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Abstract: Composite sparsity generalizes the standard sparsity that considers the sparsity on a linear
transformation of the variables. In this paper, we study the composite sparse optimization problem
consisting of minimizing the sum of a nondifferentiable loss function and the £, penalty term of a
matrix times the coeflicient vector. First, we consider an exact continuous relaxation problem with a
capped-{; penalty that has the same optimal solution as the primal problem. Specifically, we propose
the lifted stationary point of the relaxation problem and then establish the equivalence of the original
and relaxation problems. Second, we propose a smoothing gradient descent (SGD) algorithm for the
continuous relaxation problem, which solves the subproblem inexactly since the objective function is
inseparable. We show that if the sequence generated by the SGD algorithm has an accumulation point,
then it is a lifted stationary point. At last, we present several computational examples to illustrate the
efficiency of the algorithm.
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1. Introduction

Sparse optimization is a core problem of compressed sensing [ 1-3], signal and image processing [4—
7], and high-dimensional statistical learning [4, 8], etc. Sparsity is usually characterized by the ¢
norm, which is the cardinality of the support set of vector x € R”, denoted by ||x|lp = [supp(x)| =
l{i € {1,2,---,n}: x; # 0}]. The penalized formulation of sparse optimization can be expressed as the
following cardinality regularized optimization:

min f(x) + Allxllo, (1.1)

where f : R” — R is a loss function depending on the application, 4 > 0 is the penalty parameter.
Compared with sparse optimization, composite sparse optimization problems enforce certain
structural constraints instead of pure sparsity on the coefficients, which arise from many important
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applications in various fields, such as structural health monitoring [10], fault diagnosis [11], motion
planning [12] and impact force identification [13], etc. The most important method is to promote
the sparsity of variables through linear transformation [14]. By imposing a regularization matrix
W = W,...,W))T € R on vector X, composite sparse optimization is nicely encapsulated as
the following optimization formulation:

min f(x) + AWxll. (1.2)

A typical choice of function f in problem (1.2) is the £, loss function given by f(x) = %lle - b3,
where A = (A],...,A,)" € R™ and b = (by,...,b,)" € R, and the ¢, relaxation of the £, norm
given by ||Wx]|;, which was first defined and summarized as generalized LASSO with the general
formulation of W [15]. Unlike traditional LASSO, solving generalized LASSO efficiently on high-
dimensional data is very challenging. A few attempts have been made to improve the efficiency of
generalized LASSO, but this requires a specific form of the W to work well [14—16], such as the fused
LASSO problem [17], the TV regularizer [18] and trending filtering [19].

