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Abstract: In recent years, many scholars have studied the division properties of polynomials and
sequence power sums. In this paper, we use Girard-Waring formula and combinatorial method to study
the power sum problem of balancing polynomials and Lucas-balancing polynomials, and then study
the division of balancing polynomials and Lucas-balancing polynomials by mathematical induction
and the properties of polynomials.
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1. Introduction

Behera and Panda [1] introduced the concept of balancing numbers B,, a positive integer n is a
balancing number if

1+42+---+(n-1)=n+1)+nn+2)+---+(n+r), n, re N".

That r is the balancer corresponding to the balancing number n. The balancing numbers B,, satisfy the
relation B,,; = 6B,—B,_; ,n > 1 with By = 0, B; = 1. The sequence C, = /8B2 + 1 is called a Lucas-
balancing number. The Lucas-balancing number satisfies same relation C,;; = 6C, —C,_; ,n > 1 with
Cy = 1, C; = 3. Some conclusions about these two sequences can be found in the references [2,3].
The balancing polynomial and the Lucas-balancing polynomial are natural extensions of balancing
numbers and Lucas-balancing numbers.

For any integer n > 0, the balancing polynomials B, (x) and Lucas-balancing polynomials C, (x)
are defined as follows (see Frontczak and Goy [4]):

L] n—1-k
B,()= ) (—1)"( By )(6x>"—‘—2",
k=0
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Cy (X) =

— k -
(=D (ﬂ ] k) (6%,

where | x] denotes the greatest integer < x.

B, (x) and C, (x) are the second-order linear recurrence polynomials, they satisfy the recurrence
formulae (see Frontczak and Goy [4]):

B,+1(x) = 6xB, (x) — B,_; (x) for all n > 1, with By (x) = 0, B; (x) = 1,

Coi1 (X)) =6xC,,(x) —C,—; (x)foralln > 1, with Cy (x) = 1, C; (x) = 3x.

The closed forms which are also called Binets formulas for balancing polynomials and Lucas-
balancing polynomials are given by

a" (x) - " (x) a"(x) +B" (x)
Bn e — Cn =~
(x) Wi () >

where @ (x) = 3x + V9x2 — 1, B(x) = 3x — V9x2 — 1. The relations B, (-x) = (-1)""'B, (x) and
C,(=x) = (-1)"C, (x) follow from a (—x) = = (x) and — a (x) = B(x).

If we take x = 1, then {B, (x)} becomes balancing sequences {B,}, and {C, (x)} becomes Lucas-
balancing sequences {C,}. Such balancing numbers and balancing polynomials have been widely
studied in recent years. Frontczak [S] proves the sum of powers of balancing polynomials and Lucas
balancing polynomials:

-m 2m + 1
B! (x) = 2‘2’”(9x2 - 1) ’Z}O( " )( D" Bty (1),

m (2m+ 1
el () =27 Eo( —k )CQ““" -

Kim and Kim [6] used nine orthogonal polynomials to represent the sum of the finite product of
balancing polynomials to obtained the following result:

D o Bt Bit (1) Byt ()
Tt

~ (-2)”Zn (—2)kl"(k+a/+,8+l)z”] ~3 (n+r—l)'
Y =0 TQRk+a+B+1) I'(n—k—2D)!
XoF ) (k+ 20—k + B+ 1;2k + a+ B+ 2;2) PP (3x).

Ray [7] studied the divisible property of balancing numbers and Lucas-balancing number obtained
the congruence:

B2mn+k = (_1)an (mOde) ’ C2mn+k = (_1)an (mOde) .

For any integer n > 0, the famous Fibonacci polynomials F, (x) and Lucas polynomials L, (x) are
defined as follows (see Wang and Zhang [8]) :

Friz (X) = xFyp1 () + F, (x), with F (x) = 0, Fy (x) = 1,

Lysz (%) = xLys1 (x) + Ly (x), with Lo (x) = 2, L; (x) = x.

