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1. Introduction

A predator-prey model is an interdependent and restrictive survival model for different populations
in nature. It is significant to ecology, and this model has served as the foundation for numerous research
projects. The classic predator-prey model was first proposed by Lotka [1] and Volterra [2]. Many
functional responses, such as Beddington-DeAngelis [3, 4], Leslie-Gower [5], Crowley-Martin, etc.,
have been introduced into predator feeding models in order to to study the relationships between
populations better. The functional responses, i.e., how a predator consumes the prey species, are a
central component of the theory on a consumer’s resource interactions and have a significant effect
on the dynamical properties [6]. Functional responses can be classified into two main categories:
prey-dependent [7, 8] and both prey-dependent and predator-dependent [9]. First, Crowley and
Martin [10] proposed the predator-prey model with Crowley-Martin-type functional response. The
Crowley-Martin functional response, incorporating both prey and predator abundances, provides a
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more realistic perspective from an ecological standpoint [11]. In 2014, Meng et al. [12] studied a
predator-prey system with Crowley-Martin functional response and stage structure for prey. The local
stability of equilibria (two boundary equilibria and a positive equilibrium) has been analyzed. However,
functional responses just reflect what may happen regarding direct killing. With the development of
ecology, some scholars have found that predators not only affect the number of prey through direct
killing, but also change the behavior and physiology of prey, thus reducing the number of prey [13,14].
Actually, when the prey is faced with a predator, they are able to sense a crisis and develop a fear
of the predator, known as the fear effect. The fear felt by the prey produces a chain reaction in
various ecosystems, thus changing the stability of the system. Therefore, it is necessary to study
this fear effect. Wang et al. [15] added the fear factor to a prey’s birth rate µ (x, y) = r

1+ky and the
result obtained show that the fear effect can interplay with maturation delay between juvenile prey and
adult prey in determining the long-term population dynamics. Das et al. [16] investigated the effect of
the fear function with exponential form (i.e., µ (x, y) = re−ky) on prey when a predator is provided with
additional food under environmental perturbations. The results show that the higher the fear coefficient,
the higher the bait population increases, and a lower predator population tends to extinction. Kumar
et al. [17] combined the fear effect µ (x, y) = r

1+ky with Hassell-Varley functional response to analyze
the stability and bifurcation of a predator-prey system, and studied the dynamics of the system in the
presence of fear of predation risk. Li and Tian [18] proposed a predator-bait model with exponential
fear effect (i.e., µ (x, y) = re−ky) and Hassell-Varley functional response. The application of a feedback
control strategy demonstrated that for predators forming a tight group, appropriately increasing the
fear level could stabilize the system. Sarkara et al. [19] analyzed a prey-predator system introducing
the cost of fear function f (α, η, P) into prey reproduction with Holling type-II functional response. In
2023, a deterministic predator-prey model with a fear effect and Crowley-Martin functional response
was proposed and discussed by Zhang [20] et al., as follow:

dx (t)
dt
= x (t)

(
r

1 + f y (t)
− δx (t) −

βy (t)
[1 + ax (t)]

[
1 + by (t)

]) ,
dy (t)

dt
= y (t)

(
qβx (t)

[1 + ax (t)]
[
1 + by (t)

] − m − hy (t)
)
,

(1.1)

where x (t) and y (t) reflect the prey population density and the predator population at time t. For other
parameters, see Table 1. All parameters in the model are assumed to be positive constants, where

r
1+ f y(t) represents the fear effect of the prey, and βx

(1+ax(t))(1+by(t)) represents the Crowley-Martin functional
response term, which indicates that the interference between predators not only exists when predators
handle the prey, but also when they look for the prey.

In nature, however, the development of populations can be disturbed by a variety of uncertain
environmental factors, and deterministic population models do not take into account the influence of
these random factors and are therefore not suitable for describing reality. For this reason, for the study
of populations, it is necessary to add a stochastic disturbance term to the deterministic model. The
nature of the model will also change, and it is important to study the nature of the stochastic model.
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Table 1. List of biological parameters.

Parameter Explanation

r̄ Average growth rate of prey
r The intrinsic growth rate of prey
f The level of fear caused by the predator
m The death rate of the predator population
δ The density restriction coefficient of the prey
h The density restriction coefficient of the predator
β The predation rate of the predator
q The energy conversion rate of the predator
a Predator termination time
b Interference between predators
β1 The reversion speed of r
β2 The reversion speed of g
σ1 The intensity of the volatility of r
σ2 The intensity of the volatility of g

Environmental noise naturally affects population systems in nature. Many parameters in ecological
dynamics should fluctuate around some average values. Mao et al. [21] demonstrated that even
small amounts of environment noise can have a large impact on species populations, which means
that stochastic population models can provide additional authenticity compared to deterministic
population models. Therefore, it is generally assumed that environmental noise primarily affects the
fundamental parameters of the model for studying the dynamic properties of ecosystems in different
environments [22]. Based on the fact that population death rates are easily affected by environmental
fluctuations, we assume r and m in the stochastic predator-prey model are two random variables r (t)
and m (t).

There are two common methods for simulating small disturbances in the environment in accordance
with the current literature. The most common method to describe environmental disturbances is to
introduce white noise into the deterministic model [23–26]. Another method is to incorporate the
mean-reverting Ornstein-Uhlenbeck process to simulate environmental perturbations, which has been
demonstrated to be a practical and biologically meaningful method. Let us consider the first method,
which introduces white noise into the known deterministic model. Assume that Gaussian linear white
noise perturbs the intrinsic growth rate and the mortality rate in the model.

r (t) = r̄ +
α1dB1 (t)

dt
,m (t) = m̄ +

α2dB2 (t)
dt

,

where r̄ and m̄ signify the long-term average levels of r (t) and m (t), respectively. Bi (t), i = 1,
2, represents two independent standard Brownian motions defined on a complete probability space{
Ω,F , {Ft}t≥0 ,P

}
with a filtration {Ft}t≥0 adhering to the usual conditions. Additionally, αi > 0, i = 1,

2, indicates the noise density of Bi (t). We assume that for any time interval [0, t], we have
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⟨r (t)⟩ : =
1
t

∫ t

0
r (s) ds = r̄ +

α1B1 (t)
t

∼ N

(
r̄,
α2

1

t

)
,

⟨m (t)⟩ : =
1
t

∫ t

0
m (s) ds = m̄ +

α2B2 (t)
t

∼ N

(
m̄,

α2
2

t

)
,

(1.2)

where ⟨r (t)⟩ and ⟨m (t)⟩ are the time average of r (t) and m (t). N (·, ·) denotes one-dimensional normal
distribution. From the above formula, it is easy to see that the variance of ⟨r (t)⟩ and ⟨m (t)⟩ are α2

t ,
which tends to infinity as t → 0+. This means that the mean value of the perturbation parameter will
be more variable in a short amount of time. The use of Gaussian linear white noise to simulate small
disturbances in the environment is unreasonable.