However, many loss functions of the composite sparse optimization problems cannot be expressed
in the form of differentiable functions. The results in [20] showed that the least squares loss function
can solve a class of linear regression problems but is not suitable for all types of data. We can choose the
outlier that has a strong interference loss function, such as the ¢; function, quantile regression function,
or more general Huber class function. On the other hand, J. Fan et al. [20] pointed out that using the
¢, relaxation often results in a biased estimator, various continuous nonconvex relaxation functions
for £, norm were proposed, such as the smoothly clipped absolute deviation (SCAD) function [20],
the hard thresholding function [21], capped-¢; function [22-26], the transformed ¢; function [27], etc.
Here, we are interested in the capped-{; function as the relaxation function of the £, norm, which is a
simple relaxation function that satisfies specific properties. Z. Shen et al. [40] applied locally Lipschitz
continuous scaled folded concave functions to the approximate ¢, pseudo-norm. A generic nonsmooth
but convex framework was established to gradually approximate the scaled folded concave functions.
Numerical experimental results showed the proposed framework and algorithms admitted the exact
sparsity-induced capability of the ¢, pseudo-norm. Q. Chen et al. [41] first explored using a class of
locally Lipschitz scale folded concave functions to approach the €,. Then, a convex half-absolute
method was proposed to precisely approximate these nonconvex nonsmooth functions. A double
iterative algorithm was considered to solve the convex-relaxed composite optimization problems.
Both [40] and [41] established a generic nonsmooth convex framework that gradually approximates
these scale-folded concave functions based on the Legendre-Fenchel transformation to avoid directly
solving a nonconvex optimization problem. However, we use a smoothing function for approximation
to achieve the goal of solving the nonconvex optimization problem. The advantages of capped-¢;
function have been explored in various fields. For example, the authors in [28] put forward a capped
{1-norm Sparse Representation method (CSR) for graph clustering. The proposed model learned the
optimal graph for clustering by integrating sparse representation and capped ¢;-norm loss function.
In order to utilize the advantages of the twin extreme learning machine and FDA, Z. Xue et al. [29]
first put forward a novel classifier named Fisher-regularized twin extreme learning machine (FTELM).
Also considering the instability of the £,-norm for the outliers, authors introduced the capped ¢;-norm
into the FTELM model and proposed a more robust capped ¢;-norm FTELM (C¢;-FTELM) model.
The capped ¢, function was also discussed in the context of sparse group ¢, regularized algorithms
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by [30]. It’s worth noting that reference [9] gave an exact continuous relaxation problem with capped-
{1 penalty for nonsmooth convex loss function with cardinality penalty in the sense that both problems
have the same optimal solution set. Moreover, a smoothing proximal gradient algorithm for finding
a lifted stationary point of the continuous relaxation model was proposed. Regarding the solution
of relaxation problems, T. Zhang [42] presented a multi-stage convex relaxation scheme for solving
problems with non-convex objective functions. However, only parameter estimation performance was
analyzed in [42]. Unfortunately, the result in [42] does not directly imply that multi-stage convex
relaxation achieves unbiased recovery of the support set. H. Zhou et al. [43] proposed a new unified
algorithm based on the local linear approximation (LLLA) for maximizing the penalized likelihood for
a broad class of concave penalty functions. It did not eliminate the bias issue. Here, we extend the
results in [9] to composite sparse optimization and give a smoothing gradient descent algorithm for the
continuous relaxation problem. The new algorithm exploits the piecewise linearity of the capped-¢;
penalty term in the relaxation problem. In view of the composite sparsity, if the subproblem in the
algorithm does not have a closed solution, then our relaxation problem model analogizes the £; penalty
model for solving LASSO problems, using the smoothing gradient method to solve the subproblem.
We prove that if the sequence generated by the algorithm has an accumulation point, then it is a lifted
stationary point of relaxation problem.
In this paper, we consider the following composite sparse regression problem with cardinality
penalty,
min W, (x) := f(x) + AIWxlo, (1.3)

where f : R” — R is a convex (not necessarily smooth) and bounded from below function, A is a
positive parameter, and Q = {x € R" : [ < Wx < u}. For example, the £, loss function given by

£ = ~llAx - bl (1.4)
m

or the censored regression problem with

m

1
fx) = — > |max{Aix, 0} - b, (1.5)
M
For a given parameter v > 0, the continuous relaxation of the ¢, penalty with the capped-¢; function
¢ is given by
t
$(r) = min {1, U}. (1.6)
%

We consider the following continuous optimization problem to solve (1.3):

rgél WEX) = f(x) + AD(Wx), (1.7)

where ®(Wx) = 3.7 | p(Wix).

Composite sparse optimization has attracted much attention recently. In [15], a dual path algorithm
was proposed for the generalized LASSO problem with any formulation of W. If the composite
optimization problem is convex and the W is the general linear map, one feasible approach is to apply
the alternating direction method of multipliers (ADMM) [31]. In [31], the author proposed a dual
method for the variational problem in the form of inf{f(Av) + g(v)}. Z. J. Bai [32] aimed to provide a
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coordinate gradient descent method with stepsize chosen by an Armijo-type rule to solve the problem
miny f(X) + c||Lx]|; and miny [|JAX — bll% + c||Lx||; efficiently, especially when the problems dimension is
large.

In this paper, we use the exact continuous relaxation problem with capped-¢{; function to solve
optimization problem (1.3) and present a smoothing gradient descent (SGD) algorithm. Since W is a
general linear mapping and ®(WXx) is an inseparable function, which makes the proximal gradient
algorithm unable to be explicitly applied, we approximately solve the subproblem in the SGD
algorithm. We prove that if there is an accumulation point, then the accumulation point is a lifted
stationary point of (1.7).

Notation. We denote N = {0,1,...}. Forx € R" and § > 0, let ||x|| := ||X|l, and Bs(Xx) means
the open ball centered at x with radius 6. For a nonempty, closed, and convex set Q C R”", Nq(x)
means the normal cone to Q at x € Q. o pi(W) is the minimum singular value of W. We denote
[IXlle = max{lx;|, [Xa, ..., Xal}.