These polynomials and sequences have some similarities in structure and properties. Kim [9-13]
obtained many meaningful results by studying connections between polynomials. Mathematics has a
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wide range of applications in other disciplines, see [14-16]. We can obtain some divisible properties
of polynomials and sequences in references [17-19]. For example, Wang and Zhang [8] proved the
congruence of the sum of powers of Fibonacci numbers. That is

n

L1L3L5 s L2m+1 Z Lgkm+1 = 0 mod (L2n+1 — 1) .
k=1
In this paper, we use the properties of balancing polynomials and Lucas balancing polynomials to
h h
study the divisible properties of Y, B3**! (x) and Y, C5**/ (x) to get more general results. That is, we
m=0 m=0

shall prove the following two theorems.
Theorem 1. Let n and & be non-negative integer with 4 > 1, s and / be positive integers. Then we have
the congruence

h
n+l
22n+1(9x2 - 1) Bys-17(x) Bys-131(X) + + - Bys-12p41y (X) Z B3t (%)

m=0

= 0O mod (CZ“‘II(2h+1) (X) - Cz.v—ll (X)) .

Theorem 2. Let n and /& be non-negative integers with 42 > 1, s and [ be positive integers. Then we
have the congruence

h
22" Byt (%) By (%) Bai ey () ) C3td (%)

m=0

= 0 mod (BZJ"11(2h+l) (X) + Bys-1; (X)) .

From the two theorems, we can obtain the following corollaries.
Corollary 1. For any non-negative integers n and & with 4 > 1, we have

h
22n+1(9x2 _ 1)"”31 (X) B3 (x) - - Boys 1) (%) Z B! (x) = 0 mod (Capyy (x) — 3).

m=0

Corollary 2. For any non-negative integers n and 4 with & > 1, we have

h
221 By (x) Bg (¥) -+ Baanery (%) ) Co (x) = 0 mod (Baganeny (%) + 63).

m=0

Corollary 3. For any non-negative integers n and 4 with & > 1, and s and [ be positive integers, we have

h
Sn+4 2n+1 _—
2 nt st—lles—l31 e B25_1(2n+1)l Z BZ‘CLI;[ = 0 mOd (CZS‘II(Z}HI) - Czs—ll) .

m=0

Corollary 4. For any non-negative integers n and & with 4 > 1, and s and [/ be positive integers, we have

h
2n+1 2n+l _
2 nt st—l[Bzx—l:;l v B25’1(2n+1)1 Z C2§ln-:l = 0 rnod (BZS’ll(2h+1) + Bzx—ll) .

m=0
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For Chebyshev polynomials of the first kind 7,1 (x) = 2xT,, (x) — T,,— (x) with Ty (x) = 1, T (x) =
x and Chebyshev polynomials of the second kind U, (x) = 2xU, (x) — U, (x) with Uy (x) = 1,
U, (x) = 2x. The balancing polynomials possess a simple connection to Chebyshev polynomials of the
first and second kind 7, (x) and U, (x), specifically B, (x) = U,-; (3x) and C,, (x) = T, (3x).

Taking x = %x in Theorem 1, we can get the following,

Corollary 5. For any non-negative integers n and & with 4 > 1, and s and [/ be positive integers, we have

h
n+l
2% (xz - 1) Uss-121 (x) Upsm13-1 (x) -+ U2J"1(2n+l)l—l (x) Z Uzﬁ,:;ll_l (x)
m=0

= 0 mod (TZs‘ll(2h+1) (.X) - Tzs—ll (X)) .

Taking s = 1 and x = 1x in Theorem 2, we can get the following,

Corollary 6. For any non-negative integers n and 4 with & > [, and / be positive integers, we have

h
22" MU () Usizy (%) -+ Uiyt (x) Z 751 (x) = 0 mod (Ujape1y—1 (%) + Upy (%)).

m=0

2. Some lemmas

In the following, we use the properties of balancing polynomials and Lucas-balancing polynomials
to prove our next several lemmas, which will help us better complete the proofs of the theorems.
Lemma 1. Let s and % be positive integers. Then, for any integers n and /, we have the identity

Co1ianenanst) (9 = Coynan) (¥) = 0 mod (CZHI(ZhH) (x) = Coey (x)) :

Proof. We prove this polynomial congruence by complete induction for n > 0. It is clear that Lemma 1

: _ _ — A3
is true for n = 0. If n = 1, then note Cp-13;5,, ) (X) = 4C2Hl(2h+1) (x) = 3Cas-12p41) (x), we have

Czs—l 3i(2h+1) (X) - C25—13l (X)

4C3 ey ) = 3Cy1 1) (1) = 4C5, (%) + 3Cy1, (x)

