Research article

The power sum of balancing polynomials and their divisible properties

Hong Kang*

School of Mathematics, Northwest University, Xi'an, 710127, China

* Correspondence: Email: kanghong@stumail.nwu.edu.cn.

Abstract

In recent years, many scholars have studied the division properties of polynomials and sequence power sums. In this paper, we use Girard-Waring formula and combinatorial method to study the power sum problem of balancing polynomials and Lucas-balancing polynomials, and then study the division of balancing polynomials and Lucas-balancing polynomials by mathematical induction and the properties of polynomials.

Keywords: balancing polynomials; Lucas-balancing polynomials; power sum problem; divisible properties
Mathematics Subject Classification: 11B39, 11B37

1. Introduction

Behera and Panda [1] introduced the concept of balancing numbers B_{n}, a positive integer n is a balancing number if

$$
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r), n, r \in N^{*} .
$$

That r is the balancer corresponding to the balancing number n. The balancing numbers B_{n} satisfy the relation $B_{n+1}=6 B_{n}-B_{n-1}, n \geq 1$ with $B_{0}=0, B_{1}=1$. The sequence $C_{n}=\sqrt{8 B_{n}^{2}+1}$ is called a Lucasbalancing number. The Lucas-balancing number satisfies same relation $C_{n+1}=6 C_{n}-C_{n-1}, n \geq 1$ with $C_{0}=1, \mathrm{C}_{1}=3$. Some conclusions about these two sequences can be found in the references $[2,3]$. The balancing polynomial and the Lucas-balancing polynomial are natural extensions of balancing numbers and Lucas-balancing numbers.

For any integer $n \geq 0$, the balancing polynomials $B_{n}(x)$ and Lucas-balancing polynomials $C_{n}(x)$ are defined as follows (see Frontczak and Goy [4]):

$$
B_{n}(x)=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{k}\binom{n-1-k}{k}(6 x)^{n-1-2 k},
$$

$$
C_{n}(x)=\frac{n}{2} \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{(-1)^{k}}{n-k}\binom{n-k}{k}(6 x)^{n-2 k},
$$

where $\lfloor x\rfloor$ denotes the greatest integer $\leq x$.
$B_{n}(x)$ and $C_{n}(x)$ are the second-order linear recurrence polynomials, they satisfy the recurrence formulae (see Frontczak and Goy [4]):
$B_{n+1}(x)=6 x B_{n}(x)-B_{n-1}(x)$ for all $n \geq 1$, with $B_{0}(x)=0, B_{1}(x)=1$,
$C_{n+1}(x)=6 x C_{n}(x)-C_{n-1}(x)$ for all $n \geq 1$, with $C_{0}(x)=1, C_{1}(x)=3 x$.
The closed forms which are also called Binets formulas for balancing polynomials and Lucasbalancing polynomials are given by

$$
B_{n}(x)=\frac{\alpha^{n}(x)-\beta^{n}(x)}{2 \sqrt{9 x^{2}-1}}, \mathrm{C}_{n}(x)=\frac{\alpha^{n}(x)+\beta^{n}(x)}{2}
$$

where $\alpha(x)=3 x+\sqrt{9 x^{2}-1}, \beta(x)=3 x-\sqrt{9 x^{2}-1}$. The relations $B_{n}(-x)=(-1)^{n+1} B_{n}(x)$ and $C_{n}(-x)=(-1)^{n} C_{n}(x)$ follow from $\alpha(-x)=-\beta(x)$ and $-\alpha(x)=\beta(x)$.

If we take $x=1$, then $\left\{B_{n}(x)\right\}$ becomes balancing sequences $\left\{B_{n}\right\}$, and $\left\{C_{n}(x)\right\}$ becomes Lucasbalancing sequences $\left\{C_{n}\right\}$. Such balancing numbers and balancing polynomials have been widely studied in recent years. Frontczak [5] proves the sum of powers of balancing polynomials and Lucas balancing polynomials:

$$
\begin{gathered}
B_{n}^{2 m+1}(x)=2^{-2 m}\left(9 x^{2}-1\right)^{-m} \sum_{k=0}^{m}\binom{2 m+1}{m-k}(-1)^{m-k} B_{(2 k+1) n}(x), \\
C_{n}^{2 m+1}(x)=2^{-2 m} \sum_{k=0}^{m}\binom{2 m+1}{m-k} C_{(2 k+1) n}(x) .
\end{gathered}
$$

Kim and Kim [6] used nine orthogonal polynomials to represent the sum of the finite product of balancing polynomials to obtained the following result:

$$
\begin{aligned}
& \sum_{i_{1}+i_{2}+\cdots+i_{r+1}=n} B_{i_{1}+1}(x) B_{i_{2}+1}(x) \cdots B_{i_{r+1}+1}(x) \\
= & \frac{(-2)^{n}}{r!} \sum_{k=0}^{n} \frac{(-2)^{k} \Gamma(k+\alpha+\beta+1)}{\Gamma(2 k+\alpha+\beta+1)} \sum_{l=0}^{\left[\frac{n-k}{2}\right]} \frac{\left(-\frac{1}{4}\right)^{l}(n+r-l)!}{l!(n-k-2 l)!} \\
& \times_{2} F_{1}(k+2 l-n, k+\beta+1 ; 2 k+\alpha+\beta+2 ; 2) P_{k}^{(\alpha, \beta)}(3 x) .
\end{aligned}
$$