2. An exact continuous relaxation for problem (1.3)

Before starting this section, we first make the following two assumptions:

Assumption 2.1. Function f is Lipschitz continuous on  with Lipschitz constant Ly > 0 and matrix
W has full column rank.

Ao min(W)

Assumption 2.2. Parameter v in (1.6) satisfies 0 < v <V := Ly

We suppose Assumptions 2.1 and 2.2 hold throughout the paper and assume that L is large enough
such that L; > 27ma®™ yhere

I':=min{|lj|,u; : ; #0,u; #0,i =1,..., p}.

When f is defined by the £; loss function (1.4) or the censored regression loss function (1.5), Ly can
be taken as Ly = [|All«.

2.1. Lifted stationary points of problem (1.7)

We first give the definition of lifted stationary points of (1.7) as that in [33]. Since function ¢ in (1.6)
can be rephrased as

1
¢(1) = ;Ill — max{6, (1), 6>(1), 65(1)}

with 6,(¢) = 0, 6;(t) = £ — 1 and 63(¢) = - — 1 for 1 € R, we denote

D(@) :={i € {1,2,3} : 6,(t) = max{60,(2), 62(1), 63(1)}} (2.1)

and
D”(Wx) := IT7_ D(Wx). (2.2)
Definition 2.1. Point x € Q is called a lifted stationary point of (1.7) if there exists d = (d,,....d,)" €

D?(WXx) such that
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p P
D (O Wix)T € If (%) + % D W) + Na(x), (23)
i=1 i=1
where
=1 if Wix > 0,
F(x)je [-1,1] if [Wix| =0, 24)

=-1 if W[X<0.

Under the definition of the range of v in Assumption 2.2, we first prove that the element in D?(Wx)
for a lifted stationary point satisfying (2.3) is unique.

Proposition 2.2. If X is a lifted stationary point of (1.7), then the vector d"* = (d}'*,...,d}*)" €
DP(WX) satisfying (2.3) is unique. In particular, fori = 1,..., p,

1 if W&l <,
d'* =32 if Wx>v, (2.5)
3 if Wk < -v.

Proof. If |WX| # v, the statement is clearly valid. Hence, we only need to consider the case |W;X| = v.
When W;x = v, since D(W;X) = {1, 2}, arguing by contradiction, we assume (2.3) holds with le’_‘ =1,
so ¥ (X) = 1. By v < ¥, we have W;x € (I;, u;), and by (2.3), there exists £(X) € df(X) such that

0= £X) + % > W), (2.6)
i|Wix|<v

where ¥ (X) is defined as (2.4).
It is easy to observe that the following relation holds

> WHR)

i|Wix|<v

> O—min(W)- (27)

2

In fact, from the definition of the minimum singular value of W,

) Wx )
Omin(W) = mm{% X # 0} = min {||Wx||, : |[x]l = 1},
2

we have

1%
O min(W) = min{|| Xll X # 0}
[Ix]l>

< min {llWXHz
X1,

< min {[|WxIl, : [Ixll> > 1, [IXll < 1}

< min{||Wx||, : [Ixll, = 1}

= O min(W).

Il = L [xle < 1}
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Then, we see that
Omin(W) = min{[|Wx]|, : [IX|l2 > 1, [[x[le < T}

From the definition of (%) (2.4), this yields that

> Omin(Wr) = 0min(W),

> WI®

i|Wix|<v

2

where W; is the submatrix consisting of the rows in W indexed by 7 := {i : |W;X| < v} [34].
Combining (2.6) and (2.7), we have

/lo-min(W) A i/ = —
= <o D W) = IR < Ly
% |
i|Wix|<v
This leads to a contradiction to v < M Then, (2.5) holds for W;x = v. Similar analysis can be
given for the case that WX = —v, which completes the proof. O

Foragivend = (dy,...,d,)" e D" :={d eR” : d; € {1,2,3},i = 1,--- , p}, we define

d L . |WiX| .
W) = ) ; = > 04 (Wix), (2.8)
i=1 i=1

which is convex with respect to x. It can be verified that

O(Wx) = min ®Y(Wx), Vx € Q.
deDpr

In particular, for a fixed X € Q, D(WX) = (DdWi(Wi) and the following relation holds
X is a lifted stationary point of (1.7) & X € arg l;glél f(x) + /ld)dWi(Wx). (2.9)
Next lemma describes a lower bound property.
Lemma 2.3. If X € Q is a lifted stationary point of (1.7), then it holds that
Wxe(-v,v) = Wx=0, Vi=1,...,p. (2.10)

