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Abstract: In this paper, we propose a Holling-IV predator-prey system considering the perturbation of
a slow-varying environmental capacity parameter. This study aims to address how the slowly varying
environmental capacity parameter affects the behavior of the system. Based on bifurcation theory and
the slow-fast analysis method, the critical condition for the Hopf bifurcation of the autonomous system
is given. The oscillatory behavior of the system under different perturbation amplitudes is investigated,
corresponding mechanism explanations are given, and it is found that the motion pattern of the non-
autonomous system is closely related to the Hopf bifurcation and attractor types of the autonomous
system. Meanwhile, there is a bifurcation hysteresis behavior of the system in bursting oscillations, and
the bifurcation hysteresis mechanism of the system is analyzed by applying asymptotic theory, and its
hysteresis time length is calculated. The final study found that the larger the perturbation amplitude, the
longer the hysteresis time. These results can provide theoretical analyses for the prediction, regulation,
and control of predator-prey populations.
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1. Introduction

Predator-prey interactions have a strong influence on population dynamics. In order to describe this
effect more accurately, Lotka [1] and Volterra [2] proposed the predator-prey model, and this model
was used to study the dynamics of interacting populations. Further, many more realistic mathematical
models have been proposed and studied extensively. Until now, the study of predator-prey systems has
been at the center of fields such as ecology and mathematical biology, see [3–9] and references therein.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024174


3560

To study in depth the evolution of predator-prey interactions and population dynamics, we usually add
to the nonlinear system the Holling-type functional response [10–13], the functional form commonly
used to describe the response of predators to prey. It is modeled based on the relationship between
predator-prey rate and prey density, which acts as a constraint on the growth of prey density. When
prey density is high, the prey rate of the predator increases, which reduces the survival and reproductive
success of the prey and limits the growth of the prey population. This limiting effect helps to maintain a
dynamic balance between predator and prey and prevents excessive growth in prey populations. There
are many functional response functions to describe the different relationships between predator and
prey, and form of the usual functional response functions are given in Table 1.

Table 1. Types of functional response functions and their expressions.

Holling type Definition Generalized form
Holling-I type φ(x) = mx
Holling-II type φ(x) = mx

a+x

Holling-III type φ(x) = mx2

a+x2 φ(x) = mx2

ax2+bx+1
Holling-IV type φ(x) = mx

a+x2 φ(x) = mx
ax2+bx+1

Compared with the previous three Holling-type functional response functions, the fourth
Holling-type functional response function is more representative and more realistic. Now, some
scholars have studied the predator model with a Holling-IV functional response function, and some
basic research results have been obtained [14–16]. However, the simplified Holling-IV functional
response [17] function parameters in the system are still relatively idealized. The populations that can
satisfy this system in the reality of nature are also relatively few. Given this, this paper will study the
Holling-IV type functional response function without simplification.

In recent years, predator-prey systems, with respect to functional response functions, have been
extensively studied, and most of these studies have focused on the existence of positive equilibrium
points, the bifurcation problem, and the existence and number of limit cycles at a single scale. Ma [18]
et al. studied the Holling-II predator-prey system containing cross-diffusion. Steady state bifurcations
and Hopf bifurcations were considered and it was found that when the diffusivity is large enough, the
non-constant state will not exist. Ma [19] et al. applied the Lyapunov-Schmidt reduction method to
study the diffusion Lotka-Volterra model with the fear effect. The effects of population growth rate and
fear effect on the stability of the system were considered. The complex dynamical behavior of Holling-
IV predator-prey systems, such as Bogdanov-Takens bifurcation of limit cycles, Hopf bifurcation,
homoclinic bifurcation, and saddle-node bifurcation, were studied by Huang and Xiao [20]. Chuan [21]
et al. studied a Holling-IV stochastic predator-prey system with antipredator behavior and noise and
calculated the stability of the distribution of the system to give sufficient conditions for the continued
survival and extinction of the population. Mian [22] et al. studied the discrete Holling-IV predator-prey
model and investigated the complex dynamical properties of the system using the semi-discretization
method, the central prevalence theorem, and bifurcation theory. Bin [23] et al. studied the Holling-III
predator-prey system containing prey shelters and analyzed the Hopf bifurcation of the system and the
limit cycle, as well as the fear and shelter effects.

