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1. Introduction

In this paper, we establish the following four symmetric quaternion matrix systems:
A11X1 = B11,C11X1D11 = E11,

X2A22 = B22,C22X2D22 = E22,

F11X1H11 + X2F22 = G11,

(1.1)


A11X1 = B11,C11X1D11 = E11,

X2A22 = B22,C22X2D22 = E22,

F11X1 + H11X2F22 = G11,

(1.2)


A11X1 = B11,C11X1D11 = E11,

A22X2 = B22,C22X2D22 = E22,

F11X1 + H11X2F22 = G11,

(1.3)
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33663
A11X1 = B11,C11X1D11 = E11,

A22X2 = B22,C22X2D22 = E22,

F11X1 + X2F22 = G11,

(1.4)

where Aii, Bii, Cii, Dii, Eii, Fii(i = 1, 2), H11, and G11 are known matrices, while Xi(i = 1, 2)
are unknown.

In this paper, R and Hm×n denote the real number field and the set of all quaternion matrices of order
m × n, respectively.

H = {v0 + v1i + v2j + v3k|i2 = j2 = k2 = ijk = −1, v0, v1, v2, v3 ∈ R}.

Moreover, r(A), 0 and I represent the rank of matrix A, the zero matrix of suitable size, and the identity
matrix of suitable size, respectively. The conjugate transpose of A is A∗. For any matrix A, if there
exists a unique solution X such that

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA,

then X is called the Moore-Penrose (M − P) inverse. It should be noted that A† is used to represent the
M − P inverse of A. Additionally, LA = I − A†A and RA = I − AA† denote two projectors toward A.
H is known to be an associative noncommutative division algebra over Rwith extensive applications

in computer science, orbital mechanics, signal and color image processing, control theory, and so on
(see [1–4]).

Matrix equations, significant in the domains of descriptor systems control theory [5], nerve
networks [6], back feed [7], and graph theory [8], are one of the key research topics in mathematics.

The study of matrix equations in H has garnered the attention of various researchers; consequently
they have been analyzed by many studies (see, e.g., [9–12]). Among these the system of symmetric
matrix equations is a crucial research object. For instance, Mahmoud and Wang [13] established some
necessary and sufficient conditions for the three symmetric matrix systems in terms of M − P inverses
and rank equalities:

A1V = C1, VB1 = C2,

A3X + YB3 = C3,

A2Y + ZB2 + A5VB5 = C5,

A4W + ZB4 = C4,


A1V = C1, VB1 = C2,

A3X + YB3 = C3,

A2Z + YB2 + A5VB5 = C5,

A4Z +WB4 = C4,


A1V = C1, VB1 = C2,

A3X + YB3 = C3,

A2Y + ZB2 + A5VB5 = C5,

A4Z +WB4 = C4.

(1.5)

Wang and He [14] established the sufficient and necessary conditions for the existence of solutions to
the following three symmetric coupled matrix equations and the expressions for their general solutions:

A1X + YB1 = C1,

A2Y + ZB2 = C2,

A3W + ZB3 = C3,


A1X + YB1 = C1,

A2Z + YB2 = C2,

A3Z +WB3 = C3,


A1X + YB1 = C1,

A2Y + ZB2 = C2,

A3Z +WB3 = C3.

(1.6)

It is noteworthy that the following matrix equation plays an important role in the analysis of the
solvability conditions of systems (1.1)–(1.4):

A1U + VB1 + A2XB2 + A3YB3 + A4ZB4 = B. (1.7)
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Liu et al. [15] derived some necessary and sufficient conditions to solve the quaternion matrix
equation (1.7) using the ranks of coefficient matrices and M − P inverses. Wang et al. [16] derived the
following quaternion equations after obtaining some solvability conditions for the quaternion equation
presented in Eq (1.8) in terms of M − P inverses:

A11X1 = B11,C11X1D11 = E11,

X2A22 = B22,C22X2D22 = E22,

F11X1 + X2F22 = G11.

(1.8)

To our knowledge, so far, there has been little information on the solvability conditions and an
expression of the general solution to systems (1.1)–(1.4).

In mathematical research and applications, the concept of η-Hermitian matrices has gained
significant attention [17]. An η-Hermitian matrix, for η ∈ {i, j,k}, is defined as a matrix A such
that A = Aη

∗

, where Aη
∗

= −ηA∗η. These matrices have found applications in various fields including
linear modeling and the statistics of random signals [1, 17]. As an application of (1.1), this paper
establishes some necessary and sufficient conditions for the following matrix equation:{

A11X1 = B11,C11X1C
η∗

11 = E11,

F11X1Fη
∗

11 + (F22X1)η
∗

= G11
(1.9)

to be solvable.
Motivated by the study of Systems (1.8), symmetric matrix equations, η-Hermitian matrices, and

the widespread use of matrix equations and quaternions as well as the need for their theoretical
advancements, we examine the solvability conditions of the quaternion systems presented in
systems (1.1)–(1.4) by utilizing the rank equalities and the M − P inverses of coefficient matrices.
We then obtain the general solutions for the solvable quaternion equations in systems (1.1)–(1.4). As
an application of (1.1), we utilize the M − P inverse and the rank equality of matrices to investigate
the necessary and sufficient conditions for the solvability of quaternion matrix equations involving
η-Hermicity matrices. It is evident that System (1.8) is a specific instance of System (1.1).

The remainder of this article is structured as follows. Section 2 outlines the basics. Section 3
examines some solvability conditions of the quaternion equation presented in System (1.1) using the
M − P inverses and rank equalities of the matrices, and derives the solution of System (1.1). Section 4
establishes some solvability conditions for matrix systems (1.2)–(1.4) to be solvable. Section 5
investigates some necessary and sufficient conditions for matrix equation (1.9) to have common
solutions. Section 6 concludes the paper.

2. Preliminaries

Marsaglia and Styan [18] presented the following rank equality lemma over the complex field,
which can be generalized to H.

Lemma 2.1. [18] Let A ∈ Hm×n,B ∈ Hm×k,C ∈ Hl×n,D ∈ H j×k, and E ∈ Hl×i be given. Then, the
following rank equality holds:

r
(

A BLD

REC 0

)
= r


A B 0
C 0 E
0 D 0

 − r
(
D
)
− r

(
E
)
.
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Lemma 2.2. [19] Let A ∈ Hm×n be given. Then,

(1) (Aη)† = (A†)η, (Aη
∗

)† = (A†)η
∗

;

(2) r(A) = r(Aη
∗

) = r(Aη);

(3) (LA)η
∗

= −η(LA)η = (LA)η = LAη∗ = RAη∗ ,

(4) (RA)η
∗

= −η(RA)η = (RA)η = RAη∗ = LAη∗ ;

(5) (AA†)η
∗

= (A†)η
∗

Aη
∗

= (A†A)η = Aη(A†)η;

(6) (A†A)η
∗

= Aη
∗

(A†)η
∗

= (AA†)η = (A†)ηAη.

Lemma 2.3. [20] Let A1 and A2 be given quaternion matrices with adequate shapes. Then, the
equation A1X = A2 is solvable if, and only if, A2 = A1A†1A2. In this case, the general solution to this
equation can be expressed as

X = A†1A2 + LA1U1,

where U1 is any matrix with appropriate size.

Lemma 2.4. [20] Let A1 and A2 be given quaternion matrices with adequate shapes. Then, the
equation XA1 = A2 is solvable if, and only if, A2 = A2A†1A1. In this case, the general solution to this
equation can be expressed as

X = A2A†1 + U1RA1 ,

where U1 is any matrix with appropriate size.

Lemma 2.5. [21] Let A, B, and C be known quaternion matrices with appropriate sizes. Then, the
matrix equation

AXB = C

is consistent if, and only if,

RAC = 0,CLB = 0.

In this case, the general solution to this equation can be expressed as

X = A†CB† + LAU + VRB,

where U and V are any quaternion matrices with appropriate sizes.

Lemma 2.6. [15] Let Ci,Di, and Z (i = 1, 4) be known quaternion matrices with appropriate sizes.

C1X1 + X2D1 +C2Y1D2 +C3Y2D3 +C4Y3D4 = Z. (2.1)

Denote

RC1C2 = C12,RC1C3 = C13,RC1C4 = C14,D2LD1 = D21,D31LD21 = N32,D3LD1 = D31,

D4LD1 = D41,RC12C13 = M23, S 12 = C13LM23 ,RC1ZLD1 = T1,C32 = RM23RC12 , A1 = C32C14,

A2 = RC12C14, A3 = RC13C14, A4 = C14,D13 = LD21 LN32 , B1 = D41, B2 = D41LD31 ,
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B3 = D41LD21 , B4 = D41D13, E1 = C32T1, E2 = RC12T1LD31 , E3 = RC13T1LD21 , E4 = T1D13,

A24 = (LA2 , LA4), B13 =

(
RB1

RB3

)
, A11 = LA1 , B22 = RB2 , A33 = LA3 , B44 = RB4 , E11 = RA24 A11,

E22 = RA24 A33, E33 = B22LB13 , E44 = B44LB13 ,N = RE11 E22,M = E44LE33 ,K = K2 − K1,

E = RA24 KLB13 , S = E22LN ,K11 = A2LA1 ,G1 = E2 − A2A†1E1B†1B2,K22 = A4LA3 ,

G2 = E4 − A4A†3E3B†3B4,K1 = A†1E1B†1 + LA1 A†2E2B†2,K2 = A†3E3B†3 + LA3 A†4E4B†4.

