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Abstract: In this article, a mathematical model was developed to describe disease control by media
factors. The Lambert W function was used to convert the system definition by implicit functions into
explicit functions. We analyzed the dynamics of the defined piecewise smooth system and verified
the correctness of the theoretical analysis through numerical simulation. Research revealed that media
factors can delay the peak of an epidemic and reduce the scale of the epidemic. It is worth noting
that adopting different control measures has a certain impact on the scale of the epidemic; the analysis
results indicate that implementing dual-control is the most effective way to limit the spread of diseases
and this strategy may provide clues for disease control.

Keywords: SIR epidemic model; optimal control; dynamic; media factors; Lambert W function
Mathematics Subject Classification: 65P40, 92D30, 93E20

1. Introduction

The 2019 Coronavirus disease (COVID-19) originated from a new type of severe acute respiratory
syndrome coronavirus [1]. According to existing cases data, some patients may experience respiratory
and digestive symptoms such as nasal congestion, runny nose, and diarrhea [2,3]. In severe cases,
they may rapidly progress to acute respiratory distress syndrome, septic shock, difficulty to correct
metabolic acidosis, coagulation disorders, and multiple organ failure [3]. It should be noted that elderly
people and those with chronic underlying diseases have a poorer preventive capacity and the symptoms
of youngster cases are relatively mild [4,5]. During the sudden outbreak of an epidemic, for avoiding
cross infection of patients with multiple strains [6], it is important to practice self-protection, wash
hands frequently, maintain good hygiene habits, raise health awareness, correctly wear disposable
masks, avoid contact with infected individuals, and avoid going to dangerous crowded and enclosed
places [7].

Media factors play a crucial role in the outbreak of an epidemic [8,9]. They can detect and report
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an epidemic early, provide a warning, and use public opinion to take effective measures to eliminate
potential crises before they escalate [10, 11]. By disseminating information about the epidemic, the
media can help the public understand its severity and better control its development [12]. During the
initial phases of the Severe acute respiratory syndrome coronavirus (SARS) outbreak in 2003, various
speculations were circulating amongst the general public, causing widespread social unrest due to
insufficient dissemination of information regarding SARS prevention and treatment [13, 14]. During
COVID-19, the media disseminated information to assist medical personnel and warn the public to
prioritize personal protection, contributing significantly to guiding public perception. This statement
highlights the need to explore how media coverage impacts the transmission and management of
infectious diseases.

Mathematical models have the ability to predict disease development trends through dynamic
analysis [15-19]. Currently, numerous studies have established mathematical models to simulate
the dynamics of COVID-19 [20-22]. Jia and his colleagues proposed a dynamic model of COVID-
19 based on official data to analyze the impact of non-pharmaceutical interventions on transmission
dynamics during the COVID-19 pandemic [20]. Huang et al. established a COVID-19 mathematical
model to analyze how spontaneous social distance and public social distance can increase the outbreak
threshold of asymptomatic infections [21]. Maji et al. theoretically and numerically revealed that social
distance has a significant impact on reducing the spread of COVID-19 [22]. Mathematical models are
powerful in simulating the impact of various factors on diseases and offer optimal control strategies for
disease control.

The remaining of this article is as follows: In Section 2, a mathematical model is proposed, which
includes media related factors, and the properties of the Lambert W function are used to convert the
system into an explicitly defined system through an implicit function. This system is a piecewise
smooth system that can analyze the dynamic of the system. In Section 3, we study the dynamics
of the piecewise smooth system, as well as the existence and local stability of endemic equilibrium
points. In Section 4, the impact of various control methods on infectious diseases is modeled using
optimal control theory. In Section 5, the numerical simulation results verify the theoretical analysis
results and uncover that media factors can affect the scale of epidemic outbreaks. The results show that
implementing the dual-control strategy is the most effective way to limit the spread of diseases, which
may provide clues for disease control.