In contrast, there are fewer multi-scale related studies on predator-prey systems. Multi-scale
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problems are widely used in modern science to describe various phenomena in mechanics, biology,
and chemistry [24–29]. Rinzel [30], who separated a system coupled at multiple time scales into a fast
subsystem controlled by a fast variable and a slow subsystem controlled by a slow variable, then
considers the slow variable as a slow-variable parameter of the fast subsystem and investigated the
bursting phenomena of the system by analyzing the bifurcation behavior of the fast subsystem. This
method is also the most commonly used method to study the mechanism of bursting phenomena on
different time scales. Different slow and fast systems contain significant predictions of complex
oscillations [31].

The study of dynamic bifurcation problems, such as the variation of bifurcation parameters with
time, is an important topic of study in nonlinear dynamical systems, and the dynamic Hopf bifurcation
problem has many applications in biology, chemistry, and mathematics. In particular, when the system
response jumps between a slowly varying quiescent state and spiking state, it passes over a bifurcation
point along a channel, but instead of the spiking state starting to oscillate at the limit point, a hysteresis
occurs, which is known as the bifurcation hysteresis phenomenon. Bilinsky [32] et al. used analytical
and numerical methods to analyze the bifurcation hysteresis phenomenon of the no-turning-point case
of the FitzHugh-Nagumo model new hysteresis and memory effect phenomenon. Han [33] discussed
the periodic bifurcation hysteresis behavior when the parameter excitation passes slowly through the
Hopf bifurcation value in a controlled van der Pol system, and concluded that the first bifurcation
hysteresis behavior is dependent on the initial conditions, while the bifurcation hysteresis behavior
after the first bifurcation hysteresis behavior is not affected by the initial conditions.

At present, studies on the bursting phenomenon of predator-prey systems mainly focus on the
existence of limit cycles, approximate solutions of the singular uptake method, experimental analyses,
and numerical simulations [34,35], with fewer analytical studies on the oscillatory mechanism of its
bursting phenomenon. In this paper, we take the Holling-IV predator-prey system as the subject of our
research, and consider the environmental change, i.e., the perturbation of environmental capacity, and
apply the slow-fast analytical method and asymptotic theory to this slow-fast coupled nonlinear
predator-prey system, aiming to reveal the mechanism of the bursting oscillation of this system and
deepen the study of the spiking state hysteresis induced by the bifurcation hysteresis. It provides
theoretical analyses for the prediction, regulation, and control of predator and prey populations.

2. System stability and bifurcation analysis

2.1. System equations

The predator-prey system with Holling-IV functional responses are given by
dx(t)

dt
= ax(1 −

x
K

) −
mxy

α + βx + x2 ,

dy(t)
dt
=

λmxy
α + βx + x2 − dy

(2.1)

where x(t) denotes the number of prey populations, y(t) is the number of predator populations, a
represents the growth rate of the prey population, K represents environmental capacity, x

α+βx+x2

represents the functional response, d represents the death rate of the predator. a, m, α, β, λ, and d are
all positive constants.
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Let dθ = dt
α+βx+x2 , and it is also expressed as dt, and thus system (2.1) is equivalently transformed into

dx(t)
dt
= ax(1 −

x
K

)(α + βx + x2) − mxy,

dy(t)
dt
= λmxy − dy(α + βx + x2).

(2.2)

In ecosystems, environmental capacity does not remain static, but changes with the environment,
which in turn affects the dynamics of the behavior of the entire population. For example, decreases in
environmental capacity due to water pollution, pesticide use, etc. may have a dramatic effect on the
stability of the entire system.

Assuming that there are slow periodic perturbations in the environmental capacity of system (2.2),
system (2.2) becomes a non-autonomous system as follows

dx(t)
dt
= ax(1 −

x
K + l cos(ωt)

)(α + βx + x2) − mxy,

dy(t)
dt
= λmxy − dy(α + βx + x2).

