λ
σ(x)

(5.9)

whereW∗
1 andZ∗2 are (N+1)×(N+1) operational matrices of the product corresponding to the vectors

W1 andZ2, respectively. The kernels and integral parts can be approximated as follows:

5 exp(x) ≈ ΛσT (x)K1Λ
σ(t), sin(x) − t ≈ ΛσT (x)K2Λ

σ(t),∫ x

0
5 exp(x) D0.3

t y0(t) dt ≈ ΛσT (x)K1W
∗
3

∫ x

0
Λσ(t)dt ≈ ΛσT (x)K1W

∗
3Θ

(σ)Λσ(x),∫ x

0
(sin(x) − t) D0.8

t y0(t) dt ≈ ΛσT (x)K2W
∗
4

∫ x

0
Λσ(t)dt ≈ ΛσT (x)K2W

∗
4Θ

(σ)Λσ(x)

(5.10)

where Θ(σ) is the operational matrix of the integration in (4.14) andW∗
3 andW∗

4 are the operational
matrices of the product. To use the tau method, the sources functions f1 and f2 should be approximated
in terms of the Gegenbauer polynomials:

f1(x) ≈ F T
3 Λ

σ(x), f2(x) ≈ F T
4 Λ

σ(x) (5.11)
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where vectors F3 and F4 are obtained using Eq (4.9). By substituting approximations (5.2)–(5.11) into
system (5.1), the following algebraic system is achieved:

R1(x) = YT
0 Λ

σ(x) +WT
2 Λ

σ(x) + F T
1 W

∗
1Λ
σ(x) − ΛσT (x)K1W

∗
3Θ

(σ)Λσ(x) − F T
3 Λ

σ(x) ≈ 0,

R2(x) = YT
1 Λ

σ(x) + F T
2 Z

∗
2Λ
σ(x) − ΛσT (x)K2W

∗
4Θ

(σ)Λσ(x) − F T
4 Λ

σ(x) ≈ 0
(5.12)

The inner product of algebraic system (5.12) by the basis vector Λσ(x) leads to the following system
of algebraic equations: {

YT
0 Q +W

T
2 Q + F

T
1 W

∗
1 Q − ∆1 − F

T
3 Q ≈ 0,

YT
1 Q +Z

T
2 Q − ∆2 − F

T
4 Q ≈ 0

(5.13)

where ∆i, i = 1, 2, and Q are (N + 1) × (N + 1) matrices in (4.21) and (4.23), respectively.

5.2. System II

Now, consider the following system of fractional Volterra integro-differential equations with
variable coefficients as the second illustrative example:

C
0 D0.7

x y0(x) + C
0 D0.5

x y0(x) − 2 y0(x) −
∫ x

0

(
x C

0 D0.3
t y0(t) + (x − t) y1(t)

)
dt − f1(x) = 0,

C
0 D0.6

x y1(x) + exp(x) C
0 D0.4

x y1(x) + x y1(x) −
∫ x

0
(x − 2t) C

0 D0.8
t y0(t) dt − f2(x) = 0

(5.14)

with the initial conditions y0(0) = y1(0) = 0. Based on the highest orders of derivatives in Eq (5.14),
the following approximations are set:

C
0 D0.8

x y0(x) ≈ YT
0 Λ

σ(x), C
0 D0.6

x y1(x) ≈ YT
1 Λ

σ(x) (5.15)

Integrating the approximations in (5.15) along with the initial conditions leads to the following
approximations:

y0(x) ≈ YT
0 Θ

(0.8,σ)Λσ(x) + y0(0) =WT
1 Λ

σ(x), W1 = Θ
(0.8,σ)T

Y0,

y1(x) ≈ YT
1 Θ

(0.6,σ)Λσ(x) + y1(0) = ZT
1 Λ

σ(x), Z1 = Θ
(0.6,σ)T

Y1

(5.16)

For approximating other terms in (5.14), approximations in Eq (5.15) are written as follows:

C
0 D0.8

x y0(x) = C
0 D0.1

x (D0.7
x y0(x)) ≈ YT

0 Λ
σ(x),

=⇒ D0.7
x y0(x) ≈ YT

0 Θ
(0.1,σ)Λ(x) =WT

2 Λ(x), W2 = Θ
(0.1,σ)T

Y0,
C
0 D0.8

x y0(x) = C
0 D0.5

x (D0.3
x y0(x)) ≈ YT

0 Λ
σ(x),

=⇒ D0.3
x y0(x) ≈ YT

0 Θ
(0.5,σ)Λ(x) =WT

3 Λ(x), W3 = Θ
(0.5,σ)T

Y0,
C
0 D0.8

x y0(x) = C
0 D0.3

x (D0.5
x y0(x)) ≈ YT

0 Λ
σ(x),

=⇒ D0.5
x y0(x) ≈ YT

0 Θ
(0.3,σ)Λ(x) =WT

4 Λ(x), W4 = Θ
(0.3,σ)T

Y0,
C
0 D0.6

x y1(x) = C
0 D0.2

x (D0.4
x y1(x)) ≈ YT

1 Λ
σ(x),

=⇒ D0.4
x y1(x) ≈ YT

1 Θ
(0.2,σ)Λ(x) = ZT

2 Λ(x), Z2 = Θ
(0.2,σ)T

Y1

(5.17)
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Using (4.12) and (5.16), the coefficients of System II can be approximated as follows:

2 ≈ F1Λ
σ(x), exp(x) ≈ F2Λ

σ(x), x ≈ F3Λ
σ(x),

2 y0(x) ≈ F1Λ
σ(x)ΛσT (x)W1 ≈ F1W

∗
1Λ
σ(x),

exp(x) D0.4
x y1(x) ≈ F2Λ

σ(x)ΛσT (x)Z2 ≈ F2Z
∗
2Λ
σ(x),

x y1(x) ≈ F3Λ
σ(x)ΛσT (x)Z1 ≈ F3Z

∗
1Λ
σ(x)

(5.18)

where W∗
1,Z

∗
1, and Z∗2 are (N + 1) × (N + 1) operational matrices of the product corresponding to

the vectorsW1Z1 and Z2, respectively. Now, the kernels and integral parts can be approximated as
follows:

x ≈ ΛσT (x)K1Λ
σ(t), x − t ≈ ΛσT (x)K2Λ

σ(t), x − 2t ≈ ΛσT (x)K3Λ
σ(t),∫ x

0
x D0.3

t y0(t) dt ≈ ΛσT (x)K1W
∗
3

∫ x

0
Λσ(t)dt ≈ ΛσT (x)K1W

∗
3Θ

(σ)Λσ(x),∫ x

0
(x − t) y1(t) dt ≈ ΛσT (x)K2Z

∗
1

∫ x

0
Λσ(t)dt ≈ ΛσT (x)K2Z

∗
1Θ

(σ)Λσ(x),∫ x

0
(x − 2t) D0.8

t y0(t) dt ≈ ΛσT (x)K3Y
∗
0

∫ x

0
Λσ(t)dt ≈ ΛσT (x)K3Y

∗
0Θ

(σ)Λσ(x)

(5.19)

whereΘ(σ) is the operational matrix of the integration in (4.14) andW∗
3,Z

∗
1, andY∗0 are the operational

matrices of the product corresponding to the vectorsW3,Z1,Y0. To use the tau method, the sources
functions f1 and f2 should be approximated in terms of the Gegenbauer polynomials:

f1(x) ≈ F T
4 Λ

σ(x), f2(x) ≈ F T
5 Λ

σ(x) (5.20)

where vectors F4 and F5 are obtained using Eq (4.9). By substituting approximations (5.15)–(5.20)
into system (5.14), the following algebraic system is achieved:

R1(x) =WT
2 Λ

σ(x) +WT
4 Λ

σ(x) − F T
1 W

∗
1Λ
σ(x) − ΛσT (x)K1W

∗
3Θ

(σ)Λσ(x)

− ΛσT (x)K2Z
∗
1Θ

(σ)Λσ(x) − F T
4 Λ

σ(x) ≈ 0,

R2(x) = YT
1 Λ

σ(x) + F T
2 Z

∗
2Λ
σ(x) + F T

3 Z
∗
1Λ
σ(x) − ΛσT (x)K3Y

∗
0Θ

(σ)Λσ(x) − F T
5 Λ

σ(x) ≈ 0
(5.21)

The inner product of algebraic system (5.21) by the basis vector Λσ(x) leads to the following system
of algebraic equations: {

WT
2 Q +W

T
4 Q − F

T
1 W

∗
1 Q − ∆1 − ∆2 − F

T
4 Q ≈ 0,

YT
1 Q + F

T
2 Z

∗
2Q + F

T
3 Z

∗
1Q − ∆3 − F

T
5 Q ≈ 0

(5.22)

where ∆i, i = 1, 2, 3, and Q are (N + 1) × (N + 1) matrices in (4.21) and (4.23).
The systems in Eqs (5.13) and (5.22) involve 2(N + 1) algebraic equations in 2(N + 1) unknown

variables y0,i, y1,i, i = 0, 1, · · · ,N. By solving the resulted systems, the values of these variables are
estimated and approximate solutions derived from Eqs (5.3) and (5.16).
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6. Error bounds

In this section, we aim to compute error bounds for the obtained approximate solutions within a
Gegenbauer-weighted Sobolev space. To begin, we present the definitions of this space.

