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the correctness of the theoretical analysis through numerical simulation. Research revealed that media
factors can delay the peak of an epidemic and reduce the scale of the epidemic. It is worth noting
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1. Introduction

The 2019 Coronavirus disease (COVID-19) originated from a new type of severe acute respiratory
syndrome coronavirus [1]. According to existing cases data, some patients may experience respiratory
and digestive symptoms such as nasal congestion, runny nose, and diarrhea [2, 3]. In severe cases,
they may rapidly progress to acute respiratory distress syndrome, septic shock, difficulty to correct
metabolic acidosis, coagulation disorders, and multiple organ failure [3]. It should be noted that elderly
people and those with chronic underlying diseases have a poorer preventive capacity and the symptoms
of youngster cases are relatively mild [4, 5]. During the sudden outbreak of an epidemic, for avoiding
cross infection of patients with multiple strains [6], it is important to practice self-protection, wash
hands frequently, maintain good hygiene habits, raise health awareness, correctly wear disposable
masks, avoid contact with infected individuals, and avoid going to dangerous crowded and enclosed
places [7].

Media factors play a crucial role in the outbreak of an epidemic [8, 9]. They can detect and report
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an epidemic early, provide a warning, and use public opinion to take effective measures to eliminate
potential crises before they escalate [10, 11]. By disseminating information about the epidemic, the
media can help the public understand its severity and better control its development [12]. During the
initial phases of the Severe acute respiratory syndrome coronavirus (SARS) outbreak in 2003, various
speculations were circulating amongst the general public, causing widespread social unrest due to
insufficient dissemination of information regarding SARS prevention and treatment [13, 14]. During
COVID-19, the media disseminated information to assist medical personnel and warn the public to
prioritize personal protection, contributing significantly to guiding public perception. This statement
highlights the need to explore how media coverage impacts the transmission and management of
infectious diseases.

Mathematical models have the ability to predict disease development trends through dynamic
analysis [15–19]. Currently, numerous studies have established mathematical models to simulate
the dynamics of COVID-19 [20–22]. Jia and his colleagues proposed a dynamic model of COVID-
19 based on official data to analyze the impact of non-pharmaceutical interventions on transmission
dynamics during the COVID-19 pandemic [20]. Huang et al. established a COVID-19 mathematical
model to analyze how spontaneous social distance and public social distance can increase the outbreak
threshold of asymptomatic infections [21]. Maji et al. theoretically and numerically revealed that social
distance has a significant impact on reducing the spread of COVID-19 [22]. Mathematical models are
powerful in simulating the impact of various factors on diseases and offer optimal control strategies for
disease control.

The remaining of this article is as follows: In Section 2, a mathematical model is proposed, which
includes media related factors, and the properties of the Lambert W function are used to convert the
system into an explicitly defined system through an implicit function. This system is a piecewise
smooth system that can analyze the dynamic of the system. In Section 3, we study the dynamics
of the piecewise smooth system, as well as the existence and local stability of endemic equilibrium
points. In Section 4, the impact of various control methods on infectious diseases is modeled using
optimal control theory. In Section 5, the numerical simulation results verify the theoretical analysis
results and uncover that media factors can affect the scale of epidemic outbreaks. The results show that
implementing the dual-control strategy is the most effective way to limit the spread of diseases, which
may provide clues for disease control.

2. Model description

The dynamics in susceptible population S (t), infected population I(t), and convalescent population
R(t) are considered. The exponential factor of I(t) is used to express the media influence on the
infectious diseases, similar to reference [12], the function is defined as f (I) = be−N(I, dI

dt ), and N(I, dI
dt )

is shown as follows:

N(I,
dI
dt

) = m1I(t) + m2
dI(t)

dt

where m1,m2 ∈ R, it is assumed that m1 represents government or official media news coverage, and m2

represents media news reports related to medical prevention. If m1,m2 < 0 represents false news factors
misleading the public, the function f (I) is monotonically increasing. If m1,m2 ≥ 0, which means that
fake news will be perceived by the public and corrected by the government or official institutions while
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real news dominates public opinion, then the function f (I) will monotonically decrease. Based on the
properties of function f (I), we focus on the control effect of real news on infectious diseases and we set
m1 and m2 as nonnegative parameters, which are used to represent the impact of real news factors on
media coverage cases and change rates. The function N(t) = N(I, dI

dt ) is transformed into the following
form:

N(I,
dI
dt

) = max
{
0,m1I(t) + m2

dI(t)
dt

}
.