2. Model description

The dynamics in susceptible population S (¢), infected population /(¢), and convalescent population
R(#) are considered. The exponential factor of I(¢) is used to express the media influence on the
infectious diseases, similar to reference [12], the function is defined as f(I) = be” N(I, %), and N(/, %
is shown as follows:

dI(t)
dt

where m, m; € R, itis assumed that m, represents government or official media news coverage, and m,
represents media news reports related to medical prevention. If m;, m, < O represents false news factors
misleading the public, the function f(/) is monotonically increasing. If m;,m, > 0, which means that
fake news will be perceived by the public and corrected by the government or official institutions while

dl
N, E) = m (1) + my
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real news dominates public opinion, then the function f(I) will monotonically decrease. Based on the
properties of function f(7), we focus on the control effect of real news on infectious diseases and we set
my and m, as nonnegative parameters, which are used to represent the impact of real news factors on
media coverage cases and change rates. The function N(f) = N(/, d—f) is transformed into the following
form:

N, —) = max {0.m,1() + my 0}
For the R(#) population after recovery, they will no longer impose risk on susceptible individuals. In
most studies, the model is established by assuming that the total population is constant or satisfies
exponential growth [23,24]. A new epidemic dynamic model is obtained as follows:

ds S ,

5 =aSU =)= e NEDPIS,

dar _ _vaa

5 = ¢ bIS — al ~ p1 -1, @2.1)
R _

ar P THE

In model (2.1), all parameters are positive based on theoretical facts and the meaning of each parameter
is as follows: a is the inherent growth rate of population and k is the population carrying capacity of
a given region. We hypothesize b as the basic propagation coefficient and f(I) = be V@ is the term
of contact and transmission, which measures the spread of the virus from susceptible individuals to
infected individuals. « is the mortality rate associate with the disease, 8 is the natural death rate, y is
the rate of recovery from infection, and u is the death caused by the sequela of disease recovery. To
simplify, let n = @ + 8+ y and N,(¢) = mI(¢t) + mz% when N () > 0, then N;(¢) = N(t). Following
from the second equation in (2.1), we can get

dl
mZ(E + D)™ D = mybS T (2.2)
It can be observed that the form of Eq (2.2) is quite complex, so we introduce the definition and

properties of the Lambert W function, which are

Definition 1 ( [25]). The Lambert W function is the inverse of the function f(z) = ze* and satisfies the
following conditions

Lambert W(z) - exp(Lambert W(z)) = z.

By definition, we have

Lambert W(z)

Lambert W(z) = '
ambert W(z) Z + (Lambert W(z))

Using the definition of Lambert W function, we can obtain

dr 1
— = — W[mybS [e7™ITmM] — . (2.3)
dr my
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Therefore, N(t) reads

dl
N(@) =N(t) = myl + my—
(1) =N1(t) = m m (2.4)
=W[mybS Ie™™ """ | — (—=m, 1 + mynl).
We study that N;(7) is greater than zero; for this, we consider N, (f) equal to 0, then
W(mybS Ie™™ ™M — (= I + myonl) = 0. (2.5)

We use the properties of the Lambert W function, then

(=myI + monl)e ™l =y, pS [e~mi I +mant (2.6)
and we obtain
mon — m
S = —bm2 =S, 2.7

Because N;(r) > 0 is strictly monotone for S, it yields that N;(r) > 0 is equivalent to S > §,. In
order to study the properties of the epidemic model, we remove the equation of the individual R(¢), and
system (2.1) is transformed into system (2.8)

as S

_ _ YN _ 0N

i =aS(1 k) e biS, 08)

dI :

— = e ™MOpIS — ol - BI —yI

dr

with

_ 0,8 -5,<0, 29)
|L,s-s,>0. ’

Equations (2.8) and (2.9) indicate that the system has a susceptibility threshold, and there is no
influence of media factors below the threshold. Above the threshold, the media has a certain role in
reducing the spread of disease, so the media has a certain impact on the disease. The susceptibility
threshold is analyzed in the following content.

We set P(Z) =S — S, with X = (S, )7, then

S
P, (2) = (aS(1 - ;) — bIS,bIS —al — BI —yI)T,
P, (Z) = (aS(1 - %) — e ™pIS, e ™IS — al — BI — yI)'.