Definition 6.1. Suppose that m ∈ N, I = [0, 1], then the Gegenbauer-weighted Sobolev space Am
ωσ(I)

is defined as below:

Am
ωσ(I) = {z | z is measurable and ∥z∥k,ωσ < ∞, k = 0, 1, · · · ,m}

This space is equipped with the following norm and semi-norm:

∥z∥m,ωσ =
( m∑

k=0

∥∥∥∥∥dkz(x)
dxk

∥∥∥∥∥2
ωσk

) 1
2

, |z|m,ωσ =
∥∥∥∥∥dmz(x)

dxm

∥∥∥∥∥
ωσm

where ∥ . ∥ωσk denotes the L2
ωσk

-norm and ωσk (x) = xσ+k− 1
2 (1 − x)σ+k− 1

2 .

Definition 6.2. The following inequality holds for any s ∈ R and z ∈ Am
ωσ(I)

∥z∥s,ωσ ≤ ∥z∥ι[s]+1,ωσ ∥z∥
1−ι
[s],ωσ (6.1)

where s = [s] + ι, 0 < ι < 1. Inequality (6.1) is known as the Gagliardo-Nirenberg inequality [35].

Definition 6.3. If ⟨., .⟩m,ωσ and ∥.∥m,ωσ are the inner and the norm in the spaceAm
ωσ(I), respectively, then

the following inequality holds for any two functions ϕ, φ ∈ Am
ωσ(I) [36]:

⟨ϕ, φ⟩m,ωσ ≤
1
2

(
∥ϕ∥2m,ωσ + ∥φ∥

2
m,ωσ

)
(6.2)

Theorem 6.1. Assume that y ∈ Am
ωσ(I),m ∈ N, 0 ≤ η ≤ m, and yN(x) is the Gegenbauer approximation

to y(x). An estimation of the error bound can be obtained as follows:

∥y − yN∥η,ωσ ≤ C0 (N + 2σ + 1)η−m(N + 2)
η−m

2 |y|m,ωσ (6.3)

where C0 is a positive constant.

Proof. Since yN(x) is the Gegenbauer approximation to y(x), subtracting the series in (4.13) from (4.11)
and differentiating it leads to

dl

dxl (y(x) − yN(x)) =
dl

dxl

∞∑
k=N+1

gσk G
σ
k (x) =

∞∑
k=N+1

gσk
dlGσk (x)

dxl , l ≤ m

According to the relation between the Gegenbauer and Jacobi polynomials, mentioned in Remark 4.1,
one can get

dlGσk (x)
dxl =

Γ(k + 1)Γ(σ + 1
2 )

Γ(k + σ + 1
2 )

dlJ
σ− 1

2 ,σ−
1
2

k (x)
dxl

=
Γ(k + 1)Γ(σ + 1

2 )Γ(l + k + 2σ)

Γ(k + σ + 1
2 )Γ(k + 2σ)

J
l+σ− 1

2 ,l+σ−
1
2

k−l (x)

(6.4)
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So, from (6.4) and (4.6), one gets∥∥∥∥∥ dl

dxl (y(x) − yN(x))
∥∥∥∥∥2
ωσl

=

∞∑
k=N+1

gσk
2 Γ2(k + 1)Γ2(σ + 1

2 )Γ2(k + l + 2σ)
2Γ2(k + 2σ)Γ(l + 2σ)Γ(k − l + 1) (k + σ)

(6.5)

Similarly, one can obtain∥∥∥∥∥dmy
dxm

∥∥∥∥∥2
ωσm

=

∞∑
k=m+1

gσk
2 Γ2(k + 1)Γ2(σ + 1

2 )Γ2(k + m + 2σ)
2Γ2(k + 2σ)Γ(m + 2σ)Γ(k − m + 1) (k + σ)

(6.6)

with the aid of the Stirling formula [35], the following inequality is obtained:

Γ2(k + l + 2σ)Γ(m + 2σ)Γ(k − m + 1)
Γ2(k + m + 2σ)Γ(l + 2σ)Γ(k − l + 1)

≤ C1 (2σ)m−l (k + 2σ)2(l−m) (k + 1)l−m (6.7)

where C1 is a positive constant. Based on the definition of the semi-norm and using (6.5)–(6.7), one
gets

|y − yN |
2
l,ωσ =

∥∥∥∥∥ dl

dxl (y − yN)
∥∥∥∥∥2
ωσl

=

∞∑
k=N+1

{2gσk
2Γ2(k + 1)Γ2(σ + 1

2 )Γ2(k + l + 2σ)Γ2(k + 2σ)Γ(m + 2σ)Γ(k − m + 1)(k + σ)