For the R(t) population after recovery, they will no longer impose risk on susceptible individuals. In
most studies, the model is established by assuming that the total population is constant or satisfies
exponential growth [23, 24]. A new epidemic dynamic model is obtained as follows:

dS
dt

= aS (1 −
S
k

) − e−N(I, dI
dt )bIS ,

dI
dt

= e−N(I, dI
dt )bIS − αI − βI − γI,

dR
dt

= γI − µR.

(2.1)

In model (2.1), all parameters are positive based on theoretical facts and the meaning of each parameter
is as follows: a is the inherent growth rate of population and k is the population carrying capacity of
a given region. We hypothesize b as the basic propagation coefficient and f (I) = be−N(I, dI

dt ) is the term
of contact and transmission, which measures the spread of the virus from susceptible individuals to
infected individuals. α is the mortality rate associate with the disease, β is the natural death rate, γ is
the rate of recovery from infection, and µ is the death caused by the sequela of disease recovery. To
simplify, let n = α + β + γ and N1(t) = m1I(t) + m2

dI
dt when N1(t) > 0, then N1(t) = N(t). Following

from the second equation in (2.1), we can get

m2(
dI
dt

+ nI)em2(nI+ dI
dt ) = m2bS Ie−m1I+m2nI . (2.2)

It can be observed that the form of Eq (2.2) is quite complex, so we introduce the definition and
properties of the Lambert W function, which are

Definition 1 ( [25]). The Lambert W function is the inverse of the function f (z) = zez and satisfies the
following conditions

Lambert W(z) · exp(Lambert W(z)) = z.

By definition, we have

Lambert Ẇ(z) =
Lambert W(z)

z + (Lambert W(z))
.

Using the definition of Lambert W function, we can obtain

dI
dt

=
1

m2
W[m2bS Ie−m1I+m2nI] − nI. (2.3)
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Therefore, N(t) reads

N(t) =N1(t) = m1I + m2
dI
dt

=W[m2bS Ie−m1I+m2nI] − (−m1I + m2nI).
(2.4)

We study that N1(t) is greater than zero; for this, we consider N1(t) equal to 0, then

W[m2bS Ie−m1I+m2nI] − (−m1I + m2nI) = 0. (2.5)

We use the properties of the Lambert W function, then

(−m1I + m2nI)e−m1I+m2nI = m2bS Ie−m1I+m2nI (2.6)

and we obtain

S =
m2n − m1

bm2
= S q. (2.7)

Because N1(t) > 0 is strictly monotone for S , it yields that N1(t) > 0 is equivalent to S > S q. In
order to study the properties of the epidemic model, we remove the equation of the individual R(t), and
system (2.1) is transformed into system (2.8)

dS
dt

= aS (1 −
S
k

) − e−θN1(t)bIS ,

dI
dt

= e−θN1(t)bIS − αI − βI − γI
(2.8)

with

θ =

0, S − S q ≤ 0,
1, S − S q ≥ 0.

(2.9)

Equations (2.8) and (2.9) indicate that the system has a susceptibility threshold, and there is no
influence of media factors below the threshold. Above the threshold, the media has a certain role in
reducing the spread of disease, so the media has a certain impact on the disease. The susceptibility
threshold is analyzed in the following content.

We set P(Z) = S − S q with X = (S , I)T , then

PA1(Z) = (aS (1 −
S
k

) − bIS , bIS − αI − βI − γI)T ,

PA2(Z) = (aS (1 −
S
k

) − e−θM1bIS , e−θM1bIS − αI − βI − γI)T .

The Eqs (2.8) and (2.9) become a non-smooth system

Ẋ(t) =

PA1(X), X ∈ A1,

PA2(X), X ∈ A2
(2.10)
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with
A1 = {X ∈ R2

+ : J(X) ≤ 0},

A2 = {X ∈ R2
+ : J(X) > 0}

and the system (2.1) invariant set is R2
+ = {X = (S , I), S ≥ 0, I ≥ 0}. If −m1 + m2n > 0 holds, we

have S q > 0; if S q < 0, the set A1 becomes an empty set, then the non-smooth system (2.10) becomes
smooth system Ẋ(t) = PA2(X).

The switching line defined by Ξ is

Ξ = {X ∈ R2 : J(X) = 0}.