The Egs (2.8) and (2.9) become a non-smooth system

Pp (X), X € Ay,

X(@) = { Po(X),X € Ay (2.10)
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with

A ={XeR:JX) <0}

Ay ={XeR:JX)>0)
and the system (2.1) invariant set is R> = {X = (S,1),S > 0,1 > 0}. If —m; + mon > 0 holds, we
have §, > 0;1f §, < 0, the set A; becomes an empty set, then the non-smooth system (2.10) becomes

smooth system X () = Py, (X).
The switching line defined by = is

E={XeR*:JX)=0).

Therefore, the system (2.10) is located in region A; or A, recorded as S 41 or S ,, respectively. We use
the properties of the Lambert W function to transform the implicitly defined function system (2.1) into
a piecewise smooth (PWS) system [26]. The equilibrium point of PWS (2.10) as follows:

Theorem 1 ( [12]). If P4, (X*) = 0,J(X*) < 0 or Ps,(Z") = 0,J(X*) > O, the point X* is the regular
equilibrium of system (2.10); if P4,(X*) = 0,J(X*) > 0 or P4,(X*) = 0,J(X*) < 0, X" is the virtual
equilibrium point.

3. The dynamics of PWS system

In this part, we analyze the different areas S 4; and S 4, to study the dynamics of the system (2.10).

The dynamics of S 4;. The system dynamics of S 4; have a disease-free equilibrium point Ej, which is
(k,0), then

_ mz(RO — 1) + nmy

k-5, bty

When Ry = kb/n > —Z—; + 1, the point Ej is in the area S 4,, and when R < —% + 1, the equilibrium
point Ej is locally stable in S 4;. The interior equilibrium point Ey = (§ ,[; ) of §4; exists only if
Ry >1,and

S, = g,il - g(kb/n = g(RO N
Note that §; > S ¢ holds, which means that equilibrium E, is located in region S 4,, so it is a virtual
equilibrium.

The dynamics of S 4,. For the smooth system S 4, the equation is as follows

s S
— =aS(1-=)-e™MYbIS,
f{l k S>S.. 3.1)

= e MOpIS — al - Bl — 1,

Because N,(f) contains the Lambert W function, it is difficult to study its dynamics through theoretical
analysis. The disease-free equilibrium of system (3.1) is E; = (k,0), which is consistent with the
corresponding of system S 4;.

Existence of endemic equilibrium.
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Lemma 1. The interior equilibrium point E, = (S*, I*) is located in the area of A, and it is a regular

equilibrium, where
* n mil* = a mI* n my I*
S*=="",I"=="" (1 — —™").

b b kb
Proof. In the function N|(¢), we define

G(S,I) 2 mybSIe7™ ™ Gy(I) 2 —myI + monl

then
Ni(1) = W(G (S, D)) — G2(D)

and by using the properties of the Lambert W function, we can get

exp(=Ni(1)) =exp(=W(G (S, 1)) + G2(]))

_W(G(S. D) _ W(G(S,D) (3.2)
=TS exp(Gz(I))——mzbSI :

Substituting Eq (3.2) into model (3.1), we have

d W 1
d_izas(l_%)_ (Gi(S.1)
ny
d_WGS.I) S>S,. (3.3)
dr B my ’

If the second of the above formulas is equal to zero, then there is W(G1(S, 1)) = mynl. Utilizing the
properties of the Lambert W function, we can obtain

ST = Ze’"l’*. (3.4)

Substituting (3.4) into the first formula in (3.3) and combining with W(G(S, I)) = mynl, we get

an i I* n mi I "

i 1] — —e™ =nl .

b e ( kbe ) =nl", 3.5
I = femll*(l - ie’”l’*). (3.6)

b kb

We consider I* > 0, and the parameters are all positive, that is,

(1 - :—beml’*) >0 (3.7)
which is equivalent to
kb .
Ry=—>e"" > 1. (3.8)
n

If Ry > 1, the interior equilibria E, = (S*,I*) satisfies condition §* > § ¢» Which means that E, is
located in the area of A, and it is a regular equilibrium. O

AIMS Mathematics Volume 9, Issue 2, 3505-3520.



3511

Local stability of the endemic equilibrium £,.

Lemma 2. If the parameters satisfy the following relationship

-——+n+—-a+ 0,
ny ny k
nT, aT>, 2aT,S* 2aS8'*
—+ — - -a+ > 0,
ny ny I’I’LQk k
T T 2aS8'* T T 2aT,S" 2aS”*
[ AR S e Y it S ot o el S
my ms k my my mzk k

then the system (3.3) has the point E as locally asymptotically stable.