Then, the following statements are equivalent:
(1) Equation (2.1) is consistent.
(2)

RAi Ei = 0, EiLBi = 0(i = 1, 4),RE11 ELE44 = 0.

(3)

r
(

Z C2 C3 C4 C1

D1 0 0 0 0

)
= r(D1) + r(C2,C3,C4,C1),

r


Z C2 C4 C1

D3 0 0 0
D1 0 0 0

 = r(C2,C4,C1) + r
(
D3

D1

)
,

r


Z C3 C4 C1

D2 0 0 0
D1 0 0 0

 = r(C3,C4,C1) + r
(
D2

D1

)
,

r


Z C4 C1

D2 0 0
D3 0 0
D1 0 0

 = r


D2

D3

D1

 + r(C4,C1),

r


Z C2 C3 C1

D4 0 0 0
D1 0 0 0

 = r(C2,C3,C1) + r
(
D4

D1

)
,

r


Z C2 C1

D3 0 0
D4 0 0
D1 0 0

 = r


D3

D4

D1

 + r(C2,C1),

r


Z C3 C1

D2 0 0
D4 0 0
D1 0 0

 = r


D2

D4

D1

 + r(C3,C1),
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r


Z C1

D2 0
D3 0
D4 0
D1 0


= r


D2

D3

D4

D1

 + r(C1),

r



Z C2 C1 0 0 0 C4

D3 0 0 0 0 0 0
D1 0 0 0 0 0 0
0 0 0 −Z C3 C1 C4

0 0 0 D2 0 0 0
0 0 0 D1 0 0 0

D4 0 0 D4 0 0 0


= r


D3 0
D1 0
0 D2

0 D1

D4 D4


+ r

(
C2 C1 0 0 C4

0 0 C3 C1 C4

)
.

Under these conditions, the general solution to the matrix equation (2.1) is

X1 = C†1(Z −C2Y1D2 −C3Y2D3 −C4Y3D4) −C†1U1D1 + LC1U2,

X2 = RC1(Z −C2Y1D2 −C3Y2D3 −C4Y3D4)D†1 +C1C
†

1U1 + U3RD1 ,

Y1 = C†12T D†21 −C†12C13M†23T D†21 −C†12S 12C
†

13T N†32D31D†21

−C†12S 12U4RN32 D31D†21 + LC12U5 + U6RD21 ,

Y2 = M†23T D†31 + S †12S 12C
†

13T N†32 + LM23 LS 12U7 + U8RD31 + LM23U4RN32 ,

Y3 = K1 + LA2V1 + V2RB1 + LA1V3RB2 , or Y3 = K2 − LA4W1 −W2RB3 − LA3W3RB4 ,

where T = T1 −C4Y3D4,Ui(i = 1, 8) are arbitrary matrices with appropriate sizes over H,

V1 = (Im, 0)[A†24(K − A11V3B22 − A33W3B44) − A†24U11B13 + LA24U12],

W1 = (0, Im)[A†24(K − A11V3B22 − A33W3B44) − A†24U11B13 + LA24U12],

W2 = [RA24(K − A11V3B22 − A33W3B44)B†13 + A24A†24U11 + U21RB13]
(
0
In

)
,

V2 = [RA24(K − A11V3B22 − A33W3B44)B†13 + A24A†24U11 + U21RB13]
(
In

0

)
,

V3 = E†11KE†33 − E†11E22N†KE†33 − E†11S E†22KM†E44E†33

− E†11S U31RME44E†33 + LE11U32 + U33RE33 ,

W3 = N†KE44 + S †S E†22KM† + LN LS U41 + LNU31RM − U42RE44 ,

U11,U12,U21,U31,U32,U33,U41, and U42 are arbitrary quaternion matrices with appropriate sizes, and
m and n denote the column number of C4 and the row number of D4, respectively.

3. Solvability conditions and expression of general solution for system (1.1)

Some necessary and sufficient conditions for System (1.1) to be solvable will be established in this
section. The general solution of System (1.1) will also be derived in this section. Moreover, we provide
an example to illustrate our main results.
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Theorem 3.1. Let Aii, Bii,Cii,Dii, Eii, Fii,H11, and G11 (i=1,2) be given quaternion matrices. Put
A1 = C11LA11 , P1 = E11 −C11A†11B11D11, B2 = RA22 D22,

P2 = E22 −C22B22A†22D22, B̂1 = RB2RA22 F22, Â2 = F11LA11 LA1 ,

Â3 = F11LA11 , B̂3 = RD11 H11, Â4 = LC22 , B̂4 = RA22 F22,H11LB̂1
= B̂11,

P = G11 − F11A†11B11H11 − F11LA11 A†1P1D†11H11 − B22A†22F22 −C†22P2B†2RA22 F22,

(3.1)



B̂22L ˆB11
= N1, B̂3LB̂1

= B̂22, B̂4LB̂1
= B̂33,RÂ2

Â3 = M̂1, S 1 = Â3LM̂1
,T1 = PLB̂1

,

C = RM̂1
RÂ2
,C1 = CÂ4,C2 = RÂ2

Â4,C3 = RÂ3
Â4,C4 = Â4,D = L ˆB11

LN1 ,

D1 = B̂33,D2 = B̂33L ˆB22
,D4 = B̂33D, E1 = CT1, E2 = RÂ2

T1L ˆB22
,

E3 = RÂ3
T1L ˆB11

, E4 = T1D, Ĉ11 = (LC2 , LC4),D3 = B̂33L ˆB11
, D̂11 =

(
RD1

RD3

)
,

Ĉ22 = LC1 , D̂22 = RD2 , Ĉ33 = LC3 , D̂33 = RD4 , Ê11 = R ˆC11
Ĉ22,

Ê22 = R ˆC11
Ĉ22, Ê33 = D̂22LD̂11

, Ê44 = D̂33LD̂11
,M = R ˆE11

Ê22,

N = Ê44L ˆE33
, F = F2 − F1, E = R ˆC11

FLD̂11
, S = Ê22LM, F̂11 = C2LC1 ,

G1 = E2 −C2C
†

1E1D†1D2, F̂22 = C4LC3 ,G2 = E4 −C4C
†

3E3D†3D4,

F1 = C†1E1D†1 + LC1C
†

2E2D†2, F2 = C†3E3D†3 + LC3C
†

4E4D†4.

(3.2)

Then, the following statements are equivalent:
(1) System (1.1) is solvable.
(2)

RA11 B11 = 0,RA1 P1 = 0, P1LD11 = 0, B22LA22 = 0,RC22 P2 = 0,

P2LB2 = 0,RCi Ei = 0, EiLDi = 0(i = 1, 4),R ˆE11
EL ˆE44

= 0.

(3)

r(B11, A11) = r(A11), r
(

E11 C11

B11D11 A11

)
= r

(
C11

A11

)
, (3.3)

r
(
E11

D11

)
= r(D11), r

(
B22

A22

)
= r(A22), (3.4)

r(E22,C22) = r(C22), r
(
E22 C22B22

D22 A22

)
= r(D22, A22), (3.5)

r


F22 0 D22 A22

B11H11 A11 0 0
C22G11 C22F11 E22 C22B22

 = r(F22,D22, A22) + r
(

A11

C22F11

)
, (3.6)

r


H11 0 −D11 0 0
F22 0 0 D22 A22

0 C11 E11 0 0
0 A11 B11D11 0 0

C22G11 C22F11 0 E22 C22B22


(3.7)

= r


C11

A11

C22F11

 + r
(
H11 D11 0 0
F22 0 D22 A22

)
,
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r


H11 0 0 0
F22 0 D22 A22

0 A11 0 0
C22G11 C22F11 E22 C22B22

 = r
(
H11 0 0
F22 D22 A22

)
+ r

(
A11

C22F11

)
, (3.8)

r


H11 0 0
F22 D22 A22

C22G11 E22 C22B22

 = r
(
H11 0 0
F22 D22 A22

)
, (3.9)

r


G11 F11 B22

F22 0 A22

B11H11 A11 0

 = r
(
F11

A11

)
+ r(F22, A22), (3.10)

r


G11 F11 0 B22

H11 0 −D11 0
F22 0 0 A22

0 C11 E11 0
0 A11 B11D11 0


= r

(
H11 D11 0
F22 0 A22

)
+ r


F11

C11

A11

 , (3.11)

r


G11 F11 B22

H11 0 0
F22 0 A22

0 A11 0

 = r
(
H11 0
F22 A22

)
+ r

(
F11

A11

)
, (3.12)

r


G11 B22

H11 0
F22 A22

 = r
(
H11 0
F22 A22

)
, (3.13)

r



H11 0 0 0 0 0 0 D11 0
F22 0 0 0 0 D22 A22 0 0
0 0 H11 0 0 0 0 0 0
0 0 F22 D22 A22 0 0 0 0

F22 0 F22 0 0 0 0 0 A22

0 C11 0 0 0 0 0 −E11 0
0 A11 0 0 0 0 0 −B11D11 0

C22G11 C22F11 0 0 0 E22 C22B22 0 0



= r


H11 0 0 0 0 0 D11 0
F22 0 0 0 D22 A22 0 0
0 H11 0 0 0 0 0 0
0 F22 D22 A22 0 0 0 0

F22 F22 0 0 0 0 0 A22


+ r


C11

A11

C22F11

 .