Therefore, the system (2.10) is located in region A1 or A2 recorded as S A1 or S A2, respectively. We use
the properties of the Lambert W function to transform the implicitly defined function system (2.1) into
a piecewise smooth (PWS) system [26]. The equilibrium point of PWS (2.10) as follows:

Theorem 1 ( [12]). If PA1(X
∗) = 0, J(X∗) ≤ 0 or PA2(Z

∗) = 0, J(X∗) > 0, the point X∗ is the regular
equilibrium of system (2.10); if PA1(X

∗) = 0, J(X∗) > 0 or PA2(X
∗) = 0, J(X∗) ≤ 0, X∗ is the virtual

equilibrium point.

3. The dynamics of PWS system

In this part, we analyze the different areas S A1 and S A2 to study the dynamics of the system (2.10).

The dynamics of S A1. The system dynamics of S A1 have a disease-free equilibrium point E∗0, which is
(k, 0), then

k − S q =
m2(R0 − 1) + m1

bm2
.

When R0 = kb/n > −m1
m2

+ 1, the point E∗0 is in the area S A2 , and when R0 < −
m1
m2

+ 1, the equilibrium
point E∗0 is locally stable in S A1. The interior equilibrium point Ẽ1 = (S̃ 1 ,Ĩ1 ) of S A1 exists only if
R0 > 1, and

S̃ 1 =
n
b
, Ĩ1 =

a
b

(kb/n − 1) =
a
b

(R0 − 1).

Note that S̃ 1 > S q holds, which means that equilibrium Ẽ1 is located in region S A2 , so it is a virtual
equilibrium.

The dynamics of S A2. For the smooth system S A2, the equation is as follows
dS
dt

= aS (1 −
S
k

) − e−N1(t)bIS ,

dI
dt

= e−N1(t)bIS − αI − βI − γI,
S > S c. (3.1)

Because N1(t) contains the Lambert W function, it is difficult to study its dynamics through theoretical
analysis. The disease-free equilibrium of system (3.1) is E∗0 = (k, 0), which is consistent with the
corresponding of system S A1.

Existence of endemic equilibrium.
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Lemma 1. The interior equilibrium point Ẽ2 = (S ∗, I∗) is located in the area of A2 and it is a regular
equilibrium, where

S ∗ =
n
b

em1I∗ , I∗ =
a
b

em1I∗(1 −
n
kb

em1I∗).

Proof. In the function N1(t), we define

G1(S , I) , m2bS Ie−m1I+m2nI ,G2(I) , −m1I + m2nI

then
N1(t) = W(G1(S , I)) −G2(I)

and by using the properties of the Lambert W function, we can get

exp(−N1(t)) =exp(−W(G1(S , I)) + G2(I))

=
W(G1(S , I))

G1(S , I)
exp(G2(I)) =

W(G1(S , I))
m2bS I

.
(3.2)

Substituting Eq (3.2) into model (3.1), we have
dS
dt

= aS (1 −
S
k

) −
W(G1(S , I))

m2
,

dI
dt

=
W(G1(S , I))

m2
− nI,

S > S c. (3.3)

If the second of the above formulas is equal to zero, then there is W(G1(S , I)) = m2nI. Utilizing the
properties of the Lambert W function, we can obtain

S ∗ =
n
b

em1I∗ . (3.4)

Substituting (3.4) into the first formula in (3.3) and combining with W(G1(S , I)) = m2nI, we get

an
b

em1I∗(1 −
n
kb

em1I∗) = nI∗, (3.5)

I∗ =
a
b

em1I∗(1 −
n
kb

em1I∗). (3.6)

We consider I∗ > 0, and the parameters are all positive, that is,

(1 −
n
kb

em1I∗) > 0 (3.7)

which is equivalent to

R0 =
kb
n
> em1I∗ > 1. (3.8)

If R0 > 1, the interior equilibria Ẽ2 = (S ∗, I∗) satisfies condition S ∗ > S q, which means that Ẽ2 is
located in the area of A2 and it is a regular equilibrium. �
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Local stability of the endemic equilibrium Ẽ2.

Lemma 2. If the parameters satisfy the following relationship

−
T2

m2
+ n +

T1

m2
− a +

2aS ∗

k
> 0,

nT1

m2
+

aT2

m2
−

2aT2S ∗

m2k
− a +

2aS ∗

k
> 0,

(−
T2

m2
+ n +

T1

m2
− a +

2aS ∗

k
)2 − 4(

nT1

m2
+

aT2

m2
−

2aT2S ∗

m2k
− a +

2aS ∗

k
) > 0

then the system (3.3) has the point Ẽ2 as locally asymptotically stable.