According to the above literature, in Section 2, we add environmental perturbations to the
predator-prey model with fear effect (1.1) and introduce some lemmas and assumptions to assist
the proof below. Section 3 shows several dynamical properties of the system (2.3), including
the existence and uniqueness of global solutions, ultimate boundedness, and the existence of the
stationary distribution. Additionally, we obtained sufficient conditions for species extinction. In
Section 4, numerical simulations are conducted to verify the theoretical results. Finally, we present
some conclusions in Section 5.

2. Model formulation and preliminaries

2.1. Model formulation

Now, the Ornstein-Uhlenbeck process is introduced into the deterministic model. In other words,
each parameter adheres to a certain stochastic differential equation (SDE). When we directly disturb the
contact rate m using the Ornstein-Uhlenbeck process, it may yield negative values due to the inherent
properties of this type of process, meaning that non-negativity cannot be guaranteed. Motivated by
Allen’s work [27], we propose that the variable lnm is influenced by the Ornstein-Uhlenbeck process,
which can be described by the following stochastic differential equation. According to the literature, it
will be determined by the following formula:

dr (t) = β1 (r̄ − r) dt + σ1dB1 (t) ,
d ln m (t) = β2 (ln m̄ − ln m) dt + σ2dB2 (t) ,

(2.1)

where βi > 0 and σi > 0 (i = 1, 2) represent the speed of reversion and the volatility intensity,
respectively. As stated by Mao [28], by performing random integration operations, we can obtain the
following unique solution:

r (t) = r̄ + [r (0) − r̄] e−β1t + σ1

∫ t

0
e−β1(t−s)dB1 (s),

ln m (t) = ln m̄ + [ln m (0) − ln m̄] e−β2t + σ2

∫ t

0
e−β2(t−s)dB2 (s),

(2.2)

which shows that the variables

r (t) ∼ N
(
r̄ + [r (0) − r̄] e−β1t,

σ2
1

2β1

(
1 − e−2β1t

))
,
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ln m (t) ∼ N
(
ln m̄ + [ln m (0) − ln m̄] e−β2t,

σ2
2

2β2

(
1 − e−2β2t

))
.

According to the above discussion, note that

lim
t→0+
E [r (t)] = r (0) , lim

t→0+
VAR [r (t)] = 0, lim

t→∞
E [r (t)] = r̄, lim

t→∞
VAR [r (t)] = 0,

and

lim
t→0+
E [lnm (t)] = lnm (0) , lim

t→0+
VAR [lnm (t)] = 0, lim

t→∞
E [lnm (t)] = lnm̄, lim

t→∞
VAR [lnm (t)] =

σ2
2

2β2
.

In addition, VAR ⟨ln m (t)⟩ = σ2
2

3 t + O
(
t2
)
. This indicates that the variation of ln m (t) will be

adequately minor within a small interval, which is consistent with the facts. Therefore, this method is
justifiable for modeling the random effects of key parameters from both biological and mathematical
viewpoints [29].

As a result, introducing the Ornstein-Uhlenbeck process to perturb parameters r and m is more
appropriate than Gaussian linear white noise for reflecting the actual situation. Based on the above
analysis, by combining model (1.1) and model (2.1), we let g = lnm, and we can obtain a stochastic
model of the following form:

dx (t) = x (t)
(

r (t)
1 + f y (t)

− δx (t) −
βy (t)

[1 + ax (t)]
[
1 + by (t)

]) dt,

dy (t) = y (t)
(

qβx (t)
[1 + ax (t)]

[
1 + by (t)

] − eg(t) − hy (t)
)

dt,

dr (t) = β1 [r̄ − r (t)] dt + σ1dB1 (t) ,
dg (t) = β2

[
ḡ − g (t)

]
dt + σ2dB2 (t) .

(2.3)

In this paper, the model establishes a stochastic fear effect predator-prey model with the
Crowley-Martin functional response and the Ornstein-Uhlenbeck process, which provides greater
stability in environmental variability and the ability of organisms to respond to external changes.
Second, the Ornstein-Uhlenbeck process is able to better model environmental perturbations
compared to Brownian motion since species do not grow rapidly over a short period of
time. The population density of Brownian motion may grow rapidly, which is not consistent
with the facts. The mean-reverting Ornstein-Uhlenbeck process is employed to represent minor
environmental fluctuations, which offers a more realistic approach compared to assuming that
population parameters follow a linear distribution in Gaussian white noise. Numerous scholars have
utilized the Ornstein-Uhlenbeck process to study the dynamic properties of stochastic predator-prey
models. For instance, Liu [30] analyzed a stochastic predator-prey model with two competitive
preys and the Ornstein-Uhlenbeck process. Zhou et al. [31] formulated and analyzed a stochastic
nonautonomous population model with Allee effects and two mean-reverting Ornstein-Uhlenbeck
processes. Additionally, Liu and Jiang [32] explored a stochastic logistic model by incorporating
diffusion with two Ornstein-Uhlenbeck processes, which is a stochastic nonautonomous system.
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2.2. Preliminaries

For the convenience of the proof, we first define two sets Gn = (−n, n) × (−n, n) and Rn
+ =

{(x1, ...xn) ∈ Rn|xk > 0, 1 ≤ k ≤ n}. Then, we consider the following form of an m-dimensional
stochastic differential equation (SDE) to introduce Lemma 2.1.

dD (t) = ζ (t,D (t)) dt +
n∑

j=1

ν j (t,D (t)) dB j (t). (2.4)

According to Khasminskii [33], we will give the existence of stable solutions of system (2.3) through
the following lemma.