(3.14)

Proof. (1)⇔ (2): The System (1.1) can be written as follows.

A11X1 = B11, X2A22 = B22, (3.15)

C11X1D11 = E11, C22X2D22 = E22, (3.16)

and

F11X1H11 + X2F22 = G11. (3.17)
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Next, the solvability conditions and the expression for the general solutions of Eq (3.15) to Eq (3.17)
are given by the following steps:
Step 1: According to Lemma 2.3 and Lemma 2.4, the system (3.15) is solvable if, and only if,

RA11 B11 = 0, B22LA22 = 0. (3.18)

When condition (3.18) holds, the general solution of System (3.15) is

X1 = A†11B11 + LA11U1, X2 = B22A†22 + U2RA22 . (3.19)

Step 2: Substituting (3.19) into (3.16) yields,

A1U1D11 = P1, C22U2B2 = P2, (3.20)

where A1, P1, B2, P2 are defined by (3.1). By Lemma 2.5, the system (3.20) is consistent if, and only if,

RA1 P1 = 0, P1LD11 = 0, RC22 P2 = 0, P2LB2 = 0. (3.21)

When (3.21) holds, the general solution to System (3.20) is

U1 = A†1P1D†11 + LA1W1 +W2RD11 ,U2 = C†22P2B†2 + LC22W3 +W4RB2 . (3.22)

Comparing (3.22) and (3.19), hence,

X1 = A†11B11 + LA11 A†1P1D†11 + LA11 LA1W1 + LA11W2RD11 ,

X2 = B22A†22 +C†22P2B†2RA22 + LC22W3RA22 +W4RB2RA22 .
(3.23)

Step 3: Substituting (3.23) into (3.17) yields

W4B̂1 + Â2W1H11 + Â3W2B̂3 + Â4W3B̂4 = P, (3.24)

where B̂i, Â j(i = 1, 4, j = 2, 4) are defined by (3.1). It follows from Lemma 2.6 that Eq (3.24) is
solvable if, and only if,

RCi Ei = 0, EiLDi = 0(i = 1, 4),R ˆE11
EL ˆE44

= 0. (3.25)

When (3.25) holds, the general solution to matrix equation (3.24) is

W1 = Â2
†
T B̂11

†
− Â2

†
Â3M̂1

†
T B̂11

†
− Â2

†
S 1Â3

†
T N†1 B̂22B̂11

†

− Â2
†
S 1V4RN1 B̂22B̂11

†
+ LÂ2

V5 + V6R ˆB11
,

W2 = M̂1
†
T B̂22

†
+ S †1S 1Â3

†
T N†1 + LM̂1

LS 1V7 + V8R ˆB22
+ LM̂1

V4RN1 ,

W3 = F1 + LC2V̂1 + V̂2RD1 + LC1V̂3RD2 , or W3 = F2 − LC4V1 − V2RD3 − LC3V3RD4 ,

W4 = (P − Â2W1H11 − Â3W2B̂3 − Â4W3B̂4)B̂1
†
+ V3RB̂1

,

where Ci, Ei,Di(i = 1, 4), Ê11, Ê44 are defined as (3.2), T = T1 − Â4W3B̂4,Vi(i = 1, 8) are arbitrary
matrices with appropriate sizes over H,

V̂1 = (Im, 0)[Ĉ11
†
(F − Ĉ22V3D̂22 − Ĉ33V̂3D̂33) − Ĉ11

†
U11D̂11 + L ˆC11

U12],
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V1 = (0, Im)[Ĉ11
†
(F − Ĉ22V3D̂22 − Ĉ33V̂3D̂33) − Ĉ11

†
U11D̂11 + L ˆC11

U12],

V2 = [R ˆC11
(F − Ĉ22V3D̂22 − Ĉ33V̂3D̂33)D̂11

†
+ Ĉ11Ĉ11

†
U11 + U21RD̂11

]
(
0
In

)
,

V̂2 = [R ˆC11
(F − Ĉ22V3D̂22 − Ĉ33V̂3D̂33)D̂11

†
+ Ĉ11Ĉ11

†
U11 + U21RD̂11

]
(
In

0

)
,

V̂3 = Ê11
†
FÊ33

†
− Ê11

†
Ê22M†FÊ33

†
− Ê11

†
S Ê22

†
FN†Ê44Ê33

†
− Ê11

†
S U31RN Ê44Ê33

†

+ L ˆE11
U32 + U33R ˆE33

,

V3 = M†FÊ44
†
+ S †S Ê22

†
FN† + LMLS U41 + LMU31RN − U42R ˆE44

,

U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m
and n denote the column number of C22 and the row number of A22, respectively. We summarize that
System (1.1) has a solution if, and only if, (3.18), (3.21), and (3.25) hold, i.e., the System (1.1) has a
solution if, and only if, (2) holds.

(2) ⇔ (3): We prove the equivalence in two parts. In the first part, we want to show that (3.18)
and (3.21) are equivalent to (3.3) to (3.5), respectively. In the second part, we want to show that (3.25)
is equivalent to (3.6) to (3.14). It is easy to know that there exist X0

1 , X
0
2 ,U

0
1 , and U0

2 such that

A11X0
1 = B11, X0

2 A22 = B22,

A1U0
1 D11 = P1, C22U0

2 B2 = P2

holds, where

X0
1 = A†11B11,U0

1 = A†1P1D†11,

X0
2 = B22A†22,U

0
2 = C†22P2B†2,

P1 = E11−C11X0
1 D11, P2 = E22−C22X0

2 D22, and P = G11−F11X0
1 H11−F11LA11U

0
1 H11−X0

2 F22−U0
2RA22 F22.

Part 1: We want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. It
follows from Lemma 2.1 and elementary transformations that

(3.18)⇔ r(RA11 B11) = 0⇔ r(B11, A11) = r(A11)⇔ (3.3),

(3.21)⇔ r(RA1 P1) = 0⇔ r(P1, A1) = r(A1)⇔ r(E11 −C11A†11B11D11,C11LA11)

= r(C11LA11)⇔ r
(

E11 C11

B11D11 A11

)
= r

(
C11

A11

)
⇔ (3.3),

(3.21)⇔ r(P1LD11) = 0⇔ r
(

P1

D11

)
= r(D11)⇔ r

(
E11 −C11A†11B11D11

D11

)
= r(D11)⇔ r

(
E11

D11

)
= r(D11)⇔ (3.4),

(3.18)⇔ r(B22LA22) = 0⇔ r
(
B22

A22

)
= r(A22)⇔ (3.4).

Similarly, we can show that (3.21) is equivalent to (3.5). Hence, (3.18) and (3.21) are equivalent to (3.3)
and (3.5), respectively.
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Part 2: In this part, we want to show that (3.25) is equivalent to (3.6) and (3.14). According to
Lemma 2.6, we have that (3.25) is equivalent to the following:

r
(

P Â2 Â3 Â4

B̂1 0 0 0

)
= r(B̂1) + r(Â2, Â3, Â4), (3.26)

r


P Â2 Â4

B̂3 0 0
B̂1 0 0

 = r(Â2, Â4) + r
(
B̂3

B̂1

)
, (3.27)

r


P Â3 Â4

H11 0 0
B̂1 0 0

 = r(Â3, Â4) + r
(
H11

B̂1

)
, (3.28)

r


P Â4

H11 0
B̂3 0
B̂1 0

 = r


H11

B̂3

B̂1

 + r(Â4), (3.29)

r


P Â2 Â3

B̂4 0 0
B̂1 0 0

 = r(Â2, Â3) + r
(
B̂4

B̂1

)
, (3.30)

r


P Â2

B̂3 0
B̂4 0
B̂1 0

 = r


B̂3

B̂4

B̂1

 + r(Â2), (3.31)

r


P Â3

H11 0
B̂4 0
B̂1 0

 = r


H11

B̂4

B̂1

 + r(Â3), (3.32)

r


P

H11

B̂3

B̂4

B̂1


= r


H11

B̂3

B̂4

B̂1

 , (3.33)

r



P Â2 0 0 Â4

B̂3 0 0 0 0
B̂1 0 0 0 0
0 0 −P Â3 Â4

0 0 H11 0 0
0 0 B̂1 0 0
B̂4 0 B̂4 0 0


= r


B̂3 0
B̂1 0
0 H11

0 B̂1

B̂4 B̂4


+ r

(
Â2 0 Â4

0 Â3 Â4

)
, (3.34)

respectively. Hence, we only prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14) when we
prove that (3.25) is equivalent to (3.6)–(3.14). Now, we prove that (3.26)–(3.34) are equivalent
to (3.6)–(3.14). In fact, we only prove that (3.26), (3.30), and (3.34) are equivalent to (3.6), (3.10),
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and (3.14); the remaining part can be proved similarly. According to Lemma 2.1 and elementary
transformations, we have that

(3.26) = r
(

P Â2 Â3 Â4

B̂1 0 0 0

)
= r(B̂1) + r(Â2, Â3, Â4)

⇔ r
(
G11 − F11X0

1 H11 − F11LA11U
0
1 H11 − X0

2 F22 − U0
2RA22 F22 F11LA11 LA1 F11LA11 LC22

RB2RA22 F22 0 0 0

)
= r(RB2RA22 F22) + r(F11LA11 LA1 , F11LA11 , LC22)
⇔

r


G11 − F11X0

1 H11 − X0
2 F22 − U0

2RA22 F22 F11 I 0
RA22 F22 0 0 B2

0 A11 0 0
0 0 C22 0

 = r(RA22 F22, B2) + r


F11 I
A11 0
0 C22



⇔ r


G11 F11 I U0

2 B2 0
F22 0 0 B2 A22

B11H11 A11 0 0 0
C22X0

2 F22 0 C22 0 0

 = r(F22,D22, A22) + r


F11 I
A11 0
0 C22


⇔ r


F22 0 D22 A22

B11H11 A11 0 0
C22G11 C22F11 E22 C22B22

 = r(F22,D22, A22) + r
(

A11

F11C22

)
⇔ (3.6).

