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1. Introduction
In this paper, we establish the following four symmetric quaternion matrix systems:

AnXy = By1,CXiDyy = Eyy,
XA = By, CnXoDyy = Eny, (1.1)
FuXiHy + X,F =Gy,

A X, = By, C XiDyy = Eyy,

X2A2 = By, Cy»XoDy = Eyy, (1.2)
FuXi + H XaFy = Gy,

An X, = By, CiuiXiDyy = Eyy,

ApX) = By, CpnXoDy = Eyp, (1.3)
FuXi + H 1 XpFy = Gy,
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Ay X, =By, CiuXiDyy = Eyy,
AXy = By, Cn XDy = En, (1.4)
Fiu X, + X,Fy =Gy,

where A;;, Bj, Ci, D, Ey Fi(i = m), H,;, and G;; are known matrices, while X;(i = 1,2)
are unknown.

In this paper, R and H™" denote the real number field and the set of all quaternion matrices of order
m X n, respectively.

H = {vo + vii + voj + v3kli? = j° = k* = ijk = =1, vy, vi, 2, v3 € R}.

Moreover, r(A), 0 and I represent the rank of matrix A, the zero matrix of suitable size, and the identity
matrix of suitable size, respectively. The conjugate transpose of A is A*. For any matrix A, if there
exists a unique solution X such that

AXA = A, XAX = X, (AX)" = AX, (XA)" = XA,

then X is called the Moore-Penrose (M — P) inverse. It should be noted that A" is used to represent the
M — P inverse of A. Additionally, Ly = I — ATA and R4 = I — AAT denote two projectors toward A.

H is known to be an associative noncommutative division algebra over R with extensive applications
in computer science, orbital mechanics, signal and color image processing, control theory, and so on
(see [1-4]).

Matrix equations, significant in the domains of descriptor systems control theory [S], nerve
networks [6], back feed [7], and graph theory [8], are one of the key research topics in mathematics.

The study of matrix equations in H has garnered the attention of various researchers; consequently
they have been analyzed by many studies (see, e.g., [9-12]). Among these the system of symmetric
matrix equations is a crucial research object. For instance, Mahmoud and Wang [13] established some
necessary and sufficient conditions for the three symmetric matrix systems in terms of M — P inverses
and rank equalities:

AV =Cy, VB) = (y, AV =Cy, VB) = (Cy, AV =Cy, VBy = Cy,
A3X + YB; = C5, A3X +YB; = (3, A3X +YB; =C;, (1.5)
AY +7ZB> + AsVBs = Cs, ArZ +YBy +AsVBs = Cs, AY +ZBy + AsVBs = Cs,
AW + ZBy = Cy, AyZ + WB4 = Cy, AyZ + WB4 = Cy.

Wang and He [14] established the sufficient and necessary conditions for the existence of solutions to
the following three symmetric coupled matrix equations and the expressions for their general solutions:

A1X+YBl :Cl, A1X+YBl :Cl, A1X+ Y B, :Cl,
AY +ZB, = C,, AyZ +YBy = C,, AY +Z7ZB, = C,, (16)
AW + ZBs = Cs, AsZ + WB; = Cs, AsZ + WB; = Cs.

It is noteworthy that the following matrix equation plays an important role in the analysis of the
solvability conditions of systems (1.1)—(1.4):

AU+ VB +AXB, + AsYB3; + A4ZB, = B. (1.7)
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Liu et al. [15] derived some necessary and sufficient conditions to solve the quaternion matrix
equation (1.7) using the ranks of coefficient matrices and M — P inverses. Wang et al. [16] derived the
following quaternion equations after obtaining some solvability conditions for the quaternion equation
presented in Eq (1.8) in terms of M — P inverses:

ApnXy = By1,C XDy = Eyy,
XA = By, CnXoDyy = En, (1.8)
FiXi + XoFy =Gy

To our knowledge, so far, there has been little information on the solvability conditions and an
expression of the general solution to systems (1.1)—(1.4).

In mathematical research and applications, the concept of p-Hermitian matrices has gained
significant attention [17]. An n-Hermitian matrix, for n € {i,j,k}, is defined as a matrix A such
that A = A", where A7 = —nA*n. These matrices have found applications in various fields including
linear modeling and the statistics of random signals [1, 17]. As an application of (1.1), this paper
establishes some necessary and sufficient conditions for the following matrix equation:

AnX, =B X, C! =E
{ 11X 11, C1i X, €y, 11> (1.9)

F11X1F?; + (FuX))" =Gy

to be solvable.

Motivated by the study of Systems (1.8), symmetric matrix equations, p-Hermitian matrices, and
the widespread use of matrix equations and quaternions as well as the need for their theoretical
advancements, we examine the solvability conditions of the quaternion systems presented in
systems (1.1)—(1.4) by utilizing the rank equalities and the M — P inverses of coefficient matrices.
We then obtain the general solutions for the solvable quaternion equations in systems (1.1)—(1.4). As
an application of (1.1), we utilize the M — P inverse and the rank equality of matrices to investigate
the necessary and sufficient conditions for the solvability of quaternion matrix equations involving
n-Hermicity matrices. It is evident that System (1.8) is a specific instance of System (1.1).

The remainder of this article is structured as follows. Section 2 outlines the basics. Section 3
examines some solvability conditions of the quaternion equation presented in System (1.1) using the
M — P inverses and rank equalities of the matrices, and derives the solution of System (1.1). Section 4
establishes some solvability conditions for matrix systems (1.2)—(1.4) to be solvable. Section 5
investigates some necessary and sufficient conditions for matrix equation (1.9) to have common
solutions. Section 6 concludes the paper.

2. Preliminaries

Marsaglia and Styan [18] presented the following rank equality lemma over the complex field,
which can be generalized to H.

Lemma 2.1. [I8] Let A € H™" B € H™*C € H*"\D € H** and E € H* be given. Then, the
following rank equality holds:

A B 0O
r(RAC BSD):r cC 0 FE —r(D)—r(E).
E 0 D O
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Lemma 2.2. [19] Let A € H™" be given. Then,

(1) (AN =@, @A) = @A,

) r(A) =r(AT) = r(A");

(3) (L) = —nLan = (La)" = Ly = Ry,

@) (Ra)" = -n(Ra)n = (Ra)" = Ryr = L

(5) (AATY" = (AT)TAT = (ATA)" = AT(ATY;

(6) (ATA)" = AT(AT) = (AAT) = (AT)'A".
Lemma 2.3. [20] Let A, and A, be given quaternion matrices with adequate shapes. Then, the
equation A1 X = A, is solvable if, and only if, A, = A 1AIA2. In this case, the general solution to this

equation can be expressed as
X = A;AQ +LA]U1,

where U, is any matrix with appropriate size.

Lemma 2.4. [20] Let A, and A, be given quaternion matrices with adequate shapes. Then, the
equation XA, = A, is solvable if, and only if, A, = AQAIA]. In this case, the general solution to this
equation can be expressed as

X = AAT + UiR,,,

where U, is any matrix with appropriate size.

Lemma 2.5. [2]] Let A, B, and C be known quaternion matrices with appropriate sizes. Then, the
matrix equation

AXB=C
is consistent if, and only if,
R,C =0,CLg = 0.
In this case, the general solution to this equation can be expressed as
X =A'CB" + LyU + VRy,
where U and V are any quaternion matrices with appropriate sizes.
Lemma 2.6. [15] Let C;, D;, and Z (i = 1,_4) be known quaternion matrices with appropriate sizes.
Ci X1+ XoDy + CoY1Dy + C3Y,Ds + CyY3Dy = Z. 2.1)
Denote

Re,Cy = Ci2,Re,C3 = Ci3,Re,Cy = Cr4, Dy Lp, = Dy, D31 Lp,, = N3, DsLp, = D3y,
D4Lp, = D4y, Rc,,Ci3 = M3, 512 = Ci3Lyy,, Re,ZLp, = T1,C3 = Ry Rey,, A1 = C32C 4,
Ay = R¢,,Ci14,A3 = Rc;C14,A4 = C14, D13 = Lp, Ly,,, By = D4y, B, = Dy Lp,,,
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B3 = D41LD2]7B4 = D41D137E1 = C32T1’E2 = RC]ZTILD3|’E3 = RC13T1LD2]7E4 = T]D]37

R
Ay = (La,, La,), B3 = (RZ'),AM = Ls,, B2 = Rp,, A3z = La,, Baa = Rp,, E11 = Rp,,Avy,
3

Ey» = Ry,,Az3, E33 = BZZLB]3, Ey = B44L313,N =Rg Exn,M = E44LE33, K=K, -Kj,
E = Ry, KLg,,,S = EnLy, K1 = AsLy,,Gy = E; — AYAJE BBy, Ky = ALy,
Gy = Ey — AJAlE3BIBy, K, = ATE\ B! + L, AlE;B) K, = ATEsB] + Ly, AJE4B].