(Cz"‘ll(zhﬂ) (x) = Cyyy (x)) (4C§J‘ll(2h+1) (x)
+4C 1 gy (0) Coomry (%) + 4C2 - (3) = 3)

251

0 mod (Cymt g1y () = Cyr, (1)),

That is to say, Lemma 1 is true forn = 1.
Suppose that Lemma 1 is true for all positive integers 0 < n < j. That is,

Cotamsnyansn ) = Cotinany (%) = 0 mod (Cpmt ) (1) = Coy () 2.1)

forall0<n <.
Then, forn = j+ 1 > 2, we have

C2s-‘21(2h+1) (x) Czs-ll(2n+1)(2h+1) (x)
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N — A= | =

and

s—1 s—1 s—1 s—1
(a2 21(2h+1) (x) + ’32 21(2h+1) (x)) ( a2 12n+1)(2h+1) (x) + ,32 l(2n+1)(2h+1)(x))

s—1 s—1 _ s—1 _ s—1
((1’2 1(2h+1)(2n+3) (X) +ﬁ2 I2h+1)(2n-1) ()C) +a,2 I2h+1)(2n-1) (X) +182 1(2h+1)(2n+3) (.X))

(CZ‘V*11(2h+1)(2n+3) (x) + C2~‘*ll(2h+1)(2n—1) (X))

L, 5 -
Cos-19100n41) (%) = 3 (a2 21h+1) (1 e 112h+1) (x))
1 S= 5= 2
= E(Cﬁ 'l(2h+1)(x)+ﬁ2 ‘l(2h+1)(x)) _1

207, (x) = 1 mod (Cyetyyy, ) (1) = Cyrr ().

Applying inductive hypothesis (2.1), we have

Czj"11(2n+1)(2h+1) (x) - C2*‘1l(2n+1) (%)
Cotiajrnaney X) = Cotizja3) (1)

2C1510m41) ) Co1y i1 1yna1y ) = Cot a1 1yomaty ()
“2Cy 15 () Cyrt 01, () + Cos o1, ()

2 (2C2vflz(2h+1) (x) — 1) Cotigienanety ) = Cot g 1yaneny (X)
(ZCZY (%) = ) 2+ (x) + Co1jajony (x)
(2C2v 1y (0 = )( jenenen X = Canigjen (x))
- (Czs*‘z(zj—l)(zhu) (x) = Cpryg -1 (x))
0 mod (Cyoet gy, (1) = Cyrr ().

That is to say, the Lemma 1 is true forn = j + 1.
Now Lemma 1 follows from complete induction. O

Lemma 2. Let s and

h be positive integers. Then, for any integers n and [/, we have the identity

Byt s tyanety ) + Baciiuiny (¥) = 0 mod (Byr ) () + Baoiy ().

Proof. We can also prove Lemma 2 by complete induction. If n = 0, then it is clear that Lemma 2 is
true. If n = 1, then note

we have

By131m4y () = 4 (9 1) By e )+ 3Bytian) (0,

B 1 (x) + Bys-15,(x)

3/(2h+1)

= 4 (9"2 B 1) Bgs-ll(2h+l) () +3By-1 gy (1)

AIMS Mathematics
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= 4(92% = 1) (Bye1 1) (0) + Byt (00) (Bs 1) (0) + B2y, ()
=Byt 1y (0) Byt (1)) 43 (Byot o, (0) + Byt (1)
0 mod (Bt gy, (%) + Byr, ().

So Lemma 2 is true for n = 1. Suppose that Lemma 2 is true for positive integers 0 < n < j. That is,

Byt s iansty ) + Bretiueny (1) = 0mod (Bt oy, ) () + Byt () (2.2)

forall0 <n < j.
Then, for n = k + 1, note the identities

2Co5-12102m+1) (X) Bas-110n41)24+1) (X)

1 5= R Rl 5=
— (0/2 121(2h+1)(x) +ﬁ2 'Zl(2h+l)(x)) (0/2 ]l(2n+1)(2h+1)(x) —,82 'l(2n+1)(2h+l)(x))
2V9x2 -1
1 s—1 s—1 _ s—1 _ s—1
— (az 1(2h+1)(2n+3) (x) — ﬁz 1(2h+1)(2n-1) (x) + o2 1Ch+D2n=1) (x) — ﬁ2 12h+1)(2n+3) (x))
2Vox2 -1
= Bysjons3)2n+1) (X) + Bos1jau-1y2ne1y (X)
and
C _ 1 25-121(2h+1) 25-121(2h+1)
2-12120+1) (X) = ) a x)+p (x)
Lo o one 2511241 2
- E(a D () = g7 10D () + 1