Similarly, we have that (3.27)⇔ (3.7), (3.28)⇔ (3.8), (3.29)⇔ (3.9).

(3.30) = r


P Â2 Â3

B̂4 0 0
B̂1 0 0

 = r(Â2, Â3) + r
(
B̂4

B̂1

)

⇔ r


G11 − F11X0

1 H11 − F11LA11U
0
1 H11 − X0

2 F22 − U0
2RA22 F22 F11LA11 LA1 F11LA1

RA22 F22 0 0
RB2RA22 F22 0 0


= r(F11LA11 LA1 , F11LA11) + r

(
RA22 F22

RB2RA22 F22

)

⇔ r


G11 − F11X0

1 H11 F11 B22

F22 0 A22

0 A11 0

 = r
(
F11

A11

)
+ r(F22, A22)

⇔ r


G11 F11 B22

F22 0 A22

B11H11 A11 0

 = r
(
F11

A11

)
+ r(F22, A22)⇔ (3.10).

Similarly, we have that (3.31)⇔ (3.11), (3.32)⇔ (3.12), (3.33)⇔ (3.13).
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(3.34) = r



P Â2 0 0 Â4

B̂3 0 0 0 0
B̂1 0 0 0 0
0 0 −P Â3 Â4

0 0 H11 0 0
0 0 B̂1 0 0
B̂4 0 B̂4 0 0


= r


B̂3 0
B̂1 0
0 H11

0 B̂1

B̂4 B̂4


+ r

(
Â2 0 Â4

0 Â3 Â4

)

⇔ r



P F11LA11 LA1 0 0 LC22

RD11 H11 0 0 0 0
RB2RA22 F22 0 0 0 0

0 0 −P F11LA11 LC22

0 0 H11 0 0
0 0 RB2RA22 F22 0 0

RA22 F22 0 RA22 F22 0 0



= r


RD11 H11 0

RB2RA22 F22 0
0 H11

0 RB2RA22 F22

RA22F22 RA22 F22


+ r

(
F11LA11 LA1 0 LC22

0 F11LA11 LC22

)

⇔ r



P F11LA11 0 0 LC22 0 0 0
H11 0 0 0 0 D11 0 0

RA22 F22 0 0 0 0 0 B2 0
0 0 −G11 + X0

2 F22 + U0
2RA22 F22 F11LA11 LC22 0 0 0

0 0 H11 0 0 0 0 0
0 0 RA22 F22 0 0 0 0 B2

RA22 F22 0 RA22 F22 0 0 0 0 0
0 A1 0 0 0 0 0 0



= r


H11 0 D11 0 0
RA22 0 0 B2 0

0 H11 0 0 0
0 RA22 F22 0 0 B2

RA22 F22 RA22 F22 0 0 0


+ r


F11LA11 0 LC22

0 F11LA11 LC22

A1 0 0



⇔ r



H11 0 0 0 0 0 0 D11 0
F22 0 0 0 0 D22 A22 0 0
0 0 H11 0 0 0 0 0 0
0 0 F22 D22 A22 0 0 0 0

F22 0 F22 0 0 0 0 0 A22

0 C11 0 0 0 0 0 −E11 0
0 A11 0 0 0 0 0 −B11D11 0

C22G11 C22F11 0 0 0 E22 C22B22 0 0


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= r


H11 0 0 0 0 0 D11 0
F22 0 0 0 D22 A22 0 0
0 H11 0 0 0 0 0 0
0 F22 D22 A22 0 0 0 0

F22 F22 0 0 0 0 0 A22


+ r


C11

A11

C22F11

⇔ (3.14).

□

Theorem 3.2. Let System (1.1) be solvable. Then, the general solution of System (1.1) is

X1 = A†11B11 + LA11 A†1P1D†11 + LA11 LA1W1 + LA11W2RD11 ,

X2 = B22A†22 +C†22P2B†2RA22 + LC22W3RA22 +W4RB2RA22 ,

where

W1 = Â2
†
T B̂11

†
− Â2

†
Â3M̂1

†
T B̂11

†
− Â2

†
S 1Â3

†
T N†1 B̂22B̂11

†

− Â2
†
S 1V4RN1 B̂22B̂11

†
+ LÂ2

V5 + V6R ˆB11
,

W2 = M̂1
†
T B̂22

†
+ S †1S 1Â3

†
T N†1 + LM̂1

LS 1V7 + V8R ˆB22
+ LM̂1

V4RN1 ,

W3 = F1 + LC2V̂1 + V̂2RD1 + LC1V̂3RD2 , or W3 = F2 − LC4V1 − V2RD3 − LC3V3RD4 ,

W4 = (P − Â2W1H11 − Â3W2B̂3 − Â4W3B̂4)B̂1
†
+ V3RB̂1

,

V̂1 = (Im, 0)[Ĉ11
†
(F − Ĉ22V3D̂22 − Ĉ33V̂3D̂33) − Ĉ11

†
U11D̂11 + L ˆC11

U12],

V1 = (0, Im)[Ĉ11
†
(F − Ĉ22V3D̂22 − Ĉ33V̂3D̂33) − Ĉ11

†
U11D̂11 + L ˆC11

U12],

V2 = [R ˆC11
(F − Ĉ22V3D̂22 − Ĉ33V̂3D̂33)D̂11

†
+ Ĉ11Ĉ11

†
U11 + U21RD̂11

]
(
0
In

)
,

V̂2 = [R ˆC11
(F − Ĉ22V3D̂22 − Ĉ33V̂3D̂33)D̂11

†
+ Ĉ11Ĉ11

†
U11 + U21RD̂11

]
(
In

0

)
,

V̂3 = Ê11
†
FÊ33

†
− Ê11

†
Ê22M†FÊ33

†
− Ê11

†
S Ê22

†
FN†Ê44Ê33

†
− Ê11

†
S U31RN Ê44Ê33

†

+ L ˆE11
U32 + U33R ˆE33

,

V3 = M†FÊ44
†
+ S †S Ê22

†
FN† + LMLS U41 + LMU31RN − U42R ˆE44

,

T = T1 − Â4W3B̂4, Vi(i = 4, 8) are arbitrary matrices with appropriate sizes over H, U11,U12,U21,
U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote
the column number of C22 and the row number of A22, respectively.

Next, we consider a special case of the System (1.1).

Corollary 3.3. [16] Let Aii, Bii,Cii,Dii, Eii, Fii(i = 1, 2), and G11 be given matrices with appropriate
dimensions over H. Denote

T = C11LA11 ,K = RA22 D22, B1 = RKRA22 F22, A1 = F11LA11 LT ,C3 = F11LA11 ,D3 = RD11 ,

C4 = LC22 ,D4 = RA22 F22, Aα = RA1C3, Bβ = D3LB1 ,Cc = RAαC4,Dd = D4LB1 , E = RA1 E1LB1 ,

A = A†11B11 + LA11T
†(E11 −C11A†11B11D11)D†, B = B22A†22 +C†22(E22 −C22B22A†22D22)K†RA22 ,
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E1 = G11 − F11A − BF22,M = RAαCc,N = DdLBβ , S = CcLM.

Then, the following statements are equivalent:
(1) Equation (1.8) is consistent.
(2)

RA11 B11 = 0, B22LA22 = 0,RC22 E22 = 0, E11LD11 = 0,

RT (E11 −C11A†11B11D11) = 0, (E22 −C22B22A†22D22)LK = 0,
RMRAαE = 0, ELBβLN = 0,RAαELDd = 0,RCc ELBβ = 0.

(3)

r(B11, A11) = r(A11), r
(

E11 C11

B11D11 A11

)
= r

(
C11

A11

)
,

r
(
E11

D11

)
= r(D11), r

(
B22

A22

)
= r(A22),

r(E22,C22) = r(C22), r
(
E22 C22B22

D22 A22

)
= r(D22, A22),

r


F22 0 D22 A22

B11 A11 0 0
C22G11 C22F11 E22 C22B22

 = r(F22,D22, A22) + r
(

A11

C22F11

)
,

r


0 F22D11 D22 A22

C11 E11 0 0
A11 B11D11 0 0

C22F11 C22G11D11 E22 C22B22

 = r


C11

A11

C22F11

 + r(F22D11,D22, A22),

r


G11 F11 B22

F22 0 A22

B11 A11 0

 = r
(
F11

A11

)
+ r(F22, A22),

r


F11 G11D11 B22

0 F22D11 A22

C11 E11 0
A11 B11D11 0

 = r(F22D11, A22) + r


F11

C11

A11

 .
Finally, we provide an example to illustrate the main results of this paper.