Then, the following statements are equivalent:

(1) Equation (2.1) is consistent.

()
RyE; = 0,ELp, = 0(i = 1,4),Rg, ELg,, = 0.
(3)
Z C, C3 C, C
g D, 02 O3 04 01) = r(Dy) + r(C2, C3,C4, Cy),
r(Ps 00 01=r(C,C s, C) + I’(DS) >
D, 0 0 O 1
1Dy 00 0|=rCsCoCi)+ r(Dz),
Dy 0 0 O 1
Z C‘4 C]
D,
D
r 2 0 0 =r D3 + ’,.(C4’ Cl),
D; 0 O S
D, 0 O 1
Z C2 C3 C1 D
r|Ds 0 0 0= r(C27 C3’ Cl) + r(D4) P
D, 0 0 O 1
zZ C, C
Ds
D
r 3 0 0 =r|Ds|+ r(Cz,Cl),
D, 0 O b
D, 0 O 1
Z C3 C
D,
r D2 O O =r D4 + },.(C?” Cl),
D, 0 O S
D, 0 O 1
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D, 0 gz
rilD; 0 |=r 3+r(C1),
Dy

D4 0 D

D, 0 :

Z C C, 0 0 0 C

Dy 0 0 0 0 0 O D; 0

D, 0O 0O 0 0 0 O D, 0
rl0 0 0 -Z C; C Cil=r|0 D2+r(%2 %1 g é) g“)
0 0 0 D, 0 0 O 0 D 3oxh
0 0 0 D, 0 0 O D, D,

D, 0 0 D, 0 0 O

Under these conditions, the general solution to the matrix equation (2.1) is

X, = C{(Z = C2Y\D; — C3Y2D5 — C4Y3Dy) = CIU\ Dy + Le, U,
X, = RCI(Z -G Y\D, - C3Y,D5 — C4Y3D4)D11- + C]C;Ul + U3RD1,
_ ot il T il il T T T T
Y, = CIZTDZI - C12C13M23TD21 - C12S12C13TN32D31D21
— C1,S 12UsRy,, D31 DS, + Le,,Us + UgRp,,
Y, = MI,TD}, + S 1,8 12CI,TNL, + Ly, Ls,, U7 + UsRp,, + Las, UsRy,,
Y3 = K] + LA2V1 + VQRB] + LA1V3R32, or Y3 = K2 - LA4W1 - W2R33 - LA3W3RB4,

where T =T, — C4Y3Dy4, U;(i = 1,_8) are arbitrary matrices with appropriate sizes over H,

Vi = Iy, )[AL, (K — A11V3Bay — A3 W3Bag) — AL, Uy 1B + La,, Us],
Wy = (0, L)AL (K — A1 V3By — Ay3W3Bay) — AL U Bis + La, Unsl,

. 0
W = [Ra,,(K — A1 V3Byy — A3 W3 Bag)Bl, + AuAl,Uyy + UniRp,,] (I ),

¥ In
Vo = [Ra, (K — A11 V3B — A3sW3B4y)B 5 + AnuAl Uyt + UsiRp,,] (0) ,

Vs =E! KE, — El [Ex;,N'KE, - E| SEl, KM"EyE,
— E}\SUsiRuEs4EY, + Ly, Uz + UsiRy,
Wi = N'KEy +STSELKM' + LyLs Uy + LyUs Ry — UsoRp,,,

Ui, Uz, Uz, Usy, Usy, Uss, Uyy, and Uy, are arbitrary quaternion matrices with appropriate sizes, and
m and n denote the column number of C, and the row number of Dy, respectively.

3. Solvability conditions and expression of general solution for system (1.1)
Some necessary and sufficient conditions for System (1.1) to be solvable will be established in this
section. The general solution of System (1.1) will also be derived in this section. Moreover, we provide

an example to illustrate our main results.
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Theorem 3.1. Let A;, Bi;, Cyi, Dyi, Eii, Fii, Hyy, and Gy (i=1,2) be given quaternion matrices. Put

Al = CllLA“’Pl = Ell - CllAllBllDllaBZ - RA22D22’
P2 = E22 - C22322A22D22, Bl RBZRAZZFZZ’ A2 - F]lLA|1LA|7

N 3.1
Az = Flll;AmB3 RDllHllaA4 = Lc22,34 = RA22F22,H11LB = Bu, G-
P =Gy — FnAl, B Hy — Fi1La, AlP\D} Hy| — BpAl,Fs — C P,BiRs,, Fa,
BulLy, = Ni.BsLy, = By, BiLy, = By, Ry, Ay = M\, S\ = ALy, Ty = PLy,,
C = RA/AIIRAA;\’ C1 = CAA4, C2 = RA2A4:C3 = RA3A4, C4 = A4,D = LBA”LNl’
Dy = B33, Dy = By3Ly,,, Dy = BysD,Ey = CTy, Ey = R4, T Ly,
- N A R
Es =R4T\Lg,,Es =T\D,C1 = (Lcy, Lc,), D3 = B3sLg;, , D1y = (Rzl) ;
A N - - N } 3.2
Cy = Ley, Dy = Rp,, C33 = Ley, D33 = Rp,, En = Rcllczz, (3-2)
Ep = R, C, Es3 = DLy, Ey = D33LD“, M = RE“Ezz,
N =Eulg,,F=F,-F,E=Rs FLp,,S = ExnLy,Fii = CoLc,,
G = E; — C,C E\DIDy, Fy = C4L¢,, Gy = Ey — C4CLE;DID,,
Fy = CIE\D} + L¢,C}E,D}, F, = CIE;D} + L¢,CIE4D].
Then, the following statements are equivalent:
(1) System (1.1) is solvable.
(2)
RA“BU = O,RA1P1 = 0 PlLl)11 = 0 B22LA22 = 0 RC22P2 = 0,
PyLg, = 0,Re,E; = 0, EiLp, = 0(i = 1,4), e ELy:, = 0.
(3)
Ey Cn) (Cn)
r(By1,Ap) =r(Ap), r =r , 3.3
(B11, A1) = r(An) (BHD“ Al Al (3.3)
Ep By
r =r(Dyy),r = r(Ay), 34
(D“) (D11) (A22) (A22) (3.4
E Cx»B
r(Ex, Ca) = r(Can), ( S 22) = r(Dy. An), (3.5)
15 2
Fa 0 Dy  Ap Al
r{BiuH;  Ap 0 0 | =r(Fx,Dn,An)+ r(ngFn)’ (3.6)
CnGi CnFyy Exn CnBx
Hy, 0 —Dy; 0 0
Fy 0 0 Dy, A22
r 0 Cll EU 0 0 (37)
0 Ay BuDp O 0
CnG1 Cunfy 0 Ey CyBy

_ 511 +r(H“ Dy, 0 O
- 11 )
F 0O D A
CoFii by n An
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Hy 0 0 0

F 0 Dy,  Axp :r(H“ 0 0)+ (An )
0 A 0 0 Fy Dy Axp

CnGi CpFy Exn CypBy

r [I:{11 D0 AO =r Hy 0 0
22 22 2 | = Fy, Dy Ay’