Lemma 2.1. Let the vectors ζ (s, x) , ν1 (s, x) , ν2 (s, x) , · · ·, νm (s, x) (s ∈ [t0,T ] , x ∈ Rm) be continuous
functions of (s, x), such that for some constants M, the following conditions hold in the entire domain
of definition:

|ζ (s, x) − ζ (s, y) | +
m∑

j=1

|ν j (s, x) − ν j (s, y) | ≤ M|x − y|, (2.5)

|ζ (s, x) | +
m∑

j=1

|ν j (s, x) | ≤ M (1 + |x|). (2.6)

Moreover, E is a compact subset defined on Rm. So there exists a non-negative function V∗ (x) such
that

LV∗ (x) ≤ −1,∀x ∈ Rm\E, (2.7)

where E is a compact subset defined on Rm. Then, the Markov process (2.4) has at least one stationary
solution D (x), which has a stationary distribution ι (·) on Rm.

Remark 1. Based on Remark 5 of Xu et al [34], conditions (2.6) and (2.7) in Lemma 2.1 can be
replaced by the global existence of solutions of system (2.3).

Definition 2.2.1. The solution of system (2.3) is said to be stochastically and ultimately bounded,
if for any ε ∈ (0, 1), there is a positive number ψ = ψ (ω) such that for any initial value
x (0) , y (0) , r (0) , g (0) ∈ R2

+ × R
2, the solution of system (2.3) satisfies

lim
t→∞

sup P
{ √

x2 + y2 > ψ
}
< ε. (2.8)

Definition 2.2.2. Define Π1 to be a natural number that satisfies the following conditions M1,

M1 ∈

max

−
√

2
δ
,

2 + Π1

r̄ + ḡ

 ,min

 1
4 (h + β)

,

√
2
δ


 , (2.9)

where

Π1 : = sup
(x,y,r,g)∈R2

+×R
2

{r (x − M1)
1 + f y

−
(1 − q) βxy

(1 + ax) (1 + by)
−
δ

2
x2 +

(
|eg| +

1
2

)
y −

h
2

y2 + M1 (eg + r + g)

+ β1r̄r3 −
β1

2
r4 +

3
2

r2σ2
1 +

3
2

g2σ2
2 + β2ḡg3 −

β2

2
g4

}
.
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Lemma 2.2. [Strong law of large numbers]: Let M = {Mt}t≥0 be a real-valued continuous local
martingale vanishing at t = 0. Then lim

t→∞
⟨M,M⟩t = ∞, lim

t→∞

Mt
⟨M,M⟩t

= 0 a.s., and lim
t→∞

sup ⟨M,M⟩tMt
< ∞,

lim
t→∞

Mt
t = 0 a.s. More generally, if A = {At}t≥0 is a continuous adapted increasing process such that

lim
t→∞

At = ∞ and
∫ ∞

0
d⟨M,M⟩t
(1+At)2 < ∞, then, lim

t→∞

Mt
At
= 0 a.s.

Remark 2. If φ̄1 > 0, φ̄2 < 0 , the population x (t) , y (t) are weakly persistent, and it is clear from
Theorem 3.4 that the survival and extinction of the population is only related to the mean φ̄1, φ̄2.

3. Results

First, we prove the relevant properties of the solution of system (2.3) through the following theorem.
It is important to note that in nature, because x and y represent the population size of the species of
the system (2.3), they cannot take on negative values. Therefore, it is necessary to demonstrate both
the existence of global solutions (x (t) , y (t) , r (t) , g (t)) for system (2.3) and the positivity properties of
x (t) , y (t).

3.1. Existence and uniqueness of the global solution

Theorem 3.1. For any initial value condition (x (0) , y (0) , r (0) , g (0)) ∈ R2
+ × R

2, system (2.3) has a
unique solution (x (t) , y (t) , r (t) , g (t)) on t > 0, and it will remain in R2

+ ×R
2 with a probability of one.

Proof. For any initial value (x (0) , y (0) , r (0) , g (0)) ∈ R2
+ × R

2, it is can be easily demonstrated that
the coefficients of the equations in the system (2.3) satisfy the local Lipschitz conditions. Therefore,
there exists a unique local solution (x (t) , y (t) , r (t) , g (t)) ∈ R2

+ ×R
2 on [0, τe), where τe represents the

explosion time [21].
To prove that the model has a global positive solution, we need only show that τe = ∞ a.s. By

defining a necessary set Gn = (−n, n) × (−n, n), we can always find a sufficiently large integer n0 such
that (ln x (0) , ln y (0) , r (0) , g (0)) ∈ Gn0 . For any integer n ≥ n0, we define a stopping time set τn as
follows:

τn = in f {t ∈ [0, τe) | ln x (t) < (−n, n) , or ln y (t) <
(−n, n) , or r (t) < (−n, n) , or g (t) < (−n, n)}.

(3.1)

Clearly, τn monotonically increased as n increased. For convenience, let τ∞ = lim
n→∞

τn and in f∅ = ∞,
which implies τ∞ ≤ τe. To prove Theorem 3.1, it suffices to verify τ∞ = ∞ a.s. Consider the
contradiction; That is, τ∞ < ∞ a.s. This implies that there exist constants T > 0 and ε ∈ (0, 1) such
that P {τ∞ ≤ T } > ε. Hence, there exists a positive number n1 > n0, such that

P {τn ≤ T } ≥ ε, n ≥ n1. (3.2)

For any t ≤ τn, using the inequality x−1 ≥ ln x (x > 0), we can construct a non-negative C2-function
V (x (t) , y (t) , r (t) , g (t)) as follows:

V (x, y, r, g) = x (t) + y (t) − 2 − ln x (t) − ln y (t) +
r4 (t)

4
+

g4 (t)
4

. (3.3)

Applying Itô’s formula, we have

dV = LVdt + r3 (t)σ1dB1 (t) + g4 (t)σ2dB2 (t) . (3.4)
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By defining

Π0 := sup
(x,y,r,g)∈R2

+×R
2

{ (x − 1) r
1 + f y

−
βy (x − 1)

(1 + ax) (1 + by)
+

qβx (y − 1)
(1 + ax) (1 + by)

+ δx − δx2 − eg (y − 1)

− hy2 + hy +
3
2

r2σ2
1 +

3
2

g2σ2
2 + β1|r|3r̄ − β1r4 + β2|g|3ḡ − β2g4

}
,

we can obtain that

LV = (x − 1)
(

r
1 + f y

− δx −
βy

(1 + ax) (1 + by)

)
+ (y − 1)

(
qβx

(1 + ax) (1 + by)
− eg − hy

)
+ β1r3r̄ − β1r4 +

3
2

r2σ2
1 + β2g3ḡ − β2g4 +

3
2

g2σ2
2

≤
(x − 1) r
1 + f y

−
βy (x − 1)

(1 + ax) (1 + by)
+

qβx (y − 1)
(1 + ax) (1 + by)

+ δx − δx2 − eg (y − 1) − hy2 + hy

+
3
2

r2σ2
1 +

3
2

g2σ2
2 + β1|r|3r̄ − β1r4 + β2|g|3ḡ − β2g4

≤ Π0 < ∞.