Example 3.4. Conside the matrix equation (1.1)

A11 =

(
a111

a121

)
, B11 =

(
b111 b112

b121 b122

)
,C11 =

(
c111

c121

)
,D11 =

(
d111

d121

)
,

E11 =

(
e111

e121

)
, A22 =

(
a211 a212

)
, B22 =

(
b211 b212

b221 b222

)
,

C22 =

(
c211 c212

c221 c222

)
,D22 =

(
d211

)
, E22 =

(
e211

e221

)
, F11 =

(
f111

f121

)
,
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H11 =

(
h111 h112

h121 h122

)
, F22 =

(
f211 f212

)
,G11 =

(
g111 g112

g121 g122

)
,

where

a111 = 0.9787 + 0.5005i + 0.0596j + 0.0424k, a121 = 0.7127 + 0.4711i + 0.6820j + 0.0714k,
b111 = 0.5216 + 0.8181i + 0.7224j + 0.6596k, b112 = 0.9730 + 0.8003i + 0.4324j + 0.0835k,
b121 = 0.0967 + 0.8175i + 0.1499j + 0.5186k, b122 = 0.6490 + 0.4538i0.8253j + 0.1332k,
c111 = 0.1734 + 0.8314i + 0.0605j + 0.5269k, c121 = 0.3909 + 0.8034i + 0.3993j + 0.4168k,
d111 = 0.6569 + 0.2920i + 0.0159j + 0.1671k, d121 = 0.6280 + 0.4317i + 0.9841j + 0.1062k,
e111 = 0.3724 + 0.4897i + 0.9516j + 0.0527k, e121 = 0.1981 + 0.3395i + 0.9203j + 0.7379k,
a211 = 0.2691 + 0.4228i + 0.5479j + 0.9427k, a212 = 0.4177 + 0.9831i + 0.3015j + 0.7011k,
b211 = 0.6663 + 0.6981i + 0.1781j + 0.9991k, b212 = 0.0326 + 0.8819i + 0.1904j + 0.4607k,
b221 = 0.5391 + 0.6665i + 0.1280j + 0.1711k, b222 = 0.5612 + 0.6692i + 0.3689j + 0.9816k,
c211 = 0.1564 + 0.6448i + 0.1909j + 0.4820k, c212 = 0.5895 + 0.3846i + 0.2518j + 0.6171k,
c221 = 0.8555 + 0.3763i + 0.4283j + 0.1206k, c222 = 0.2262 + 0.5830i + 0.2904j + 0.2653k,
d211 = 0.8244 + 0.9827i + 0.7302j + 0.3439k, e211 = 0.5847 + 0.9063i + 0.8178j + 0.5944k,
e221 = 0.1078 + 0.8797i + 0.2607j + 0.0225k, f111 = 0.4253 + 0.1615i + 0.4229j + 0.5985k,
f121 = 0.3127 + 0.1788i + 0.0942j + 0.4709k, h111 = 0.6959 + 0.6385i + 0.0688j + 0.5309k,
h112 = 0.4076 + 0.7184i + 0.5313j + 0.1056k, h121 = 0.6999 + 0.0336i + 0.3196j + 0.6544k,
h122 = 0.8200 + 0.9686i + 0.3251j + 0.6110k, f211 = 0.7788 + 0.4235i + 0.0908j + 0.2665k,
f212 = 0.1537 + 0.2810i + 0.4401j + 0.5271k, g111 = 0.4574 + 0.5181i + 0.6377j + 0.2407k,
g112 = 0.2891 + 0.6951i + 0.2548j + 0.6678k, g121 = 0.8754 + 0.9436i + 0.9577j + 0.6761k,
g122 = 0.6718 + 0.0680i + 0.2240j + 0.8444k.

Computing directly yields the following:

r
(
B11 A11

)
= r

(
A11

)
= 2, r

(
E11 C11

B11D11 A11

)
= r

(
C11

A11

)
= 2,

r
(
E11

D11

)
= r

(
D11

)
= 1, r

(
B22

A22

)
= r

(
A22

)
= 2,

r
(
E22 C22

)
= r

(
C22

)
= 2, r

(
E22 C22B22

D22 A22

)
= r

(
D22 A22

)
= 3,

r


F22 0 D22 A22

B11H11 A11 0 0
C22G11 C22F11 E22 C22B22

 = r
(
F22 D22 A22

)
+ r

(
A11

C22F11

)
= 5,

r


H11 0 −D11 0 0
F22 0 0 D22 A22

0 C11 E11 0 0
0 A11 B11D11 0 0

C22G11 C22F11 0 E22 C22B22


= r


C11

A11

C22F11

 + r
(
H11 D11 0 0
F22 0 D22 A22

)
= 7,
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r


H11 0 0 0
F22 0 D22 A22

0 A11 0 0
C22G11 C22F11 E22 C22B22

 = r
(
H11 0 0
F22 D22 A22

)
+ r

(
A11

C22F11

)
= 6,

r


H11 0 0
F22 D22 A22

C22G11 E22 C22B22

 = r
(
H11 0 0
F22 D22 A22

)
= 5,

r


G11 F11 B22

F22 0 A22

B11H11 A11 0

 = r
(
F11

A11

)
+ r

(
F22, A22

)
= 5,

r


G11 F11 0 B22

H11 0 −D11 0
F22 0 0 A22

0 C11 E11 0
0 A11 B11D11 0


= r

(
H11 D11 0
F22 0 A22

)
+ r


F11

C11

A11

 = 6,

r


G11 F11 B22

H11 0 0
F22 0 A22

0 A11 0

 = r
(
H11 0
F22 A22

)
+ r

(
F11

A11

)
= 5, r


G11 B22

H11 0
F22 A22

 = r
(
H11 0
F22 A22

)
= 4,

r



H11 0 0 0 0 0 0 D11 0
F22 0 0 0 0 D22 A22 0 0
0 0 H11 0 0 0 0 0 0
0 0 F22 D22 A22 0 0 0 0

F22 0 F22 0 0 0 0 0 A22

0 C11 0 0 0 0 0 −E11 0
0 A11 0 0 0 0 0 −B11D11 0

C22G11 C22F11 0 0 0 E22 C22B22 0 0



= r


H11 0 0 0 0 0 D11 0
F22 0 0 0 D22 A22 0 0
0 H11 0 0 0 0 0 0
0 F22 D22 A22 0 0 0 0

F22 F22 0 0 0 0 0 A22


+ r


C11

A11

C22F11

 = 11.

All rank equations in (3.3) to (3.14) hold. So, according to Theorem 3.1, the system of matrix
equation (1.1) has a solution. By Theorem 3.2, the solution of System (1.1) can be expressed as

X1 =
(
0.4946 + 0.1700i − 0.1182j − 0.3692k 0.4051 − 0.0631i − 0.2403j − 0.1875k

)
,

X2 =

(
−0.0122 + 0.2540i − 0.3398j − 0.3918k
0.7002 − 0.3481i − 0.2169j + 0.0079k

)
.

AIMS Mathematics Volume 9, Issue 12, 33662–33691.



33679

4. The solvability conditions and the general solutions to the Systems (1.2)–(1.4)

In this section, we use the same method and technique as in Theorem 3.1 to study the three systems
of Eqs (1.2)–(1.4). We only present their results and omit their proof.

Theorem 4.1. Consider the matrix equation (1.2) over H, where Aii, Bii,Cii,Dii, Eii, Fii,G11, and
H11(i = 1, 2) are given. Put

A1 = C11LA11 , P1 = E11 −C11A†11B11D11, B2 = RA22 D22, P2 = E22 −C22B22A†22D22,

Â1 = F11LA11 LA1 , Â2 = F11LA1 , B̂2 = RD11 , Â3 = H11LC22 , B̂3 = RA22 F22, B̂4 = RB2RA22 F22,

B = G11 − F11A†11B11 − F11LA11 A†1P1D†11 − H11B22A†22F22 − H11C
†

22P2B†2RA22 F22,RÂ1
Â2 = A12,

RÂ1
Â3 = A13,RÂ1

H11 = A14, B̂3LB̂2
= N1,RA12 A13 = M1, S 1 = A13LM1 ,RÂ1

B = T1,

C = RM1RA12 , Ĉ1 = CA14, Ĉ2 = RA12 A14, Ĉ3 = RA13 A14, Ĉ4 = A14,D = LB̂2
LN1 , D̂1 = B̂4,

D̂2 = B̂4LB̂3
, D̂3 = B̂4LB̂2

, D̂4 = B̂4D, Ê1 = CT1, Ê2 = RA12T1LB̂3
, Ê3 = RA13T1LB̂2

, Ê4 = T1D,

C24 = (LĈ2
, LĈ4

),D13 =

(
RD̂1

RD̂3

)
,C12 = LĈ1

,D12 = RD̂2
,C33 = LĈ3

,D33 = RD̂4
, E24 = RC24C12,

E13 = RC24C33, E33 = D12LD13 , E44 = D33LD13 ,M = RE24 E13,N = E44LE33 , F = F2 − F1,

E = RC24 FLD13 , S = E13LM, F̂11 = Ĉ2LĈ1
, Ĝ1 = Ê2 − Ĉ2Ĉ1

†
Ê1D̂1

†
D̂2, F33 = Ĉ4LĈ3

,

Ĝ2 = Ê4 − Ĉ4Ĉ3
†
Ê3D̂3

†
D̂4, F1 = Ĉ1

†
Ê1D̂1

†
+ LĈ1

Ĉ2
†
Ê2D̂2

†
, F2 = Ĉ3

†
Ê3D̂3

†
+ LĈ3

Ĉ4
†
Ê4D̂4

†
.