CnGi Exn CynBxn

G Fu By Fiy
rl Fxn 0 An|= F(Au) + r(Fp,An),
B H, Ay O

G Fnu 0 By,

H, 0 -D; 0 Fy

r F22 0 0 A22 :r(;{” DO“ A0)+F{C1]],
0 ¢, En 0 » 2

0 A, BuDy O

G Fn By
. Hy 0 0 f_ r(H“ 0 )+r(F“)
Fy 0 Ap Fy Ap An)’
0 A; O
Gu Bzz] H, 0
r H11 0 (F A ),
Fp Ay » Ax
Hy 0 0 0 0 0 0 Dy 0
Fy 0 0 0 0 Dy Axn 0 0
0 0 Hy; O 0 0 0 0 0
- 0 0 Fy»p Dy A»n O 0 0 0
Fy 0 F»n O 0 0 0 0 A
0 Ci 0 0 0 0 0 —-E 0
0 An 0 0 0 0 0 -By;1D;; O
CpGy CpFyp 0 0 0 Exn CpBx 0 0

H, 0 0 0 0 0 Dy O
Fy O 0 O Dy Anp 0 O Ci
=rl 0O H; O O O O 0 O +r[ }
0 F22 D22 A22 0 0 0 0
F22 F22 0 0 0 0 0 Azz

Proof. (1) & (2): The System (1.1) can be written as follows.
AnXy = B, X2An = By,
CuXiDy1 = Eyi, CnXoDyy = En,
and

FiuXiHy + XoF» = Gyy.

r s
CnFi

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
(3.16)

(3.17)
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Next, the solvability conditions and the expression for the general solutions of Eq (3.15) to Eq (3.17)
are given by the following steps:
Step 1: According to Lemma 2.3 and Lemma 2.4, the system (3.15) is solvable if, and only if,

R4, B11 =0, BplLy, =0. (3.18)
When condition (3.18) holds, the general solution of System (3.15) is
X = Al By + Ly, U, X = BpAl, + UsRy,,. (3.19)
Step 2: Substituting (3.19) into (3.16) yields,
AU Dy = Py, CpUzBy = Py, (3.20)
where Ay, Py, B,, P, are defined by (3.1). By Lemma 2.5, the system (3.20) is consistent if, and only if,
R4y P, =0, PiLp, =0, Re,P, =0, P,Ly, = 0. (3.21)
When (3.21) holds, the general solution to System (3.20) is
U, = AIP\D}, + Ly, W, + WaRp,,, U, = C},P,B} + Lc,,Ws + WyR,. (3.22)
Comparing (3.22) and (3.19), hence,

X, = Al Byy + Ly, Al P\Dl, + Ly, Lo, W, + Ly,, WaRp,

. . . (3.23)
Xy = BpAl, + Cl P,BiR4,, + Le,, WiRa,, + WaRp,Ras,.
Step 3: Substituting (3.23) into (3.17) yields
W4él + A’\2W1H11 + A3W2é3 + A4W3é4 = P, (324)

where B;, A i = 1,4, Jj = 2,4) are defined by (3.1). It follows from Lemma 2.6 that Eq (3.24) is
solvable if, and only if,

Re,E;=0,ELp, =0(i =1,4),Ry, ELy;, = 0. (3.25)
When (3.25) holds, the general solution to matrix equation (3.24) is
Wy = A, TE), - &AM, TB," - A2T51AA3TTN1TBA223A11T
— Ay S\ViRy, ByaByy' + L, Vs + VeRy.
Wy = M, TEy' +S1S\A3 TN + Ly Ls, Vs + VsRy, + Ly VaRy,»
Wi = F\ + Le,Vi + VaRp, + Le,V3Rp,, or Wy = Fy — Le, Vi — VaRp, — Le, V3R,
Wi = (P - AyWiHyy — AsWaBs — A,WsB)B, ' + ViRy,,

where C;, E;, D;(i = 1,_4),EA11,EA44 are defined as (3.2), T = T, — AA4W3BA4, V.(i = m) are arbitrary
matrices with appropriate sizes over H,

A ~ T N ~ PPN o T N
Vi = Iy, O)[Cly (F = CpV3Dy — C33V3D33) — Cyy Uy Dy + L, Ual,
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~ T ~ ~ PN ~ T ~
Vi = (0,1,)[C)y (F = CV3Dy, — C33V3D33) — Cyy Uy Dy + L, Ur2l,

- . R A 0
Vo = [Re,,(F = CuV3Dy — C33V3D33)Dyy + CiChy Uy + UZIRDA“](I ),
0
s r it b ot gt b tagr Tpatpt gr b e f et
Vi=En FEss —Eyy ExM'FEs; — Ey SEyp FN'EyEs; — Eyp SUs1RyEwES;
+LEA”U32+ U33REA33,

Vs = M'FEy +S'SEy FN' + LyLsUy + LyUsiRy — UnRy:,,

5 . . A e e e e I,
Vo = [Re,,(F = CuV3Dy — C33V3D33)Dyy + CiChy Uy + U21RD11]( ),

Ui, Ui, Uy, Usy, Usp, Uss, Uy, and Uy, are any quaternion matrices with appropriate sizes, and m
and n denote the column number of C,, and the row number of A,,, respectively. We summarize that
System (1.1) has a solution if, and only if, (3.18), (3.21), and (3.25) hold, i.e., the System (1.1) has a
solution if, and only if, (2) holds.

(2) © (3): We prove the equivalence in two parts. In the first part, we want to show that (3.18)
and (3.21) are equivalent to (3.3) to (3.5), respectively. In the second part, we want to show that (3.25)
is equivalent to (3.6) to (3.14). It is easy to know that there exist X!, X9, U?, and UY such that

AnXY = By, XAy = By,
A UDy, = Py, CpU3B, = P,

holds, where

X? = ALBII’ U(l) = AIPIDIP

X = BpAl,, UY = C},P,B],

Py = E11—C11X?D11,P2 = Ezz—szngzz, and P = G11—F11X?H11—F11LA1. U?HII_X(Z)FZZ_USRAZZFZZ-
Part 1: We want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. It
follows from Lemma 2.1 and elementary transformations that

(3.18) & r(Ra, B11) =0 & r(B11, A1) = r(An) & (3.3),
(3.21) © r(Ry, P1) =0 & r(P1, A1) = r(A) & r(En — CuAT]BnDll,CuLAu)

Ey Cu Ci
=r(C:: L PN = < (3.3),
r(Cnlay) r(BllDll All) r(All) 3-3)

(3.21) © r(P\Lp,) =0 & r(Pl ) =r(Dy) & r(

Eq _CllAilBllDll)
Dy,

Dll
Ell
=r(Dy) & r( ) =r(Dy;) © (3.4),
Dll
(3.18) & r(Bnls,) =0 & r(izz) = rAn) © (3.4).
22

Similarly, we can show that (3.21) is equivalent to (3.5). Hence, (3.18) and (3.21) are equivalent to (3.3)
and (3.5), respectively.
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Part 2: In this part, we want to show that (3.25) is equivalent to (3.6) and (3.14). According to
Lemma 2.6, we have that (3.25) is equivalent to the following:

P A, A, A . .
4 02 03 0“):r<Bl>+r(A2,A3,A4), (3.26)
P A, A, r
rlB; 0 0 :r(Az,A4)+r(é3), (3.27)
B, 0 0 !
P A A, .
rfHy; O 0 :r(AA3,AA4)+I”(B\“), (328)
Bl 0 0 !
P A
a0l (Hv A
rl A =r| B |+ r(Ay), (3.29)
By 0 5
B, 0 !
P A, A P’
rlB, 0 0 :r(Az,A3)+r(é4), (3.30)
B, 0 0 :
P
rl 3 =r|B, |+ r(4), (3.31)
B, 0 5
B, 0 !
P A
H 0 H,, .
rl A =r| By |+ r(4y), (3.32)
B, 0 P
B, 0 !
P
H Hll
All é
rl By |=r] 5|, (3.33)
. B,
B, P
B, !
P A 0 0 A,
B, 0 0 0 0 B; 0
B, O 0 0 O B, 0 . .
rl0 0 -P A; A =rl0 Hy +r(%2 £ Z‘f‘), (3.34)
0 0 H; 0 0 0 B 3
0 0 B 0 0 B, B,
B, 0 B, 0 0

respectively. Hence, we only prove that (3.26)—(3.34) are equivalent to (3.6)—(3.14) when we
prove that (3.25) is equivalent to (3.6)—(3.14). Now, we prove that (3.26)—(3.34) are equivalent
to (3.6)—(3.14). In fact, we only prove that (3.26), (3.30), and (3.34) are equivalent to (3.6), (3.10),
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and (3.14); the remaining part can be proved similarly. According to Lemma 2.1 and elementary
transformations, we have that