Following our calculations, we obtain

dV ≤ Π0 + r3 (t)σ1dB1 (t) + g3 (t)σ2dB2 (t) . (3.5)

By integrating the inequality from 0 to τn ∧T and subsequently taking the expectation of both sides
of the inequality (3.5), we get

E (V (x (τn ∧ T ) , y (τn ∧ T ) , r (τn ∧ T ) , g (τn ∧ T ))) ≤ V (x (0) , y (0) , r (0) , g (0)) + Π0T. (3.6)

For all n1 > n0, let Ωn = {τn ≤ T }, and then we have P (Ωn) ≥ ε. Note that for any ω ∈ Ωn, lnx, lny,
r or g equal either −n or n, so there is

V (x (0) , y (0) , r (0) , g (0)) + Π0T ≥ E
[
IΩn(ω)V (x (τn,w) , y (τn,w) , r (τn,w) , g (τn,w))

]
≥ εmin

{
e−n − 1 + n, en − 1 − n,

n4

4

}
,

where IΩn(ω) represents the characteristic function. As n→ ∞, we have

∞ > V (x (0) , y (0) , r (0) , g (0)) + Π0T = ∞, (3.7)

which leads to a contradiction. Therefore, we have τ∞ = ∞. This concludes the proof of Theorem
3.1.

3.2. Ultimate boundedness

Due to the limited resources in ecosystems, population density cannot increase indefinitely and will
eventually stabilize at a certain value over time. It is essential to theoretically demonstrate that system
(2.3) is ultimately bounded. First, we will define stochastically ultimate boundedness [35] in Definition
2.2.1.
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Lemma 3.1. For any initial value x (0) , y (0) , r (0) , g (0) ∈ R2
+×R

2, the solution (x (t) , y (t) , r (t) , g (t))
of system (2.3) has the property

lim
t→∞

supE
[
| (x, y) |q

]
≤ M (q) . (3.8)

Let q ∈ (0, 1), where M (q) is a positive constant independent of the initial value x (0) , y (0) , r (0) , g (0).

Proof. We define a non-negative C2-function V1 (x (t) , y (t) , r (t) , g (t)) : R2
+ × R

2 → R by

V1 (x (t) , y (t) , r (t) , g (t)) =
xq (t)

q
+

yq (t)
q
+

r2q+2 (t)
2q + 2

+
g2q+2 (t)
2q + 2

.

Applying the generalized Itô formula, we obtain

dV1=LV1dt+r2q+1 (t)σ1dB1 (t)+ g2q+1 (t)σ2dB2 (t) . (3.9)

To simplify the notation, the subsequent proof replaces x (t), y (t), r (t), and g (t) with x, y, r, and g,
respectively, so we have

LV1 = xq

(
r

1 + f y
− δx −

βy
(1 + ax) (1 + by)

)
+ yq

(
qβx

(1 + ax) (1 + by)
− eg − hy

)
+ r2q+1β1 (r̄ − r) + g2q+1β2 (ḡ − g) +

2q + 1
2

r2qσ2
1 +

2q + 1
2

g2qσ2
2.

Taking the mathematical expectation of eηtV1, we obtain

E
(
eηtV1 (x (t) , y (t) , r (t) , g (t))

)
= E (V1 (x (0) , y (0) , r (0) , g (0)))

+

∫ t

0
E (LeηsV1 (x (s) , y (s) , r (s) , g (s))) ds,

(3.10)

where η = q min {β1, β2}. Noting that

L
[
eηtV1 (x, y, r, g)

]
= ηeηtV1 (x, y, r, g) + eηtLV1 (x, y, r, g)

= eηt{
ηxq

q
+
ηyq

q
+
ηr2q+2

2q + 2
+
ηg2q+2

2q + 2
+

r
1 + f y

xq − δxq+1 −
βyxq

(1 + ax) (1 + by)

+
qβxyq

(1 + ax) (1 + by)
− egyq − hyq+1 + r2q+1β1 (r̄ − r) + g2q+1β2 (ḡ − g)

+
2q + 1

2
r2qσ2

1 +
2q + 1

2
g2qσ2

2}

≤ eηt{(β1 +
r

1 + f y
)xq + β2yq − egyq − δxq+1 −

βxy
(
xq−1 − qyq−1

)
(1 + ax) (1 + by)

− hyq+1

+ β1|r|2q+1r̄ −
β1r2q+2

2
+ β2|g|2q+1ḡ −

β2g2q+2

2
+ (q + 1) r2qσ2

1 + (q + 1) g2qσ2
2}

≤ κ (q) eηt,
(3.11)
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κ (q) = sup
(x,y,r,g)∈R2

+×R
2

{
(β1 +

r
1 + f y

)xq + β2yq − egyq − δxq+1 −
βxy

(
xq−1 − qyq−1

)
(1 + ax) (1 + by)

− hyq+1 + β1|r|2q+1r̄

−
β1r2q+2

2
+ β2|g|2q+1ḡ −

β2g2q+2

2
+ (q + 1) r2qσ2

1 + (q + 1) g2qσ2
2

}
.

Combining formula (3.10) and formula (3.11), we obtain

E
(
eηtV1 (x (t) , y (t) , r (t) , g (t))

)
≤ E (V1 (x (0) , y (0) , r (0) , g (0))) +

κ (q)
(
eηt − 1

)
η

,

and then we have

lim
t→∞

supE (|x (t) , y (t) |q) ≤ 2
q
2 q lim

t→∞
supE (V1 (x, y, r, g))

≤ 2
q
2 q lim

t→∞
e−ηtE

[
V1 (x (0) , y (0) , r (0) , g (0))

]
+ 2

q
2 q lim

t→∞

κ (q)
(
eηt − 1

)
ηeηt

≤ 2
q
2
qκ (q)
η

.

By setting M (q) = 2
q
2

qκ(q)
η

, the result (3.8) holds.