Then, the following statements are equivalent:
(1) System (1.2) is consistent.
(2)

RA11 B11 = 0,RA1 P1 = 0, P1LD11 = 0, B22LA22 = 0,RC22 P2 = 0,

P2LB2 = 0,RĈi
Êi = 0, ÊiLD̂i

= 0(i = 1, 4),RE24 ELE44 = 0.

(3)

r(B11, A11) = r(A11), r
(

E11 C11

B11D11 A11

)
= r

(
C11

A11

)
, r

(
E11

D11

)
= r(D11),

r(B22, A22) = r(A22), r(E22,C22) = r(C22), r
(
E22 C22B22

D22 A22

)
= r(D22, A22),

r


G11D11 F11 H11

E11 C11 0
B11D11 A11 0

 = r


F11 H11

C11 0
A11 0

 ,

r


G11D11 F11 H11 0
F22D11 0 0 A22

E11 C11 0 0
B11D11 A11 0 0

 = r(F22, A22) + r


F11 H11

C11 0
A11 0

 ,
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r


H11 F11 G11D11

0 C11 E11

0 A11 B11D11

 = r


H11 F11

0 C11

0 A11

 ,

r


H11 F11 0 G11D11

0 0 A22 F22D11

0 C11 0 E11

0 A11 0 B11D11

 = r(F22D11, A22) + r


H11 F11

0 C11

0 A11

 ,

r


G11D11 F11 H11 0 0
F22D11 0 0 D22 A22

E11 C11 0 0 0
0 0 C22 −E22 −C22B22

B11D11 A11 0 0 0


= r


F11 H11

C11 0
0 C22

A11 0

 + r(F22,D22, A22),

r


G11D11 F11 H11B22

F22D11 0 A22

E11 C11 0
B11D11 A11 0

 = r
(
F11

C11 A11

)
+ r(F22, A22),

r


H11 F11 0 0 G11D11

0 0 D22 A22 F22D11

0 C11 0 0 E11

0 A11 0 0 B11D11

C22 0 −E22 −C22B22 0


= r


H11 F11

0 C11

0 A11

C22 0

 + r(D22, A22, F22D11),

r


F11 H11B22 G11D11

0 A22 F22D11

C11 0 E11

A11 0 B11D11

 = r


F11

C11

A11

 + r(A22, F22D11),

r



G11 F11 0 0 H11 0 0 H5B22 0
F22 0 0 0 0 0 0 A22 0
0 0 H11 F11 H11 0 −H11B22 0 G11D11

0 0 0 0 0 D22 A22 0 −F22D11

0 0 C22 0 0 E22 0 0 0
0 0 0 C11 0 0 0 0 E11

0 0 0 A11 0 0 0 0 B11D11

B11 A11 0 0 0 0 0 0 0



= r
(
F22 0 0 A22 0
0 D22 A22 0 F22D11

)
+ r



F11 0 0 H11

0 H11 F11 H11

0 C22 0 0
0 0 C11 0
0 0 A11 0

A11 0 0 0


.

Under these conditions, the general solution of System (1.2) is

X1 = A†11B11 + LA11 A†1P1D†11 + LA11 LA1W1 + LA11W2RD11 ,
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X2 = B22A†22 +C†22P2B†2RA22 + LC22W3RA22 +W4RB2RA22 ,

where

W1 = Â1
†
(B − Â2W1B̂2 − Â3W3B̂3 − H11W4B̂4) + LÂ1

U1,

W2 = A†12T B̂2
†
− A†12A13M†1T B̂2

†
− A†12S 1A†13T N†1 B̂3B̂2

†

− A†12S 1U2RN1 B̂3B̂2
†
+ LA12U3 + U4RB̂2

,

W3 = M†1T B̂3
†
+ S †1S 1A†13T N†1 + LM1 LS 1U5 + U6RB̂3

+ LM1U2RN1 ,

W4 = F1 + LĈ2
V1 + V2RD̂1

+ LĈ1
V3RD̂2

, or W4 = F2 − LĈ4
V̂1 − V̂2RD̂3

− LĈ3
V̂3RD̂4

,

where T = T1 − H11W4B̂4,Ui(i = 1, 6) are arbitrary matrices with appropriate sizes over H,

V1 = (Im, 0)[C†24(F −C12V3D12 −C33V̂3D33) −C†24U11D13 + LC24U12],

V̂1 = (0, Im)[C†24(F −C12V3D12 −C33V̂3D33) −C†24U11D13 + LC24U12],

V̂2 = [RC24(F −C12V3D12 −C33V̂3D33)D†13 +C24C
†

24U11 + U21RD13]
(
0
In

)
,

V2 = [RC24(F −C12V3D12 −C33V̂3D33)D†13 +C24C
†

24U11 + U21RD13]
(
In

0

)
,

V3 = E†24FE†33 − E†24E13M†FE†33 − E†24S E†13FN†E44E†33

− E†24S U31RN E44E†33 + LE24U32 + U33RE33 ,

V̂3 = M†FE†44 + S †S E†13FN† + LMLS U41 + LMU31RN − U42RE44 ,

U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m
and n denote the column number of H11 and the row number of A22, respectively.

Theorem 4.2. Consider the matrix equation (1.3) over H, where Aii, Bii,Cii,Dii, Eii, Fii,G11 H11(i =
1, 2) are given. Put

A1 = C11LA11 , P1 = E11 −C11A†11B11D11, A2 = C22LA22 , P2 = E22 −C22A†22B22D22,

Â1 = F11LA11 LA1 , Â2 = F11LA11 , B̂2 = RD11 , Â11 = H11LA22 LA2 , Â22 = H11LA22 , B̂4 = RD22 F22,

B = G11 − F11A†11B11 − F11LA11 A†1P1D†11 − H11A†22B22F22 − H11LA22 A†2P2D†22F22,

RÂ1
Â2 = A12,RÂ1

Â11 = A13,RÂ1
Â22 = A33, F22LB̂2

= N1,RA12 A13 = M1, S 1 = A13LM1 ,

RÂ1
B = T1,C = RM1RA12 , Ĉ1 = CA33, Ĉ2 = RA12 A33, Ĉ11 = RA13 A33, Ĉ22 = A33,

D = LB̂2
LN1 , D̂1 = B̂4, D̂2 = B̂4LF22 , D̂11 = B̂4LB̂2

, D̂22 = B̂4D, Ê1 = CT1,

Ê2 = RA12T1LF22 , Ê11 = RA13T1LB̂2
, Ê4 = T1D,C24 = (LĈ2

, L ˆC22
),D13 =

(
RD̂1

RD̂11

)
,

C21 = LĈ1
,D12 = RD̂2

,C33 = L ˆC11
,D33 = RD̂22

, E11 = RC24C21, E22 = RC24C33,

E33 = D12LD13 , E44 = D33LD13 ,M = RE11 E22,N = E44LE33 ,

F = F2 − F1, E = RC24 FLD13 , S = E22LM, F̂11 = Ĉ2LĈ1
,

Ĝ1 = Ê2 − Ĉ2Ĉ1
†
Ê1D̂1

†
D̂2, F̂22 = Ĉ22L ˆC11

, Ĝ2 = Ê4 − Ĉ22Ĉ11
†
Ê11D̂11

†
D̂22,
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F1 = Ĉ1
†
Ê1D̂1

†
+ LĈ1

Ĉ2
†
Ê2D̂2

†
, F2 = Ĉ11

†
Ê11D̂11

†
+ L ˆC11

Ĉ22
†
Ê4D̂22

†
.

Then, the following statements are equivalent:
(1) System (1.3) is consistent.
(2)

RA11 B11 = 0,RA1 P1 = 0, P1LD11 = 0,RA22 B22 = 0,RA2 P2 = 0, P2LD22 = 0,

RĈi
Êi = 0,R ˆC11

Ê11 = 0,R ˆC22
Ê4 = 0, ÊiLD̂i

= 0(i = 1, 2),
Ê11LD̂11

= 0, Ê4LD̂22
= 0,RE11 ELE44 = 0.