Proof. Suppose that X is a lifted stationary point of (1.7). Now we assume that WX € (—v,v) \ {0} for
somei € 1,...,p. So from (2.5) and Assumption 2.1, we have dl.w’_‘ = 1 and Wix € (l;,u;). By (2.3),
there exists £(X) € df(X). We have

2 i
0=¢®)+° > W),

i|Wix|<v

Through the analysis in the proof of Proposition 2.2, combining (2.6) and (2.7), we have

/lo-min(W) < /_l

; D WY = lE®I < Ly,
i|Wix|<v
which leads to a contradiction to v < M Consequently, Wx € (—v,v) implies W;x = 0 for

i€l,...,pand the proof is completed. O
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2.2. The relationship between problems (1.3) and (1.7)

This subsection discusses the relationship between the global minimizers and local minimizers
of (1.3) and (1.7). First, Theorem 2.4 discusses the relationship between the local minimizers of (1.3)
and (1.7). Second, Theorem 2.5 states that (1.3) and (1.7) have the same global minimizers. We use
the lower bound property mentioned in Lemma 2.3 to prove Theorems 2.4 and 2.5.

Theorem 2.4. If X is a lifted stationary point of (1.7), then it is a local minimizer of (1.3) and the
objective functions have the same value at X, i.e., f(X) + AD(WX) = f(X) + A||WX||o.

Proof. Combining the lower bound property of WX in (2.10) and the definition of @ defined in (2.8),
for any x € R", we have
p p
Wi
DEE Y g (win)
V 1
=1 i=1

| |Wix|
Z 1+ Z "

i|Wix|>v i:|Wix|<v

_ |Wix|
=Wl + >, —=.

i:W;x=0

™" (Wx) :

Then ]
" (Wx) < [Wxllo, Vx € B,(X), 0 > 0. 2.11)

Combining this with ®(WX) = ||WX||, and (2.9), we have
f&X) + AWKy < f(x) + AIWX|lp, YVxeQNB,X).

Thus, X is a local minimizer of (1.7). ]

Theorem 2.4 indicates that any lifted stationary point of (1.7) is a local minimizer of (1.3), which
means that any local minimizer of (1.7) is also certainly a local minimizer of (1.3).

Theorem 2.5. If X € Q is a global minimizer of (1.3) if and only if it is a global minimizer of (1.7).
Moreover, problems (1.3) and (1.7) have the same optimal value.

Proof. On the one hand, let X € Q be a global minimizer of (1.7), and according to Definition 2.1, then
we can obtain that X is a lifted stationary point of (1.7). By (2.10), from WX € (-, v), then W;x = 0,
so it gives ®(WX) = [|WX]|p. We have

fX) + AUWX|p = f(X) + AD(WX) < f(x) + AD(WX) < f(x) + A|WXlo, VX € Q,

where the last inequality uses ®(Wx) < ||Wx||y. Therefore, X is a global minimizer of (1.3).
On the other hand, let X € Q be a global minimizer of (1.3). Assume on the contrary X is not a
solution of (1.7). Let X be a global minimizer of (1.7), we obtain

fR) + AD(WR) < £(X) + AO(WX).

From
O(WX) = [[WX|lp and O(WX) < [[WXlo,
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we have
f&) + AWR|lp < fX) + AIWXlo.

This contradicts the global optimality of X for (1.3). Hence X is a global minimizer of (1.7).
Therefore, (1.3) and (1.7) have the same global minimizers and optimal values. O

When f is convex, X is a local minimizer of (1.3) if and only if X € Q satisfies
0 € df(X)+ Na(X). (2.12)

which is often used as a criterion for the local minimizers of problem (1.3).

Definition 2.6. We call X € Q a v-strong local minimizer of (1.3), if there exists E € Jdf(X) and
1 € No(X) such that for any i € supp(WX), it holds

0=¢+7 and |WiE| > v.

By (2.12), any v-strong local minimizer of (1.3) is a local minimizer of it. Below we provide a
result on the relationship between the v-strong local minimizers of (1.3) and the lifted stationary points
of (1.7).