Theorem 3.2. The solutions of system (2.3) are stochastic and ultimately bounded.

Proof. According to Lemma 3.1, M (q) exists such that lim
t→∞

supE
√
| (x, y) | ≤ M (q). Now, Chebyshev’s

inequality is applied. For any ε > 0, let ψ =
√

2 κ(0.5)2

4ε2η2 . Then, we can get

P (|(x, y)| > ψ) ≤
E

[ √
|(x, y)|

]
√
ψ

.

Then, lim
t→∞

sup P (|(x, y)| > ψ) ≤
M
M
ε

= ε. This completes the proof of Theorem 3.2.

3.3. Existence of a stationary distribution

In the field of biology, a major objective is to analyze the behavior of systems over long periods.
This section seeks to establish sufficient conditions for the existence of a stationary distribution in
system (2.3). This will demonstrate the persistence of each species in system (2.3). By Theorem 3.1,
it is easy to know that there is a globally unique solution to system (2.3), so the description of Rm in
Lemma 2.1 should be changed to R2

+ × R
2.

Theorem 3.3. For any initial value (x (0) , y (0) r (0) , g (0)) ∈ R2
+ × R

2, system (2.3) has a stationary
distribution with the definition 2.2.2 of M1 on R2

+ × R
2.

Proof. First, a C2-function V2 (x, y, r, g) : R2
+ × R

2 → R is defined by

V2 (x, y, r, g) = M1

[
− ln x (t) − ln y (t) −

r (t)
β1
−

g (t)
β2

]
+ x (t) + y (t) +

r4 (t)
4
+

g4 (t)
4

. (3.12)
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By applying Itô’s formula to V2 and using the definition of M1, we obtain

LV2 = (x − M1)
(

r
1 + f y

− δx −
βy

(1 + ax) (1 + by)

)
+ (y − M1)

(
qβx

(1 + ax) (1 + by)
− eg − hy

)
− M1r̄

+ M1r − M1ḡ + M1g + β1r̄r3 − β1r4 +
3
2

r2σ2
1 + β2ḡg3 − β2g4 +

3
2

g2σ2
2

≤ − M1r̄ − M1ḡ +
r (x − M1)

1 + f y
−

(1 − q) βxy
(1 + ax) (1 + by)

−
δ

2
x2 +

(
|eg| +

1
2

)
y −

h
2

y2 + M1 (eg + r + g) + β1r̄r3

−
β1

2
r4 +

3
2

r2σ2
1 +

3
2

g2σ2
2 + β2ḡg3 −

β2

2
g4 + M1

(
δx + hy +

βy
(1 + ax) (1 + by)

−
qβx

(1 + ax) (1 + by)

)
−
δ

2
x2 −

1
2

y −
h
2

y2 −
β1

2
r4 −

β2

2
g4.

Then,

LV2 ≤ −2 + M1

(
δx + hy +

βy
(1 + ax) (1 + by)

−
qβx

(1 + ax) (1 + by)

)
−
δ

2
x2 −

1
2

y −
h
2

y2 −
β1

2
r4 −

β2

2
g4.

(3.13)

According to the expression of function V2 (x, y, r, g), it can be clearly seen that when x and y tend
to infinity, function V2 (x, y, r, g) will also become infinite. Thus, we can obtain a point

(
x0, y0, r0, g0

)
inside R2

+ × R
2, where the value of V2 (x, y, r, g) at that point will reach a minimum value. Combining

the above discussion and the requirements of the constructed function in Lemma 2.1, we can construct
a non-negative C2- function V3 (x, y, r, g), whose specific expression is as follows:

V3 (x, y, r, g) = V2 (x, y, r, g) − V2

(
x0, y0, r0, g0

)
.

According to the application principle of Itô’s formula, it is known that for the function V2 (x, y, r, g)
under study, adding a constant V2

(
x0, y0, r0, g0

)
to the end does not affect the expression of the result.

Therefore, V2 (x, y, r, g) and V3 (x, y, r, g) have the same operator, that is to say,

LV3 ≤ −2 + M1

(
δx + hy +

βy
(1 + ax) (1 + by)

−
qβx

(1 + ax) (1 + by)

)
−
δ

2
x2 −

1
2

y −
h
2

y2 −
β1

2
r4 −

β2

2
g4.

(3.14)

Subsequently, a closed set Eε is constructed as follows:

Eε =
{

(x, y, r, g) ∈ R2
+ × R

2|x ∈
[
ε2,

1
ε2

]
, y ∈

[
ε4,

1
ε4

]
, r ∈

[
−

1
ε
,

1
ε

]
, g ∈

[
−

1
ε
,

1
ε

] }
.

Let ε be a numerical value within the range of 0 and 1. It is of such minute magnitude that all three
subsequent inequalities can be fulfilled.

−2 + Π2 −
min {δ, 1, β1, β2}

4

(
1
ε

)4

≤ −1, (3.15)

−2 + M1δε
2 ≤ −1, (3.16)
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−2 +
1
2

M2
1δ + M1 (h + β) ε4 ≤ −1, (3.17)

where

Π2 := sup
(x,y,r,g)∈R2

+×R
2

{
M1

(
δx + hy +

βy
(1 + ax) (1 + by)

−
qβx

(1 + ax) (1 + by)

)
−
δ

4
x2 −

1
4

y −
h
2

y2 −
β1

4
r4 −

β2

4
g4

}
.

In order to simplify the proof, we partitioned the complement of the closed set into 6 distinct regions,
namely

(
R2
+ × R

2
)
\Eε = U6

i=1Ei, where

E1,ε =

{
(x, y, r, g) ∈

(
R2
+ × R

2
)
|x ∈

(
1
ε2 ,∞

)}
,E2,ε =

{
(x, y, r, g) ∈

(
R2
+ × R

2
)
|y ∈

(
1
ε4 ,∞

)}
,

E3,ε =

{
(x, y, r, g) ∈

(
R2
+ × R

2
)
| |r| ∈

(
1
ε
,∞

)}
,E4,ε =

{
(x, y, r, g) ∈

(
R2
+ × R

2
)
| |g| ∈

(
1
ε
,∞

)}
,

E5,ε =
{
(x, y, r, g) ∈

(
R2
+ × R

2
)
|x ∈

(
0, ε2

)}
,E6,ε =

{
(x, y, r, g) ∈

(
R2
+ × R

2
)
|y ∈

(
0, ε4

)}
.