(3)

r(B11, A11) = r(A11), r
(

E11 C11

B11D11 A11

)
= r

(
C11

A11

)
, r

(
E11

D11

)
= r(D11),

r(B22, A22) = r(A22), r
(

E22 C22

B4D22 A22

)
= r

(
C22

A22

)
, r

(
E22

D22

)
= r(D22),

r


G11 F11 H11

B11 A11 0
B22F22 0 A22

 = r


F11 H11

A11 0
0 A22

 ,

r


G11 F11 H11

F22 0 0
B11 A11 0
0 0 A22

 = r(F22) + r


F11 H11

A11 0
0 A22

 ,

r


H11 F11 G11D11

A22 0 B22F22D11

0 C11 E11

0 A11 B11D11

 = r


H11 F11

0 C11

0 A11

A22 0

 ,

r


H11 F11 G11D11

0 0 F22D11

0 C11 E11

0 A11 B11D11

A22 0 0


= r


H11 F11

0 C11

0 A11

A22 0

 + r(F22D11),

r


G11 F11 H11 0
F22 0 0 D22

B11 A11 0 0
0 0 C22 −E22

0 0 A22 −B22D22


= r


F11 H11

A11 0
0 C22

0 A22

 + r(F22,D22),

r


G11 F11

F22 0
B11 A11

 = r
(
F11

A11

)
+ r(F22),
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r



H11 F11 0 G11D11

0 0 D22 F22D11

C22 0 −E22 0
0 C11 0 E11

A22 0 0 B22F22D11

0 A11 0 B11D11


= r


H11 F11

C22 0
0 C11

A22 0
0 A11


+ r(D22, F22D11),

r


F11 G11D11

0 F22D11

C11 E11

A11 B11D11

 = r


F11

C11

A11

 + r(F22D11),

r



G11 F11 0 0 0 H11 0
F22 0 0 0 0 0 0
0 0 −G11D11 H11 F11 H11 0
0 0 F22D11 0 0 0 B22

B11 A11 0 0 0 0 0
0 0 0 C22 0 0 E22

0 0 −E11 0 C11 0 0
0 0 −B22F22D11 A22 0 0 0
0 0 −B11D11 0 A11 0 0
0 0 0 0 0 A22 0



= r
(
F22 0 0
0 D22 F22D11

)
+ r



F11 0 0 H11

0 H11 F11 H11

0 C22 0 0
0 A22 0 0
0 0 C11 0
0 0 A11 0

A11 0 0 0
0 0 0 A22


.

Under these conditions, the general solution of System (1.3) is

X1 = A†11B11 + LA11 A†1P1D†11 + LA11 LA1W1 + LA11W2RD11 ,

X2 = A†22B4 + LA22 A†2P2D†22 + LA22 LA2W3 + LA22W4RD22 ,

where

W1 = Â1
†
(B − Â2W1B̂2 − Â11W3F22 − Â22W4B̂4) + LÂ1

U1,

W2 = A†12T B̂2
†
− A†12A13M†1T B̂2

†
− A†12S 1A†13T N†1 F22B̂2

†

− A†12S 1U2RN1 F22B̂2
†
+ LA12U3 + U4RB̂2

,

W3 = M†1T F†22 + S †1S 1A†13T N†1 + LM1 LS 1U5 + U6RF22 + LM1U2RN1 ,

W4 = F1 + LĈ2
V1 + V2RD̂1

+ LĈ1
V3RD̂2

, or W4 = F2 − L ˆC22
V̂1 − V̂2RD̂11

− L ˆC11
V̂3RD̂22

,

where T = T1 − Â22W4B̂4,Ui(i = 1, 6) are arbitrary matrices with appropriate sizes over H,
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V1 = (Im, 0)[C†24(F −C21V3D12 −C33V̂3D33) −C†24U11D13 + LC24U12],

V̂1 = (0, Im)[C†24(F −C21V3D12 −C33V̂3D33) −C†24U11D13 + LC24U12],

V̂2 = [RC24(F −C21V3D12 −C33V̂3D33)D†13 +C24C
†

24U11 + U21RD13]
(
0
In

)
,

V2 = [RC24(F −C21V3D12 −C33V̂3D33)D†13 +C24C
†

24U11 + U21RD13]
(
In

0

)
,

V3 = E†11FE†33 − E†11E22M†FE†33 − E†11S E†22FN†E44E†33

− E†11S U31RN E44E†33 + LE11U32 + U33RE33 ,

V̂3 = M†FE†44 + S †S E†22FN† + LMLS U41 + LMU31RN − U42RE44 ,

U11,U12,U21,U31,U32,U33,U41, and U42 are any matrices with appropriate sizes, and m and n denote
the column number of H11 and the row number of D22, respectively.

Theorem 4.3. Consider the matrix equation (1.4) over H, where Aii, Bii,Cii,Dii, Eii, Fii(i = 1, 2), and
G11 are given. Put

Â1 = C11LA11 , P1 = E11 −C11A†11B11D11, Â2 = C22LA22 , P2 = E22 −C22A†22B22D22,

A5 = F11LA1 LÂ1
, A6 = F11LA11 , A7 = LA22 LÂ2

, A8 = LA22 , B5 = RD11 , B7 = RD22 F22,

B = G11 − F11A†11B11 − F11LA1 Â1
†
P1D†11 − A†22B22F22 − LA22 Â2

†
P2D†22F22,

RA5 A6 = A11,RA5 A7 = A2,RA5 A8 = A33, F22LB5 = N1,RA11 A2 = M1, S 1 = A2LM1 ,

RA5 B = T1,C = RM1RA11 , Ĉ1 = CA33, Ĉ2 = RA11 A33, Ĉ11 = RA2 A33, Ĉ4 = A33,

D = LB5 LN1 , D̂1 = B7, D̂2 = B7LF22 , D̂3 = B7LB5 , D̂4 = B7D, Ê1 = CT1, Ê2 = RA11T1LF22 ,

Ê11 = RA2T1LB5 , Ê4 = T1D,C1 = (LĈ2
, LĈ4

),D13 =

(
RD̂1

RD̂3

)
,D1 = LĈ1

,D2 = RD̂2
,

C33 = L ˆC11
,D33 = RD̂4

, E11 = RC1 D1, E2 = RC1C33, E33 = D2LD13 , E44 = D33LD13 ,

M = RE11 E2,N = E44LE33 , F = F̂2 − F̂1, E = RC1 FLD13 , S = E2LM, F11 = Ĉ2LĈ1
,

Ĝ1 = Ê2 − Ĉ2Ĉ1
†
Ê1D̂1

†
D̂2, F33 = Ĉ4L ˆC11

, Ĝ2 = Ê4 − Ĉ4Ĉ11
†
Ê11D̂3

†
D̂4,

F̂1 = Ĉ1
†
Ê1D̂1

†
+ LĈ1

Ĉ2
†
Ê2D̂2

†
, F̂2 = Ĉ11

†
Ê11D̂3

†
+ L ˆC11

Ĉ4
†
Ê4D̂4

†
.

Then, the following statements are equivalent:
(1) Equation (1.4) is consistent.
(2)

RA11 B11 = 0,RÂ1
P1 = 0, P1LD11 = 0,RA22 B22 = 0,

RÂ2
P2 = 0, P2LD22 = 0, RĈi

Êi = 0, ÊiLD̂i
= 0(i = 1, 2),

R ˆC11
Ê11 = 0,RĈ4

Ê4 = 0, Ê11LD̂3
= 0, Ê4LD̂4

= 0,RE11 ELE44 = 0.

(3)
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r(B11, A11) = r(A11), r
(

E11 C11

B11D11 A11

)
= r

(
C11

A11

)
,

r
(
E11

D11

)
= r(D11), r(B22, A22) = r(A22),

r
(

E22 C22

B22D22 A22

)
= r

(
C22

A22

)
, r

(
E22

D22

)
= r(D22),

r
(

B11 A11

A22G11 − B22F22 A22F11

)
= r

(
A11

A22F11

)
,

r


F22 0
B11 A11

A22G11 A22F11

 = r(F22) + r
(

A11

A22F11

)
,

r


C11 E11

A11 B11D11

−A22F11 B22F22D11 − A22G11D11

 = r


C11

A11

A22F11

 ,

r


0 F22D11

C11 E11

A11 B11D11

A22F11 A22G11D11

 = r


C11

A11

A22F11

 + r(F22D11),

r


F22 0 D22

C22G11 C22F11 E22

B11 A11 0
A22G11 A22F11 B22D22

 = r(F22,D22) + r


C22F11

A22F11

A11

 ,

r


G11 F11

F22 0
B11 A11

 = r
(
F11

A11

)
+ r(F22),

r


0 D22 F22D11

C22F11 E22 C22G11D11

C11 0 E22

A22F11 0 A22G11D11 − B22F22D11

A11 0 B11D11


= r


C22F11

C11

A22F11

A11

 + r(D22, F22D11),

r


F11 G11D11

0 F22D11

C11 E11

A11 B11D11

 = r


F11

C11

A11

 + r(F22D11),
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r



F22 0 0 0 0
0 0 F22D11 0 B22

B11 A11 0 0 0
C22G11 C22F11 C22G11D11 −C22F11 E22

0 0 −E11 C11 0
A22G11 A22F11 A22G11D11 − B22F22D11 −A22F11 0

0 0 −B11D11 A11 0
A22G11 A22F11 0 0 0



= r
(
F22 0 0
0 F22D11 D22

)
+ r



−C22F11 C22F11

−A22F11 A22F11

0 C11

0 A11

A11 0
A11 0

−A22F11 0


.

