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1. Introduction and preliminaries

Fixed point theory is one of the most powerful and fundamental tools of modern mathematics
and may be considered a core subject of nonlinear analysis. The theory has developed rapidly
since Banach’s contraction principle [1] was introduced. There are many theorems that have the
same conclusion as the contraction principle but with different sufficient conditions. For example,
Kannan [2], Chatterjea [3], Geraghty [4], and Ćirić [5]. Next, we recall the concept of Kannan
mapping.

Let (X, d) be a metric space, T : X → X is said to be a Kannan mapping if there exists a constant
λ ∈ [0, 1

2 ) such that
d(x, y) ≤ λ(d(x,T x) + d(y,Ty)),

for all x, y ∈ X. Kannan proved that every Kannan mapping in a complete metric space has a unique
fixed point [2]. In our view, Kannan’s fixed point theorem is very important because Subrahmanyam [6]
proved that a metric space X is complete if and only if every Kannan mapping has a fixed point.
Thereafter, Suzuki [8–10] further generalized this conclusion. In recent years, Lu [11] introduced the
best area of Kannan system with degree s in b-metric spaces with constant s. Futhermore, Berinde
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and Pacurar [12] presented the concept of enriched Kannan mappings. Mohapatra et al. [13] defined
the new concepts of mutual Kannan contractivity and mutual contractivity that generalized the Kannan
mapping and contraction. In [14], Debnath generalized Kannan’s fixed point Theorem and used it
to solve a particular type of integral equation. For more conclusions on Geraghty type contractions,
see [4, 16, 18, 19, 25]. About multi-valued mappings, see [15, 26–30].

On the other hand, in 2018, Górnicki [7] proved some extensions of Kannan’s fixed point theorem
in the framework of metric space. In 2021, Doan [17] extended a result of [7] and proved some
generalizations of Kannan-type fixed point theorems for singlevalued and multivalued mappings
defined on a complete strong b-metric space. On this basis, Doan raised two open questions. Our
main purpose of this paper is to give positive answers to those two questions and establish a new type
of Riech’s fixed point theorem to improve results of Doan.

Kirk and Shahzad [20] introduced the notion of strong b-metric space. Some deep results about
strong b-metric spaces are obtained in [21–24].

Definition 1.1. [20] Let X be a nonempty set, K ≥ 1, D : X × X → [0,∞) be a mapping. If for all
x, y, z ∈ X,

(1) D(x, y) = 0⇔ x = y;
(2) D(x, y) = D(y, x);
(3) D(x, y) ≤ KD(x, z) + D(z, y).

Then D is called a strong b-metric on X and (X,D,K) is called a strong b-metric space.

Remark 1.2. Let (X,D,K) be a strong b-metric space. From Definition 1.1, we can derive the
inequality,

D(x, y) ≤ D(x, z) + KD(z, y), for all x, y, z ∈ X.

In fact, for all x, y, z ∈ X, we have

D(x, y) = D(y, x) ≤ KD(y, z) + D(z, x) = D(x, z) + KD(z, y).

Therefore, for every strong b-metric D with constant K, it implies that

D(x, y) ≤ min{ KD(x, z) + D(z, y),D(x, z) + KD(z, y) },

refer to [21].

It is obvious that if (X,D) is a metric space, then it is a strong b-metric space.

Definition 1.3. [20] Let (X,D,K) be a strong b-metric space, {xn} be a sequence in X and x ∈ X. Then

(1) {xn} is said to converge to x if lim
n→∞

D(xn, x) = 0;
(2) {xn} is called Cauchy if lim

n,m→∞
D(xn, xm) = 0;

(3) (X,D,K) is said to be complete if every Cauchy sequence converges.

Throughout this paper, we denote N∗ as the set of all positive integers. Let (X,D) be a metric
space. We denote by CB(X) the collection of all nonempty bounded closed subsets of (X,D). Let
T : X → CB(X) be a multi-valued mapping, we say that x is a fixed point of T if x ∈ T x. Let
H : CB(X) ×CB(X)→ [0,∞) be the Hausdorff metric on CB(X) defined by

H(A, B) := max{sup
x∈B

d(x, A), sup
x∈A

d(x, B)},

where A, B ∈ CB(X) and d(x, A) := inf
y∈A

D(x, y).
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In order to characterize the open problems posed by Doan [17]. We will use the following class of
functions

Ψq = {ψ : (0,∞)→ [0, q) | ψ(tn)→ q implies tn → 0},

where q ∈ (0, 1
2 ). We call Ψq the class of Geraghty functions. We next introduce the two questions

raised by Doan.