Now, we only need to demonstrate that LV3 (x, y, r, g) ≤ −1 for all values of (x, y, r, g) ∈(
R2
+ × R

2
)
\Eε. Considering the partition of the above complement set, we prove this through the

following six cases.
Case 1. If (x, y, r, g) ∈ E1,ε, then one can derive the corresponding results by combining Eqs (3.14) and
(3.15), and we obtain

LV3 (x, y, r, g) ≤ −2 + Π2 −
δ

4
x2 ≤ −2 + Π2 −

δ

4

(
1
ε

)4

≤ −1.

Case 2. If (x, y, r, g) ∈ E2,ε, it follows that similar conclusions can be calculated from (3.14) and (3.15),
and we obtain

LV3 (x, y, r, g) ≤ −2 + Π2 −
1
4

y ≤ −2 + Π2 −
1
4

(
1
ε

)4

≤ −1.

Case 3. If (x, y, r, g) ∈ E3,ε, consequently, from (3.14) and (3.15), we obtain

LV3 (x, y, r, g) ≤ −2 + Π2 −
β1

4
r4 ≤ −2 + Π2 −

β1

4

(
1
ε

)4

≤ −1.

Case 4. If (x, y, r, g) ∈ E4,ε, from (3.14) and (3.15), we obtain

LV3 (x, y, r, g) ≤ −2 + Π2 −
β2

4
g4 ≤ −2 + Π2 −

β2

4

(
1
ε

)4

≤ −1.

Case 5. If (x, y, r, g) ∈ E5,ε, from (3.14) and (3.16), we obtain

LV3 (x, y, r, g) ≤ −2 + M1δx −
(
1
4
− M1h − M1β

)
y ≤ −2 + M1δx ≤ −2 + M1δε

2 ≤ −1.

Case 6. If (x, y, r, g) ∈ E6,ε, from (3.14) and (3.17), we obtain

LV3 (x, y, r, g) ≤ −2 +
1
2

M2
1δ + M1 (h + β) y ≤ −2 +

1
2

M2
1δ + M1 (h + β) ε4 ≤ −1.
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In summary of the aforementioned cases, it can be concluded that there exists a sufficiently small
constant ε > 0 such that LV3 (x, y, r, g) ≤ −1 for any (x, y, r, g) ∈

(
R2
+ × R

2
)
\Eε.

Where Π2 ≤ −1,

ε ≤ min

1,

√
1

M1δ
,

4

√
1 − 1

2 M2
1δ

M1 (h + β)

 . (3.18)

In addition, if Π2 > 1, then ε not only needs to satisfy the aforementioned condition, but also needs
to fulfill the following additional conditions:

ε ≤ min

1, 4

√
min {δ, 1, β1, β2}

4 (Π2 − 1)

 . (3.19)

This confirms Condition (2.7) in Lemma 2.1. Therefore, system (2.3) possesses a stationary
distribution on R2

+ × R
2. This completes the proof of Theorem 3.3.

3.4. Extinction

Theorem 3.4. We define

φ1 (t) = r −
β2

1

4α1
+

β2
1

4α1
e−2α1t, φ̄1 = lim

t→+∞

1
t

∫ t

0
φ1 (s) ds = r −

β2
1

4α1
,

φ2 (t) = m −
β2

2

4α2
+

β2
2

4α2
e−2α2t, φ̄2 = lim

t→+∞

1
t

∫ t

0
φ2 (s) ds = m −

β2
2

4α2
,

when φ̄1 < 0 and φ̄2 > 0, and then x (t) and y (t) are extinct.

Proof. Based on Eq (1.2) and the definition of the Ornstein-Uhlenbeck process, we obtain

r (t) = r̄ + [r (0) − r̄] e−α1t + β1

∫ t

0
e−α1(t−s)dB1 (s),

m (t) = m̄ + [m (0) − m̄] e−α2t + β2

∫ t

0
e−α2(t−s)dB2 (s).

(3.20)

Equation (3.20) clearly indicates that r (t) and m (t) follow the Gaussian distribution
N (E [r (t)] ,VAR [r (t)]), N (E [m (t)] ,VAR [m (t)]) on [0, t]. It is easy to infer that

E [r(t)] = r̄ + [r(0) − r̄] e−α1t,VAR [r(t)] =
β2

1

2α1

(
1 − e−2α1t

)
,

E [m(t)] = m̄ + [m(0) − m̄] e−α2t,VAR [m(t)] =
β2

2

2α2

(
1 − e−2α2t

)
.

Therefore, βi

∫ t

0
e−αi(t−s)dBi (s) ∼ N

(
0, β

2
i

2αi

(
1 − e−2αit

))
, i = 1, 2. Then, it is equivalent to

βi
√

2αi

√
1 − e−2αit dBi(t)

dt . According to Chen et al. [36], we let γi (t) = βi
√

2αi

√
1 − e−2αit dBi(t)

dt , where Bi (t)
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represents a standard Brownian motion. Equation (3.20) can be written as:

r (t) = r̄ + [r (0) − r̄] e−β1t + γ1
dB1 (t)

dt
,

m (t) = m̄ + [m (0) − m̄] e−β2t + γ2
dB2 (t)

dt
.

(3.21)

Subsequently, we modify system (2.3) accordingly:
dx (t) = x (t)

(
r̄+[r(0)−r̄]e−α1t

1+ f y(t) − δx (t) − βy(t)
[1+ax(t)][1+by(t)]

)
dt − γ1x (t) dB1 (t) ,

dy (t) = y (t)
(

qβx(t)
[1+ax(t)][1+by(t)] − m̄ − [m (0) − m̄] e−α2t − hy (t)

)
dt − γ2y (t) dB2 (t) .