(2.3)

If ω ≪ 1, system (2.3) will involve both slow and fast time scales, dividing the system into a fast
subsystem controlled by the fast variables x, y, and a slow subsystem controlled by the slow variable
ωt. Let F = l cos(ωt), and obtain the fast subsystem

dx(t)
dt
= ax(1 −

x
K + F

)(α + βx + x2) − mxy,

dy(t)
dt
= λmxy − dy(α + βx + x2).

(2.4)

Taking F as the bifurcation parameter of the autonomous system (2.4), the variation of F will lead
to changes in the stability of system (2.4), which in turn will lead to bifurcation behavior. Meanwhile,
K + l cos(ωt) in the non-autonomous system (2.3) varies slowly and periodically within [K − l,K + l],
so the stability and bifurcation of the autonomous system (2.4) will affect the dynamic behavior of the
non-autonomous system (2.3).

2.2. Equilibrium points and its stability

Theorem 1. Let ∆ = (dβ−λm)2−4d2α. When F > λm−dβ±
√
∆

2d −K, λm−dβ > 0, the positive equilibrium
of system (2.4) exists. The generalized equilibrium of the autonomous system (2.4) and its stability are
shown below:

(1) The equilibrium E1(0, 0) is an unstable saddle point.
(2) The equilibrium E2(K+F, 0) is a stable node or focus when λm(K+F) < d(α+β(K+F)+(K+F)2)

is satisfied, and a saddle point when λm(K + F) > d(α + β(K + F) + (K + F)2) is satisfied.
(3) The equilibrium E3(x3, y3) is (λm−dβ+

√
∆

2d , a
m ((1− x3

K+F ))(α+ βx3 + x2
3)). E3(x3, y3) is a saddle point.

(4) The equilibrium E4(x4, y4) is (λm−dβ−
√
∆

2d , a
m ((1 − x4

K+F ))(α + βx4 + x2
4)), E4(x4, y4) is an unstable

focus or node when it satisfies F > −4d2α−(3λm−dβ)[dβ−λm+
√

(dβ−λm)2−4d2α]

2d[λm−
√

(dβ−λm)2−4d2α]
− K, and a stable focus or node

when it satisfies F < −4d2α−(3λm−dβ)[dβ−λm+
√

(dβ−λm)2−4d2α]

2d[λm−
√

(dβ−λm)2−4d2α]
− K.
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(5) The equilibrium E5(x5, y5) is(λm−dβ
2d ,

a
m (1 − x5

K+F )(α + βx5 + x2
5)). E5(x5, y5) is a higher-order

singularity, half-saddle, and half-node.

The proof is easy and is omitted here.

2.3. Bifurcation analysis

[20] analyzes the local bifurcation and global bifurcation of this system, including saddle-node
bifurcation, Hopf bifurcation, homoclinic bifurcation, and bifurcation of cusp-type with codimension
two (Bogdanov-Takens bifurcation). Based on this paper, we analyze autonomous system (2.4) Hopf
bifurcation in detail.

Theorem 2. Taking F as bifurcation parameter, the following critical conditions need to be satisfied
to generate a Hopf bifurcation

F =
−4d2α − (3λm − dβ)[dβ − λm +

√
(dβ − λm)2 − 4d2α]

2d[λm −
√

(dβ − λm)2 − 4d2α]
− K. (2.5)

Proof. The Jacobi matrix corresponding to the system (2.4) at the equilibrium E4(x4, y4) is(
ax4[− 3

K+F x2
4 + (2 − 2β

K+F )x4 + β −
α

K+F ] −mx4

λmy4 − dy4(β + 2x4) λmx4 − d(α + βx4 + x2
4)

)
.

Because of m22 = λmx4 − d(α + βx4 + x2
4) = 0, the corresponding characteristic equation is

Λ2 − m11Λ − m12m21 = 0

where

m11 = ax4[−
3

K + F
x2

4 + (2 −
2β

K + F
)x4 + β −

α

K + F
],

m12 = −mx4,m21 = λmy4 − dy4(β + 2x4).

If m11 = 0, the equation m11 = 0 can be solved for Eq (2.5). When m11 = 0, the characteristic root
of the system is a pair of pure imaginary roots, it is denoted as Λ = ±iω0.