Proof. We use the Jacobian matrix to analyze the stability of equilibrium point Ẽ2 and set c = −m1+m2n
and

D1(S , I) =aS (1 −
S
k

) −
W(G1(S , I))

m2
,

D2(S , I) =
W(G1(S , I))

m2
− nI.

(3.9)

The Jacobian matrix is as follows

J =

(
∂D1
∂S

∂D1
∂I

∂D2
∂S

∂D2
∂I

)
=

(
− 1

m2
T1 + a − 2aS

k − 1
m2

T2

− 1
m2

T1
1

m2
T2 − n

)
(3.10)

where T1 and T2 are defined as

T1 =
∂W(G1(S , I))

∂S
=

W(G1(S , I))
G1(S , I)(1 + W(G1(S , I)))

∂G1

∂S
,

T2 =
∂W(G1(S , I))

∂I
=

W(G1(S , I))
G1(S , I)(1 + W(G1(S , I)))

∂G1

∂I

with
∂G1

∂S
= m2bIecI ,

∂G1

∂I
= m2bIecI(1 + cI).

In order to simplify the calculation at the equilibrium point Ẽ2, we can get

T1 =
m2nI∗

G1(S ∗, I∗)(1 + m2nI∗)
m2bI∗ecI∗ =

m2nI∗

S ∗(1 + m2nI∗)
,

T2 =
m2nI∗

G1(S ∗, I∗)(1 + m2nI∗)
m2bS ∗ecI∗(1 + cI∗) =

m2n(1 + cI∗)
S ∗(1 + m2nI∗)

.

(3.11)

Thus, the characteristic equation at point Ẽ2 is

λ2+(−
T2

m2
+ n +

T1

m2
− a +

2aS ∗

k
)λ +

nT1

m2

+
aT2

m2
−

2aT2S ∗

m2k
− a +

2aS ∗

k
= 0.

(3.12)
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If the characteristic equation satisfies the following conditions

−
T2

m2
+ n +

T1

m2
− a +

2aS ∗

k
> 0,

nT1

m2
+

aT2

m2
−

2aT2S ∗

m2k
− a +

2aS ∗

k
> 0,

(−
T2

m2
+ n +

T1

m2
− a +

2aS ∗

k
)2 − 4(

nT1

m2
+

aT2

m2
−

2aT2S ∗

m2k
− a +

2aS ∗

k
) > 0.

it can be obtained that the characteristic equation has two negative roots in the region A2, which means
that the point Ẽ2 is locally asymptotically stable. �

4. Optimal control strategies

In this section, we investigate the dynamic behaviors of the system under control variables u1(t)
and u2(t). The first control equation u1(t) is to enhance prevention strategies, reduce the number of
patients, vaccinate and wear masks, or increase social distance. This control can reduce the probability
of illness among susceptible populations, represented by (1 − u1(t)). The second control equation
u2(t) represents accelerating the recovery time of patients, enhancing medical conditions, developing
specific drugs, and enhancing human immune capacity. We focus on the impact of media factor m1 on
the infected individuals, while ignoring the impact of m2 on infection rates. We set m1 , 0,m2 = 0 and
the system becomes 

dS
dt

= aS (1 −
S
k

) − e−m1IbIS (1 − u1(t)),

dI
dt

= e−m1IbIS (1 − u1(t)) − αI − βI − (γ + u2(t))I,

dR
dt

= (γ + u2(t))I − µR.

(4.1)

When ui = 1, (i = 1, 2) indicates complete control, and ui = 0 indicates that control is ineffective, we
consider the following optimal control problem to minimize the objective functional as given by

J(u1, u2) = min
0≤u1,u2≤1

∫ T f

0
(ω1I +

1
2

[ω2u2
1(t) + ω3u2

2(t)])dt. (4.2)

The weight constant ω1 represents the infected population, while ω2 and ω3 represent the weight
constants of personal protection and improvement of medical conditions, respectively. The terms
1
2ω2u2

1(t) and 1
2ω3u2

2(t) describe the costs associated with the corresponding intervention measures over
the time interval [0,T f ]. Assuming that the cost is proportional to the square of the corresponding
control function, we have