Theorem 1.4. [17, Theorem 2.4] Let (X,D,K) be a complete strong b-metric space, T : X → X be a
mapping, q ∈ (0, 1

2 ). If there exists ψ ∈ Ψq satisfying for all x, y ∈ X with x , y,

1
K + 1

D(x,T x) ≤ D(x, y),

implies
D(T x,Ty) ≤ ψ(D(x, y))(D(x,T x) + D(y,Ty)).

Then, T has a unique fixed point x∗ ∈ X.

Question 1.5. Does there exist q = 1
2 such that the above theorem holds?

For brevity, we denote Ψ 1
2

:= {ψ : (0,∞)→ [0, 1
2 ) | ψ(tn)→ 1

2 implies tn → 0}.

Theorem 1.6. [17, Theorem 3.3] Let (X,D,K) be a complete strong b-metric space and T : X →
CB(X) be a multi-valued mapping. Suppose there exists s ∈ (0, k) with 0 < k < 1

2 satisfying

1
K + 1

d(x,T x) ≤ D(x, y) implies H(T x,Ty) ≤ s(d(x,T x) + d(y,Ty)),

for each x, y ∈ X. Then T has a fixed point.

Question 1.7. Does there exist k = 1
2 such that mapping T in Theorem 1.6 has a fixed point free?

2. Answer to questions

2.1. Answer to question 1

In this section, we answer question 1, and first we give the following lemma.

Lemma 2.1. Let (X,D,K) be a strong b-metric space, T : X → X be a mapping. If there exists
q ∈ (0, 1

2 ] and ψ ∈ Ψq satisfying for all x, y ∈ X with x , y,

1
K + 1

D(x,T x) ≤ D(x, y),

implies
D(T x,Ty) ≤ ψ(D(x, y))(D(x,T x) + D(y,Ty)).

Then,

(1) D(T x,T 2x) ≤ D(x,T x), for each x ∈ X;
(2) for all x, y ∈ X, either 1

K+1 D(x,T x) ≤ D(x, y) or 1
K+1 D(T x,T 2x) ≤ D(T x, y).
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Proof. (1) Let x ∈ X be an arbitrary point. Without loss of generality, we can suppose that x , T x.
From 1

K+1 D(x,T x) ≤ D(x,T x), we have

D(T x,T (T x)) ≤ ψ(D(x,T x))(D(x,T x) + D(T x,T (T x)))

<
1
2

(D(x,T x) + D(T x,T (T x))),

which implies that
D(T x,T 2x) ≤ D(x,T x), ∀x ∈ X. (2.1)

(2) By contradiction, assume that there exists x′, y′ ∈ X such that D(x′, y′) < 1
K+1 D(x′,T x′) and

D(T x′, y′) < 1
K+1 D(T x′,T 2x′). Using the triangle inequality and (2.1), we have

D(x′,T x′) ≤ D(x′, y′) + KD(y′,T x′)

<
1

K + 1
D(x′,T x′) +

K
K + 1

D(T x′,T 2x′)

≤
1

K + 1
D(x′,T x′) +

K
K + 1

D(x′,T x′)

= D(x′,T x′),

which contradicts the fact that D(x′,T x′) > 0 (because D(x′,T x′) > (K + 1)D(x′, y′) ≥ 0). Thus, we
proved (2). �

Theorem 2.2. Let (X,D,K) be a complete strong b-metric space, T : X → X be a mapping. If there
exists ψ ∈ Ψ 1

2
satisfying for all x, y ∈ X with x , y,

1
K + 1

D(x,T x) ≤ D(x, y),

implies
D(T x,Ty) ≤ ψ(D(x, y))(D(x,T x) + D(y,Ty)).

Then, T has a unique fixed point x∗ ∈ X.

Proof. Let x be an arbitrary point in X. Let xn = T nx, n ∈ N∗. If for some n0 ∈ N
∗, xn0 = xn0+1, then xn0

will be a fixed point of T . So, we can suppose that xn , xn+1 for all n ∈ N∗. From Lemma 2.1, for all
n ∈ N∗, we have

D(xn+1, xn+2) = D(T xn,T 2xn) ≤ D(xn,T xn) = D(xn, xn+1).