Ray [7] studied the divisible property of balancing numbers and Lucas-balancing number obtained the congruence:

$$
B_{2 m n+k} \equiv(-1)^{n} B_{k}\left(\bmod C_{m}\right), \quad C_{2 m n+k} \equiv(-1)^{n} C_{k}\left(\bmod C_{m}\right) .
$$

For any integer $n \geq 0$, the famous Fibonacci polynomials $F_{n}(x)$ and Lucas polynomials $L_{n}(x)$ are defined as follows (see Wang and Zhang [8]) :
$F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$, with $F_{0}(x)=0, F_{1}(x)=1$,
$L_{n+2}(x)=x L_{n+1}(x)+L_{n}(x)$, with $L_{0}(x)=2, L_{1}(x)=x$.
These polynomials and sequences have some similarities in structure and properties. Kim [9-13] obtained many meaningful results by studying connections between polynomials. Mathematics has a
wide range of applications in other disciplines, see [14-16]. We can obtain some divisible properties of polynomials and sequences in references [17-19]. For example, Wang and Zhang [8] proved the congruence of the sum of powers of Fibonacci numbers. That is

$$
L_{1} L_{3} L_{5} \cdots L_{2 m+1} \sum_{k=1}^{n} L_{2 k}^{2 m+1} \equiv 0 \bmod \left(L_{2 n+1}-1\right)
$$

In this paper, we use the properties of balancing polynomials and Lucas balancing polynomials to study the divisible properties of $\sum_{m=0}^{h} B_{2^{s} m l}^{2 n+1}(x)$ and $\sum_{m=0}^{h} C_{2^{s} m l}^{2 n+1}(x)$ to get more general results. That is, we shall prove the following two theorems.
Theorem 1. Let n and h be non-negative integer with $h \geq 1, s$ and l be positive integers. Then we have the congruence

$$
\begin{aligned}
& 2^{2 n+1}\left(9 x^{2}-1\right)^{n+1} B_{2^{s-1} l}(x) B_{2^{s-1} 3 l}(x) \cdots B_{2^{s-1}(2 n+1) l}(x) \sum_{m=0}^{h} B_{2^{s} m l}^{2 n+1}(x) \\
\equiv & 0 \bmod \left(C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)\right) .
\end{aligned}
$$

Theorem 2. Let n and h be non-negative integers with $h \geq 1, s$ and l be positive integers. Then we have the congruence

$$
\begin{aligned}
& 2^{2 n+1} B_{2^{s-1} l}(x) B_{2^{s-1} 3 l}(x) \cdots B_{2^{s-1}(2 n+1) l}(x) \sum_{m=0}^{h} C_{2^{s} m l}^{2 n+1}(x) \\
\equiv & 0 \bmod \left(B_{2^{s-1} l(2 h+1)}(x)+B_{2^{s-1} l}(x)\right) .
\end{aligned}
$$

From the two theorems, we can obtain the following corollaries.
Corollary 1. For any non-negative integers n and h with $h \geq 1$, we have

$$
2^{2 n+1}\left(9 x^{2}-1\right)^{n+1} B_{1}(x) B_{3}(x) \cdots B_{(2 n+1)}(x) \sum_{m=0}^{h} B_{2 m}^{2 n+1}(x) \equiv 0 \bmod \left(C_{2 h+1}(x)-3 x\right)
$$

Corollary 2. For any non-negative integers n and h with $h \geq 1$, we have

$$
2^{2 n+1} B_{2}(x) B_{6}(x) \cdots B_{2(2 n+1)}(x) \sum_{m=0}^{h} C_{4 m}^{2 n+1}(x) \equiv 0 \bmod \left(B_{2(2 h+1)}(x)+6 x\right)
$$

Corollary 3. For any non-negative integers n and h with $h \geq 1$, and s and l be positive integers, we have

$$
2^{5 n+4} B_{2^{s-1} l} B_{2^{s-1} 3 l} \cdots B_{2^{s-1}(2 n+1) l} \sum_{m=0}^{h} B_{2^{s} m l}^{2 n+1} \equiv 0 \bmod \left(C_{2^{s-1} l(2 h+1)}-C_{2^{s-1} l}\right) .
$$

Corollary 4. For any non-negative integers n and h with $h \geq 1$, and s and l be positive integers, we have

$$
2^{2 n+1} B_{2^{s-1} l} B_{2^{s-1} 3 l} \cdots B_{2^{s-1}(2 n+1) l} \sum_{m=0}^{h} C_{2^{s} m l}^{2 n+1} \equiv 0 \bmod \left(B_{2^{s-1} l(2 h+1)}+B_{2^{s-1} l}\right)
$$

For Chebyshev polynomials of the first kind $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$ with $T_{0}(x)=1, T_{1}(x)=$ x and Chebyshev polynomials of the second kind $U_{n+1}(x)=2 x U_{n}(x)-U_{n-1}(x)$ with $U_{0}(x)=1$, $U_{1}(x)=2 x$. The balancing polynomials possess a simple connection to Chebyshev polynomials of the first and second kind $T_{n}(x)$ and $U_{n}(x)$, specifically $B_{n}(x)=U_{n-1}(3 x)$ and $C_{n}(x)=T_{n}(3 x)$.