(3.22)

Applying Itô’s formula to lnx (t) and lny (t), we can get

ln x (t) = ln x (0) +
∫ t

0

φ1

1 + f y (s)
ds + [r (0) − r̄]

∫ t

0

e−α1 s

1 + f y (s)
ds − δ

∫ t

0
x (s) ds

−

∫ t

0

βy (s)
[1 + ax (s)]

[
1 + by (s)

]ds −
∫ t

0
γ1 (s) dB1 (s) ,

ln y (t) = ln y (0) −
∫ t

0
φ2 (s) ds + qβ

∫ t

0

x (s)
[1 + ax (s)]

[
1 + by (s)

]ds+
m (0) − m̄

α2

(
e−α2t − 1

)
− h

∫ t

0
y (s) ds−

∫ t

0
γ2 (s) dB2 (s) ,

(3.23)

and from Eq (3.23), we obtain

t−1 ln
x (t)
x (0)

≤
1
t

∫ t

0

φ1 (s)
1 + f y (s)

ds +
[r (0) − r̄]

t

∫ t

0

e−α1 s

1 + f y (s)
ds −

δ

t

∫ t

0
x (s) ds

−
1
t

∫ t

0

βy (s)
[1 + ax (s)]

[
1 + by (s)

]ds −
1
t

∫ t

0
γ1 (s) dB1 (s)

≤ φ̄1 −
1
t

∫ t

0

f y (s)φ1 (s)
1 + f y (s)

ds −
δ

t

∫ t

0
x (s) ds −

1
t

∫ t

0

βy (s)
[1 + ax (s)]

[
1 + by (s)

]ds

+
[r (0) − r̄]

t

(
ln (1 + f y (t))

f y′ (t) eα1t −
ln (1 + f y (0))

f y′ (0)
+ α1

∫ t

0

ln (1 + f y (s))
f y′ (s) eα1 s ds

)
−

1
t

∫ t

0
γ1 (s) dB1 (s)

≤ φ̄1 + ε1 +
[r (0) − r̄]

t

(
ln (1 + f y (t))

f y′ (t) eα1t −
ln (1 + f y (0))

f y′ (0)
+ α1

∫ t

0

ln (1 + f y (s))
f y′ (s) eα1 s ds

)
−

1
t

∫ t

0
γ1 (s) dB1 (s) ,

t−1 ln
y (t)
y (0)

≤ − φ̄2 + ε2 +
m (0) − m̄

tβ2

(
e−α2t − 1

)
−

1
t

∫ t

0
γ2 (s) dB2 (s) .

(3.24)
Then taking the upper limit, we get

lim
t→∞

sup
ln x (t)

t
≤ φ̄1 + ε1,

lim
t→∞

sup
ln y (t)

t
≤ −φ̄2 + ε2.

(3.25)
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According to Lemma 2.2,
∫ t

0
γ2 (s) dB2 (s) follows from the strong law of large numbers theorem for

martingales. Therefore, lim
t→∞

1
t

∫ t

0
γ2 (s) dB2 (s) = 0. Based on the definition of the Ornstein-Uhlenbeck

process, if φ̄1 + ε1 < 0, then lim
t→∞

x (t) = 0. Similarly, when φ̄2 > 0, then lim
t→∞

y (t) = 0. Theorem 3.4 is
proved.

4. Computer simulations

Thus far, we have rigorously demonstrated several of the dynamic properties of the system.
By constructing Lyapunov functions, we demonstrated the global existence and uniqueness of
the solutions. We also derived estimates on the upper bounds of the moments of the solutions.
Furthermore, we proved the existence of stationary distributions of the solutions. Next, we will verify
our conclusions through numerical simulations.

First, we discretize system (2.3) using the Milstein scheme of higher-order discretization. The
discretization equation is as follows:

xi+1 = xi + xi

(
ri

1 + f yi − δxi −
βyi

(1 + axi) (1 + byi)

)
∆t,

yi+1 = yi + yi

(
qβxi

(1 + axi) (1 + byi)
− (eg)i

− hyi

)
∆t,

ri+1 = ri +
[
β1

(
r̄ − ri

)]
∆t + σ1

√
∆tξi,

gi+1 = gi +
[
β2

(
ḡ − gi

)]
∆t + σ2

√
∆tψi.

(4.1)

Immediately afterward, it is necessary to introduce the biological significance of the parameters
related to the process being modeled. ∆t > 0 represents the time increment, and ξi, ψi are two
independent stochastic variables that adhere to the standard Gaussian distribution. In addition,(
xi, yi, ri, gi

)
denotes the value corresponding to the ith iteration of the discretization Eq (4.1), where

i = 1, 2, · · ·. Computer simulations can then be performed to gain insights into the dynamics of the
biological system (see Table 1).

Table 2. The combinations of biological parameters of system (2.3) in Table 1.

Combinations Value

r̄ = 0.231, ḡ = 0.5, f = 0.1, δ = 0.01, h = 1, β = 1.39, q = 0.65
(C1) a = 0.01, b = 0.01, β1 = 0.6, β2 = 0.8, σ1 = 0.04, σ2 = 0.04

r̄ = 0.154, ḡ = 0.5, f = 0.1, δ = 0.01, h = 1, β = 1.91, q = 0.7
(C2) a = 0.01, b = 0.01, β1 = 0.3, β2 = 0.4, σ1 = 0.02, σ2 = 0.02

r̄ = 0.21, ḡ = 0.5, f = 0.1, δ = 0.01, h = 0.5, β = 0.58, q = 0.73
(C3) a = 0.01, b = 0.01, β1 = 0.4, β2 = 0.5, σ1 = 0.05, σ2 = 0.05

r̄ = 0.21, ḡ = −0.5, f = 0.1, δ = 0.01, h = 0.6, β = 0.58, q = 0.73
(C4) a = 0.02, b = 0.02, β1 = 0.2, β2 = 0.4, σ1 = 0.02, σ2 = 0.02

r̄ = 0.021, ḡ = 0.05, f = 0.1, δ = 0.3, h = 4, β = 0.58, q = 0.65
(C5) a = 0.3, b = 0.5, β1 = 0.6, β2 = 0.8, σ1 = 0.04, σ2 = 0.04
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Based on the biological significance of the above parameters, we set reasonable values from
Jørgensen [37] in Table 2.
Example 1. We chose the combination (C1) − (C3) in Table 2 as the biological parameter values for
the system (2.3) and made the total number of iterations Tmax = 2000. We can obtain Figure 1.
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Figure 1. The rate of change and the number of food and predators captured by system (2.3)
are simulated using a computer. It can be visualized that the image confirms Theorem 3.1:
System (2.3) has a unique global solution. The relevant parameters are determined by the
combination of (C1) − (C3).