2gσk
2Γ(l + 2σ)Γ(k − l + 1)Γ2(k + 1)Γ2(σ + 1

2 )Γ2(k + m + 2σ)(k + σ)

× gσk
2 Γ2(k + 1)Γ2(σ + 1

2 )Γ2(k + m + 2σ)
2Γ2(k + 2σ)Γ(m + 2σ)Γ(k − m + 1)(k + σ)

}
≤

∞∑
k=N+1

C1(2σ)m−lgσk
2(k + 2σ)2(l−m)(k + 1)l−m Γ2(k + 1)Γ2(σ + 1

2 )Γ2(k + m + 2σ)
2Γ2(k + 2σ)Γ(m + 2σ)Γ(k − m + 1)(k + σ)

≤

∞∑
k=m+1

C1(2σ)m−lgσk
2(N + 2σ + 1)2(l−m)(N + 2)l−m

×
Γ2(k + 1)Γ2(σ + 1

2 )Γ2(k + m + 2σ)
2Γ2(k + 2σ)Γ(m + 2σ)Γ(k − m + 1)(k + σ)

≤ C1(2σ)m−lgσk
2(N + 2σ + 1)2(l−m)(N + 2)l−m|y|2m,ωσ

then, the following inequality is acquired

∥y − yN∥m,ωσ ≤ C2(2σ)
m−l

2 (N + 2σ + 1)l−m(N + 2)
l−m

2 |y|m,ωσ , l ≤ m (6.8)

Using the Gagliardo–Nirenberg inequality leads to the desired bound for η = [η] + η0, 0 < η0 < 1:

∥y − yN∥η,ωσ ≤ ∥y − yN∥
η0
[η]+1,ωσ∥y − yN∥

1−η0
[η],ωσ

≤ C0(N + 2σ + 1)η−m(N + 2)
η−m

2 |y|m,ωσ

□

Corollary 6.2. Using Theorem 6.1, an error bound for dy
dx −

dyN
dx can be estimated as follows:

AIMS Mathematics Volume 9, Issue 2, 3850–3880.



3868

dl

dxl

(dy(x)
dx
−

dyN(x)
dx

)
=

dl+1

dxl+1 (y(x) − yN(x)) =
∞∑

k=N+1

gσk
dl+1Gσk (x)

dxl+1

=

∞∑
k=N+1

gσk
Γ(k + 1)Γ(σ + 1

2 )

Γ(k + σ + 1
2 )

dl+1

dxl+1J
σ− 1

2 ,σ−
1
2

k (x)

=

∞∑
k=N+1

gσk
Γ(k + 1)Γ(σ + 1

2 )Γ(l + k + 2σ + 1)

Γ(k + σ + 1
2 )Γ(k + 2σ)

J
σ+l+ 1

2 ,σ+l+ 1
2

k−l−1 (x)

Therefore, one has∥∥∥∥∥dy
dx
−

dyN

dx

∥∥∥∥∥
η,ω1

≤ C1 (N + 2σ + 2)
η−m

2 (N + 2σ + 4)2(η−m) (N + 1)
η−m

2 |y|m,ωσ l ≤ m, (6.9)

where C1 is a positive constant.

Theorem 6.3. If y ∈ Am
ωσ(I),m ∈ N, 0 ≤ η ≤ m, 0 < µ < 1, and yN(x) is the Gegenbauer approximation

to y(x), then an error bound can be estimated for C
0 Dµxy(x) − C

0 DµxyN(x) as follows:

∥∥∥∥∥C0 Dµxy − C
0 DµxyN

∥∥∥∥∥
η,ωσ1

≤ δ0 C1
Γ(σ − µ + 1

2 )Γ(σ + 1
2 )

Γ(1 − µ)Γ(2σ − µ + 1)
(N + 2σ + 2)

η−m
2 (N + 2σ + 4)2(η−m)(N + 1)

η−m
2 |y|m,ωσ

(6.10)

Proof. By noting the relation between the classical derivative and Riemann-Liouville integral operators
(the second property in Definition 2.2), one has

C
0 Dµxy(x) − C

0 DµxyN(x) = RL
0 I1−µx (y′(x) − y′N(x))

=
1

Γ(1 − µ)

∫ x

0
(x − ξ)−µ(y′(ξ) − y′N(ξ)) dξ

=
1

Γ(1 − µ)

{
x−µ ∗ (y′(x) − y′N(x))

} (6.11)

where the star sign denotes the convolution of x−µ and (y′(x) − y′N(x)). Applying Young’s convolution
inequality ∥u1 ∗ u2∥q ≤ δ0 ∥u1∥1 ∥u2∥q and Corollary 6.2 to (6.11) leads to the desired result:

∥C0 Dµxy − C
0 DµxyN∥η,ωσ1 ≤

δ0

Γ(1 − µ)
∥x−µ∥L1

ωσ
(I)∥y

′ − y′N∥η,ωσ1

=
δ0

Γ(1 − µ)
Γ(σ − µ + 1

2 )Γ(σ + 1
2 )

Γ(2σ − µ + 1)
∥y′ − y′N∥η,ωσ1

≤ δ0 C1
Γ(σ − µ + 1

2 )Γ(σ + 1
2 )

Γ(1 − µ)Γ(2σ − µ + 1)
(N + 2σ + 2)

η−m
2 (N + 2σ + 4)2(η−m)(N + 1)

η−m
2 |y|m,ωσ

□
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Now, suppose that yN(x) is the obtained solutions from the suggested method, so one has the following
approximate system:

C
0 Dµr,n

x yr,N(x) +
n−1∑
k=1

ξr,k(x) C
0 Dµr,n−k

x yr,N(x) + ξr,nyr,N(x)

−

2∑
j=1

νr, j

∫ x

0
κr, j(x, t) C

0 Dγr,2− j
t y j,N(t) dt − fr(x) + Rr(x) = 0

(6.12)

where Rr(x), r = 1, 2 are the residual functions. By subtracting Eq (6.12) from Eq (1.1), the following
error system is achieved:

Rr(x) = C
0 Dµr,n

x er,N(x) +
n−1∑
k=1

ξr,k(x) C
0 Dµr,n−k

x er,N(x) + ξr,ner,N(x)

−

2∑
j=1

νr, j

∫ x

0
κr, j(x, t) C

0 Dγr,2− j
t e j,N(t) dt

(6.13)

where e j,N = y j(x) − y j,N(x). To obtain an error bound for the residual function in (6.13), this function
is multiplied by er,N; therefore, using the inequality in (6.2) yields:

⟨Rr(x), er,N(x)⟩η,ωσ = ⟨C0 Dµr,n
x er,N(x), er,N(x)⟩η,ωσ + ⟨

n−1∑
k=1

ξr,k(x) C
0 Dµr,n−k

x er,N(x), er,N(x)⟩η,ωσ

+ ⟨ξr,ner,N(x), er,N(x)⟩η,ωσ − ⟨
2∑

j=1

νr, j

∫ x

0
κr, j(x, t) C

0 Dγr,2− j
t e j,N(t) dt, er,N(x)⟩η,ωσ

≤
1
2
∥C0 Dµr,n

x er,N∥
2
η,ωσ1
+

1
2
∥er,N∥

2
η,ωσ +

1
2

n−1∑
k=1

∥ξr,k∥
2
L2
ωσ

(I) ∥
C
0 Dµr,n−k

x er,N∥
2
η,ωσ1

+
1
2
∥er,N∥

2
η,ωσ +

1
2
∥ξr,N∥

2
L2
ωσ

(I) ∥er,N∥
2
η,ωσ +

1
2
∥er,N∥

2
η,ωσ

+
1
2

2∑
j=1

|νr, j|
2 ∥κr, j∥

2
L2
ωσ0

(I2) ∥
C
0 Dγr,2− j

x e j,N∥
2
η,ωσ1
+

1
2
∥er,N∥

2
η,ωσ

where ωσ0 (x, t) = ωσ(x)ωσ(t) and I2 = I × I. So, one has
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∥Rr∥
2
η,ωσ ≤ ∥

C
0 Dµr,n

x er,N∥
2
η,ωσ1
+

n−1∑
k=1

∥ξr,k∥
2
L2
ωσ

(I) ∥
C
0 Dµr,n−k

x er,N∥
2
η,ωσ1
+ 3∥er,N∥

2
η,ωσ

+

2∑
j=1

|νr, j|
2 ∥κr, j∥

2
L2
ωσ0

(I2) ∥
C
0 Dγr,2− j

x e j,N∥
2
η,ωσ1
+ ∥ξr,N∥

2
L2
ωσ

(I) ∥er,N∥
2
η,ωσ

≤ δ2
0 C

2
1

Γ2(σ − µr,n +
1
2 )Γ2(σ + 1

2 )
Γ2(1 − µr,n)Γ2(2σ − µr,n + 1)

× (N + 2σ + 2)η−m(N + 2σ + 4)4(η−m)(N + 1)η−m|y|2m,ωσ

+ δ2
0 C

2
1

n−1∑
k=1

∥ξr,k∥
2
L2
ωσ

(I)

Γ2(σ − µr,n−k +
1
2 )Γ2(σ + 1

2 )
Γ2(1 − µr,n−k)Γ2(2σ − µr,n + 1)