Taking $x=\frac{1}{3} x$ in Theorem 1, we can get the following,
Corollary 5. For any non-negative integers n and h with $h \geq 1$, and s and l be positive integers, we have

$$
\begin{aligned}
& 2^{2 n+1}\left(x^{2}-1\right)^{n+1} U_{2^{s-1} l-1}(x) U_{2^{s-1} 3 l-1}(x) \cdots U_{2^{s-1}(2 n+1) l-1}(x) \sum_{m=0}^{h} U_{2^{s} m l-1}^{2 n+1}(x) \\
& \equiv 0 \bmod \left(T_{2^{s-1} l(2 h+1)}(x)-T_{2^{s-1} l}(x)\right) .
\end{aligned}
$$

Taking $s=1$ and $x=\frac{1}{3} x$ in Theorem 2, we can get the following,
Corollary 6. For any non-negative integers n and h with $h \geq l$, and l be positive integers, we have

$$
2^{2 n+1} U_{l-1}(x) U_{3 l-1}(x) \cdots U_{(2 n+1) l-1}(x) \sum_{m=0}^{h} T_{2 m l}^{2 n+1}(x) \equiv 0 \bmod \left(U_{l(2 h+1)-1}(x)+U_{l-1}(x)\right) .
$$

2. Some lemmas

In the following, we use the properties of balancing polynomials and Lucas-balancing polynomials to prove our next several lemmas, which will help us better complete the proofs of the theorems. Lemma 1. Let s and h be positive integers. Then, for any integers n and l, we have the identity

$$
C_{2^{s-1} l(2 n+1)(2 h+1)}(x)-C_{2^{s-1} l(2 n+1)}(x) \equiv 0 \bmod \left(C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)\right) .
$$

Proof. We prove this polynomial congruence by complete induction for $n \geq 0$. It is clear that Lemma 1 is true for $n=0$. If $n=1$, then note $C_{2^{s-1} 3 l(2 h+1)}(x)=4 C_{2^{s-1} l(2 h+1)}^{3}(x)-3 C_{2^{s-1} l(2 h+1)}(x)$, we have

$$
\begin{aligned}
& C_{2^{s-1} 3 l(2 \mathrm{~h}+1)}(x)-C_{2^{s-1} 3 l}(x) \\
= & 4 C_{2^{s-1} l(2 h+1)}^{3}(x)-3 C_{2^{s-1} l(2 \mathrm{~h}+1)}(x)-4 C_{2^{s-1} l}^{3}(x)+3 C_{2^{s-1} l}(x) \\
= & \left(C_{2^{s-1} l(2 \mathrm{~h}+1)}(x)-C_{2^{s-1} l}(x)\right)\left(4 C_{2^{s-1} l(2 h+1)}^{2}(x)\right. \\
& \left.+4 C_{2^{s-1} l(2 \mathrm{~h}+1)}(x) C_{2^{s-1} l}(x)+4 C_{2^{s-1} l}^{2}(x)-3\right) \\
\equiv & 0 \bmod \left(C_{2^{s-1} l(2 \mathrm{~h}+1)}(x)-C_{2^{s-1} l}(x)\right) .
\end{aligned}
$$

That is to say, Lemma 1 is true for $n=1$.
Suppose that Lemma 1 is true for all positive integers $0 \leq n \leq j$. That is,

$$
\begin{equation*}
C_{2^{s-1} l(2 n+1)(2 h+1)}(x)-C_{2^{s-1} l(2 n+1)}(x) \equiv 0 \bmod \left(C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)\right), \tag{2.1}
\end{equation*}
$$

for all $0 \leq n \leq j$.
Then, for $n=j+1 \geq 2$, we have

$$
C_{2^{s-1} 2 l(2 h+1)}(x) C_{2^{s-1} l(2 n+1)(2 h+1)}(x)
$$

$$
\begin{aligned}
& =\frac{1}{4}\left(\alpha^{2^{s-1} 2 l(2 h+1)}(x)+\beta^{2^{s-1} 2 l(2 h+1)}(x)\right)\left(\alpha^{2^{s-1} l(2 n+1)(2 h+1)}(x)+\beta^{2^{s-1} l(2 n+1)(2 h+1)}(x)\right) \\
& =\frac{1}{4}\left(\alpha^{2^{s-1} l(2 h+1)(2 n+3)}(x)+\beta^{2^{s-1} l(2 h+1)(2 n-1)}(x)+\alpha^{2^{s-1} l(2 h+1)(2 n-1)}(x)+\beta^{2^{s-1} l(2 h+1)(2 n+3)}(x)\right) \\
& =\frac{1}{2}\left(C_{2^{s-1} l(2 h+1)(2 n+3)}(x)+C_{2^{s-1} l(2 h+1)(2 n-1)}(x)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& C_{2^{s-1} 2 l(2 h+1)}(x)=\frac{1}{2}\left(\alpha^{2^{s-1} 2 l(2 h+1)}(x)+\beta^{s^{s-1} 2 l(2 h+1)}(x)\right) \\
= & \frac{1}{2}\left(\alpha^{2^{s-1} l(2 h+1)}(x)+\beta^{\beta^{s-1} l(2 h+1)}(x)\right)^{2}-1 \\
\equiv & 2 C_{2^{s-1} l}^{2}(x)-1 \bmod \left(C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)\right) .
\end{aligned}
$$