J(u∗1, u
∗
2) = min{J(u1, u2) : u1, u2 ∈ U}

whereU is defined by
U = {(u1, u2) | 0 ≤ u1, u2 ≤ 1}
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for t ∈ [0,T f ]. Therefore, in order to determine the necessary conditions that the optimal control
(u∗1, u

∗
2) must satisfy, Pontryagin’s maximum principle is used [29] and the Hamiltonian H for the

control problem is defined by:

H =ω1I +
1
2

[ω2u2
1(t) + ω3u2

2(t)]

+ λ1[aS (1 −
S
k

) − e−m1IbIS (1 − u1(t))],

+ λ2[e−m1IbIS (1 − u1(t)) − αI − βI − (γ + u2(t))I],
+ λ3[(γ + u2(t))I − µR]

(4.3)

and the adjoint variables λi(i = 1, 2, 3) are associated with the state variables of the model (4.1). The
expression satisfies the following:

dλ1

dt
= e−m1IbI(1 − u1(t))(λ1 − λ2) − aλ1 + 2λ1S

a
k
,

dλ2

dt
= (−m1e−m1IbIS + e−m1IbS )(1 − u1(t))(λ1 − λ2)

+ (α + β)λ2 − (γ + u2)λ3 + γ + u2(t) − ω1,

dλ3

dt
= µλ3

(4.4)

with the terminal (transversality) conditions λi(T f ) = 0, i = 1, 2, 3. Further, the optimal control double
(u∗1, u

∗
2) is given as follows:

u∗1 = max{0,min{1,
e−m1IbIS (λ2 − λ2)

ω2
}},

u∗2 = max{0,min{1,
I(λ2 − λ2)

ω3
}}.

(4.5)

5. Numerical simulations

In this section, we use numerical simulations to verify the rationality of the theory. Figures 1 and 2
display the relationship between the dynamic of the system and R0. When R0 < 1, the disease-free
equilibrium point (k, 0) of the system is located in region A1 or A2, depending on the values of m1

and m2. Figure 1(a) displays the equilibrium point as located in A1. It can be observed that changing
different initial values of the system will cross the line S = S q and stabilize at the equilibrium point.
The equilibrium point is located at A2 in Figure 1(b). It can be found that the trajectory starting from
A2 will stabilize at the equilibrium point, while the trajectory with an initial value at A1 will directly
pass through S = S q to reach the equilibrium point at A2. On the other hand, when R0 > 1, the system
dynamics are displayed in Figure 2. Any trajectory with an initial value at A1 or A2 will directly pass
through S = S q to stabilize at point Ẽ2, which is regular and is globally asymptotically stable in A2.

The system is not influenced by media factors, as described in Figure 3(a). When R0 > 1, the number
of diseases I(t) asymptotically stabilizes at a steady-state value. When R0 < 1, I(t) exhibits a downward
trend and achieves the desired control effect. In Figure 3(b), the media factor parameters are m1 = 0.2,
m2 = 0.8. The situation is similar to Figure 3(a), but when R0 < 1, the media related parameters m1 and
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m2 have no effect on the number of diseases. This indicates that when the basic reproduction number
is R0 < 1, the influence of media factors on the system is not significant. In a word, when infectious
diseases spread, media factors should be utilized at appropriate times to influence the disease.

The values of media-related parameters m1 or m2 are changed to explore the influence of media
factors on diseases. In Figure 3(c), the peak value of I(t) has a slight backward movement at the
increase of the m2 value. Figure 3(d) indicates that the peak value decreases with the increase of
m1 and the peak appearance time is slightly earlier. It is interesting to note that media reports need to
choose certain methods to ensure a positive impact on disease control. This depends on the authenticity
of media reports and the popularity of media reporting platforms.

The effects of parameters m1 and m2 on the infected population is shown in Figure 4, where the color
bar represents the fluctuation height. Without the influence of parameter m1, the system fluctuation
moves backward with the increase of m2, and the phenomenon of backward fluctuation is significant at
the m2 close to 1. When m1 is magnified to 0.2, the fluctuation moves backward slowly. Interestingly,
the situation of m2 = 0 is different from m1 = 0. As m1 increases, the second wave of I(t) shifts
significantly forward. If m2 = 0.4, the system fluctuations and changes are not significant.