Taking the derivative of F on both sides of the characteristic equation yields the following formula,

2Λ
dΛ
dF
− (

dm11

dF
Λ + m11

dΛ
dF

) − m12
dm21

dF
= 0.

The simplified expression is as follows

dΛ
dF
=

dm11
dF Λ + m12

dm21
dF

2Λ − m11
.

Substituting Λ = ±iω0 into the above formula, we get
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Re(
dΛ
dF
|Λ=±iω0) , 0.

Therefore, the Hopf bifurcation occurs when the system satisfies Eq (2.5).
Fixed parameters a = 0.2, K = 2, m = 0.6, α = 0.35, β = 0.35, λ = 1, and d = 0.1, where there

exist equilibrium points E1(0, 0), E2(K + F, 0), E3(x3, y3), and E4(x4, y4). Figure 1 gives the bifurcation
diagram of the variable x in system (2.4) about F. The equilibrium point corresponding to the solid
line of the figure is stable, and the dotted line is unstable. The equilibrium line corresponding to the
unstable equilibrium point E1 is segment AB. The equilibrium E2 corresponds to the AQ segment. The
line of equilibrium corresponding to equilibrium E3 is unstable. The equilibrium line corresponding to
equilibrium E4 is the segment CD, where PH segments are stable nodes or focus, and unstable focus
on HD. The values of the parameters of the critical points are FP = −1.9374, and FH = −1.1466.
FP is the intersection of equilibrium E2 and equilibrium E4. FH denotes the critical point of the Hopf
bifurcation.
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Figure 1. The bifurcation diagram of system (2.4) with respect to F.

3. Oscillatory behavior at different disturbance amplitudes

The case of system trajectory near the Hopf bifurcation is detailed below, and the corresponding
biological explanation is given. Due to the change in the environmental capacity being slow, let the
perturbation frequency be ω = 0.001. The other parameters are a = 0.2, K = 2, m = 0.6, α = 0.35,
β = 0.35, λ = 1, and d = 0.1. In the following, the oscillatory behavior of the different modes of the
non-autonomous system (2.3) will be investigated.

3.1. Periodic oscillation

When there is no perturbation in the environmental capacity, system (2.3) exhibits the state of
periodic oscillation. Obviously, system (2.3) is autonomous and there exists a stable limit cycle
attractor, as shown in Figure 2, which moves in a counterclockwise direction as shown by the arrow in
Figure 2(a). In segment A1A2, the predator becomes extinct and the prey continues to increase. In
stage A2A3, the more abundant the food supply is, the easier it is for the predator to catch the prey,
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which in turn promotes the reproduction of the predator. But, on the other hand, the increase in the
predator population leads to an insufficient supply of prey population, which in turn leads to less and
less prey. In stage A3A1, the predator is unable to obtain food due to the extinction of prey, which in
turn leads to a decrease in the number of predator populations.

(a)

1.44 1.46 1.48 1.5 1.52 1.54 1.56

t ×10
4

0

0.5

1

1.5

2

x

(b)

(b)

Figure 2. The phase diagram and time history diagram for l = 0. (a): Phase diagram, (b):
Time history diagram.

3.2. Quasi-periodic oscillation

When the perturbation amplitude changes, system (2.3) shows diverse oscillatory behavior. When
the perturbation amplitude l = 0.5, the non-autonomous system (2.3) shows quasi-periodic oscillations;
the phase diagram is shown in Figure 3(a), and the time history diagram is shown in Figure 3(b). Slow
periodic variations in environmental capacity break the regular periodic oscillations of the original
system. When F is a fixed value, the phase trajectory line corresponds to a closed curve in one cycle,
and when F changes, the phase trajectory line enters into another closed trajectory line and does not
return to its original state. The larger the value of F, the larger the range of variation of the close-track
line. Although there are small variations in the system trajectory line from cycle to cycle, the system
as a whole is in a long-term stable state as time tends to infinity.
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Figure 3. The phase diagram and time history diagram for l = 0.5. (a): Phase diagram, (b):
Time history diagram.