= 2(9% = 1) Blypy,, (0 + 1
2 (9)(2 - 1) B;S_ll (X) + 1 mod (BZ‘Y’II(2h+l) (.X) + Bzx—ll (.X)) s

applying inductive hypothesis (2.2), we have
By 110 1y@ne 1y ) + Bastyensy (X)
= By j+3)(2h+1) (%) + Bos-12j43) (%)

2C 1 0m41y () By1y J1)(2he1) (X) = By j=1)(2h+1) (x)
+2C2x—l 21 (X) B25711(2j+1) (.X') - BZS’IZ(Zj—l) (.X')

2 2
= [4 (9x - 1) By (X) + 2] Bty 1yansty ) = By-tya i 1yansry (X)
+[4(95 = 1) By () + 2] Byt 1) (0) = Byt ) (%)
2 2
2[2(95% = 1) B3ty (0) + 1] (By s ameny ) + Byt a1y (1))

- (BZ‘HI(Zj—l)(ZhH) (X) + Bys-i 12j-1) (x))
0 mod (BZS‘IZ(2h+l) (X) + By (.X)) .

This completes the proof of Lemma 2. O
Lemma 3. For all non-negative integers r and real numbers w, v, we have the identity

L] r (r—k
Z (—1)]‘:C ( I )(w + )Rk = w + 0,
k=0

AIMS Mathematics Volume 9, Issue 2, 2684-2694.
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in which [x] denotes the greatest integer < x.
Proof. The formula due to E. Waring [20] and can be found in H. W. Gould [21].

3. Proofs of the theorems

We shall prove our theorems by mathematical induction. Taking w = o> (x), v = =8> (x) and

r =2n+ 1 in Lemma 3, we notice that wy = —1, from the expression of B, (x) we have

BZ‘ml(2n+1) (x)

2n+1 (2n+1-k 2n-2k
Z( 1yk22 2k2 — _k( 5 )B%?’;ll 2k(x)(m) (= 1)

-2k 2n+1 2n+1-k
2n-2k 2 _ 2n+1-2k
E 22 2(Vox2 - 1) —2n+1_k( h )BM (x).

For any integer 4 > 1, from (3.1) we have

M=

(Basmin+1) (X) = (21 + 1) Bysyy (X))

m=0
n—1 h
2n+1 n—k(2n+1—-k
LS o (S g,
k=0 m=0
Note the identities
h h 1
B2~‘ml(2n B (X) — - alé'ml(2n+1) ()C) _ﬂ251n1(2n+1) (X)
; ' mzzo 2\ —1 ( )
1 1= a,2“l(2n+l)(h+1) ()C) 1 _ﬁ2x1(2n+1)(h+l) (X)
T Vo -1 ( 1 — o2l (x) 1 pgrien (y) )
1 azs’ll(2n+1)(2h+1) (x) — 1823'*11(2n+1) ()
= o) m ( a2»f-ll(2n+1) (x) _ﬁ2s"l(2n+l) (x)

a2 1D (y) — ﬁ2H 1@n+ 1At 1) (x) ]

@27 M@nD) () — gD (x)

Cortionsnny () = Cortignen ()
2(9x* = 1) Bys-1)0p41) (X)

And

1 Bzr e i1y (X) + Bos1yp11y (X)
Z Cosmian+) (X) = =
Bjsi 1(2n+1) (x)

Combining (3.2) and (3.3) we have

h

D (Bamionsy () = 1+ 1) By (x))

m=0

(3.1)

(3.2)

(3.3)

(3.4)

AIMS Mathematics Volume 9, Issue 2, 2684-2694.
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Cos110ns12n+1) (X) = Cos1y2p41) (X)
2(9x% = 1) Bys-1y2ns1y (%)
Cos11n+1) () = Cos-17(X)

-2n+1
Cn+ D) = 92 - D By (0
n—1
_ 2n+1 =2k 2 n—k 27’L+1 z : 2n+1— 2k
= kzz(; mz (9)C - 1) BZAml (35)