Applying inductive hypothesis (2.1), we have

$$
\begin{aligned}
& C_{2^{s-1} l(2 n+1)(2 h+1)}(x)-C_{2^{s-1} l(2 n+1)}(x) \\
= & C_{2^{s-1} l(2 j+3)(2 h+1)}(x)-C_{2^{s-1} l(2 j+3)}(x) \\
= & 2 C_{2^{s-1} 2 l(2 h+1)}(x) C_{2^{s-1} l(2 j+1)(2 h+1)}(x)-C_{2^{s-1} l(2 j-1)(2 h+1)}(x) \\
& -2 C_{2^{s-1} 2 l}(x) C_{2^{s-1} l(2 j+1)}(x)+C_{2^{s-1} l(2 j-1)}(x) \\
= & 2\left(2 C_{2^{s-1} l(2 h+1)}^{2}(x)-1\right) C_{2^{s-1} l(2 j+1)(2 h+1)}(x)-C_{2^{s-1} l(2 j-1)(2 \mathrm{~h}+1)}(x) \\
& -2\left(2 C_{2^{s-1} l}^{2}(x)-1\right) C_{2^{s-1} l(2 j+1)}(x)+C_{2^{s-1} l(2 j-1)}(x) \\
\equiv & 2\left(2 C_{2^{s-1} l}^{2}(x)-1\right)\left(C_{2^{s-1} l(2 j+1)(2 h+1)}(x)-C_{2^{s-1} l(2 j+1)}(x)\right) \\
& -\left(C_{2^{s-1} l(2 j-1)(2 h+1)}(x)-C_{2^{s-1} l(2 j-1)}(x)\right) \\
\equiv & 0 \bmod \left(C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)\right) .
\end{aligned}
$$

That is to say, the Lemma 1 is true for $n=j+1$.
Now Lemma 1 follows from complete induction.
Lemma 2. Let s and h be positive integers. Then, for any integers n and l, we have the identity

$$
B_{2^{s-1} l(2 n+1)(2 h+1)}(x)+B_{2^{s-1} l(2 n+1)}(x) \equiv 0 \bmod \left(B_{2^{s-1} l(2 h+1)}(x)+B_{2^{s-1} l}(x)\right) .
$$

Proof. We can also prove Lemma 2 by complete induction. If $n=0$, then it is clear that Lemma 2 is true. If $n=1$, then note

$$
B_{2^{s-1} 3 l(2 \mathrm{~h}+1)}(x)=4\left(9 x^{2}-1\right) B_{2^{s-1} l(2 h+1)}^{3}(x)+3 B_{2^{s-1} l(2 \mathrm{~h}+1)}(x),
$$

we have

$$
\begin{aligned}
& B_{2^{s-1} 3 l(2 \mathrm{~h}+1)}(x)+B_{2^{s-1} 3 l}(x) \\
= & 4\left(9 x^{2}-1\right) B_{2^{s-1} l(2 h+1)}^{3}(x)+3 B_{2^{s-1} l(2 \mathrm{~h}+1)}(x) \\
& +4\left(9 x^{2}-1\right) B_{2^{s-1} l}^{3}(x)+3 B_{2^{s-1} l}(x)
\end{aligned}
$$

$$
\begin{aligned}
= & 4\left(9 x^{2}-1\right)\left(B_{2^{s-1} l(2 h+1)}(x)+B_{2^{s-1} l}(x)\right)\left(B_{2^{s-1} l(2 h+1)}^{2}(x)+B_{2^{s-1} l}^{2}(x)\right. \\
& \left.-B_{2^{s-1} l(2 h+1)}(x) B_{2^{s-1} l}(x)\right)+3\left(B_{2^{s-1} l(2 h+1)}(x)+B_{2^{s-1} l}(x)\right) \\
\equiv & 0 \bmod \left(B_{2^{s-1} l(2 \mathrm{~h}+1)}(x)+B_{2^{s-1} l}(x)\right) .
\end{aligned}
$$

So Lemma 2 is true for $n=1$. Suppose that Lemma 2 is true for positive integers $0 \leq n \leq j$. That is,

$$
\begin{equation*}
B_{2^{s-1} l(2 n+1)(2 h+1)}(x)+B_{2^{s-1} l(2 n+1)}(x) \equiv 0 \bmod \left(B_{2^{s-1} l(2 h+1)}(x)+B_{2^{s-1} l}(x)\right) \tag{2.2}
\end{equation*}
$$