To better explain the generation mechanism of quasi-periodic oscillations, we study the oscillatory
behavior of the non-autonomous system (2.3) with the help of the stability and bifurcation of the
autonomous system (2.4). We give the transformed phase diagram about the variable x and slow-
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varying processes F = 0.5 cos(0.001t) in Figure 4(a), which are superimposed with the bifurcation
diagram Figure 1 to obtain Figure 4(b).
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Figure 4. Transformed phase diagram and its overlap with the bifurcation diagram. (a):
Transformed phase diagram, (b): The overlap of transformed phase portrait with bifurcation
diagram.

To clearly present the operation of the system trajectory, we elaborate on the motion of the
trajectory in Figure 4(b) during a perturbation period. Figure 5(a) gives the operation of the trajectory
of system (2.3) as it moves to the right with F increasing, and Figure 5(b) gives the operation as it
moves to the left with F decreasing. Assuming that the system trajectory starts from point P1, since
point P1 is located on the unstable equilibrium line corresponding to the equilibrium point E4, then
point P1 is attracted by the stable limit cycle of the autonomous system and generates large
oscillations in the spiking state. The oscillation amplitude remains the same as the amplitude of the
limit cycle attractor of the autonomous system moves to the right until it reaches the maximum value
of the slow variable process F = 0.5 cos(0.001t), i.e., the point T1. The system trajectory changes
direction and moves along the stable limit cycle corresponding to the unstable focus E4 in the
direction of decreasing F. At this time, it is attracted by the stable limit cycle and remains in the
spiking state. When F decreases to the minimum value of F = −0.5, the direction of motion of the
trajectory changes again to the direction of increasing F, and so on.
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Figure 5. Generation mechanism of the bursting phenomenon. (a): System trajectory as F
increases, (b): System trajectory as F decreases.
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3.3. Single-Hopf bursting oscillation and generation mechanism

Figure 6(a) and Figure 6(b) show the phase diagram and time history diagram of system (2.3) when
the perturbation amplitude is taken as l = 1.6. The trajectory of system (2.3) trajectory exhibits the
typical bursting oscillation behavior of large-amplitude spiking state oscillations (SP) coupled with
micro-amplitude quiescent state oscillations (QS).

The transformed phase diagram is shown in Figure 7(a), and the superimposed with the bifurcation
diagram Figure 1 is shown in Figure 7(b). Figure 8(a) shows the operation of the trajectory of
system (2.3) from left to right as F increases, where the region to the right of the grey dotted line is
the spiking state. Figure 8(b) gives the operation from right to left along the decrease of F.

Assuming that the trajectory starts from point P2, since point P2 is on the stable equilibrium line
corresponding to the equilibrium point E4 of the autonomous system, it is attracted by the stable
equilibrium line. It moves steadily to the right, maintaining the quiescent state. The trajectory moves
to the point H, and due to the Hopf bifurcation of system (2.4), the stable focus becomes the unstable
focus, and the stable limit cycle is generated, which leads to the breaking of the system trajectory
quiescent state, and the trajectory shows a slight oscillation and slowly enters the spiking state. The
trajectory moves to the maximum value of the slow variable process F = 1.6 cos(0.001t), i.e., the
point T2. The trajectory changes direction, is attracted by the attractor of the stable limit cycle, and
maintains an oscillatory state consistent with the amplitude of the limit cycle of the autonomous
system in the direction of decreasing F. As it passes through the Hopf bifurcation point H again, the
stable limit cycle attractor becomes the stable focus attractor, which gradually reduces the amplitude
when F continues to decrease to the minimum value of F = −1.6, i.e., the point P2. The direction of
motion of the trajectory again changes to motion in the direction of increasing F, and so on. The
presence of the Hopf bifurcation makes the system have spiking states and quiescent states in one
single period of motion, and hence it is called the single-Hopf bursting phenomenon.

It should be noted here that the non-autonomous system has an obvious hysteresis behavior, which
is closely related to the attraction of the attractor. By calculating the eigenvectors corresponding to the
unstable focus on HT2, e.g., when F = 0.5, the imaginary part of the eigenvectors is 0.050, indicating
that the system trajectory is relatively weakly dispersed, and thus the system trajectory moves to the
right due to the increase of F almost before it is dispersed.
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Figure 6. The phase diagram and time history diagram for l = 1.6. (a): Phase diagram, (b):
Time history diagram.