Therefore, {D(xn, xn+1)}∞n=1 is a decreasing sequence of nonnegative real numbers, which implies that it
has a limit. Let lim

n→∞
D(xn, xn+1) = t ≥ 0. In order to prove that t = 0, suppose that t > 0. In such a case,

since 0 < 1
K+1 D(xn, xn+1) ≤ D(xn, xn+1), for all n ∈ N∗, we have

D(xn+1, xn+2) ≤ ψ(D(xn, xn+1))(D(xn, xn+1) + D(xn+1, xn+2)).

Then
D(xn+1, xn+2)

D(xn, xn+1) + D(xn+1, xn+2)
≤ ψ(D(xn, xn+1)) <

1
2
.
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Passing to the limit as n → ∞, we get lim
n→∞

ψ(D(xn, xn+1)) = 1
2 , which implies that lim

n→∞
D(xn, xn+1) = 0,

which is a contradiction. Therefore, t = 0 and lim
n→∞

D(xn, xn+1) = 0.
Given ε > 0, there exists N ∈ N∗ such that

D(xn−1, xn) <
ε

K + 1
, ∀n > N.

From Lemma 2.1, for all n,m ∈ N∗ with m > n > N, either 1
K+1 D(xn−1,T xn−1) ≤ D(xn−1, xm−1) or

1
K+1 D(T xn−1,T 2xn−1) ≤ D(T xn−1, xm−1). We consider two cases.
Case 1. If 1

K+1 D(xn−1,T xn−1) ≤ D(xn−1, xm−1). In this case, notice that D(xn−1,T xn−1) = D(xn−1, xn) > 0,
we have

D(xn, xm) = D(T xn−1,T xm−1) ≤ ψ(D(xn−1, xm−1))(D(xn−1, xn) + D(xm−1, xm))

<
1
2

(D(xn−1, xn) + D(xm−1, xm)) ≤ max {D(xn−1, xn),D(xm−1, xm)}

<
ε

K + 1
< ε.

Case 2. If 1
K+1 D(T xn−1,T 2xn−1) ≤ D(T xn−1, xm−1). In this case, notice that D(T xn−1,T 2xn−1) =

D(xn, xn+1) > 0, we have

D(xn, xm) ≤ KD(xn, xn+1) + D(T xn,T xm−1)
≤ KD(xn, xn+1) + ψ(D(xn, xm−1))(D(xn, xn+1) + D(xm−1, xm))
< KD(xn, xn+1) + max {D(xn, xn+1),D(xm−1, xm)}

< K
ε

K + 1
+

ε

K + 1
= ε.

Thus, combining all the cases we have
D(xn, xm) < ε.

Therefore, {xn} is a Cauchy sequence in (X,D,K). As it is complete, there exists x∗ ∈ X such that
lim
n→∞

xn = x∗.
Since lim

n→∞
xn = x∗ and lim

n→∞
D(xn, xn+1) = 0, for all ε′ > 0, there exists N′ ∈ N∗ such that

D(x∗,T xn) <
ε′

4K
and D(xn, xn+1) <

ε′

2
, n > N′. (2.2)

Obviously, the sequence {xn} has an infinite number of terms not equal to x∗. By Lemma 2.1, for all xn,
where xn , x∗ and n > N′, either 1

K+1 D(xn,T xn) ≤ D(xn, x∗) or 1
K+1 D(T xn,T 2xn) ≤ D(T xn, x∗). Clearly,

there exists xn0 , where xn0 , x∗ and n0 > N′, such that 1
K+1 D(xn0 ,T xn0) ≤ D(xn0 , x

∗). Then

D(x∗,T x∗) ≤ KD(x∗,T xn0) + D(T xn0 ,T x∗)
≤ KD(x∗,T xn0) + ψ(D(xn0 , x

∗))(D(xn0 , xn0+1) + D(x∗,T x∗))

< KD(x∗,T xn0) +
1
2

(D(xn0 , xn0+1) + D(x∗,T x∗)).