P A, A; A . A
(3.26) = r(BA1 02 03 04) = r(By) + r(Az, A3, Ag)
(Gu - F11X?H11 - F11LA11U?H11 - Xngz - UgRAzzez FiiLa, Ly, FiiLy, Lc22)
Sr
Rp,Ra,, F 0 0 0
= r(Rp,Rap, F'2) + r(F11La, La,, F11La,,, Lc,,)
&
G- FuX)Hy —X)F» —UJRs,Fo Fiy I 0
Ry, F 0 0 B Fo 1
r Ant22 2 = F(RA22F22,Bz) +r All 0
0 Ay 0 O 0 C
0 0 C»n O 2
0
B o, o
22 2 2|
T BuH, Ay 0 0 ol~ r(Fy,Dy,Ax) +r A(;l CO
CpXlF» 0 Cpn 0 0 2
Fy, 0 Dy  Ap A
Sr BHH“ A11 0 0 :r(Fzz,Dzz,A22)+r(F 2, )@(36)
CnG CupFy Eyx CypBy e
Similarly, we have that (3.27) & (3.7),(3.28) & (3.8),(3.29)  (3.9).
P A, A, p
330)=r|B, 0 0]= r(A},A})H(B“)
B, 0 0 !
G- F11X?H11 - FllLA”U?Hll - Xngz - UgRAzzez FiiLa, Ly, FiiLy,
S r RA22F22 0 0
Rp,Ra, Fa 0 0
_ RA22F22
=r(Fi1La, La,, F11La,,) + r(RBzRAzzFZZ)
G —-FuX)H;, F, Bxn F
erl  Fx 0 Ap|= r( A“) +1(Fp. Ap)
0 Ay O H

Gll Fll B22 F
or|l Fp 0 Ay :r(A“)+r(F22,A22)(:)(3.10).
BuH;y A 0 !

Similarly, we have that (3.31) & (3.11),(3.32) & (3.12),(3.33) & (3.13).
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P A 0 0 A4
B;, 0 0 0 0 B; 0
B, 0 0 0 0 B, 0 h i
334)=rl0 0 -P A; Ai|=r|0 Hy +r(02 < A4)
0 0 H;, 0 0 0 B 3
0 0 B 0 0 B, B,
B, 0 B, 0 0
P FllLA“LAl 0 0 chz
Rp, Hi 0 0 0 0
RBZRA22F22 0 0 0 0
= 0 0 -P Fi Ly, Lc,
0 0 Hy, 0 0
0 0 Rp,Ra,, Fa 0 0
RA22F22 0 RA22F22 0 0
RD”HH 0
~ RBzRE\)zzFZZ ; FllLA“LAl 0 LC22
- ST A S ST Py
0 RBZRA22F22 1 z
RA22F22 RAzz Fr
P Fi1Ly,, 0 0 Le,, 0 0 O
Hy, 0 0 0 0O D; 0 O
R, Fo 0 0 0 0 0 B, O
o r 0 0 —G11+X3F22+U3RA22F22 F]]LA“ LC22 0 0 0
0 0 Hy, 0 0 0O 0 O
0 0 Ru), Fo 0 0 0O 0 B
R, Fo 0 R, Fn 0 0 0O 0 O
0 Ay 0 0 0 0O 0 O
H11 0 D11 0 0
RA22 0 0 32 0 [F] 1LA” 0 LC22]
=r 0 Hy 0 0 0Ol+r 0 FULA“ LC22
0 Ri,Fro 0 0 B, Ay 0 0
RA22 F22 RA22 F22 0 0 0
Hy, 0 0 0 0 0 0 Dy 0
Fy 0 0 0 0 Dy Ap 0 0
0 0 H, O 0 0 0 0 0
o r 0 0 Fy Dy Ay O 0 0 0
Fs 0 Fyn O 0 0 0 0 A
0 Ci 0 0 0 0 0 -E 0
0 Ay 0 0 0 0 0 -B;D;; O
CnGyy CpFy 0 0 0 Exn CpByp 0 0
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H, 0 0 0 0 0 Dy O
F»n 0 0 0O Dy Ap O 0 Cyy
=rl 0 H; O 0 0 0 0 O |+r] A | (B.14).
0 Fn Dy Apn O 0 0 0 CypFy;
Fy» Fy»n O 0 0 0 0 Axp

Theorem 3.2. Let System (1.1) be solvable. Then, the general solution of System (1.1) is

X, = Al Byy + La, A[P\Dl, + Ly, La, W, + La,, WaRp,
Xy = BpAl, + ClP,BiR4,, + Le,, WsRa,, + WaRp,Ra,,,
where
Wy = A, B, - A, A0, TB, - 4,'s 11‘{3%77\’1”9;2331T
— Ay S\ViRy, BnaByy' + L, Vs + VeRy.
Wy = M, TEy' +SiS\A3 TN + Ly Ls, Vs + VsRy, + Ly, ViRy,
Ws = F\ + Le,Vi + VaRp, + Le,VsRp,, or W3 = Fy — Le, Vi — VaRp, — Le, VR,
Wi = (P - AsWiHyy — AsWaBs — A,WsB)B, ' + ViRy,,
Vi = (U, O)[Cri (F = CoaVs D — C3Va D) — €1 UnDyy + L, Unal,
Vi = (0, L,)[Cyi (F = CVs Dy, — CysVsDsz) = Coy U Dy + Le, U],

N - N T PN | 0
Vo = [R¢,,(F = CuV3Dy — C33V3D33)Dyy + CiiCry Uny + UaiRp, ] (I ),

5 T R IO PP I,

Vo = [R¢,,(F = CuV3Dy — C33V3D33)Dyy + CiiCry Uny + UaiRp, ] (0),

N B L N S S P PN SN pop

Vi =En FExz —Eyy ExM'FEyz —Ey SExp FN'EyEs; — Ejp SUs RvEwuEs3

+ LEA” Us + U33RE53,

Vi = ]MTF‘E:;M_T + STSE‘EQ%F']V]L + LyLsUy + LyUs Ry — U42RE14,
T=T - A4W31§4, V(i = 4,_8) are arbitrary matrices with appropriate sizes over H, Uy, Uj,, Uay,
Uiy, Usy, Usz, Uy, and Uy, are any quaternion matrices with appropriate sizes, and m and n denote
the column number of Cy, and the row number of A, respectively.

Next, we consider a special case of the System (1.1).
Corollary 3.3. [16] Let A, B;;, Cii, Dy, Ei, Fii(i = 1,2), and Gy, be given matrices with appropriate
dimensions over H. Denote
T = CiLa,, K = Rpp, D2y, By = RxRpy, 0, Ay = FriLa, Ly, C3 = Fi1Ly,,, D3 = Rp,,,
Cy = chz,D4 = RA22F22,AQ = RA1C3’ Bﬁ = D3LB|’ C.= RA,,C4,Dd = D4LB|’ E = RA]EILBp
A=Al By + Ly, T'(E1, = CiiAl BiD11)D', B = BpAl, + Cl(Ex — C2aBnAl,Dn)K 'Ry,
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Ey =Gy —FuA—-BFy», M =RyC.,N = DyLg,,S = CcLy.

Then, the following statements are equivalent:
(1) Equation (1.8) is consistent.