AIMS Mathematics Volume 9, Issue 2, 3559–3575.



3568

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

F=1.6cos(0.001t)

0

0.5

1

1.5

2

2.5

3

3.5

4

x

H

(a)

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

F=1.6cos(0.001t)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

E1

E2

E3

limit cycle

E4

(b)

H

(b)

Figure 7. Transformed phase diagram and its overlap with the bifurcation diagram.
(a): Transformed phase diagram, (b): The overlap of transformed phase portrait with
bifurcation diagram.
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Figure 8. Generation mechanism of the bursting phenomenon. (a): System trajectory as F
increases, (b): System trajectory as F decreases.

4. Spiking state hysteresis phenomenon and its generation mechanism

4.1. Bifurcation hysteresis behavior in quasi-stationary process

In Figure 8(a), we find that the spiking state does not start to oscillate at the bifurcation point, but
bifurcation hysteresis occurs when the perturbation amplitude F increases. This bifurcation hysteresis
is shown as follows: when l cos(ωt) increases, the trajectory passes through the Hopf bifurcation and
does not enter the spiking state at once, but remains in the quiescent state for a certain period of time,
and then enters the spiking state slowly. In the following, the stability of the quasi-stationary process
is analyzed by asymptotic theory, and the mechanism of the hysteresis phenomenon is explained.

Theorem 3. Bifurcation hysteresis occurs in the quiescent state process and is related to the stability
of the quasi-stationary solution.

Proof. Let τ = ωt. Substituting into system (2.4) gives

ω
dx
dτ
= ax(1 −

x
K + l cos(τ)

)(α + βx + x2) − mxy,

ω
dy
dτ
= λmxy − dy(α + βx + x2),

dτ
dτ
= 1.

(4.1)
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The quiescent state process of system (4.1) is called the quasi-stationary solution, and the quasi-
stationary solution can be regarded as a perturbed form of the steady state solution, which is denoted
by (x̄, ȳ), and therefore (x̄, ȳ) can be written in the formx̄(τ, ω) = x00(τ) + ωx01(τ) + ω2x02(τ) + . . . ,

ȳ(τ, ω) = y00(τ) + ωy01(τ) + ω2y02(τ) + . . .
(4.2)

Substituting (4.2) into (2.3) and comparing the ω zero power coefficients yields the steady state
solution of the equation as (x00, y00), where

x00 =
λm − dβ −

√
∆

2d
,

y00 =
a
m

(1 −
x00

K + l cos τ
)(α + βx00 + x2

00).
(4.3)

Thus, the quasi-stationary solution becomes
x̄(τ, ω) =

λm − dβ −
√
∆

2d
+ ωx01(τ) + ω2x02(τ) + . . . ,

ȳ(τ, ω) =
a
m

(1 −
x00

K + l cos τ
)(α + βx00 + x2

00) + ωy01(τ) + ω2y02(τ) + . . .
(4.4)

Since ω ≪ 1, terms such as ω, ω2 can be neglected, i.e. (x̄(τ, ω), ȳ(τ, ω)) = (x00, y00) can be used as
the steady state solution of system (4.1), but the stability of the quasi-stationary solution with respect
to t is uncertain and therefore requires further analysis.

Let P(x, y) = ax(1 − x
K+F )(α + βx + x2) − mxy, Q(x, y) = λmxy − dy(α + βx + x2).

We then introduce a deviation of the formu(t, ω) = x(t, ω) − x̄(τ, ω),
v(t, ω) = y(t, ω) − ȳ(τ, ω).

(4.5)

Substituting this into system (4.1), translating the positive equilibrium to the origin, and linearizing,
we obtain 

du(t)
dt
=
∂P(x, y)
∂x

|(x̄,ȳ)(x − x̄) +
∂P(x, y)
∂y

|(x̄,ȳ)(y − ȳ),

dv(t)
dt
=
∂Q(x, y)
∂x

|(x̄,ȳ)(x − x̄) +
∂Q(x, y)
∂y

|(x̄,ȳ)(y − ȳ).
(4.6)

The collation gives
du
dt
= ax̄[(−

3
K + F

)x̄2 + (2 −
2β

K + F
)x̄ + (β −

α

K + F
)]u − mx̄v,

dv
dt
= [λmȳ − dȳ(β + 2x̄)]u + [λmx̄ − d(α + βx̄ + x̄2)]v.