From (2.2), we have

D(x∗,T x∗) ≤ 2KD(x∗,T xn0) + D(xn0 , xn0+1) < 2K ·
ε′

4K
+
ε′

2
= ε′.
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Then, D(x∗,T x∗) = 0, x∗ is a fixed point of T .
Now, suppose that y∗ is another fixed point of T such that y∗ , x∗. Since 1

K+1 D(x∗,T x∗) ≤ D(x∗, y∗),
we have

D(x∗, y∗) = D(T x∗,Ty∗) ≤ ψ(D(x∗, y∗))(D(x∗,T x∗) + D(y∗,Ty∗)) = 0,

which is a contradiction. Therefore, T has a unique fixed point x∗ and lim
n→∞

T nx = x∗ for all x ∈ X. �

Remark 2.3. Theorem 1.4 is a corollary of Theorem 2.2.

Proof. Let (X,D,K) be a complete strong b-metric space, q ∈ (0, 1
2 ), T : X → X be a mapping, which

satisfying the condition of Theorem 1.4 with ψ ∈ Ψq. It is not difficult to observe that the function
ϕ : (0,∞)→ [0, q) defined by

ϕ(t) =
ψ(t)
2q

, t ∈ (0,∞),

belongs to Ψ 1
2
. For all x, y ∈ X with x , y, if 1

K+1 D(x,T x) ≤ D(x, y), then

D(T x,Ty) ≤ ψ(D(x, y))(D(x,T x) + D(y,Ty))

≤
ψ(D(x, y))

2q
(D(x,T x) + D(y,Ty))

= ϕ(D(x, y))(D(x,T x) + D(y,Ty)).

According to Theorem 2.2, T has a unique fixed point. �

Corollary 2.4. [17, Theorem 2.1] Let (X,D,K) be a complete strong b-metric space, T : X → X be a
mapping. If there exists ψ ∈ Ψ 1

2
satisfying for all x, y ∈ X,

D(T x,Ty) ≤ ψ(D(x, y))(D(x,T x) + D(y,Ty)).

Then, T has a unique fixed point x∗ ∈ X.

2.2. Answer to question 2

In order to answer question 2, we first need a couple of lemmas.

Lemma 2.5. [17] Let (X,D,K) be a strong b-metric space and A, B ∈ CB(X). If H(A, B) > 0 then for
all h > 1 and a ∈ A, there exists b ∈ B such that

D(a, b) < h · H(A, B).

Lemma 2.6. [24] Let (X,D,K) be a strong b-metric space and let {xn} be a sequence in X. Assume
that there exists λ ∈ [0, 1) satisfying

D(xn+1, xn+2) ≤ λD(xn, xn+1),

for any n ∈ N∗. Then {xn} is Cauchy.

Lemma 2.7. [26] Let (X,D,K) be a strong b-metric space, then for all a ∈ X and A, B ∈ CB(X)

d(a, A) ≤ Kd(a, B) + H(A, B).
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Proof. Let a ∈ X, A, B ∈ CB(X). Using the triangular inequality, for all y ∈ B, we have

d(a, A) = inf
x∈A

D(a, x)

≤ inf
x∈A

(KD(a, y) + D(y, x))

= KD(a, y) + inf
x∈A

D(y, x)

= KD(a, y) + d(y, A)
≤ KD(a, y) + H(A, B).

Hence, we have

d(a, A) ≤ inf
y∈B

KD(a, y) + H(A, B)

= Kd(a, B) + H(A, B).

The proof is complete. �

Theorem 2.8. Let (X,D,K) be a complete strong b-metric space and T : X → CB(X) be a multi-valued
mapping. Suppose there exists s ∈ (0, 1

2 ) satisfying

1
K + 1

d(x,T x) ≤ D(x, y) implies H(T x,Ty) ≤ s(d(x,T x) + d(y,Ty)),

for each x, y ∈ X. Then T has at least one fixed point.

Proof. First, we construct a sequence {xn} ⊆ X such that for each n ∈ N∗, xn ∈ T xn−1 and

D(xn, xn+1) < hH(T xn−1,T xn), (2.3)

where h = 1
4s + 1

2 > 1. Let x0 ∈ X and x1 ∈ T x0. If H(T x0,T x1) = 0, which implies that T x0 = T x1,
then x1 ∈ T x0 = T x1 and x1 is a fixed point of T . So, let us suppose that H(T x0,T x1) > 0. From
Lemma 2.5, for h = 1

4s + 1
2 > 1 and x1 ∈ T x0, there exists x2 ∈ T x1 such that

D(x1, x2) < hH(T x0,T x1).