2)

3)

E C C
r(Bll’All):r(All),r(B 11 11):}"( 11),

Rp, Bi1 =0, BpLy, =0,Rc,,Ex =0,ELp, =0,
Rr(Ey, = ChAlBiDyy) = 0,(Ex, — CooByAl, D)Ly = 0,
RMRA(,E = O, ELB/gLN = 0, RA(,ELDd = 0, RCCELB;; =0.

nuDi An Ap

Eq (322)
r =r(Dy),r =r(Ap),
(D“) (D11) Aoy (A22)

E C»B
r(Ey, Cy) = r(Cy), ”( 2o 22) = r(Dy,A2),
Dy  Ap
Fy 0 Dy  Ap Al
r| By Ay 0 0 = r(Fy,Dxn,Axn) + r(szFU)’
CnG CupFy Eyx CpBp
0 FpDyy Dy Axp Cii
C E 0 0
r ! ! =r| An | +r(FnDi, Dy, A),
Ay B 1Dy, 0 0 Cor P,
CnFi1 CnGiuDyy Eyp CpByp
G Fu By Fi,
r|Fpn 0 Ayp ZF(A11)+7’(F22,A22),
B, Ay O
Fin GuDy By i,
r 0 FnDu Axn = r(FpuDy1,Apn) +r|Cii |.
Cn En 0 Al
Ay BuDy O

Finally, we provide an example to illustrate the main results of this paper.

Example 3.4. Conside the matrix equation (1.1)

All =

Ell =

C22 =

AIMS Mathematics

C111 din
b D = b
(Cm) ! (dm)
(bzn b212)
by byn)’

€211 fin
= ,
(6221) ! (fm)

ain by bin
,Bi1 = ,C
61121) ! (b121 b122) !

€111
JAp = (61211 61212) , B
€121

11 C12
, Doy = (dzu) ,Ex»
C2»1 €222
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hir his 8111 8112
H = N F = ,G = )
! (hm hiz 2 (f211 f212) ! 8121 8122

where

aip; = 0.9787 + 0.5005i + 0.059¢j + 0.0424k, a;p; = 0.7127 + 0.4711i + 0.68205 + 0.0714k,
b1y = 0.5216 + 0.8181i + 0.72245 + 0.6596k, by, = 0.9730 + 0.8003i + 0.4324j + 0.0835k,
b1 = 0.0967 + 0.8175i + 0.14995 + 0.5186k, b1, = 0.6490 + 0.4538i0.8253j + 0.1332k,
¢ = 0.1734 + 0.8314i + 0.0605j + 0.5269k, c1; = 0.3909 + 0.8034i + 0.3993j + 0.4168k,
dipr = 0.6569 + 0.2920i + 0.0159j + 0.1671k, dj»; = 0.6280 + 0.4317i + 0.9841j + 0.1062k,
ern1 = 0.3724 + 0.4897i + 0.9516j + 0.0527k, e;5; = 0.1981 + 0.3395i + 0.9203j5 + 0.7379k,
az;; = 0.2691 + 0.4228i + 0.5479j + 0.9427k, ay1, = 0.4177 + 0.9831i + 0.301%5 + 0.701 1k,
by = 0.6663 + 0.6981i + 0.1781j + 0.9991k, by, = 0.0326 + 0.8819i + 0.19045 + 0.4607k,
by, = 0.5391 + 0.6665i + 0.1280j + 0.1711k, by, = 0.5612 + 0.6692i + 0.3689j + 0.9816k,
co11 = 0.1564 + 0.6448i + 0.1909j + 0.4820k, c51, = 0.5895 + 0.3846i + 0.2518 + 0.6171k,
cao1 = 0.8555 +0.3763i + 0.4283j + 0.1206k, ¢, = 0.2262 + 0.5830i + 0.29045 + 0.2653k,
dr1 = 0.8244 + 0.9827i + 0.7302j + 0.3439k, e5;; = 0.5847 + 0.9063i + 0.8178j + 0.5944k,
exn; = 0.1078 + 0.8797i + 0.2607j + 0.0225k, fi1, = 0.4253 + 0.1615i + 0.4229j + 0.5985k,
fi21 = 0.3127 + 0.1788i + 0.0942j + 0.4709%k, hy;, = 0.6959 + 0.6385i + 0.0688j + 0.5309k,
hi12 = 0.4076 + 0.7184i + 0.5313j + 0.1056k, h5; = 0.6999 + 0.0336i + 0.3196; + 0.6544k,
hi2 = 0.8200 + 0.9686i + 0.3251j + 0.6110k, f>;; = 0.7788 + 0.4235i + 0.0908j + 0.2665k,
fa12 = 0.1537 + 0.2810i + 0.4401j + 0.5271k, g1, = 0.4574 + 0.5181i + 0.6377j + 0.2407k,
g2 = 0.2891 + 0.6951i + 0.2548j + 0.6678k, g121 = 0.8754 + 0.9436i + 0.9577j + 0.6761k,
8122 = 0.6718 + 0.0680i + 0.22405 + 0.8444k.

Computing directly yields the following:

B 3 E Cu _ Ci _
r(Bll A]])—r(All)—zar(BllDll All)_r(A]])_z’

r(g:) = T(DH) = 1,}"(i§§) = r(Azz) = 2,

E22 C22 BZZ

F(Ezz C22) = F(ng) = 2, r(Dzz A22

) = V<D22 Azz) =3,

Fy 0 Dp Ap A
r|BuHy, Ay, 0 0 ]:r(F22 Dy A22)+r(c - ):5,
CnG Cplbyy Exn CnBx 2
Hy 0 -Dy; 0 0
Fa 0 0 Dy Axp Cu
lo  cn Eyn 0 0 —r[ A +r(1;“ Do“ DO AO):7,
0 Ay BuDny 0 0 CnFy - 2o

CnG Culy 0 Ey, CynBx
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Hy 0 0 0
- Fa 0 Dy,  Ap :r(H“ 0 0)+r( A ):6
0 Aj 0 0 Fy Dy Axp CypFyy ’
C»Gy CpFy Eyn CynBy
r| Fx Dy, A = r(i{” D AO ) =5,
C»Gy Exn CpBp 2o
Gu Fn Bxn F
r F22 0 Azz) = I"(All) + F(Fzz,Azz) = 5,
ByHy, Ay O !
G Fn 0 B,
Hy, 0 -Dy; O Fy
r F22 0 0 A22 :r([;“ DO“ A0)+r C]]]:6,
0 Cu En 0 2 2 A
0 Ay BuD;y O
G Fn By
L P e Y (R
Fy 0 Ap Fy Ap Ay ’ o A Fy Ap ’
0 A, 0 » Ax
Hi; 0 0 0 0 0 0 Dy 0
Fy 0 0 0 0 Dy Axn 0 0
0 0 H, O 0 0 0 0 0
- 0 0 Fy» Dy Ay O 0 0 0
F» 0 Fy»n O 0 0 0 0 As
0 Cy 0 0 0 0 0 —-E 0
0 A 0 0 0 0 0 -B Dy O
C»Gyy CpFyy 0 0 0 Eyn CpBxn 0 0
Hy, O 0 0 0 0 D O
Fy 0 0 0 Dy Apn O 0 Ci
=rl 0 Hy; O 0 0 0 0 0 +r[ Al ]211.
0O Fpn Dy An, 0 0 0 O CypFyy
Fy» Fy O 0 0 0 0 Axn

All rank equations in (3.3) to (3.14) hold. So, according to Theorem 3.1, the system of matrix

equation (1.1) has a solution. By Theorem 3.2, the solution of System (1.1) can be expressed as

X = (0.4946 +0.1700i — 0.1182j — 0.3692k 0.4051 — 0.0631i — 0.2403j — 0.1875k),
X = —-0.0122 + 0.2540i — 0.3398j — 0.3918k
271 0.7002 — 0.3481i — 0.2169j + 0.007%% )
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4. The solvability conditions and the general solutions to the Systems (1.2)-(1.4)

In this section, we use the same method and technique as in Theorem 3.1 to study the three systems
of Eqgs (1.2)—(1.4). We only present their results and omit their proof.