× (N + 2σ + 2)η−m (N + 2σ + 4)4(η−m)(N + 1)η−m |y|2m,ωσ
+ 3C2

1 (N + 2σ + 1)2(η−m)(N + 2)η−m|y|2m,ωσ

+ δ2
0 C

2
1

2∑
j=1

|νr, j|
2 ∥κr, j∥

2
L2
ωσ0

(I2)

Γ2(σ − γr,2− j +
1
2 )Γ2(σ + 1

2 )
Γ2(1 − γr,2− j)Γ2(2σ − γr,2− j)

× (N + 2σ + 2)η−m(N + 2σ + 4)4(η−m)(N + 1)η−m|y|m,ωσ

+ C2
1 ∥ξr,N∥

2
L2
ωσ

(I)(N + 2σ + 1)2(η−m)(N + 2)η−m|y|2m,ωσ , r = 1, 2

(6.14)

From the righthand side of (6.14), increasing the value of N leads to a smaller error bound for the
residual function.

7. Numerical examples

In Section 5, we implemented the proposed approach on two systems of Volterra-type FIDEs.
Systems I and II were transformed into corresponding systems of algebraic equations, as shown in
Eqs (5.13) and (5.22). We solved these systems for various values of N and σ and calculated the
maximum absolute errors (MAEs) and least square errors (LSEs). The obtained results are presented
in the forms of figures and tables. All computations were performed using Maple 16 software. Also,
the convergence rate CR(y j), j = 0, 1 is computed by the following formula:

CR(y j) =
| ln(e j

i+1/e
j
i )|

ln(i + 1/i)
, e j

i = |y j − y j,N |, j = 0, 1, i = 1, 2, . . . , 8

Example 1. Consider system (5.1) with the exact solutions (y0(x), y1(x)) = (−x2, 1 − x3), initial
conditions (y0(0), y1(0)) = (0, 1), and source functions

f1(x) = −
2
Γ(2.1)

x1.1 −
2
Γ(2.4)

x1.4 − 2x3 +
10
Γ(3.7)

exp(x) x2.7,

f2(x) = −
6
Γ(3.2)

x2.2 −
6
Γ(3.5)

x3.5 +
2
Γ(3.2)

sin(x) x2.2 −
2

3.2Γ(2.2)
x3.2
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Table 1 displays the values of approximate solutions at equally spaced points xi = 0.2i, i =
0, 1, · · · , 5 as well as the corresponding least square errors obtained from the proposed tau-Gegenbauer
method (for N = 7, σ = 1) and the block-by-block approach combined with a finite difference
approximation [37] (for N = 10, h = 0.1). It is evident that the tau-Gegenbauer method yields results
with significantly smaller errors compared to those reported in [37]. MAEs for various values of N
(ranging from 2 to 7) and σ = 1 are presented in Table 2. As expected, increasing the number of
Gegenbauer polynomials in the series solutions (represented by N) leads to a reduction in errors. Table
4 reports the MAEs of the approximate solutions for N = 5 and different values of σ.

Table 1. Values of exact and approximate solutions at selected points for N = 7 and σ = 1
for Example 1.

Exact values Proposed scheme Method in [37]
xi y0Exact y1Exact y0,N y1,N y0,N y1,N

0.0 0.0000 1.0000 3.2144 × 10−5 0.9999946673 0.0000 1.0000
0.2 −0.0400 0.9920 −0.0399856254 0.9919993594 −0.04387683293 0.99071904024
0.4 −0.1600 0.9360 −0.1599851160 0.9360018667 −0.1667659284 0.93075651777
0.6 −0.3600 0.7840 −0.3599697321 0.7840028442 −0.36880182427 0.77152149574
0.8 −0.6400 0.4880 −0.6399544939 0.4880059282 −0.64932899451 0.46536622778
1.0 −1.0000 0.0000 −0.9999322792 1.2027 × 10−5 −1.00653583547 −0.0349831482
LSE 3.7817 × 10−5 5.0342 × 10−6 3.3483 × 10−4 3.1115 × 10−3

Table 2. MAEs and convergence rate of approximate solutions for various values of N and
σ = 1 of Example 1.