Similarly, let us suppose that H(T x1,T x2) > 0, by Lemma 2.5, there exists x3 ∈ T x2 such that

D(x2, x3) < hH(T x1,T x2).

Suppose that H(T xn−1,T xn) > 0, for each n ∈ N∗. Using Lemma 2.5 and proceeding inductively, we
can obtain a sequence {xn} such that xn ∈ T xn−1 and (2.3) holds for each n ∈ N∗.

Since xn ∈ T xn−1 for all n ∈ N∗, then 1
K+1d(xn−1,T xn−1) ≤ D(xn−1, xn). Hence, we have

H(T xn−1,T xn) ≤ s(d(xn−1,T xn−1) + d(xn,T xn))
≤ s(D(xn−1, xn) + D(xn, xn+1)). (2.4)

From (2.3) and (2.4), we get

D(xn, xn+1) < hs(D(xn−1, xn) + D(xn, xn+1)).
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Therefore, for all n ∈ N∗, we have

D(xn, xn+1) < λD(xn−1, xn), (2.5)

where λ = hs
1−hs = 1+2s

3−2s ∈ ( 1
3 , 1). According to Lemma 2.6, {xn} is Cauchy. Since (X,D,K) complete,

there exists x∗ ∈ X such that lim
n→∞

xn = x∗.

We claim that for all n ∈ N∗, either 1
K+1d(xn,T xn) ≤ D(xn, x∗), or 1

K+1d(xn+1,T xn+1) ≤ D(xn+1, x∗).
In order to prove our claim, we argue by contradiction. If there exists n0 ∈ N

∗ such that D(xn0 , x
∗) <

1
K+1d(xn0 ,T xn0) and D(xn0+1, x∗) < 1

K+1d(xn0+1,T xn0+1). By (2.5), we have

D(xn0 , xn0+1) ≤ KD(xn0 , x
∗) + D(x∗, xn0+1)

<
K

K + 1
d(xn0 ,T xn0) +

1
K + 1

d(xn0+1,T xn0+1)

≤
K

K + 1
D(xn0 , xn0+1) +

1
K + 1

D(xn0+1, xn0+2)

≤
K

K + 1
D(xn0 , xn0+1) +

λ

K + 1
D(xn0 , xn0+1)

< D(xn0 , xn0+1).

On the other hand, since H(T xn0 ,T xn0+1) > 0, then T xn0 , T xn0+1. Hence, D(xn0 , xn0+1) > 0. This
contradiction guarantees that our claim holds.

Without loss of the generality, we may assume that 1
K+1d(xn,T xn) ≤ D(xn, x∗) holds for infinity

positive integers n. Then, there exists {xni}
∞
i=1 ⊆ {xn} such that

1
K + 1

d(xni ,T xni) ≤ D(xni , x
∗), i ∈ N∗.

By Lemma 2.7, for each i ∈ N∗, we have

d(x∗,T x∗) ≤ Kd(x∗,T xni) + H(T xni ,T x∗)
≤ Kd(x∗,T xni) + s(d(xni ,T xni) + d(x∗,T x∗)).

Then, from (2.5), we get

d(x∗,T x∗) ≤
K

1 − s
d(x∗,T xni) +

s
1 − s

d(xni ,T xni)

≤ 2KD(x∗, xni+1) + D(xni , xni+1)
< 2KD(x∗, xni+1) + λD(xni−1, xni)
< · · ·

≤ 2KD(x∗, xni+1) + λni D(x0, x1),

where λ ∈ ( 1
3 , 1). Letting i → ∞ in the above inequality, we obtain d(x∗,T x∗) = 0. Then x∗ is a fixed

point of T . �

Remark 2.9. Notice that the Hausdorff semidistance is utilized in the fixed point theorems for multi-
valued mappings, for example [31–33]. It is obvious that the Hausdorff semidistance e(A, B) and the
Hausdorff distance H(A, B) are distinct. However, we can demonstrate that Lemma 2.5, Lemma 2.7,
and Theorem 2.8 hold, if replacing “H(A, B)” with “e(A, B)”, “e(B, A)”, and “e(A, B)”, respectively.
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Remark 2.10. It is evident to see that Theorem 1.6 can be obtained from Theorem 2.8.

Corollary 2.11. [15] Let (X, d) be a complete metric space, 0 ≤ s < 1
2 . Suppose T : X → CB(X) is a

continuous multi-valued mapping satisfying

H(T x,Ty) ≤ s(d(x,T x) + d(y,Ty)), for all x, y ∈ X,

then T has at least one fixed point.