Proposition 2.7. X € Q is a v-strong local minimizer of (1.3) if and only if it is a lifted stationary point
of (1.7).

Proof. First, by (2.9), we see that if X is a lifted stationary point of (1.7), then

W, (®) = f&) + AWKy = fX) + AD(WK) = f(X) + D7 (WR) < f(x) + 10? (Wx), Vx € Q.
Combining the Lemma 2.3 and " (Wx) < |Wxllo, Vx € B,(X), 0 > 01in (2.11), then we have

Wi, (X) < Wi (x), VxeQNB,(X),

so X is a v-strong local minimizer of (1.3).
Next, because X is a v-strong local minimizer of (1.3), it is also a local minimizer of (1.3), suppose X
is a local minimizer of (1.3) but not a locql minimizer of (1.7). Then there exists a local minimizer
of (1.7) denoted by X, combining (2.9), CDdWX(WX) < [|WXlly, VX € B,(X) in (2.11) and D(WX) = [[WX|lo,
we have

FR+AWRo = fFR)+ADWR) = fFR)+ADT (WR) < fFR)+1D" (W) < FR)+AWKllo, VX € B,(R),

which leads to a contradiction. Thus, the local minimizer of (1.3) is the local minimizer of (1.7), that
is to say, the v-strong local minimizer of (1.3) is the lifted stationary point of (1.7). O

We use Table 1 to clearly demonstrate the relationship between (1.3) and (1.7).
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Table 1. Link between problems (1.3) and (1.7).

Continuous relaxation problem (1.7) Cardinality penalty problem (1.3)
’ global minimizer ‘ = ’ global minimizer‘
’ local minimizer ‘ = ’ local minimizer ‘
) )
_ local minimizer and satisfying
lower bound in (2.10)

lifted stationary point n

— v — strong local minimizer

3. Smoothing gradient descent algorithm (SGD)

The main content of this section is to find the lifted stationary point of (1.7). Due to the existence
of matrix W, we cannot express the explicit solution using the proximal gradient method. We first
approximate f by a smoothing function and propose some preliminary theories on the smoothing
methods; the second section proposes our algorithm; and the third section conducts a convergence
analysis on the proposed algorithm for solving (1.7).

3.1. Smoothing approximation method

Throughout this paper, we approximate the loss function f by a smoothing function f in (1.7).
When it is clear from the context, the derivative of f(x,u) with respect to x is simply denoted as
\Y f (x, ). We denote

WA, 1) = Fx, 1) + ADUWx), WX, ) = f(x, 1) + AD(Wx),

where smoothing parameter u > 0 and d € D”. For any fixed u > O and d € D, W (x, i) is nonsmooth
and convex, and “W(x, ) is nonsmooth and nonconvex. Due to

©(Wx) = min Y(Wx), Vx € Q,
we obtain . N
WA, 1) > Wx,p), Vd e D?, x € Q, u € (0,]. (3.1

The following definition describes some theories about the smoothing function f, which is
frequently used in the proof of convergence analysis.

Definition 3.1. We call f : R" x [0, 1] — R with & > 0 a smoothing function of the convex function
fin (1.7), if £(-, 1) is continuously differentiable in R” for any fixed u > 0 and satisfies the following
conditions:

(i) limgx g0 f(2, 1) = f(X),Vx € Q;
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(ii) (convexity) f(x, i) is convex with respect to x in Q for any fixed u > 0;
(ii1) (gradient consistency) {lim,_x ;0 V, f(z, 1)} € Of(x),Vx € Q;
(iv) (Lipschitz continuity with respect to u) there exists a positive constant « such that

|F(x, 1) = FX, )| < Klpty — o], VX € Q, g, o € [0, f1l;

(v) (Lipschitz continuity with respect to x) there exists a constant L > 0 such that for any u €
(0, 1], Vx f (-, ) is Lipschitz continuous on Q with Lipschitz constant Ly~

By virtue of Definition 3.1-(iv), we obtain that
|f(x, 1) = fX)] < ki, VX € Q0 < < fu. (3.2)
Next, we aim to solve the following problem with i > 0 and vector d € D”

min - W) = F(x,0) + AGW), (3.3)
X€E
by introducing an approximation of (W/d(-, () around a given point z as follows:

Gy 5 7.1) = flt )+ (x~ 2,V ) + 3y I~ i + A9 W) (3.4)

with a constant y > 0. ®/(Wx) is convex with respect to x for any fixed d € D?, function G,,(X, z, 1)
is a strongly convex function with respect to x for any fixed d, y, z and u. Then, we solve the following
problem

minG, . (X, Z
ore d,y( ’ ,ﬂ)

to find the approximate solution of (3.3).