for all $0 \leq n \leq j$.
Then, for $n=k+1$, note the identities

$$
\begin{aligned}
& 2 C_{2^{s-1} 2 l(2 h+1)}(x) B_{2^{s-1} l(2 n+1)(2 h+1)}(x) \\
= & \frac{1}{2 \sqrt{9 x^{2}-1}}\left(\alpha^{2^{s-1} 2 l(2 h+1)}(x)+\beta^{2^{s-1} 2 l(2 h+1)}(x)\right)\left(\alpha^{s s-1 l(2 n+1)(2 h+1)}(x)-\beta^{2^{s-1} l(2 n+1)(2 h+1)}(x)\right) \\
= & \frac{1}{2 \sqrt{9 x^{2}-1}}\left(\alpha^{2^{s-1} l(2 h+1)(2 n+3)}(x)-\beta^{2^{s-1} l(2 h+1)(2 n-1)}(x)+\alpha^{2^{s-1} l(2 h+1)(2 n-1)}(x)-\beta^{s^{s-1} l(2 h+1)(2 n+3)}(x)\right) \\
= & B_{2^{s-1} l(2 n+3)(2 h+1)}(x)+B_{2^{s-1} l(2 n-1)(2 h+1)}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
& C_{2^{s-1} 2 l(2 h+1)}(x)=\frac{1}{2}\left(\alpha^{2^{s-1} 2 l(2 h+1)}(x)+\beta^{s^{s-1} 2 l(2 h+1)}(x)\right) \\
= & \frac{1}{2}\left(\alpha^{2^{s-1} l(2 h+1)}(x)-\beta^{s-1 l(2 h+1)}(x)\right)^{2}+1 \\
= & 2\left(9 x^{2}-1\right) B_{2^{s-1} l(2 h+1)}^{2}(x)+1 \\
\equiv & 2\left(9 x^{2}-1\right) B_{2^{s-1} l}^{2}(x)+1 \bmod \left(B_{2^{s-1} l(2 h+1)}(x)+B_{2^{s-1} l}(x)\right),
\end{aligned}
$$

applying inductive hypothesis (2.2), we have

$$
\begin{aligned}
& B_{2^{s-1} l(2 n+1)(2 h+1)}(x)+B_{2^{s-1} l(2 \mathrm{n}+1)}(x) \\
= & B_{2^{s-1} l(2 j+3)(2 \mathrm{~h}+1)}(x)+B_{2^{s-1} l(2 j+3)}(x) \\
= & 2 C_{2^{s-1} 2 l(2 \mathrm{~h}+1)}(x) B_{2^{s-1} l(2 j+1)(2 \mathrm{~h}+1)}(x)-B_{2^{s-1} l(2 j-1)(2 h+1)}(x) \\
& +2 C_{2^{s-1}}(x) B_{2^{s-1} l(2 j+1)}(x)-B_{2^{s-1} l(2 j-1)}(x) \\
= & {\left[4\left(9 x^{2}-1\right) B_{2^{s-1} l(2 h+1)}^{2}(x)+2\right] B_{2^{s-1} l(2 j+1)(2 h+1)}(x)-B_{2^{s-1} l(2 j-1)(2 h+1)}(x) } \\
& +\left[4\left(9 x^{2}-1\right) B_{2^{s-1} l}^{2}(x)+2\right] B_{2^{s-1} l(2 j+1)}(x)-B_{2^{s-1} l(2 j-1)}(x) \\
\equiv & 2\left[2\left(9 x^{2}-1\right) B_{2^{s-1} l}^{2}(x)+1\right]\left(B_{2^{s-1} l(2 j+1)(2 h+1)}(x)+B_{2^{s-1} l(2 j+1)}(x)\right) \\
& -\left(B_{2^{s-1} l(2 j-1)(2 h+1)}(x)+B_{2^{s-1} l(2 j-1)}(x)\right) \\
\equiv & 0 \bmod \left(B_{2^{s-1} l(2 h+1)}(x)+B_{2^{s-1} l}(x)\right) .
\end{aligned}
$$

This completes the proof of Lemma 2.
Lemma 3. For all non-negative integers r and real numbers w, v, we have the identity

$$
\sum_{k=0}^{\left[\frac{r}{2}\right]}(-1)^{k} \frac{r}{r-k}\binom{r-k}{k}(w+v)^{r-2 k}(w v)^{k}=w^{r}+v^{r}
$$

in which $[x]$ denotes the greatest integer $\leq x$.
Proof. The formula due to E. Waring [20] and can be found in H. W. Gould [21].

3. Proofs of the theorems

We shall prove our theorems by mathematical induction. Taking $w=\alpha^{2^{s} m l}(x), v=-\beta^{2^{s} m l}(x)$ and $r=2 n+1$ in Lemma 3, we notice that $w v=-1$, from the expression of $B_{n}(x)$ we have

$$
\begin{align*}
& B_{2^{s} m l(2 n+1)}(x) \\
= & \sum_{k=0}^{n}(-1)^{k} 2^{2 n-2 k} \frac{2 n+1}{2 n+1-k}\binom{2 n+1-k}{k} B_{2^{s} m l}^{2 n+2 k}(x)\left(\sqrt{9 x^{2}-1}\right)^{2 n-2 k}(-1)^{k} \\
= & \sum_{k=0}^{n} 2^{2 n-2 k}\left(\sqrt{9 x^{2}-1}\right)^{2 n-2 k} \frac{2 n+1}{2 n+1-k}\binom{2 n+1-k}{k} B_{2^{s} m l}^{2 n+1-2 k}(x) . \tag{3.1}
\end{align*}
$$