We give an example of a multi-valued mapping T that satisfies the conditions of Theorem 2.8. It is
worth noting that all points in X are fixed points of T .

Example 2.12. Let X = N∗, D : X × X → [0,∞) defined by D(x, y) = |x − y|, for all x, y ∈ X. It is easy
to verify that (X,D, 1) is a complete strong b-metric space. Let T : X → CB(X) defined by

T x ≡ X, for all x ∈ X.

Then it is clear that d(x,T x) = 0 and H(T x,Ty) = 0 for each x, y ∈ X. By Theorem 2.8, T has at least
one fixed point. Furthermore, it is easy to see that any point in X is an fixed point of T .

3. A new type of Riech’s fixed point theorem

Lemma 3.1. Let (X,D,K) be a strong b-metric space, T : X → X be a mapping. If there exists ϕ ∈ Ψ 1
3

satisfying for all x, y ∈ X with x , y,

1
K + 1

D(x,T x) ≤ D(x, y),

implies
D(T x,Ty) ≤ ϕ(D(x, y))(D(x,T x) + D(y,Ty) + D(x, y)).

Then,

(1) D(T x,T 2x) ≤ D(x,T x), for each x ∈ X;
(2) for all x, y ∈ X, either 1

K+1 D(x,T x) ≤ D(x, y) or 1
K+1 D(T x,T 2x) ≤ D(T x, y).

Proof. For any x ∈ X, without loss of generality, we may consider x , T x. By 1
K+1 D(x,T x) ≤ D(x,T x),

we have

D(T x,T (T x)) ≤ ϕ(D(x,T x))(D(x,T x) + D(T x,T (T x)) + D(x,T x))

<
2
3

D(x,T x) +
1
3

D(T x,T (T x)).

Thus, D(T x,T 2x) ≤ D(x,T x) for all x ∈ X. The proof of the second part of this Lemma follows in a
similar manner as Lemma 2.1 and so is omitted. �

Theorem 3.2. Let (X,D,K) be a complete strong b-metric space, T : X → X be a mapping. If there
exists ϕ ∈ Ψ 1

3
satisfying for all x, y ∈ X with x , y,

1
K + 1

D(x,T x) ≤ D(x, y),
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implies
D(T x,Ty) ≤ ϕ(D(x, y))(D(x,T x) + D(y,Ty) + D(x, y)).

Then, T has a unique fixed point x∗ ∈ X.

Proof. Let x ∈ X be an arbitrary point and {xn} be a sequence defined by xn = T nx for all n ∈ N∗,
suppose that every D(xn, xn+1) > 0. By Lemma 3.1,

D(xn+1, xn+2) = D(T xn,T 2xn) ≤ D(xn,T xn) = D(xn, xn+1), n ∈ N∗.

Then, {D(xn, xn+1)}∞n=1 is monotonically decreasing with a lower bound. Hence, {D(xn, xn+1)} converges.
For each n ∈ N∗, since D(xn, xn+1) > 0 and 1

K+1 D(xn,T xn) ≤ D(xn, xn+1), we get

D(T xn,T xn+1) ≤ ϕ(D(xn, xn+1))(2D(xn, xn+1) + D(xn+1, xn+2)).

Then
D(xn+1, xn+2)

2D(xn, xn+1) + D(xn+1, xn+2)
≤ ϕ(D(xn, xn+1)) <

1
3
.

Suppose that lim
n→∞

D(xn, xn+1) > 0. Letting n → ∞, we obtain ϕ(D(xn, xn+1)) → 1
3 , which implies

D(xn, xn+1)→ 0. This contradiction guarantees that lim
n→∞

D(xn, xn+1) = 0.

According to Lemma 3.1, for each p, q ∈ N∗, either 0 < 1
K+1 D(xp,T xp) ≤ D(xp, xq) or 0 <

1
K+1 D(T xp,T 2xp) ≤ D(T xp, xq). Let M(p, q) = (K + K+1

3 )D(xp, xp+1) + 1
3 D(xq, xq+1) + 1

3 D(xp, xq),
where p, q ∈ N∗. We claim that

D(T xp,T xq) ≤ M(p, q), p, q ∈ N∗. (3.1)

Now there are the following two cases.
Case 1. If 0 < 1

K+1 D(xp,T xp) ≤ D(xp, xq). In this case, we have

D(T xp,T xq) ≤ ϕ(D(xp, xq))(D(xp, xp+1) + D(xq, xq+1) + D(xp, xq))

<
1
3

(D(xp, xp+1) + D(xq, xq+1) + D(xp, xq))

≤ M(p, q).