Theorem_4.1. Consider the matrix equation (1.2) over H, where A;, B;;, Cyi, Dy, Eii, Fii, G11, and
H,(i = 1,2) are given. Put

Al = CllLA“aPl = El] - CIIALBIIDH,BZ = RAZZDZZ’ P2 = E22 - CZZBZZAEZDZZa

Ay = FiLy, La,, Ay = F1iLa,, By = Rp,,, A3 = Hy\Ley,, Bs = Ra,,Fo, By = Rg, R, Foo,
B=Gy - FnAl, By — F11Ls,AlP\D}, — H\ 1By Al Fy — H\\Cl PyBiR s, Fo, R Ay = Ap,
R4 A3 = A3, Ry Hyy = Ay, BsLg, = N1,Ra,A13 = My, S| = ALy, Rg B =T,

C = RyuRa,,,C1 = CA14,Cs = Ry ,A1s, C3 = R ;A14,Cy = A1y, D = Ly Ly,, Dy = Ba,

D, = BiLy, D5y = BiLy Dy = BiD,E, = CT\,E, = Ry, T\ Ly, Es = Ry, T\ Ly, E4 = T\ D,

R
Coy = (L¢,, L¢,), D13 = (R,[;])’ Ci2 = L¢,, D12 = Rp,, C33 = L¢,, D33 = Rp,, Ezq = R, Cia,
3
Es = Rc,,C33, E33 = DioLlp,s, Eas = D33Lp;, M = Rp E13,N = EqyLp,, F = Fr — Fy,
~ ~ ~ ~ A At oA oAt oa ~

E = RC24FLD137S = E13LM’ Fl] = CZLélle = E2 - CZC] ElDl ‘DZ’ F33 = C4Lé37

62 = E4 - CA4CA3%EA3DA3TDA4, F, = élTE\lDAlT + Lél CAQTEAQDAQT, F> = (:/\T,TE"\3DA3T + LC3C4TEA4DA4T.
Then, the following statements are equivalent:

(1) System (1.2) is consistent.

2)

RAUBII = O7RA1P1 = Oa PILD11 = Oa BZ2LA22 = Oa RC22P2 = Oa
P,Lp, =0,ReE; =0,E:Ly =0(i =1,4), R, ELg,, = 0.

3)

Ey, Ch (Cn) (En)
r(By1,Ap) =r(Ap), r =r N =r(Dqy),
(Bi1, A1) (A1) (BUD“ A“) Al Dy (D11)

E C»B
r(By, Ap) = 1(Axn), r(Exn, Cxn) = r(Cxp), 7’( > 2 22) = r(Dy,A2),
Dy  Ap
GuD, Fn Hyp Fi1 Hy
r Ell Cll 0 =r CU O .
BuD, A O A, O

GllDll Fll Hll 0

Fi, Hy
r Fubu 00 Az =r(Fn,An)+r|Cy 0 |,
En Cnu O 0
Ay O

BllDll All 0 0
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Hy Fii GiDy Hy Fi
r 0 C11 E11 =r O C11 .
0 An BuDy 0 Ay
L o wn
"o 0 E =r(FpDi,An)+r| 0 Cp|,
T T 0 Ay
0 Ay O BuDy
GuDy Fn Hy O 0
FypDyp 0 0 Dy Ap ?1 Hu
r| Eun Chn O 0 0 = 011 C + r(F, Dy, Ax),
0 0 Cn -En —CnBx Ao
BuDi Ay, 0 0 0 !
GuDy Fi Hj By
F»Dyp 0 Ax F
" E. cn o ‘r(cu Au)”(F”’A”)’
BuDyy Ay 0
Hy Fi, 0 0 G Dy
0 0 Do A FaDu| [N
rf0 Cy 0 0 Eyn |=r 0 A11 + r(Dy, Axy, FDyy),
0 Ay, O 0 B Dy, c (;1
Cyn 0 -Epn —CypBp -
Fy HuBy G Dy Fi
r CO Aéz FZED” =F[C11]+F(A22,F22D11),
1 1 A
An 0 B1Dyy !
G, Fu 0 0 Hpj 0 0 HsB»>, 0
F»n O 0 0 0 0 0 Ar 0
0O O Hy Fyn H;y 0 -H;yBy 0 G Dy
; 0 0 0 0 0 Dy Ar 0 —F» Dy,
0 0 Cp»n O 0 Exn 0 0 0
0 0 0O Ci O 0 0 0 Eq
0 0 0 A; O 0 0 0 B 1Dy
B Ay O 0 0 0 0 0 0
0 Hy Fu Hy
_, F»n O 0 Axp 0 .y 0 Cy»n O 0
0 0 Ay O
A O 0 0

Under these conditions, the general solution of System (1.2) is

X, = Al,Byy + Ly, AJP\D!| + La, Ly, W, + La,, WaRp,,,

AIMS Mathematics

Volume 9, Issue 12, 33662-33691.



33681

X, = B22A;2 + CEQPZBERAH + LC22W3RA22 + W4R32RA22,
where

Wi = A" (B = AyW\ B, — AsWs By — H\ WaBy) + Ly, U,
Wy = ALTB, — AL AMITE, - AT,S AT, TN!B:B,
— A1S\UsRy, BsBy' + Ly, Us + UsRy,,
Wi = MITB; +STS\ALTNT + Ly, L, Us + UgRy, + Ly, UsRy,,
Wy=F+LaVi+VaRps +Le ViR, or Wy = Fo — Le Vi = VoRj5 — La V3R5,,

where T = T, — H\ \Wa4B4, Ui(i = 1, 6) are arbitrary matrices with appropriate sizes over H,

Vi = (In, 0)[CL,(F = C1aV3Dyy = C33V3Ds3) = Co,UnDis + L, Unal,
Vi = (0, 1,)[C},(F = C12V3Dyy — C33V3D33) — Ch, Ui Dis + Le, Ul

~ A O
Vo = [Rey,(F — C1pV3Dyp — C33V3D33)DT3 +CoCl, U + UnRp,,] (I ),

. I,
Va = [Re,,(F = CioVaDip = Cs3V3Ds)Dys + CoaCoy Ui + UniRp, (O) ,
Vs = E},FE,, - EL, EkM'FE!, - E} SE|.FN'ELE],
— E;‘S U31RNE44E;F3 + LE24 U32 + U33RE33,
V3= M'FE}, + STSE,FN" + LyLs Uy + Ly U3;Ry — UisRg,,,
Ui, Uiz, Uy, Usy, Usp, Uss, Uy, and Uy, are any quaternion matrices with appropriate sizes, and m
and n denote the column number of Hy, and the row number of Ay, respectively.

Eeorem 4.2. Consider the matrix equation (1.3) over H, where A;;, B, Ci;, Dji, Eii, Fii, Gy Hi1(i =
1,2) are given. Put

Ay = CyiLy,,, Py = Eyy — CiiAl | Bi1D11, Ay = CoLy,,, Py = Exy — CoAl Byy Do,

Ay = FiiLa,La,s Ay = FuiLay,, By = Rp,, . Al = HitLay, Lay, Ay = HiiLay,, B = Rp,, Fao,
B =Gy - FnAl, By — F11Ls,A|P\D!, — H,\A} By F» — Hy Ls,, AL P,D} Fss,

Rj Ay = A, Ri At = Az, R Asy = Ass, FoLg, = Ni,Rap,Ais = My, St = AsLuy,,

R; B =T:,C=Ry,Ra,, Ci = CA3;,Cy = Ry, A33,Cii = RayAsy, Cop = Ass,

D =LgLy, D, = By,D; = ByLy,,, Dy, = BsLg,, Dy, = ByD,E, = CT),

E, =Ry, T\Lry,, Ery = RA13T1L1§2,E4 =T1D,Cy = (L¢,s L)), D13 = (;;;'1) ,

Co1 = L¢,, D12 = Rp,,C33 = L, D33 = Ry, E11 = Re,,Ca1, Exp = Re,,Cas,

Es3s = DioLp,y, Esq = Dy3Lp;, M = Rg Ex, N = EgqLg,,,

F=F,—F\,E=Rc,FLp,,S = ExLy,Fi; = C,L¢,

e N B
G| = Ey,— GCy E\Dy Dy, Fpo = CplLl,,Gy = E4 — CCyy E11Dyy Do,
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Ata 4t Ata At pta e fta et
Fi=Cy E\Dy +L¢,Cy E2Ds ,Fy = Cyy E(Dyy + L, Cyo E4Doy

Then, the following statements are equivalent:

(1) System (1.3) is consistent.