3.2. Smoothing gradient descent algorithm

In this subsection, we propose a new algorithm (see Algorithm 1) for finding a lifted stationary
point of (1.7). Specially, since W is a general linear mapping and ®(WXx) is an inseparable function,
which makes the smoothing proximal gradient algorithm [9] cannot explicitly solve a subproblem. The
proposed algorithm combines the smoothing method and the smoothing gradient descent algorithm, so
we call it the smoothing gradient descent (SGD) algorithm. We use the SGD algorithm to obtain
approximate solutions of the subproblem. Let

P =1k eN: w1 # i},

and denote p; the rth smallest number in #°. Then, we can obtain the following updating method of
{tud

/.lO S S
Wavpr +1<k<p. (3.5

which will be used in the proof of Lemmas 3.2 and 3.4.

Mk = Mps+1 =

AIMS Mathematics Volume 9, Issue 12, 33401-33422.
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Algorithm 1 Smoothing Gradient Descent (SGD) algorithm

Require: Take x! = x” € Q and pu_;, = uo € (0,1]. Give parameters p > 1, o > %, a > 0 and
0<y<Yy. Setk=0.
1: while a termination criterion is not met do
2. Step 1.Choose y; € [y, 7] and let @* £ 4"', where d"* s defined in (2.5).
3:  Step 2.
3 2a) Compute
4
%! = arg min G g (X, x5, ). (3.6)
xeQ
2b) If &1 satisfies
W R, 1) < G (R X 1), (3.7)
6: Set
Xk+1 — ﬁk+l (38)
: and go to Step 3. Otherwise, let y; = py; and return to 2a).
9:  Step 3. If
10: ~ ~
WE, ) + ke — WE ) — ke < —apg,s (3.9)
11: set urs1 = My, otherwise, set
12: U
0
= ) 3.10
HMic+1 k+ 1) ( )
13: Increment k by one and return to Step 1.

14: end while

3.3. Convergence analysis

Lemma 3.2. The proposed SGD algorithm is well-defined, and the sequences {x*}, {y*} and {u;}
generated by it own the following properties:

(i) {x} € Qand {y,} < [y, max{y, pL}];

(ii) there are infinite elements in #° and lim;_,, 1 = 0.

Proof. (1) By organizing (3.7), we can obtain

_ ~ ~ . 1 .
FE ) < FOE i) + (VO ), 1 =X  Syiga TIRE T = X

According to Definition 3.1-(v), (3.7) holds when vy, > L. Thus the updating of y; in Step 2 is at
most logp(ﬁ) + 1 times at each iteration. Hence, the SGD algorithm is well-defined, and we have that
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¥x < max{y, pL}, Vk € N. From (3.8), it is easy to verify that x*! € Q by x* € Q and £**! € Q.

(i1) Since {u} is non-increasing, to prove (ii), we assume that lim;_,., tx = @& > 0 by contradiction. If
{i} converges to a non-zero value, then the iteration of (3.10) is finite, which means that there exists
K € N such that g = fi, Yk > K. Substituting /& into (3.9), we obtain

WE, 1) + kit — WE py1) = ey < =, Wk > K+ 1.
By the above inequality, we have
lim WE, 1) + Ky = —co. (3.11)
However, by {x*} C Q, (3.2) and Theorem 2.5, then
WE ) + ke > WE) 2 min W) = min W, (0, k> K, (3.12)

(3.11) and (3.12) are contradictory; (ii) holds. O

Lemma 3.3. For any k € N, we have
1
WE, 1) — WE ) < —Enﬂk kA — x|, (3.13)

which implies {W(x**!, 1) + k) is non-increasing and %im W, ) = ]}im W(xH).

Proof. Since Gz, (X, x¥, 1) is strongly convex with modulus yk,u;l, we have

k ok+l Lk ok+1 ok+1
Gdk,yk(x’x ’/lk) > Gdk,yk(x * » X 7/'tk) + <VGdk,yk(X " » X ,,le) X—X " >

1 (3.14)
v IR = xIP,

using the definition of £*! in (3.6) and x**! = &**! when (3.7) holds, we obtain
1 _
Gdk%(xk“, Xk,,uk) < Gy, (X, Xk,/,lk) - Eyk,uklllxk“ —x|*,Vx € Q.