(4.7)

Let
P1 =

∂P(x, y)
∂x

|(x̄,ȳ), P2 =
∂P(x, y)
∂y

|(x̄,ȳ), P3 =
∂Q(x, y)
∂x

|(x̄,ȳ), P4 =
∂Q(x, y)
∂y

|(x̄,ȳ). (4.8)
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From WKB exponential approximation theory [33,36], it is known that there exists a solution to
Eq (4.7) of the form u = u(τ, ω) = exp(φ(τ)/ω)(u0(τ) + ωu1(τ) + . . .),

v = v(τ, ω) = exp(φ(τ)/ω)(v0(τ) + ωv1(τ) + . . .).
(4.9)

Substituting (4.9) into (4.7) gives

(
dφ
dτ

)2 − (P1 + P4)
dφ
dτ
+ (P1P4 − P2P3) = 0. (4.10)

Let

Re[λ(F)] =
1
2

[a(1 −
2x̄

K + F
)(α + βx̄ + x̄2) − mȳ

+ ax̄(1 −
x̄

K + F
)(β + 2x̄) + λmx̄ − d(α + βx̄ + x̄2)].

The stability of the quasi-stationary process depends on φ = φ(τ), and Re(φ) can be expressed as

Re(φ) =
∫ F j

Fi

Re[λ(s)] ds. (4.11)

If Eq (4.11) is less than 0, the quasi-stationary solution is stable; conversely, the quasi-stationary
solution is unstable. When F = FH, Re[λ(F)] = 0. Where Fi is the initial value, F j is the value of
l cos τ when the spiking state starts to oscillate. However, for the Hopf bifurcation point, to the left side
of the Hopf bifurcation point, the real part of the characteristic root is negative and the quiescent state
process is stable. To the right of the Hopf bifurcation, the real part of the characteristic root is positive
and the quiescent process is unstable. When F = l cos τ slowly crosses the Hopf bifurcation critical
point, the sign of Eq (4.11) does not change, so bifurcation hysteresis occurs.

According to approximation theory [32,37], the hysteresis time is approximately obtained by
solving the least positive solution of Eq (4.11):∫ F j

Fi

Re[λ(s)] ds = 0. (4.12)

Substituting F = l cos τ into Eq (4.12), we obtain the integral with respect to τ∫ τ1

τ0

Re[λ(s)] ds = 0 (4.13)

where τ0 = 2kπ ± arccos(Fi/l),τ1 = 2kπ ± arccos(F j/l). Substituting Re[λ(F)] into Eq (4.13) yields

∫ τ1

τ0

[(−d)(α+βx̄+ x̄2)+ax̄(β+2x̄)+λmx̄] dF −
∫ τ1

τ0

[
ax̄(α + βx̄ + x̄2) + ax̄2(β + 2x̄)

K + F
] dF = 0. (4.14)

[(−d)(α + βx̄ + x̄2) + ax̄(β + 2x̄) + λmx̄][l cos(τ1) − l cos(τ0)]
−[ax̄(α + βx̄ + x̄2) + ax̄2(β + 2x̄)][ln(K + l cos(τ1)) − ln(K + l cos(τ0))] = 0

(4.15)
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Figure 9(a) gives the time history diagram of τ versus x. Figure 9(b) gives the diagram of τ1 versus
Eq (4.15), noting that the whole of the left side of the equality sign of Eq (4.15) is R, and the initial
value τ0 = 9.8, τ1 = 10.56 can be obtained according to Figure 9(b), and the bifurcation hysteresis
time is τh = τ1 − τH1.6 = 10.56 − 10.197 = 0.363. Figure 9(c) plots in detail the relationship between τ
and dφ/dτ. It is found that the area of region S 1 is approximately equal to the area of region S 2, i.e.