N MAE (y0) CR(y0) MAE (y1) CR(y1)
2 2.2605 × 10−2 −− 6.6949 × 10−2 −−

3 2.3660 × 10−3 5.5664 4.3205 × 10−4 12.4379
4 9.4636 × 10−4 3.1852 9.8083 × 10−5 5.1540
5 2.8943 × 10−4 5.3092 4.9989 × 10−5 3.0205
6 1.9745 × 10−4 2.0975 1.3829 × 10−5 7.0482
7 7.7834 × 10−5 6.0389 1.2027 × 10−5 0.9057
8 4.2115 × 10−5 4.5995 8.6863 × 10−6 2.4369

Table 3. Converegence rates at x = 0.5, 0.7 for various values of N and σ = 1 of Example 1.

x = 0.5 x = 0.7

N Error (y0) CR(y0) Error (y1) CR(y1) Error (y0) CR(y0) Error (y1) CR(y1)

2 4.9384 × 10−3 −− 1.8672 × 10−4 −− 9.6234 × 10−3 −− 1.6530 × 10−2 −−

4 2.2761 × 10−4 4.4394 6.3837 × 10−7 8.1923 3.3882 × 10−4 4.8280 3.8006 × 10−5 8.7646
6 3.5898 × 10−5 4.5551 5.0491 × 10−6 5.1004 7.2318 × 10−5 3.8089 6.4580 × 10−6 4.3713
8 4.6590 × 10−5 0.9062 4.3682 × 10−8 16.5114 5.4926 × 10−5 0.9562 1.4408 × 10−6 5.2145
10 3.7557 × 10−4 9.3530 1.9654 × 10−5 27.3774 7.2617 × 10−5 1.2513 2.9547 × 10−5 13.5374
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Table 4. LSEs of approximate solutions for various values of σ and N = 5 in Example 1.

σ 0.5 1 1.25 1.5 2 2.5

LSE (y0) 2.6457 × 10−5 1.4897 × 10−4 2.3482 × 10−4 3.2302 × 10−4 4.9850 × 10−4 6.6611 × 10−4

LSE (y1) 8.6608 × 10−5 2.0616 × 10−5 2.8292 × 10−5 3.6091 × 10−5 5.1284 × 10−5 6.5460 × 10−5

Figure 1. Plots of (a) Exact solution y0(x), (b) Approximate solution y0,N(x), (c) Exact
solution y1(x), (d) Approximate solution y1,N(x), (e) Absolute error function |y0(x) − y0,N(x)|,
(f) Absolute error function |y1(x) − y1,N(x)|, for N = 7 and σ = 1 for Example 1.

AIMS Mathematics Volume 9, Issue 2, 3850–3880.



3873

Figure 2. Plots of absolute error functions for N = 5 and σ = 0.5, 1.5, 2.5 for Example 1.

In Figure 1, we present the exact and approximate solutions, as well as the corresponding absolute
error functions, for N = 7 and σ = 1. The plots demonstrate a good agreement between the
approximate solutions and the exact ones. Furthermore, Figure 2 illustrates the absolute error functions
for various values of σ while keeping N = 5 constant. These plots further highlight the accuracy of
the proposed method. The results substantiate the effectiveness and reliability of the tau-Gegenbauer
method in providing accurate approximate solutions. The convergence rate of approximate solutions
have been computed and listed in Table 2 for different values of N. In adition, the convergence rates at
x = 0.5, 0.7 are calculated for different values of N and σ = 1, which can be seen in Table 3.

Example 2. Consider system (5.14) as the second example with the exact solutions (y0(x), y1(x)) =
(x4, x(1 − x)), initial conditions (y0(0), y1(0)) = (0, 0), and source functions

f1(x) =
Γ(5)
Γ(4.3)

x3.3 +
Γ(5)
Γ(3.5)

x4.5 −
23
12

x4 −
1
6

x3 −
Γ(5)
Γ(5.7)

x5.7,
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f2(x) =
1
Γ(1.4)

x0.4 −
2
Γ(2.4)

x1.4 +
1
Γ(1.6)

x0.6 exp(x) −
2
Γ(2.6)

x1.6 exp(x)

+ x2 − x3 +

( 2Γ(5)
5.2Γ(4.2)

−
5
Γ(5.2)

)
x5.2

A comparison between exact and approximate solutions at equally spaced points xi = 0.2i, i =
0, 1, · · · , 5 is seen in Table 5 for N = 7, σ = 1. The LSEs of the results obtained from the proposed
method are smaller than those obtained from the block-by-block approach in [37] (for N = 10, h = 0.1).
MAEs have been computed for N = 2, 3, · · · , 8 and σ = 1 and listed in Table 6. In Table 7, MAEs
of the approximate solutions are computed for N = 5 and diverse values of σ. Figures of exact and
approximate solutions and absolute error functions are plotted in Figure 3 for N = 7 and σ = 1. Plots
of absolute error functions are seen in Figure 4 for various values of σ and N = 5. The convergence
rate of approximate solutions have been computed and listed in Table 6 for different values of N. Error
bounds of y0,N(x) and y1,N(x) in (6.3) are 8.2270×10−3 and 2.0428×10−3 for N = 7,m = 2, η = 1, σ = 1,
respectively. Based on the convergenc rate in Table 6, the absolute error of y0,7(x) is proportional to

1
N2.1527 = 1.5162 × 10−2 and the absolute error of y1,7(x) is proportional to 1

N1.7767 = 3.1515 × 10−2.