Under these conditions, the general solution of System (1.4) is

X1 = A†11B11 + LA1 Â1
†
P1B̂1

†
+ LA1 LÂ1

W1 + LA1W2RB̂1
,

X2 = A†2B22 + LA2 Â2
†
P2B̂2

†
+ LA2 LÂ2

W3 + LA3W4RB̂2
,

where

W1 = A†5(B − A6W1B5 − A7W3F22 − A8W4B7) + LA5U1,

W2 = A†1T B†5 − A†1A2M†1T B†5 − A†1S 1A†2T N†1 F22B†5
− A†1S 1U2RN1 F22B†5 + LA1U3 + U4RB5 ,

W3 = M†1T F†22 + S †1S 1A†2T N†1 + LM1 LS 1U5 + U6RF22 + LM1U2RN1 ,

W4 = F̂1 + LĈ2
V1 + V2RD̂1

+ LĈ1
V3RD̂2

, or W4 = F̂2 − LĈ4
V̂1 − V̂2RD̂3

− L ˆC11
V̂3RD̂4

,

where T = T1 − A8W4B7,Ui(i = 1, 6) are arbitrary matrices with appropriate sizes over H,

V1 = (Im, 0)[C†1(F − D1V3D2 −C33V̂3D33) −C†1U11D1 + LC1U12],

V̂1 = (0, Im)[C†1(F − D1V3D2 −C33V̂3D33) −C†1U11D1 + LC1U12],

V̂2 = [RC1(F − D1V3D2 −C33V̂3D33)D†1 +C1C
†

1U11 + U21RD1]
(
0
In

)
,

V2 = [RC1(F −C2V3D2 −C33V̂3D33)D†1 +C1C
†

1U11 + U21RD1]
(
In

0

)
,

V3 = E†11FE†33 − E†11E2M†FE†33 − E†11S E†2FN†E44E†33

− E†11S U31RN E44E†33 + LE11U32 + U33RE33 ,

V̂3 = M†FE†44 + S †S E†2FN† + LMLS U41 + LMU31RN − U42RE44 ,

U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m
and n denote the column number of A22 and the row number of D22, respectively.

AIMS Mathematics Volume 9, Issue 12, 33662–33691.



33687

5. An application of the system (1.1)

In this section, we use the Lemma 2.2 and the Theorem 3.1 to study matrix equation (1.9) involving
η-Hermicity matrices.

Theorem 5.1. Let A11, B11,C11, E11, F11, F22, and G11(G11 = Gη
∗

11) be given matrices. Put

A1 = C11LA11 , P1 = E11 −C11A†11B11C
η∗

11, B2 = Aη
∗

1 , P2 = Pη
∗

1 , B̂1 = RB2

(
F22LA11

)η∗ ,
Â3 = F11LA11 , Â2 = Â3LA1 , Â4 = LC11 , B̂3 =

(
F11Â4

)η∗
, B̂4 =

(
F22LA11

)η∗ , Fη∗11LB̂1
= B̂11,

P = G11 − F11A†11B11Fη
∗

11 − Â3A†1P1

(
F11C

†

11

)η∗
−

(
F22A†11B11

)η∗
−C†11P2B†2B̂4, B̂22LB11 = N1,

B̂3LB̂1
= B̂22, B̂4LB̂1

= B̂33,RÂ2
Â3 = M̂1, S 1 = Â3LM1 ,T1 = PLB̂1

,C = RM1RÂ2
,C1 = CÂ4,

C2 = RÂ2
Â4,C3 = RÂ3

Â4,C4 = Â4,D = LB̂11
LN1 ,D1 = B̂33,D2 = B̂33LB̂22

,D4 = B̂33D,

E1 = CT1, E2 = RÂ2
T1LB̂11

, E4 = T1D, Ĉ11 =
(
LC2 , LC4

)
,D3 = B̂33LB̂11

, D̂11 =

(
RD1

RD3

)
,

Ĉ22 = LC1 , D̂22 = RD2 , Ĉ33 = LC3 , D̂33 = RD4 , Ê11 = RĈ11
Ĉ22, Ê22 = RĈ11

Ĉ33,

Ê33 = D̂22LD̂11
, Ê44 = D̂33LD̂11

,M = RÊ11
Ê22,N = Ê44LÊ33

, F = F2 − F1, E = RĈ11
FLD̂11

,

S = Ê22LM, F̂11 = C2LC1 ,G1 = E2 −C2C
†

1E1D†1D2, F̂22 = C4LC3 ,G2 = E4 −C4C
†

3E3D†3D4,

F1 = C†1E1D†1 + L†C1
C†2E2D†2, F2 = C†3E3D†3 + LC3C

†

4E4D†4.

Then, the following statements are equivalent:
(1) System (1.9) is solvable.
(2)

RA11 B11 = 0,RA1 P1 = 0, P1
(
RC11

)η∗
= 0,RCi Ei = 0, EiLDi = 0(i = 1, 4),RÊ11

ELÊ44
= 0.

(3)

r(B11, A11) = r(A11), r
(

E11 C11

B11C
η∗

11 A11

)
= r

(
C11

A11

)
, r

(
E11

Cη
∗

11

)
= r(C11),

r


Fη

∗

22 0 Cη
∗

11 Aη
η∗

11

B11Fη
∗

11 A11 0 0
C11G11 C11F11 Eη

∗

11 C11Bη
∗

11

 = r
(
Fη

∗

22,C
η∗

11, A
η∗

11

)
+ r

(
A11

C11F11

)
,

r


Fη

∗

11 0 −Cη
∗

11 0 0
Fη

∗

22 0 0 Cη
∗

11 Aη
∗

11
0 C11 E11 0 0
0 A11 B11C

η∗

11 0 0
C11G11 C11F11 0 Eη

∗

11 C11Bη
∗

11


=

r


C11

A11

0

 + r
(
Fη

∗

11 Cη
∗

11 0 0
Fη

∗

22 0 Cη
∗

11 Aη
∗

11

)
,
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r


Fη

∗

11 0 0 0
Fη

∗

22 0 Cη
∗

11 Aη
∗

11
0 A11 0 0

C11G11 C11F11 Eη
∗

11 C11Bη
∗

11

 = r
(
Fη

∗

11 0 0
Fη

∗

22 Cη
∗

11 Aη
∗

11

)
+ r

(
A11

C11F11

)
,

r


Fη

∗

11 0 0
Fη

∗

22 Cη
∗

11 Aη
∗

11

C11G11 Eη
∗

11 C11Bη
∗

11

 = r
(
Fη

∗

11 0 0
Fη

∗

22 Cη
∗

11 Aη
∗

11,

)
,

r


G11 F11 Bη

∗

11

Fη
∗

22 0 Aη
∗

11

B11Fη
∗

11 A11 0

 = r
(
F11

A11

)
+ r

(
Fη

∗

22, A
η∗

11

)
,

r


G11 F11 0 Bη

∗

11

Fη
∗

11 0 −Cη
∗

11 0
Fη

∗

22 0 0 Aη
∗

11
0 C11 E11 0
0 A11 B11C

η∗

11 0


= r

(
Fη

∗

11 Cη
∗

11 0
Fη

∗

22 0 Aη
∗

11

)
+ r


F11

C11

A11

 ,

r


G11 F11 Bη

∗

11

Fη
∗

11 0 0
Fη

∗

22 0 Aη
∗

11
0 A11 0

 = r
(
Fη

∗

11 0
Fη
∗

22 Aη
∗

11

)
+ r

(
F11

A11

)
,

r


G11 Bη

∗

11

Fη
∗

11 0
Fη

∗

22 Aη
∗

11

 = r
(
Fη

∗

11 0
Fη

∗

22 Aη
∗

11

)
,

r



Fη
∗

11 0 0 0 0 0 0 Cη
∗

11 0
Fη

∗

22 0 0 0 0 Cη
∗

11 Aη
∗

11 0 0
0 0 Fη

∗

11 0 0 0 0 0 0
0 0 Fη

∗

22 Cη
∗

11 Aη
∗

11 0 0 0 0
Fη

∗

22 0 Fη
∗

22 0 0 0 0 0 Aη
∗

11
0 C11 0 0 0 0 0 −E11 0
0 A11 0 0 0 0 0 −B11C

η∗

11 0
C11G11 C11F11 0 0 0 Eη

∗

11 C11Bη
∗

11 0 0



= r



Fη
∗

11 0 0 0 0 0 Cη
∗

11 0
Fη

∗

22 0 0 0 Cη
∗

11 Aη
∗

11 0 0
0 Fη

∗

11 0 0 0 0 0 0
0 Fη

∗

22 Cη
∗

11 Aη
∗

11 0 0 0 0
Fη

∗

22 Fη
∗

22 0 0 0 0 0 Aη
∗

11


+ r


C11

A11

C11F11

 .

Proof. Evidently, the system of Eq (1.9) has a solution if and only if the following matrix equation has

AIMS Mathematics Volume 9, Issue 12, 33662–33691.
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a solution:
A11X̂1 = B11,C11X̂1C

η∗

11 = E11,

X̂2Aη
∗

11 = Bη
∗

11,C11X̂2C
η∗

11 = Eη
∗

11,

F11X1Fη
∗

11 + X̂2
η∗

Fη
∗

22 = G11.

(5.1)

If (1.9) has a solution, say, X1, then (X̂1, X̂2) := (X1, Xη
∗

1 ) is a solution of (5.1). Conversely, if (5.1)
has a solution, say (X̂1, X̂2), then it is easy to show that (1.5) has a solution

X1 :=
X̂1 + Xη

∗

2

2
.

According to Theorem 3.1, we can deduce that this theorem holds. □

6. Conclusions

We have established the solvability conditions and the expression of the general solutions to some
constrained systems (1.1)–(1.4). As an application, we have investigated some necessary and sufficient
conditions for Eq (1.9) to be consistent. It should be noted that the results of this paper are valid for
the real number field and the complex number field as special number fields.
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