Case 2. If 0 < 1
K+1 D(T xp,T 2xp) ≤ D(T xp, xq). In this case, by Lemma 3.1, we have

D(T xp,T xq) ≤ KD(T xp,T 2xp) + D(T 2xp,T xq)
≤ KD(T xp,T 2xp) + ϕ(D(T xp, xq))(D(T xp,T 2xp) + D(xq,T xq) + D(T xp, xq))

≤ (K +
1
3

)D(T xp,T 2xp) +
1
3

D(xq,T xq) +
K
3

D(T xp, xp) +
1
3

D(xp, xq)

≤ (K +
1 + K

3
)D(xp,T xp) +

1
3

D(xq,T xq) +
1
3

D(xp, xq)

= M(p, q).

Therefore, we obtain (3.1).
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Next, we demonstrate that {xn} is a Cauchy sequence reasoning by contradiction. If not, it is easy
to show that there exists ε0 > 0 and two subsequence {xnk} and {xmk} of {xn} such that for each k ∈ N∗,
we have

D(xnk , xmk) ≥ ε0 and D(xnk , xmk−1) < ε0. (3.2)

From lim
n→∞

D(xn, xn+1) = 0, there exists N ∈ N∗ such that D(xn, xn+1) < ε0
7K+2 for each n ≥ N. For all

k > N, since min {nk,mk,mk − 1} ≥ K − 1 ≥ N, then

max {D(xnk , xnk+1),D(xmk , xmk+1),D(xmk−1, xmk)} <
ε0

7K + 2
.

By (3.1) and (3.2), we have

D(T xnk ,T xmk) ≤ D(xnk+1, xmk) + KD(xmk + xmk+1)
≤ M(nk,mk − 1) + KD(xmk + xmk+1)

= (K +
K + 1

3
)D(xnk , xnk+1) +

1
3

D(xmk−1, xmk) + KD(xmk + xmk+1) +
1
3

D(xnk , xmk−1)

≤ (2K +
K + 2

3
) max {D(xnk , xnk+1),D(xmk−1, xmk),D(xmk + xmk+1)} +

1
3

D(xnk , xmk−1)

< (2K +
K + 2

3
) ·

ε0

7K + 2
+
ε0

3
=

2ε0

3
.

Hence, we obtain

D(xnk , xmk) ≤ KD(xnk , xnk+1) + D(xnk+1 + xmk)
≤ KD(xnk , xnk+1) + KD(xmk + xmk+1) + D(xmk+1 + xnk+1)

≤ 2K max {D(xnk , xnk+1),D(xmk + xmk+1)} +
2ε0

3

< 2K ·
ε0

7K + 2
+

2ε0

3
<
ε0

3
+

2ε0

3
= ε0,

which contradicts (3.2). This contradiction shows that {xn} is Cauchy. As (X,D,K) is complete, there
exists x∗ ∈ X such that lim

n→∞
xn = x∗.

According to Lemma 3.1, for each n ∈ N∗, either 1
K+1 D(xn,T xn) ≤ D(xn, x∗) or 1

K+1 D(T xn,T 2xn) ≤
D(T xn, x∗). Similarly, let us consider two cases.
Case 1. If 1

K+1 D(xn,T xn) ≤ D(xn, x∗), since D(xn,T xn) = D(xn, xn+1) > 0, we have

D(x∗,T x∗) ≤ KD(x∗,T xn) + D(T xn,T x∗)
≤ KD(x∗,T xn) + ϕ(D(xn, x∗))(D(xn, xn+1) + D(x∗,T x∗) + D(xn, x∗))

≤ KD(x∗,T xn) +
1
3

(D(xn, xn+1) + D(x∗,T x∗) + D(xn, x∗)).

Then
D(x∗,T x∗) ≤

3
2

KD(x∗, xn+1) +
1
2

(D(xn, xn+1) + D(xn, x∗)).