For any integer $h \geq 1$, from (3.1) we have

$$
\begin{align*}
& \sum_{m=0}^{h}\left(B_{2^{s} m l(2 n+1)}(x)-(2 n+1) B_{2^{s} m l}(x)\right) \\
= & \sum_{k=0}^{n-1} \frac{2 n+1}{2 n+1-k} 2^{2 n-2 k}\left(9 x^{2}-1\right)^{n-k}\binom{2 n+1-k}{k} \sum_{m=0}^{h} B_{2^{s} m l}^{2 n+1-2 k}(x) . \tag{3.2}
\end{align*}
$$

Note the identities

$$
\begin{align*}
& \sum_{m=0}^{h} B_{2^{s} m l(2 n+1)}(x)=\sum_{m=0}^{h} \frac{1}{2 \sqrt{9 x^{2}-1}}\left(\alpha^{2^{s} m l(2 n+1)}(x)-\beta^{2^{s} m l(2 n+1)}(x)\right) \\
& =\frac{1}{2 \sqrt{9 x^{2}-1}}\left(\frac{1-\alpha^{2^{s} l(2 n+1)(h+1)}(x)}{1-\alpha^{2 s l(2 n+1)}(x)}-\frac{1-\beta^{2^{s} l(2 n+1)(h+1)}(x)}{1-\beta^{2 s l(2 n+1)}(x)}\right) \\
& =\frac{1}{2 \sqrt{9 x^{2}-1}}\left(\frac{\alpha^{2^{s-1} l(2 n+1)(2 h+1)}(x)-\beta^{2 s-1} l(2 n+1)}{\alpha^{2 s-1}(2 n+1)}(x)-\beta^{2 s-1 /(2 n+1)}(x) \quad\right. \\
& \left.-\frac{\alpha^{2^{s-1} l(2 n+1)}(x)-\beta^{2^{s-1} l(2 n+1)(2 h+1)}(x)}{\alpha^{2 s-1} /(2 n+1)}(x)-\beta^{2 s-1}(2 n+1)(x) \quad\right) \\
& =\frac{C_{2^{s-1}(2 h+1)(2 n+1)}(x)-C_{2^{s-1} l(2 n+1)}(x)}{2\left(9 x^{2}-1\right) B_{2^{s-1}(2 n+1)}(x)} \text {. } \tag{3.3}
\end{align*}
$$

And

$$
\begin{equation*}
\sum_{m=0}^{h} C_{2^{s} m l(2 n+1)}(x)=\frac{1}{2} \frac{B_{2^{s-1} 1(2 n+1)(2 h+1)}(x)+B_{2^{s-1} l(2 n+1)}(x)}{B_{2^{s-1} l(2 n+1)}(x)} \tag{3.4}
\end{equation*}
$$

Combining (3.2) and (3.3) we have

$$
\sum_{m=0}^{h}\left(B_{2^{s} m l(2 n+1)}(x)-(2 n+1) B_{2^{s} m l}(x)\right)
$$

$$
\begin{align*}
= & \frac{C_{2^{s-1} l(2 h+1)(2 n+1)}(x)-C_{2^{s-1} l(2 n+1)}(x)}{2\left(9 x^{2}-1\right) B_{2^{s-1} l(2 n+1)}(x)} \\
& -(2 n+1) \frac{C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)}{2\left(9 x^{2}-1\right) B_{2^{s-1} l}(x)} \\
= & \sum_{k=0}^{n-1} \frac{2 n+1}{2 n+1-k} 2^{2 n-2 k}\left(9 x^{2}-1\right)^{n-k}\binom{2 n+1-k}{k} \sum_{m=0}^{h} B_{2^{s m l}}^{2 n+1-2 k}(x) . \tag{3.5}
\end{align*}
$$

Now we apply (3.5) and mathematical induction to prove Theorem 1. If $n=1$, then from (3.5) we have

$$
\begin{align*}
& 2\left(9 x^{2}-1\right) B_{2^{s-1} l}(x) B_{2^{s-1} 3 l}(x) \\
&\left.-3 \frac{C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)}{2\left(9 x^{2}-1\right) B_{2^{s-1} l}(x)}\right) \\
& 2\left(9 x^{2}-1\right) B_{2^{s-1} 3 l}(x) \tag{3.6}\\
&= 8\left(9 x^{2}-1\right)^{2} B_{2^{s-1} l}(x) B_{2^{s-1} 3 l}(x) \sum_{m=0}^{h} B_{2^{s} m l}^{3}(x) .
\end{align*}
$$

From Lemma 1 we know that

$$
\begin{align*}
& 2\left(9 x^{2}-1\right) B_{2^{s-1} l}(x) B_{2^{s-1} 3 l}(x)\left(\frac{C_{2^{s-1} 3 l(2 h+1)}(x)-C_{2^{s-1} 3 l}(x)}{2\left(9 x^{2}-1\right) B_{2^{s-1} 3 l}(x)}\right. \\
& \left.-3 \frac{C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)}{2\left(9 x^{2}-1\right) B_{2^{s-1} l}(x)}\right) \\
\equiv & 0 \bmod \left(C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)\right) . \tag{3.7}
\end{align*}
$$