2)

RA“Bll = O,RA|P1 = 0’ PILD|1 = O’RAzzBZZ = OaRA2P2 = 0’ PZLD22 = O,

ReE;=0,Rs E1y =0,Rs,Es=0,ELy =00 = 1,2),
E\ Ly, =0,ELy, =0,Rg, ELg, = 0.

3)

AIMS Mathematics

E C C
”(Bll,An):’”(An),l’( 1 11)=r( 11) r

N&Lhﬁ=dhﬂr(&2 Qﬂ=r(ﬁy%ﬁﬂ=ﬂﬁw,

BiDyy Ap Ax Dy,
Fy Hy Fy Hy
Ay O |=rlAy O |,
0 A22 O A22
H
0 Fi Hi
=r(Fp)+r|A; 0|,
0 0O A
Ay 2
G Dy Hy, Fp
By FyDyy _, 0 Cn
Ey 0 Apl
By 1Dy, Apn 0
G Dy Hy Fi
F»nDyy 0 C
Ey =r + r(FpDiy),
B.D 0 Ap
1D
A
0 »n 0
Hy 0 Fii Hj
0 0 = 1 + r(Fa, D),
0 Cxn
Cn —-En 0 Ay
Ay —ByDoy
—{1j+mnn
A

G
r BU
By Fy
G Fn
F22 0
r
By An
0 0
Hy, Fy
. Ay O
0 Ci
0 Ay
Hy, Fp
0 0
r O C11
0 Ay
A22 0
G Fi
r|Bin An
0 0
0 0
G Fu
r F22 0
B, An
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F]l 0 GllDl

1

0 0 Dy FxnDy Hu Fu
Cn 0 -Eyp 0 ¢z 0
r 0 C 0 E =r| 0 Cy|+r(Dy,F»Dy),
1 1 Ay 0
Ay O 0  ByFynDy 0 A
0 Ay O B 1Dy, !
Fii GuDy Fi
r CO F2E2D11 =r|Cy |+ r(FnDy),
1 1 A
An BuDy !
Gy Fi 0 0 0O H; O
Fy»n O 0 0 0 0 0
0 O -GyDy  Hy Fy Hyp O
0 0 Fy» Dy 0 0 0 B>
. B, Ay 0 0 0 0 0
0 0 0 Cyp O 0 Ex»n
0 0 —-E 0O Ci; O 0
0 0 —By»F»Dy A 0 0 0
0 0 —B11D1; 0 Ay 0 0
0 0 0 0 0 Aypn O
0 H, Fy Hyj
0 Cyp 0
) (F22 0 0 ) 0 An 0
=r +r
0 0O A; O
A O 0
0 0 0 Ay

Under these conditions, the general solution of System (1.3) is

where

X, = Al Byy + La, Al P\D!, + La, La, W, + Ly, WaRp, ,
X, = AL By + Ly, AIPsD}, + Ly, Ly, W5 + Ly, W4Rp,,,

Wy = AAlT(B — AW By — A\ \WsFa — Ay WaBy) + L; Uy,

Wy = ALTB —ALAMITE, - AS\AL,TN!FuB,'
— AL S \UsRy, FinBy' + La,Us + UsRy,,

Ws = M{TF., + S!S 1Al,TN| + Ly,Ls, Us + UgRr,, + Ly, UsRy,

Wi =Fi+LsVi+ VoRp, + Lg ViR, or Wy = Fo — L, Vi = VoR5, — L VsRy,,,

where T = Ty — AyyWaBa, Ui(i = l,_6) are arbitrary matrices with appropriate sizes over H,
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Vi = (s, 0)[C},(F = 3 V3Dys = C33V3D33) = C3, U1 D3 + Le, Unal,
Vi = (0, 1,)[C},(F = Cy V3D, — C33V3D33) — CL,Un Dy + L, Unsl,

A 5 : : 0
Vo = [Rey,(F — C21 V3D — C33V3D33)D 5 + C4C,, Uty + Ui Rp ;] (I ),

5 i i 1,
Vo = [Rey,(F — C21 V3D — C33V3D33)D 5 + C4C,, Ury + Uy Rp; ] (0),

Vs =E| FE,, - El [ ExM'FE!, - El SE] FN'E,E],
— El SU3RVEuEL, + Li, Usy + UssRgy,,
V3= M'FE}, + STSELFN" + LyLs Uy + LyU3 Ry — UsRg,,,

Ui, Ui, Uy, Usy, Usy, Uss, Uy, and Uy, are any matrices with appropriate sizes, and m and n denote
the column number of Hy; and the row number of D,,, respectively.

Theorem 4.3. Consider the matrix equation (1.4) over H, where A;;, Bi;, Cyi, Di;, Eji, Fii(i = 1,_2), and
G, are given. Put

Ay = Ci\La,, Py = E;) — Cy1A] B1\Dy1, Ay = CoyLa,,, Py = Exy — Al By D,

As = Fi1La, L, A¢ = Fr1La,, A7 = Lay,Ly,, As = Lay,, Bs = Rp,,, B1 = Rp,, F,

B =G - FuA} By - FuLy A\ 'P\D], - A},ByF — La, Ay PaD}, o,

RuAe = A11, RaA7 = Ay, Ry Ag = Asz, FooLlp, = N1, Rp, Ay = M, S| = ALy,

RiB=T;,C =Ry R4,,,Ci = CAz3,C, = Ry A3, C1 = Ry,Asz, Gy = A,

D = Lg.Ly,, D\ = B;,D; = B1Lg,,, D3 = B;Lg,, Dy = B;D, E, = CT,, E; = Ry, T\ L,

n ~ Ry
Ey = Ra,T\Lp,, E4 = T\D,Cy = (L¢,, L¢,), D13 = (R[i]
D3

Css = L¢,, D33 = R, Ev1 = Re, D1, E> = Re,Cs3, Es3 = DyLp,y, Egy = D33Lp,,,
M = R, Ey,N = EyLg,,F = F» — F1,E = Re,FLp,,,S = EoLy, Fiy = CoLg,,
G =E, - ézGTEllleljz,F% = é4Lc]1,Gz =E,— C4CA11TEA11153%154,
Fi=C"ED, + L, G ED,  Fy =G\ EnD; + LCA”CA'4TE4154%.

),Dl = L¢,, Dy = Rp,,

Then, the following statements are equivalent:
(1) Equation (1.4) is consistent.

2)
RA”BII = O,RAIPI = O» PILD“ = OaRAzzBZZ = 0’
R;,P,=0,P,Lp, =0, ReE;=0,E:Lp =01 =1,2),
Re E1y =0,Re,Ey = 0,E}, Ly, =0,E4Lp, = 0,Rg, ELg,, = 0.
(3)
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E, Cp Ci
r(B ,A =r(A , F =7 ’
( 11 11) ( “) (BUDII All) (A“)

r

E
Dll) = }"(Dll), I’(Bzz,Azz) = r(A22)’
11

Ey sz) _ r(czz) r(Ezz) — (D)
ByDyy Ay Axn)’ \Dx ’