Remark 3. From Figure 1, the first line graph represents the trend of population x, y whose growth
rate is disturbed by the OU process, which together with Theorem 3.1 shows that the corresponding
populations x (t), y (t) have been fluctuating and growing around the mean value under the influence
of various stochastic disturbances. Figure 1 represents r, g of the OU process disturbance, showing
that the OU process disturbance makes the growth rate fluctuate randomly. Therefore, the growth rate
is not a determinant of the population density, and other factors such as environmental disturbances
also have a great influence on the survival of the population. It can be seen that different combinations
of coefficients have different solutions, all of which exist and are unique. Therefore, the conclusion of
Theorem 3.1 can be verified.

On the basis of Theorem 3.1, we next study the effect of environmental perturbations on the
population. We chose the parameter combination (C1) and varied the value of the parameter σi,
i = 1, 2. We assumed that σi was 0.02, 0.08 and 0.12, respectively. From Figure 2, we can see that the
environmental perturbation has a great influence on the survival of the population.
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Figure 2. The effect of different σi values on the populations.

In order to verify the existence and uniqueness of the solution of the system (2.3) more clearly, we
performed 100 simulations of Theorem 3.1. All 100 paths are shown as gray lines in Figure 3, and
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the green solid line represents the average of the 100 simulated paths. It can be seen that different
combinations of coefficients have different existence and unique solutions, and thus, the conclusion of
Theorem 3.1 can be verified.

Figure 3. 100 path simulation figures.

Example 2. We chose the combination of (C1)− (C3) as the biological parameter values for the system
(2.3), with a total iteration count of Tmax = 1500. We can obtain Figure 4.
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Figure 4. The computer simulated the θ th order solution of system (2.3) and obtained that
the solution has an upper bound. The system (2.3) is ultimately bounded. The relevant
parameters are determined by the combination of (C1) − (C3).

Remark 4. From Figure 4, we can see the expected values of the three coefficient combinations (C1)−
(C3). These are less than the upper limit K (q) and this upper limit is not infinite. As time t increases, the
probability P gradually stabilizes and becomes greater than a constant. So lim

t→∞
sup P

{ √
x2 + y2 ≤ ψ

}
≥

1 − ε. This indicates that Theorem 3.2 holds. From a biological point of view, since environmental
resources are finite, no population of any organism can grow indefinitely, which is consistent with
reality.
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Example 3. We chose the (C1) − (C3) combination as the biological parameter of the system (2.3).
Let the iteration count Tmax = 2000. Figure 5 shows that system (2.3) has a stationary distribution, and
Theorem 3.3 is proven.
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Figure 5. For the choice of parameters (C1) − (C3), the computer simulation results show
that the solutions of system (2.3) have stationary distributions.

Remark 5. From Figure 5, it can be seen that population x (t) and population y (t) approximately obey
the normal distribution, which indicates that the growth of the population will finally reach a stable
state under the influence of the random environmental disturbances received.

To further verify the conclusions of Theorems 3.2 and 3.3, we follow Theorem 3.1 to select 100
paths for simulation. In Figure 6, the left figure shows the simulation results of Theorem 3.2, and the
right figure shows the simulation results of Theorem 3.3. Obviously, both theorems are valid.

AIMS Mathematics Volume 9, Issue 12, 34981–35003.



34999

Figure 6. 100 path simulation figures.

Example 4. We chose the combination as the biological parameter value (2.3) for the system. We
made the total number of iterations Tmax= 1000. We can obtain Figure 7. From the figure, it can be
seen that system (2.3) has extinction, and Theorem 3.4 holds.
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Figure 7. Computer simulation of the extinction of the system. When φ̄1 < 0, the x becomes
extinct and when φ̄2 > 0, y becomes extinct. All simulation parameters were selected from
the combinations (C4) and (C5).

5. Conclusions

In this paper, the model establishes a stochastic predation model with a fear effect, Crowley-Martin
functional response, and the Ornstein-Uhlenbeck process. Then, we have proved the existence and
uniqueness of solutions, the ultimate boundedness, the existence of stationary distributions, and
extinction. Under conditions of not too much environmental noise, the population is able to keep
fluctuating around the mean value, and with limited environmental resources, there is a limit to the
growth of the population. The model has a stationary distribution when the parameters satisfy certain
conditions. In the case of r − β2

1
4α1

< 0 and m − β2
2

4α2
> 0 , the population will be extinct.

Simulations of system (2.3) show that due to the finite nature of environmental resources, the
intrinsic growth rate also fluctuates around the mean level. The q-order moment of the model is less
than a certain value. From the biological point of view, due to the limited resources in the natural
environment, any biological population will not grow indefinitely, and the model maintains the healthy
growth, in line with the biological law. The population x (t), y (t) approximately obeys a normal
distribution, which in biological sense indicates the persistence of predators and bait; if r− β2

1
4α1

< 0 and

m − β2
2

4α2
> 0 , the population will be extinct. Unfavorable stochastic environmental disturbances also

accelerate the extinction of the population.
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Compared to previous work, the inclusion of the Ornstein-Uhlenbeck process makes the existence
and uniqueness of the global positive solution in the traditional model into the existence and uniqueness
of the global solution, and the proofs of the remaining parts of the Lyapunov function are changed
in an innovative way. The Ornstein-Uhlenbeck process is used to more accurately represent the
stochastic properties of the environment, exhibiting a relatively stable variation pattern. At present, the
significance of the Ornstein-Uhlenbeck process has not been widely discussed in population dynamics
models. Previous studies mainly focus on the study of Crowley-Martin’s periodicity and balance.
Therefore, there is some value in studying other properties of the system (2.3).

The models can be applied to develop ecological and species conservation strategies. The
Ornstein-Uhlenbeck process can help ecologists understand how to cope with environmental
fluctuations, and it can also be applied to biodiversity studies to explore how predation and fear effects
affect interrelationships among different species and the service functions of ecosystems. In addition,
the analysis of population extinction has deepened our understanding of the biological background
of the model, reflecting the profound impact of extinction events on species evolution, ecosystem
balance, and biodiversity. It also provides theoretical support for us to develop conservation strategies
in practical applications.

In fact, there is still room for improvement in our model. There is a time-delay in the interaction
between populations in many natural ecosystems. However, we did not consider the effect of
time-delay on the model. The effects of ecological changes in nature are often delayed, so it is
necessary to add a time-delay term to the model. This will be improved in the future. Second, there
are often some drastic environmental changes in nature, such as volcanic eruptions, earthquakes, etc.,
which also affect the population. Therefore, in future studies, to make our model more complete, we
will add Lévy jumps to the model to simulate drastic environmental changes in nature.
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