Combining (3.6) and (3.7) we know that Theorem 1 is true for $n=1$.
Suppose that Theorem 1 is true for all integers $1 \leq n \leq j$. Then, for $n=j+1$, from (3.5) we have

$$
\begin{align*}
& \frac{C_{2^{s-1} l(2 h+1)(2 j+3)}(x)-C_{2^{s-1} l(2 j+3)}(x)}{2\left(9 x^{2}-1\right) B_{2^{s-1} l(2 j+3)}(x)}-(2 j+3) \frac{C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)}{2\left(9 x^{2}-1\right) B_{2^{s-1} l}(x)} \\
= & (2 j+3) \sum_{k=0}^{j} \frac{1}{2 j+3-k}\binom{2 j+3-k}{k} 2^{2 j+2-2 k}\left(9 x^{2}-1\right)^{j+1-k} \sum_{m=0}^{h} B_{2^{s} m l}^{2 j+3-2 k}(x) \\
= & (2 j+3) \sum_{k=1}^{j} \frac{1}{2 j+3-k}\binom{2 j+3-k}{k} 2^{2 j+2-2 k}\left(9 x^{2}-1\right)^{j+1-k} \sum_{m=0}^{h} B_{2^{s} m l}^{2 j+3-2 k}(x) \\
& +2^{2 j+2}\left(9 x^{2}-1\right)^{j+1} \sum_{m=0}^{h} B_{s^{s} m l}^{2 j+3}(x) . \tag{3.8}
\end{align*}
$$

From Lemma 1 we have

$$
\begin{align*}
& 2\left(9 x^{2}-1\right) B_{2^{s-1} \cdot l}(x) B_{2^{s-1} \cdot 3 l}(x) \cdots B_{2^{s-1} \cdot(2 n+1) l}(x) \\
& \frac{C_{2^{s-1} l(2 h+1)(2 n+1)}(x)-C_{2^{s-1} l(2 n+1)}}{2\left(9 x^{2}-1\right) B_{2^{s-1} l(2 n+1)}(x)} \\
\equiv & 0 \bmod \left(C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)\right) . \tag{3.9}
\end{align*}
$$

Applying inductive hypothesis (3.8), we have

$$
\begin{align*}
& B_{2^{s-1} l}(x) B_{2^{s-1} 3 l}(x) \cdots B_{2^{s-1}(2 n+1) l}(x) \sum_{k=1}^{j} \frac{2 j+3}{2 j+3-k}\binom{2 j+3-k}{k} \\
& \times 2^{2 j+3-2 k}\left(9 x^{2}-1\right)^{j+2-k} \sum_{m=0}^{h} B_{2^{s} m l}^{2 j+3-2 k}(x) \\
\equiv & 0 \bmod \left(C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)\right) . \tag{3.10}
\end{align*}
$$

Combining (3.7)-(3.10) and Lemma 1, we have the congruence

$$
\begin{aligned}
& 2^{2 n+1}\left(9 x^{2}-1\right)^{n+1} B_{2^{s-1} l}(x) B_{2^{s-1} 3 l}(x) \cdots B_{2^{s-1}(2 n+1) l}(x) \sum_{m=0}^{h} B_{2^{s} m l}^{2 n+1}(x) \\
\equiv & 0 \bmod \left(C_{2^{s-1} l(2 h+1)}(x)-C_{2^{s-1} l}(x)\right) .
\end{aligned}
$$

This completes the proof of Theorem 1 by mathematical induction.
Now we prove Theorem 2, we have

$$
\begin{align*}
& \sum_{m=0}^{h}\left(C_{2^{s} m l(2 n+1)}(x)-(-1)^{n}(2 n+1) C_{2^{s} m l}(x)\right) \\
= & \frac{B_{2^{s-1} l(2 h+1)(2 n+1)}(x)+B_{2^{s-1} l(2 n+1)}(x)}{2 B_{2^{s-1} l}(2 n+1)}(x) \\
& \frac{B_{2^{s-1} l(2 h+1)}(x)+B_{2^{s-1} l}(x)}{2 B_{2^{s-1} l}(x)} \\
= & \sum_{k=0}^{n-1}(-1)^{k} \frac{2 n+1}{2 n+1-k} 2^{2 n-2 k}\binom{2 n+1-k}{k} \sum_{m=0}^{h} C_{2^{s} m l}^{2 n+1-2 k}(x) . \tag{3.11}
\end{align*}
$$

Applying (3.11), Lemma 2 and the method of proving Theorem 1, we can deduce the congruence

$$
\begin{aligned}
& 2^{2 n+1} B_{2^{s-1} l}(x) B_{2^{s-1} 3 l}(x) \cdots B_{2^{s-1}(2 n+1) l}(x) \sum_{m=0}^{h} C_{2^{s} m l}^{2 n+1}(x) \\
\equiv & 0 \bmod \left(B_{2^{s-1} l(2 h+1)}(x)+B_{2^{s-1} l}(x)\right) .
\end{aligned}
$$

4. Conclusions

In this paper, we study the divisible property of the general power sum of balancing polynomials and Lucas-balancing polynomials. By taking specific values for s and l in the Theorems 1 and 2, similar results can be obtained as studied in the literature. In this paper, we take $x=1$ and obtain the divisible property of the sequence $\sum_{m=0}^{h} B_{2^{s} m l}^{2 n+1}$ and $\sum_{m=0}^{h} C_{2^{s} m l}^{2 n+1}$. We apply a simple relation between the balancing polynomials and the Chebyshev polynomials to further obtain the divisibility properties of $\sum_{m=0}^{h} U_{2^{s} m l-1}^{2 n+1}(x)$ and $\sum_{m=0}^{h} T_{2 m l}^{2 n+1}(x)$ in the Corollaries 5 and 6. This paper can help us to investigate the properties of polynomials and explore further relations between polynomials.