Bll All ) — I"( All )
A22G11 - B22F22 A22F11 A22F11 ’
Fy 0

A
By, Ay :r(F22)+r(A22;”),
AnG AxnFy

Ci E Ci
Ay B 1Dy, =r| An |,
—AnFy1 BypFy»Dy —AnGiiDyy AnFi;
F>»D
C(:l 21;1111 Cu
=r| An |+r(FxnDn),
Ay B, Dy, ApFi;
AnFy AnGiiDyy
Fy 0 Dy,
CnFiy
CrnG CynF E
27 20 22 =r(Fy,Dp) +r|AnkF |,
B, Ay 0 A
AnGi AnFi1 BpDi
G Fn P
Fp 0 =r(A“)+r<F22),
By An a
0 D22 F22D11
CnF Ex C»nG Dy
C 0 Ey
ApnFy 0 AnG Dy — BpFy»Dy
A11 0 B11Dyy
CnFiy
r Cu + r(Dy, F22Dyy),
AnFy
Ay
Fi1 GnDy Fi,
0 FaDi =r|Cy |+ r(FuDy),
Cn En Al
Ay BiDyy
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Fa 0 0 0 0
By A 0 0 0
. CnGy Cuky C»G 1Dy, —CnFy Eyp
0 0 -E Ci 0
AnGi ApFy AnGuDyy — BpFynDy —AnF; 0
ApGi ApFy 0 0 0
—CpFy1 CpFy
—ApFy AxnFi
TR
0 FxnDy Dy Al 0
—Anky; 0

Under these conditions, the general solution of System (1.4) is
X, = AT By + LA\ P\B)" + Ly L Wy + Ly, WaRj,,
Xy = AlByy + LyyAy PyBy + L, Ly Ws + La, WaRy,,
where
Wy = A;(B — AW Bs — A;W3Fy — AgWyB7) + La Uy,
W, = AITB! — ATA,M[TB! - AlS | AITNF,,B!
— AlS \UsRy, F2uBL + Ly, Us + UyRp,,

Wi = M{TF., +SIS|AITN] + Ly, Ls, Us + UgRr,, + Ly, UsRy, ,
Wy =Fi+LeVi+ VaRps, + L¢ V3Rp,, or Wy = Fo — Ls Vi = VoRps, — L¢, V3Rps,,

where T = T\ — AsW4B;, Ui(i = 1, 6) are arbitrary matrices with appropriate sizes over H,

Vi = (L, O)[CI(F = D1 V3D, — C33V3D33) = CIU LDy + Le, Ul
Vi = (0,1,)ICI(F — D,V3D, — C33V3D33) — C{Uy1 Dy + Le, Uss],

A A O
Vy = [Re,(F = D\ V3D, — C33V3D33)D} + C,ClUy, + UniRp, | (1 ),

N ; . 1,
Va = [Re,(F = C2VaDy = C33V3D3)D) + CiC Uni + UniRo, ] ( 0),
Vi =E| FE,, - El E;M'FE!, - E| SEIFN'ELE],
— E|\SU3RyEuE}, + Ly, Uy + UnsRy,,,

Vi = M'FE!, + STSEIFN' + LyLsUs + LyUs 1Ry — UpRg,,,

Ui, Ui, Uy, Usy, Usp, Uss, Uy, and Uy, are any quaternion matrices with appropriate sizes, and m

and n denote the column number of Ay, and the row number of Dy,, respectively.
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5. An application of the system (1.1)

In this section, we use the Lemma 2.2 and the Theorem 3.1 to study matrix equation (1.9) involving

n-Hermicity matrices.

Theorem 5.1. Let A1, B1,Ci1,Ei1, F11, F»n,and G1(G; = GYZ) be given matrices. Put

Ay = Ci1Ly,,. Py = Eyy - C1iA} B\ Cl By = AT Py = PT By = Ry, (FoLa,)" .
A ~ ~ ~ N A~ 7]* N * * N
A3z = Fy1Ls, Ay = A3Ly,Ay = L¢,,, B3 = (F11A4) By = (FnLa,)" ,F], Ly, = B,

" N 7 n + A A
P =Gy, — FiA}\ B\ F], = AA[P (FIC),) = (FrA] Bu) —C| PBiBy, BuLy, = N,
BsLy = By, BsLy = Bs3, Ry, Ay = My, S| = ALy, T = PLy,,C = Ry,Ry,, Cy = CAy,
Cy = R;, Ay, C3 =Ry Ay, Cy = Ay, D = Ly Ly,,Dy = By3, D, = By3Lyy Dy = By3D,

A oy A R
E,=CT,E, = RAZTILB”’E4 =T,D,Cy = (LC2>LC4)aD3 = B33LB”,D11 = (RZ]),
3
Cy = Le,, Dy = Rp,, C33 = Ly, D33 = Rp,, E1 = Re, Con, Exy = Re, Cis,
E33 = ﬁzszll,E44 = D33L[),1aM = REI.EZZ,N = E44LE33’ F=F-F,E= RCHFLDII’
S = E22LM, F:\ll = Cchl, Gl = E2 - Cgci-ElDIDz, F<\22 = C4LC3» G2 = E4 - C4C;E3D§D4,
Fy = C{E\D] + L{, C;E,D}, F) = C}EsD} + Lc,CJE4D}.

Then, the following statements are equivalent:
(1) System (1.9) is solvable.

(2)
Ra,Bi1 = 0,Ra,Py = 0,P, (Rc,,)” =0,Rc,E; = 0,EiLp, = 0(i = 1,4),Rg, ELg,, = 0.
(3)
Ey  Cp Cu Ey
B ,A =r(Ayy), * = s | =r(C ,
r(Bi1, A1) = r(Aq) r(Bllc?l A“) F(A“ r C'17] r(Ci1)
k * 7]*
B, o o oA i
r|BuF|, An 0 0 :r(FQZ’C?l’A71)+r(C F )’
. . 1fi
CuGn CuFn E|, CyBj
F?l 0 -C}, 0* O*
n n n
ry 0 0 G Al

r 0 Cll E11 0 0 =
0 A Bnc?; 0 0

CuGn Cnfy 0 E’fl CiB],
Cu Fl. C" 0 0

r A11 +r FTI* 0 C”* A”* R
0 2 11 A
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F!, 0 0 0
r F3, 0 Cl, A :rF?; 0* 0* 7 Ay
0 Ay 0 0 Fl, cl Al CuFn)
CuGn Cnky Elfl CIIBYI
Fl. 0 0 .
r F’lf1 cT AT | = r(F?l 0 0*)
22 11 11, F’l CTI A’l , ’
CuGn E!, C\Bj 2 T
r ng* 0 Al :r(AH)+r(F32,A'171),
BHF7171 A11 0
Gy Fn 0 B
F'17l 0 -C 0* oot o Fu
r|F}, 0 0 Al :r(F},l (;1 A"*)” Cui |
0 Cll Ell 0 = i All
0 Ay BuC', 0
Gu Fn B! *
F'. 0 0 Fl, 0 Fi
r }7l P R R B ,
Fzz 0 Au Fzz Au Al
0 Ay O
B’ .
T Bl eno
r Fll 0* =r FU* An* )
F77 A’Y 22 11
22 11
F! o 0 0 0 0 0 cl 0
Fl 0 0 0 0 Cf A4 0 0
0 0O F, 0 0 0 0 0 0
| o o FL Cl Al 0 0 0 0
FI 0O F, 0 0 0 0 0o Al
0 Ch, 0 0 0 0 0 —-E; 0
0 An 0 0 0 0 0 -BuC!, 0
C11G11 C11F11 0 0 0 E7171 C]anl 0 0

FI. 0 0 0 0 0 C
FI 0 0 0 Cl, A, 0
=rl0 F, 0 0 0 0 0
0 FL cl, Al 0 0 0
FIL FI, 0 0 0 0 0 A"

Proof. Evidently, the system of Eq (1.9) has a solution if and only if the following matrix equation has

AIMS Mathematics Volume 9, Issue 12, 33662-33691.



33689

a solution: .
A Xi = By, Cii X, C], = Eqy,

X,AT = B!, C i X.CY = EV,, (5.1)
F11X1F;]I + X\vzn*Fg; =Gy.

If (1.9) has a solution, say, X, then X, X)) = (X, X?*) is a solution of (5.1). Conversely, if (5.1)
has a solution, say (X, X»), then it is easy to show that (1.5) has a solution

x, = XX
2
According to Theorem 3.1, we can deduce that this theorem holds. O

6. Conclusions

We have established the solvability conditions and the expression of the general solutions to some
constrained systems (1.1)—(1.4). As an application, we have investigated some necessary and sufficient
conditions for Eq (1.9) to be consistent. It should be noted that the results of this paper are valid for
the real number field and the complex number field as special number fields.
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