Proof. We use the Jacobian matrix to analyze the stability of equilibrium point £, and set ¢ = —m;+m;,n
and

S W(G(S, I
DuS. 1) =as(1 - 2y - VGG D)
W(G,(S, I :
mwm:—ii—ﬁ—m
my
The Jacobian matrix is as follows
.H(ﬁ y):(ml k mz ) (3.10)
S G —m T T2 —n
where 7'y and T, are defined as
T _OW(G((S, D) _ W(G(S, 1)) 0G,
e aS TGS, D1+ W(G(S,D)) 85’
- _OW(G((S, D) _ W(G(S, 1)) 0G,
27 ol ~Gi(S, D +W(G(S, D)) oI

with 5G
g = I’I’lzbled, 0—11 = mzbled(l + CI)

In order to simplify the calculation at the equilibrium point E,, we can get

T monl* bI et monl*
= m e = »
TGS (1 + monl) S*(1 + mynl*) 31D
monl* . o . myn(l + cI*) )
T, = mybS*e” (1 +cl’) = —m—.
G(S*, I")(1 + monl*) S*(1 + mynl*)
Thus, the characteristic equation at point £ is
2aS* T
Pr(-Z 4n+— - i Bl
my my k 14%) (3 12)
al>, 2aT,S* 2aS* 0 '
my mzk k -
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If the characteristic equation satisfies the following conditions

T, T, 2aS*
-——+n+—-a+ > 0,
ny ny
nT, aT, 2aT,S* 2aS8*
—_—t — - —a+ > 0,
n ny I’I’L2k k
T T 2aS* T T 2aT>S* 2aS'*
Rt R ool Rk et e N ol SN |}
ny my k my,  mp myk k

it can be obtained that the characteristic equation has two negative roots in the region A,, which means
that the point E, is locally asymptotically stable. O

4. Optimal control strategies

In this section, we investigate the dynamic behaviors of the system under control variables u; ()
and u,(¢). The first control equation u;(¢) is to enhance prevention strategies, reduce the number of
patients, vaccinate and wear masks, or increase social distance. This control can reduce the probability
of illness among susceptible populations, represented by (1 — u;(¢)). The second control equation
u,(t) represents accelerating the recovery time of patients, enhancing medical conditions, developing
specific drugs, and enhancing human immune capacity. We focus on the impact of media factor m; on
the infected individuals, while ignoring the impact of m, on infection rates. We set m; # 0,m, = 0 and
the system becomes

dS _ _ E _ mml _

Fri aS((1 k) e "bIS (1 — uy (1)),

% =e™pIS(1 — uy (1)) — al = BI — (y + ux (1)1, 4.1)
dR

5 = O+ w) ~ R,

When u; = 1, (i = 1,2) indicates complete control, and &; = 0 indicates that control is ineffective, we
consider the following optimal control problem to minimize the objective functional as given by

0<uy,up<1

T
J(uy,u) = min fo f(w11+ %[wzuf(znwwg(t)])dt. (4.2)

The weight constant w; represents the infected population, while w, and ws; represent the weight
constants of personal protection and improvement of medical conditions, respectively. The terms
%wzu%(t) and %wgug(t) describe the costs associated with the corresponding intervention measures over
the time interval [0,7/]. Assuming that the cost is proportional to the square of the corresponding
control function, we have

J(uy, uy) = min{J (uy, up) : uy, uy € U}

where U is defined by
U ={(u1,u2) | 0 < uy,up < 1}
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for t € [0,Tf]. Therefore, in order to determine the necessary conditions that the optimal control
(uj, u;) must satisfy, Pontryagin’s maximum principle is used [29] and the Hamiltonian H for the
control problem is defined by:

1
H =w I + 5[wzu%(t) + w3l (1]

S
+AilaS (1= ) = ™IS (= w (o)) 43)
+ Aa[e ™ DIS (1 — uy (1)) — @l — BI — (y + un ()11,
+ B[(y + up ()1 — uR]

and the adjoint variables 4;(i = 1,2, 3) are associated with the state variables of the model (4.1). The
expression satisfies the following:

dh _ e™IbI(1 — u (1))(A — Ap) — ady + 24,8 a

dr k

dA, —myI —my 1

— =(- "EBIS + e bS] — u (1) — A

P (=mye e YA = ui (D)) — A2) (4.4)
+(@+ P — (Y +u)ds +y + up(t) — wy,

dAs

— =ud

dr HA3

with the terminal (transversality) conditions A;(T;) = 0,7 = 1, 2, 3. Further, the optimal control double
(u},u3) is given as follows:

“mIBIS (- A
u; = max{0, min{1, < (h — b)),

)
4.5
u, = max{0, min{l, M}}.
w3

5. Numerical simulations

In this section, we use numerical simulations to verify the rationality of the theory. Figures 1 and 2
display the relationship between the dynamic of the system and Ry. When Ry, < 1, the disease-free
equilibrium point (k, 0) of the system is located in region A; or A,, depending on the values of m;
and m,. Figure 1(a) displays the equilibrium point as located in A;. It can be observed that changing
different initial values of the system will cross the line S = §, and stabilize at the equilibrium point.
The equilibrium point is located at A, in Figure 1(b). It can be found that the trajectory starting from
A, will stabilize at the equilibrium point, while the trajectory with an initial value at A, will directly
pass through S = S, to reach the equilibrium point at A,. On the other hand, when R, > 1, the system
dynamics are displayed in Figure 2. Any trajectory with an initial value at A, or A, will directly pass
through S = S, to stabilize at point £5, which is regular and is globally asymptotically stable in A;.

The system is not influenced by media factors, as described in Figure 3(a). When R, > 1, the number
of diseases /(f) asymptotically stabilizes at a steady-state value. When R, < 1, I(t) exhibits a downward
trend and achieves the desired control effect. In Figure 3(b), the media factor parameters are m; = 0.2,
my = 0.8. The situation is similar to Figure 3(a), but when R < 1, the media related parameters m; and

AIMS Mathematics Volume 9, Issue 2, 3505-3520.
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m; have no effect on the number of diseases. This indicates that when the basic reproduction number
is Ry < 1, the influence of media factors on the system is not significant. In a word, when infectious
diseases spread, media factors should be utilized at appropriate times to influence the disease.

The values of media-related parameters m; or m, are changed to explore the influence of media
factors on diseases. In Figure 3(c), the peak value of I(¢) has a slight backward movement at the
increase of the m, value. Figure 3(d) indicates that the peak value decreases with the increase of
m, and the peak appearance time is slightly earlier. It is interesting to note that media reports need to
choose certain methods to ensure a positive impact on disease control. This depends on the authenticity
of media reports and the popularity of media reporting platforms.

The effects of parameters m, and m, on the infected population is shown in Figure 4, where the color
bar represents the fluctuation height. Without the influence of parameter m;, the system fluctuation
moves backward with the increase of m,, and the phenomenon of backward fluctuation is significant at
the m, close to 1. When m;, is magnified to 0.2, the fluctuation moves backward slowly. Interestingly,
the situation of m, = 0 is different from m; = 0. As m; increases, the second wave of I(¢) shifts
significantly forward. If m, = 0.4, the system fluctuations and changes are not significant.

Sensitivity analysis can analyze and understand the impact of different parameters on specific
variables, which may help us control disease transmission or provide guidance. Referring to the
definition in [27], the sensitivity index of R, for each parameter c is defined as follows:

OR c
Ro — _0 X —
LC oc R()'

Among all positive correlation factors in Fig.5, the population carrying capacity k£ and basic
transmission coeflicient b are the highest. This indicates that the value of k or b is positively correlated
to Ry with a degree of 100%. However, among all the negative correlation factors, the rate of recovery
from infection 7 is the most sensitive parameter, and the value of y is negatively correlated to Ry with
a degree of 78.95%.