By the definition of function G4, given in (3.4), organizing the inequalities above, we have

A4 (WX <A (Wx) + (x — X1, VA, )
1
P = Sy I = x4

[
+ oYy X —x 7

5 (3.15)

1
- 57 My ||Xk+1 ||2

Moreover, (3.7) can be written as

W, 1) <FEE ) + K — % VI, 1)

1 _ k
+ E’yk/lklllxk-H _ Xk”Z + /l(Dd (ka+l).

(3.16)
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Summing up (3.15) and (3.16), we obtain that

WX 1) <F&E, ) + 207 (Wx) + (x = x5, VA, 1)

+ %mlilllx - x|? - %nﬂ;lllxk” - x|, vx € Q. A7
For a fixed u > 0, the convexity of f(x, u) with respect to x indicates
FO&E ) + = X6V o) < Fx, ), Vx € Q. (3.18)
Combining (3.17) and (3.18) and utilizing the definition of (de, one has
W ) < W) + %wglnx - x| - %yku,;lnx"“ - xIP, 319
Vx € Q.
Letting x = x* in (3.19) and by d* = d"*', we obtain
:de(xkﬂ’,uk) " %n’u;lllxkﬂ _ Xk||2 < ‘W(Xk,yk). (3.20)

Because W (X1, 110) > W1, 1), (3.20) leads to (3.13). Due to Definition 3.1-(iv), we have

FOE o) > FO5 ) — ket — ),

then, it follows that
WE, ) < WES i) + k(e — ),

by (3.13), we obtain
— 1 —
WE, ) + ke + Emtklllxk” — XM < WEE i) + Ky, (3.21)

(3.21) implies the non-increasing property of {’W/(xk“,pk) + k). This result and (3.12) ensure the
existence of limy_,.. W', i) + k. By virtue of limy_,o, ¢ = 0 and Definition 3.1-(i), we obtain

lim W', ) = lim W,
The proof is completed. O

Lemma 3.4. The following statements hold:
(1) Yoo Ve X — x4 < 2(WO, uoy) + ko — ming W);

(i) X502 < A with A = LW, 1)) + K-y — mingeq W) + 227 < oo;
Proof. (i) Recalling (3.21), for all k € N, we obtain
Vbt I = xHP < 2(WEE, ) + ks — WES, ) — k). (3.22)
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Now adding up the above inequality over k = 0, ..., K, it gives

K
Dyt I = xAP < AW, ) + kg = WS, ) = ).

By letting K in (3.23) tend to infinity and along with (3.12), we obtain (i).
(i) From (3.5), we have

PR
2K = Z(pr+1)2”SZ'uT(‘)TS20/:LO—O-I’

kepPs k=1

where p; is the rth smallest element in °. When k ¢ P°, (3.9) gives

apy < WES per) + Kger = WE, ) — kg,

which together with the non-increasing property of {"W (x*1, 1) + ki } and (3.12) implies

W —(W(x o)+ ko — min W),
kP>

Combining (3.24) and (3.25), the proof of (ii) is completed.

(3.23)

(3.24)

(3.25)

O

Theorem 3.5. If there is an accumulation point in {x* : k € $*}, then the accumulation point is a lifted

stationary point of (1.7).
Proof. Since (3.9) fails for k € #°, by rearranging (3.21), we obtain that

=111 k+1 k2 2
Yy X — x| < 2a'ﬂk,

which gives

-1,,3

k+1 k
’ _X”S 2a)/k,uk

[Ix

Yt X = XF|| < \2ayiu,

which together with lim;_,, g = 0 and {y,} C [y max{y, pL}] implies

Thus,

lim y; ' [IX! = x| = 0 and lim [x**' —=x"| =0
k— o0 k—o0

(3.26)

Let X be an accumulation point of {X*};cps, (3.26) indicates that {x*} exists a subsequence {th}ktepx

converges to X. Similar analysis can be given for the case that k;, € $° implies

ki+1 ke+1 —

— x4 =0 and limx .