Now we apply (3.5) and mathematical induction to prove Theorem 1. If n = 1, then from (3.5) we have

C2H3l(2h+1) (x) = Cas13 ()
2 (9x2 - 1) Bzx—l:;l ()C)

2 (9x2 - 1) BQs—ll (X) Bzx—l:;l (X) (

2 Cougnen (%) = Coy (X)
2 (9)6'2 - 1) st—l[ ()C)

h
= 8(9% 1) Byety (¥) Bz (1) Y By (0. (3.6)

m=0

From Lemma 1 we know that

C2°'—13l(2h+1) (x) = Cos13; (x)
2 (9X2 - 1) BQA'—13I (.X)

2 (9)62 — 1) st—ll (X) B25"'3l (X) (

_ C2sflz(2h+1) (x) = Co1y (x)
2 (9X2 - 1) Bzx—ll ()C)

= 0 mod (Caomanary (x) = Coy (%)) . (3.7)

Combining (3.6) and (3.7) we know that Theorem 1 is true for n = 1.
Suppose that Theorem 1 is true for all integers 1 < n < j. Then, for n = j + 1, from (3.5) we have

Corianin2jr3) (1) = Cos1y2j43) (X) —(2j+3) Costianery (X) = Cos-17 (X)
2 (9X2 - 1) Bz.v—l[(2</'+3) (X) J 2 (9 2 1) Bzr—ll ()C)
J .
_ : 1 27+ 3=k jnjsa- 2k J“ —k 2j+3— 2/<
- e (V) D
J .
_ . 1 2j+3-k 2'22k J“" 2j+3- 2k
- <2J+3>Zm( k )w AR
2 3
+2%%2(9 Z BY™ (x (3.8)

From Lemma 1 we have

2(92% = 1) Byeo1 (x) By (X) -+ Bovot a1y (%)
Co11onenyne1) (X) = Cas1ypa1) (X)
2(9x% = 1) Bas1yans1y (%)

= 0 mod (Cartyanen) (1) = Coery (1)) (3.9)
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Applying inductive hypothesis (3.8), we have

J . .
2j+3 (2j+3-k
Bos-17(x) Bys-131 (X) + - - Bays-10p41)1 (X)Z 5 J ( J )

j+3-k k
2j+3- 2k J+2 —k 27432k (
x 2%* Z B
= 0mod (Coiyapey (x) = Cory (1)). (3.10)

Combining (3.7)—(3.10) and Lemma 1, we have the congruence
n+1
22n+1(9x2 — 1) 2? 1y ()C) st 137 ()C) 2v L2n+1)l (_x) Z B%?;ll

= O mod (C2S711(2h+1) (X) - Czs—l[ (X)) .

This completes the proof of Theorem 1 by mathematical induction.
Now we prove Theorem 2, we have

h
D (Cominey () = (1) @+ 1) Cos (1)
m=0

Bs- n X) + Bys-1)00,, X
_ 21+ D 2n+1) (X) 25 1n+1) (X) (=1 2n+ 1)
2325‘11(2n+1) (x)
Bys-1j2n41) (X) + Bos17(x)

2B2s—1[ ()C)

n—1

2n+1 2n+1 -
= D, T2 Zk( )chz’,;} 2 (3.11)

k=0 m=0
Applying (3.11), Lemma 2 and the method of proving Theorem 1, we can deduce the congruence

h
22n+lBZ-V‘]l (X) Bys1y (X) ce BZ-V-'(2n+1)l (X) Z Cgfl;ll (X)

m=0

= 0O mod (BZ"‘11(2h+1) (X) + Bzx—ll (X)) .

4. Conclusions

In this paper, we study the divisible property of the general power sum of balancing polynomials
and Lucas-balancing polynomials. By taking specific values for s and / in the Theorems 1 and 2,
similar results can be obtained as studied in the literature In this paper, we take x = 1 and obtain
the divisible property of the sequence Z B! and Z Cy*+!. We apply a simple relation between the
balancmg polynomlals and the Chebyshev polynomlals to further obtain the divisibility properties of

Z Usmtt | (x) and Z 75! (x) in the Corollaries 5 and 6. This paper can help us to investigate the

propertles of polynomlals and explore further relations between polynomials.

AIMS Mathematics Volume 9, Issue 2, 2684-2694.
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