−

∫ τH

τ0

Re[λ(s)] ds ≈
∫ τ1

τH

Re[λ(s)] ds. (4.16)
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Figure 9. The hysteresis parameter diagram of spiking state near H for l = 1.6. (a): Time
history diagram, (b): The relation diagram between τ1 and R, (c): The relation diagram
between τ and dφ/dτ.

The bifurcation hysteresis occurs when the slow-variable perturbation crosses the Hopf bifurcation
point, leading to the system’s spiking state hysteresis behavior. Theoretical analysis shows that the
hysteresis behavior arises because the stability of the quasi-stationary solution does not change
immediately near the Hopf bifurcation point. However, the real part of the characteristic root changes
sign. The exact hysteresis time was calculated using numerical simulation.

The proof of Theorem 3 is complete.

The bifurcation hysteresis effect corresponds to the hysteresis of environmental effects derived from
environmental pollution or improvement. The ecological significance of this is that, as the environment
improves, the predator and prey population does not change immediately, but rather the prey population
increases rapidly when the environmental capacity increases to a certain value. The larger the value of
the environmental capacity, the larger the peak in predator-prey population levels.

4.2. Effect of disturbance amplitude on bifurcation hysteresis

Due to the existence of slow variables, the real bifurcation of the slow-fast coupled non-autonomous
system (2.3) often has a hysteresis effect with the theoretical bifurcation point of the autonomous
system (2.4). The transformed phase diagrams of the nonautonomous system (2.3) when l = 1.5,
l = 1.55, and l = 1.62 are given in Figure 10 respectively, where the region to the right of the grey
dotted line is the spiking state. It is shown that the hysteresis time of this hysteresis effect increases
with the increase of the perturbation amplitude.
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Figure 10. Transformed phase diagrams for different perturbation amplitudes. (a):
Transformed phase diagram for l = 1.5, (b): Transformed phase diagram for l = 1.55,
(c): Transformed phase diagram for l = 1.62.

Figure 11 gives the diagram of τ1 versus Eq. (4.15) for different perturbation amplitudes, noting that
the whole of the left side of the equality sign of equation (4.15) is R, with a fixed initial value τ0 = 9.8.
According to Figure 11, we get τ1 equal to 10.4, 10.48, and 10.59, respectively. Then, the bifurcation
hysteresis time is τh1.5 = τ1−τH1.5 = 10.4−10.125 = 0.275, τh1.55 = τ1−τH1.55 = 10.48−10.163 = 0.317,
and τh1.62 = τ1 − τH1.62 = 10.59 − 10.209 = 0.381, respectively. Corresponding to the spiking state
hysteresis behavior of Figure 10, it is found that the larger the perturbation amplitude, the longer the
hysteresis time.
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Figure 11. The relation diagram between τ1 and R. (a): l = 1.5, (b): l = 1.55, (c): l = 1.62.

5. Conclusions

The predator-prey system is a complex non-linear system influenced by many factors.
Environmental capacity is an important element in the predator-prey system, which can affect the
survival and extinction of both predator and prey populations. Therefore, if the perturbation of
environmental capacity is added to the predator-prey system, the whole system will be a slow-fast
coupled non-autonomous system. The stability of the related autonomous system is analyzed using
the slow-variable parameter as the bifurcation parameter, and the condition for Hopf bifurcation is
discussed. Single-Hopf bursting oscillations are first found in the slow-fast coupled non-autonomous
Holling-IV predator-prey system. It is found that this non-autonomous system oscillation mode is
closely related to the stability and bifurcation of the autonomous system. The Hopf bifurcation, stable
equilibrium points, and limit cycle attractor of autonomous system result in quasi-periodic oscillation
and single-Hopf bursting oscillations generation in non-autonomous systems. Additionally, it is found
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that there is an obvious spiking state hysteresis behavior of the system. The asymptotic theory was for
the first time used to analyze the bifurcation hysteresis mechanism of the predator-prey system.
Moreover, the hysteresis behavior arises because the stability of the quasi-stationary solution does not
change immediately although the real part of the eigenvalue changes its sign in the vicinity of the
Hopf bifurcation point, and the hysteresis length is calculated. It is found that the larger the
perturbation amplitude, the longer the hysteresis time.
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