Sensitivity analysis can analyze and understand the impact of different parameters on specific
variables, which may help us control disease transmission or provide guidance. Referring to the
definition in [27], the sensitivity index of R0 for each parameter c is defined as follows:

LR0
c =

∂R0

∂c
×

c
R0
.

Among all positive correlation factors in Fig.5, the population carrying capacity k and basic
transmission coefficient b are the highest. This indicates that the value of k or b is positively correlated
to R0 with a degree of 100%. However, among all the negative correlation factors, the rate of recovery
from infection γ is the most sensitive parameter, and the value of γ is negatively correlated to R0 with
a degree of 78.95%.

The numerical simulation of the optimal control system is implemented using MATLAB, and the
equation is solved using the forward backward of the fourth order Runge-Kutta method [28]. The
weight constants are chosen as ω1 = 50, ω2 = 100, and ω3 = 1. Figure 6(a) exhibits the time history of
two controls u1 and u2 coexisting and Figure 6(d) represents the disease population quickly reaching
the minimum value under dual-control. Figure 6(b,c) investigates the dynamics of the system under a
single control of u1 and u2, corresponding to Figure 6(e,f). It is worth noting that under a single control,
u1 has a stronger control effect on the disease population, while u2 can reduce the peak of the disease
population.

From the perspective of epidemics, maintaining an effective social distance under the influence
of control u1 reduces the probability of illness in susceptible populations and achieves the effect of
controlling the total number of infectious diseases as quickly as possible in a limited period of time.
Under the influence of control u2, the effect of controlling the number of diseases is achieved relatively
slowly in a short period of time by accelerating the recovery time of patients and improving medical
conditions. Under the influence of both control strategies, the effect of controlling the number of
diseases is stronger and faster, which provides ideas for the prevention of epidemics.
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Figure 1. The phase diagram of the SIR model under the case of R0 = 0.6579 < 1. The dotted
line indicates S = S q, the left side of the dotted line is the A1 area, and the right side is the A2

area. The black point is the equilibrium point of disease elimination E∗0 and the parameters are
b = 0.5, r = 1.5, β = 0.2, α = 0.2, k = 2.5, a = 0.1, µ = 0.1 (a) S (0) = 4,m1 = 0.2,m2 = 0.8;
(b) I(0) = 0.5,m1 = 0.6,m2 = 0.4.
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Figure 2. The phase diagram of the SIR model under the case of R0 = 1.9737 > 1. The
dotted line indicates S = S q, the left side of the dotted line is the A1 area, and the right side is
the A2 area. The black points are the local equilibrium points E∗0 and Ẽ2 and the parameters
are b = 1.5, r = 1.5, β = 0.2, α = 0.2, k = 2.5, a = 0.1, µ = 0.1,m1 = 0.2,m2 = 0.8.
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Figure 3. The time history diagram of disease I(t) and the model select different parameters
under the case of R0 < 1 (red line) and R0 > 1 (blue line),(a) m1=0, m2=0; (b) m1=0.2,
m2=0.8; (c) In the case of m1 = 0.2, m2 = 0, 0.4 or 0.8. (d) m2 = 0.4, m1 = 0, 0.4 or 0.8.

Figure 4. The influence of parameters m1 and m2 on I(t). (a) The system fix m1 = 0 and (b)
m1 = 0.2, (c) fix m2 = 0 and (d) m1 = 0.4.
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Figure 6. (a) Combined effects of optimal controls u1(t), u2(t) on the system. (b) or (c)
Control profile (u1(t) or u2(t)) and its effects on the system. (d–f) Time history diagrams
under different control situations of I(t).
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6. Conclusions

Inspired by COVID-19, this paper constructed an epidemic model to include media factors to
explore the control effects of media factors on diseases. In the theoretical analysis, the media factor
uses the Lambert W function to transform the system defined by the implicit function into the displayed
PWS function. The research results indicated that the media factor has an obvious control effect on the
epidemic situation under the basic reproduction number R0 > 1, which verifies that the media has an
inhibitory effect on disease.

Sensitivity analysis, as a method of analyzing parameters, revealed that the population carrying
capacity k and basic transmission coefficient b are positively correlated with R0, while the rate of
recovery from infection γ is negatively correlated with R0. This may provide a control strategy for
disease control. Finally, the optimal control strategy was designed to analyze the impact of different
controls on the system. It can be concluded that dual-control has the best effect on disease control.
This result may provide methods for epidemic control.
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