The numerical simulation of the optimal control system is implemented using MATLAB, and the
equation is solved using the forward backward of the fourth order Runge-Kutta method [28]. The
weight constants are chosen as w; = 50, w, = 100, and w3 = 1. Figure 6(a) exhibits the time history of
two controls u; and u, coexisting and Figure 6(d) represents the disease population quickly reaching
the minimum value under dual-control. Figure 6(b,c) investigates the dynamics of the system under a
single control of u; and u,, corresponding to Figure 6(e,f). It is worth noting that under a single control,
u; has a stronger control effect on the disease population, while u, can reduce the peak of the disease
population.

From the perspective of epidemics, maintaining an effective social distance under the influence
of control u; reduces the probability of illness in susceptible populations and achieves the effect of
controlling the total number of infectious diseases as quickly as possible in a limited period of time.
Under the influence of control u,, the effect of controlling the number of diseases is achieved relatively
slowly in a short period of time by accelerating the recovery time of patients and improving medical
conditions. Under the influence of both control strategies, the effect of controlling the number of
diseases is stronger and faster, which provides ideas for the prevention of epidemics.

AIMS Mathematics Volume 9, Issue 2, 3505-3520.
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Figure 1. The phase diagram of the SIR model under the case of Ry = 0.6579 < 1. The dotted
line indicates § = §, the left side of the dotted line is the A; area, and the right side is the A,
area. The black point is the equilibrium point of disease elimination Ej and the parameters are
b=05r=15p=02,0a=02,k=25a=0.1,u=0.1()S0)=4,m =0.2,m =0.8;

(b) 1(0) = 0.5,m; = 0.6,m, = 0.4.
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Figure 2. The phase diagram of the SIR model under the case of Ry = 1.9737 > 1. The
dotted line indicates S = §,, the left side of the dotted line is the A; area, and the right side is
the A, area. The black points are the local equilibrium points Ej and E, and the parameters
areb=15,r=15,=02,0=02,k=25,a=0.1,u=0.1,m =0.2,m, =0.8.
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Figure 3. The time history diagram of disease I(t) and the model select different parameters
under the case of Ry < 1 (red line) and R, > 1 (blue line),(a) m;=0, m,=0; (b) m;=0.2,
m,=0.8; (¢) In the case of m; =0.2,my =0,0.4 0or 0.8. (d) my =0.4,m; =0, 0.4 or 0.8.
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\
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Figure 4. The influence of parameters m; and m, on I(t). (a) The system fix m; = 0 and (b)
my = 0.2, (¢) fix my, = 0 and (d) m; = 0.4.
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(a)
1

Sensitivity indices

Figure 5. The model sensitivities to its associate parameters.

0.8

0.6

0.4

0.2

u, (®)
u,(t)

)

20

40

time

60 80

100

0.4

0.3

I(t)

0.2

0.1

ul(t)#o,uz(t)#o
u, ()=0,u,()=0

Figure 6. (a) Combined effects of optimal controls u;(#), u(t) on the system. (b) or (c)
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20

40

time

60 80

100

It

100

(b) (©
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 20 40 60 80 100 0 20 40 60 80
time time
(e) ®
0.5 0.5
u, (07 0,u, (=0 u, (9=0,u,(H =0
0.4 u, (1)=0,u,(H=0 0.4 u, (=0,u,(1)=0
0.3 0.3
0.2 0.2 \
0.1 0.1 k
0 0 \
0 20 40 60 80 100 0 20 40 60 80

under different control situations of (7).

AIMS Mathematics

time

time

100

Volume 9, Issue 2, 3505-3520.



3518

6. Conclusions

Inspired by COVID-19, this paper constructed an epidemic model to include media factors to
explore the control effects of media factors on diseases. In the theoretical analysis, the media factor
uses the Lambert W function to transform the system defined by the implicit function into the displayed
PWS function. The research results indicated that the media factor has an obvious control effect on the
epidemic situation under the basic reproduction number R, > 1, which verifies that the media has an
inhibitory effect on disease.

Sensitivity analysis, as a method of analyzing parameters, revealed that the population carrying
capacity k and basic transmission coeflicient b are positively correlated with Ry, while the rate of
recovery from infection 7y is negatively correlated with R,. This may provide a control strategy for
disease control. Finally, the optimal control strategy was designed to analyze the impact of different
controls on the system. It can be concluded that dual-control has the best effect on disease control.
This result may provide methods for epidemic control.
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