Use of AI tools declaration

The author declares he/she has not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The author would like to express his/her sincere thanks to anonymous reviewers for their helpful comments and suggestions.

This work is supported by the N. S. F. (12126357) of P. R. China.

Conflict of interest

The author declares no conflict of interest.

References

1. A. Behera, G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98-105.
2. G. K. Panda, Some fascinating properties of balancing numbers, Fibonacci Numbers Appl., 194 (2009), 185-189.
3. S. G. Rayaguru, G. K. Panda, Sum formulas involving powers of balancing and Lucas-balancing numbers-II, Notes Number Theory, 25 (2019), 102-110. http://dx.doi.org/10.7546/nntdm.2019.25.3.102-110
4. R. Frontczak, T. Goy, Additional close links between balancing and Lucas-balancing polynomials, Adv. Stud. Contemp. Math., 31 (2021), 287-300. http://dx.doi.org/10.17777/ascm2021.31.3.287
5. R. Frontczak, L. B. Wrttemberg, Powers of balancing polynomials and some consequences for Fibonacci sums, Int. J. Math. Anal., 13 (2019), 109-115. http://dx.doi.org/10.12988/ijma.2019.9211
6. D. S. Kim, T. Kim, On sums of finite products of balancing polynomials, J. Comput. Appl. Math., 377 (2020), 112913. http://dx.doi.org/10.1016/j.cam.2020.112913
7. P. K. Ray, Some congruences for balancing and Lucas-Balancing numbers and their applications, Integers, 14 (2014), A8.
8. T. T. Wang, W. P. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, B. Math. Soc. Sci. Math., 103 (2012), 95-103.
9. T. Kim, D. S. Kim, D. V. Dolgy, J. Kwon, A note on sums of finite products of Lucas-balancing polynomials, Proc. Jangjeon Math. Soc., 23 (2020), 1-22. http://dx.doi.org/10.17777/pjms2020.23.1.1
10. T. Kim, C. S. Ryoo, D. S. Kim, J. Kwon, A difference of sums of finite products of Lucas-balancing polynomials, Adv. Stud. Contemp. Math., 30 (2020), 121-134. http://dx.doi.org/10.17777/ascm2020.30.1.121
11. D. S. Kim, T. K. Kim, Normal ordering associated with λ-Whitney numbers of the first kind in λ-shift algebra, Russ. J. Math. Phys., 30 (2023), 310-319. http://dx.doi.org/10.1134/S1061920823030044
12. T. Kim, D. S. Kim, D. V. Dolgy, J. W. Park, Sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials, J. Inequal. Appl., 148 (2018), 1-14. http://dx.doi.org/10.1186/s13660-018-1744-5
13. T. Kim, D. S. Kim, D. V. Dolgy, J. Kwon, Representing sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials by Chebyshev polynomials, Mathematics, 7 (2019). http://dx.doi.org/10.3390/math7010026
14. C. F. Wei, New solitary wave solutions for the fractional Jaulent-Miodek hierarchy model, Fractals, 31 (2023), 2350060. http://dx.doi.org/10.1142/S0218348X23500603
15. R. A. Attia, X. Zhang, M. M. Khater, Analytical and hybrid numerical simulations for the (2+ 1)-dimensional Heisenberg ferromagnetic spin chain, Results Phys., 43 (2022), 106045. http://dx.doi.org/10.1016/j.rinp.2022.106045
16. K. Wang, Fractal travelling wave solutions for the fractal-fractional Ablowitz-Kaup-Newell-Segur model, Fractals, 30 (2022), 2250171. http://dx.doi.org/10.1142/S0218348X22501717
17. R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, Fibonacci Quart., 46 (2009), 312-315.
18. L. Chen, X. Wang, The power sums involving Fibonacci polynomials and their applications, Symmetry, 11 (2019), 635. http://dx.doi.org/10.3390/sym1 1050635
19. L. Chen, W. P. Zhang, Chebyshev polynomials and their some interesting applications, Adv. Differ. Equ., 303 (2017), 1-9. http://dx.doi.org/10.1186/s13662-017-1365-1
20. E. Waring, Miscellanea analytica de aequationibus algebraicis et curvarum proprietatibus, USA: Academic Press, 2010.
21. H. W. Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences, Fibonacci Quart., 37 (1999), 135-140.
22. E. Waring, Miscellanea analytica de aequationibus algebraicis et curvarum proprietatibus, USA: Academic Press, 2010.

AIMS Press
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