Table 5. Values of exact and approximate solutions at selected points for N = 7 and σ = 1
for Example 2.

Exact Proposed scheme Method in [37]
xi y0Exact y1Exact y0,N y1,N y0,N y1,N

0.0 0.0000 0.0000 −2.3182 × 10−6 0.0018380780 0.0000 0.0000
0.2 0.0016 0.1600 0.0016007312 0.1603567253 0.0017309978 0.1600362527
0.4 0.0256 0.2400 0.0256076988 0.2400674525 0.0271385452 0.2390378788
0.6 0.1296 0.2400 0.1296217631 0.2402228353 0.1359682357 0.2321624668
0.8 0.4096 0.1600 0.4096477585 0.1599868537 0.4262711145 0.1302339480
1.0 1.0000 0.0000 1.0000904470 −0.0009318649 1.0325094318 −0.0805029267
LSE 3.8913 × 10−5 6.4800 × 10−4 7.1677 × 10−3 1.0402 × 10−2

Table 6. MAEs of approximate solutions for various values of N and σ = 1 of Example 2.

N MAE (y0) CR(y0) MAE (y1) CR(y1)
2 1.3064 × 10−1 −− 4.6931 × 10−3 −−

3 1.9922 × 10−2 4.6382 9.3530 × 10−3 1.7008
4 2.0981 × 10−4 15.8278 4.8217 × 10−3 2.3031
5 1.9955 × 10−4 0.2247 3.3191 × 10−3 1.6735
6 1.2604 × 10−4 2.5201 2.4172 × 10−3 1.7391
7 9.0447 × 10−5 2.1527 1.8381 × 10−3 1.7767
8 6.5017 × 10−5 2.4742 8.4361 × 10−4 5.8323
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Table 7. LSEs of approximate solutions for various values of σ and N = 5 in Example 2.

σ 0.5 1 1.25 1.5 2 2.5

LSE (y0) 4.5374 × 10−6 8.3138 × 10−4 1.2031 × 10−4 1.5449 × 10−4 2.1416 × 10−4 2.6366 × 10−4

LSE (y1) 8.1582 × 10−4 1.1886 × 10−3 1.4490 × 10−3 1.7085 × 10−3 2.1904 × 10−3 2.6115 × 10−3

Figure 3. Plots of (a) Exact solution y0(x), (b) Approximate solution y0,N(x), (c) Exact
solution y1(x), (d) Approximate solution y1,N(x), (e) Absolute error function y0,N(x), (f)
Absolute error function y1,N(x), for N = 7 and σ = 1 for Example 2.
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Figure 4. Plots of absolute error functions for N = 5 and σ = 0.5, 1.25, 1.5 for Example 2.

8. Conclusions

A matrix-based tau spectral method utilizing Gegenbauer polynomials was developed to
numerically solve a specific class of FIDE systems. A fractional-order integral operational matrix
was constructed for this purpose. In [22], differential equations with time-fractional delays were
analyzed using spectral operational matrices. Operational matrices of the fractional-order derivative
related to shifted Gegenbauer polynomials were derived. To solve fractional differential equations
based on the Gegenbauer-Humbert polynomials, a collocation wavelet method was proposed in [24].
The operational matrices of the fractional derivatives were derived. Additional to the main equation,
derivative operational matrices were also used to approximate initial and boundary conditions.
In contrast, the authors of the current paper used integral operational matrices without requiring
conditions to be approximated. The authors have observed in previous works that operational matrices
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3877

reduce error. The derived error bound for the residual function, evaluated within a Gegenbauer-
weighted Sobolev space, demonstrates that selecting a sufficiently large value for the parameter N leads
to a sufficiently small error. Notably, the Gegenbauer polynomials were dependent on the parameter
σ, and altering its value yields different versions of these polynomials. The impact of varying σ
can be observed in Tables 4 and 7, as well as Figures 2 and 4. The most favorable outcomes were
obtained for σ = 0.5 and 1. A comparison between the results obtained from the proposed method
and those reported in [37] (employing a block-by-block approach combined with a finite difference
method) was presented in Tables 1 and 5. The numerical results obtained through the tau-Gegenbauer
scheme exhibited better agreement with the exact solutions. The authors intend to apply the proposed
approach to systems of fractional integral equations with variable orders and generalize it to solve
two-dimensional integro-partial differential equations of the fractional order.
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