Case 2. If 1
K+1 D(T xn,T 2xn) ≤ D(T xn, x∗), by D(T xn,T 2xn) = D(xn+1, xn+2) > 0, we get

D(x∗,T x∗) ≤ KD(x∗,T 2xn) + D(T 2xn,T x∗)
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≤ KD(x∗,T 2xn) +
1
3

(D(T xn,T 2xn) + D(x∗,T x∗) + D(T xn, x∗)).

Then
D(x∗,T x∗) ≤

3
2

KD(x∗, xn+2) +
1
2

(D(xn+1, xn+2) + D(xn+1, x∗)).

Therefore, for all n ∈ N∗, we have

D(x∗,T x∗) ≤ max{
3
2

KD(x∗, xn+1) +
1
2

(D(xn, xn+1) + D(xn, x∗)),

3
2

KD(x∗, xn+2) +
1
2

(D(xn+1, xn+2) + D(xn+1, x∗))}.

Letting n→ ∞ in the above inequality, we obtain D(x∗,T x∗) = 0 and x∗ is a fixed point of T .
Suppose that y∗ is another fixed point of T and D(y∗, x∗) > 0. Since D(x∗,T x∗) = 0, it follows that

1
K+1 D(x∗,T x∗) ≤ D(x∗, y∗). Then

D(x∗, y∗) = D(T x∗,Ty∗) ≤ ϕ(D(x∗, y∗))(D(x∗,T x∗) + D(y∗,Ty∗) + D(x∗, y∗)) <
1
3

D(x∗, y∗),

which is a contradiction with the fact that D(x∗, y∗) > 0. As a consequence, T has a unique fixed point
x∗ and lim

n→∞
T nx = x∗ for all x ∈ X. �

Corollary 3.3. [17, Theorem 2.7] Let (X,D,K) be a complete strong b-metric space, T : X → X be a
mapping. If there exists ϕ ∈ Ψ 1

3
satisfying for all x, y ∈ X with x , y,

D(T x,Ty) ≤ ϕ(D(x, y))(D(x,T x) + D(y,Ty) + D(x, y)).

Then, T has a unique fixed point x∗ ∈ X and for any x ∈ X the sequence of iterates {T nx} converges
to x∗.

4. Conclusions

We focus on a new type of Kannan’s fixed point theorem in the setting of strong b-metric spaces.
Using some useful lemmas, we derive three fixed point theorems. The first two theorems give positive
answers to Questions 1.5 and 1.7, respectively. The third theorem is a new type of Reich’s fixed point
theorem and also a generalization of Doan’s result (Theorem 2.7 in [17]).
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7. J. Górnicki, Various extensions of Kannan’s fixed point theorem, J. Fix. Point Theory A., 20 (2018).

http://dx.doi.org/10.1007/s11784-018-0500-2
8. T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive

mappings in some sense, Comment. Math. Univ. Ca., 45 (2005), 45–58.
9. T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, P.

Am. Math. Soc., 136 (2008), 1861–1869. https://doi.org/10.1090/S0002-9939-07-09055-7
10. T. Suzuki, Some comments on τ-distance and existence theorems in complete metric spaces,

Filomat, 37 (2023), 7981–7992. http://dx.doi.org/10.2298/FIL2323981S
11. N. Lu, F. He, W. S. Du, On the best areas for Kannan system and Chatterjea system in b-metric

spaces, Optimization, 2 (2020), 973–986. http://dx.doi.org/10.1080/02331934.2020.1727902
12. V. Berinde, M. Pacurar, Kannan’s fixed point approximation for solving split feasibility

and variational inequality problems, J. Comput. Appl. Math., 386 (2021), 113217.
http://dx.doi.org/10.1016/j.cam.2020.113217

13. R. N. Mohapatra, M. A. Navascués, M. V. Sebastián, S. Verma, Iteration of operators
with contractive mutual relations of Kannan type, Mathematics, 10 (2022), 2632.
http://dx.doi.org/10.3390/math10152632 .

14. D. Debnath, A new extension of Kannan’s fixed point theorem via F-contraction with application to
integral equations, Asian-Eur. J. Math., 15 (2022). http://dx.doi.org/10.1142/S1793557122501236

15. L. S. Dube, S. P. Singh, On multi-valued contractions mappings, B. Math. Soc. Sci. Math., 14
(1970), 307–310.

16. S. F. Li, F. He, N. Lu, A unification of Geraghty type and Ćirić type fixed point theorems, Filomat,
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