[—00

. -1
lim 7y, ;" [1x
—o0

Recalling x¥*! =

(VA" ) + v 51 = xM) + A28, x = x5y > 0,
vk e oo™ (Wxkt, x € Q.

(3.27)

%4+ defined in (3.6) and by its first-order necessary optimality condition, we have

(3.28)

AIMS Mathematics Volume 9, Issue 12, 33401-33422.



33415

Since the elements in {d* : t € N} are finite and lim,_,., x*! = X, there exists a subsequence of {k,},

denoted as {k; }, and d € DP(WX) such that d“i = d,¥j € N. By the upper semicontinuity of ®? and

. ki +1 = .
lim;_, X" =X, it gives

{l_im 2 2 e gt (ka’f+1)} C 0D (Wx). (3.29)
j—)OO

Along with the subsequence {k;} and letting j — oo in (3.28), from Definition 3.1-(iii), (3.27)
and (3.29), we obtain that there exist & € df(X) and /¢ € d®Y(WX) such that

E+ A x-%)>0,¥x€ Q. (3.30)

By d € D?(WX), thanks to the convexity of f + A®?, (3.30) implies

F(X) + AU WxX) — f(X) — 10U WR) > (E+ A0 x-%) > 0,¥x € Q,

which implies that X is a lifted stationary point of (1.7). O
4. Numerical experiments

The purpose of this part is to test and verify the theoretical results and the properties of the SGD
algorithm by the numerical experiments. We present Examples 4.1 and 4.2, which are respectively
an under-determined linear regression problem and an over-determined censored regression problem.
Especially, the process of solving subproblem (3.6) is very similar to the algorithm process of solving
the LASSO problem.

All experiments are performed in MATLAB 2016a on a Lenovo PC with an Intel(R) Core(TM)
15-8250U CPU @1.60GHz 1801 Mhz and 8GB RAM. In the following examples, stopping criterion is
set as

number of iterations < Maxiter or yu; <e. “4.1)

We stop the proposed algorithm if the number of iterations exceeds Maxiter or the smoothing
parameter is less than &. Denote X the output of iterate x*. Set the fixed parameter & = 1 throughout
the numerical experiments.

Example 4.1. (Linear regression problem) Linear regression problems have been widely used in
information theory [1], signal processing [35,36] and image restoration [6,36]. As pointed out in [20],
¢ loss function is nonsmooth, but more robust and has stronger capability of outlier-resistance than
the least squares loss function in the linear regression problems. Then we consider the following ¢
regularized linear regression problem with ¢; loss function:

) 1
min = Wy (x) := —||Ax — bl|; + A|WXllo, “4.2)
xeQ m

where A € R™" with m = n, b € R”. A smoothing function of the ¢; loss function can be defined by

- 1 & . - > U,
oo = = s~ by with dsp =1, LI (4.3)
m ) ifls| <u

AIMS Mathematics Volume 9, Issue 12, 33401-33422.



33416

Denote s the £y, norm of true solution x*, i.e., ||Wx*||p = s. For the given positive integers m, n and
s, the data are generated by

W=randn(p,n);B=randn(n,m); A=orth(B)’; b=A*x"+0.01*randn(m, 1).

In the algorithm, we set the parameters as below: y =7y = 1, yg = 3.533, Maxiter = 103, v =
35.6014, o = 3.0003, p = 1.0001, « = % Generate A, b and x* withm =n =45, p =45 and s = 2, set
A =107 1in (4.2) and & = 1072 in the stopping criterion (4.1). We set X,=ones(n, 1). Figure 1 shows the
numerical results. Figure 1 plots x* and X, where x* and X denote the original signal (which can also
be expressed as true solution) and the output of iterate x* from the SGD algorithm. From Figure 1, we
can see that the output of x* is very close to the original generated signal.

8
Q
6 X true solution 4
& O SGD algorithm solution
412 2 ® i
® ®
2 ) 4
®
® g ® © ®
0 ® ® » Q L
] ® o® N ®
= 2 ®® ® ® 5 g
> o )
®
4 ® ® ® @
®
6 ® ® Q
8t
®
-10
Q
12 . . . . . . .
0 5 10 15 20 25 30 35 40 45

index

Figure 1. Digital experiment of the SGD algorithm in Example 4.1 under the first form of
W.

Now we use another form of matrix W to solve Example 4.1:

0 0 0 0 0
3 1 0 0 0
w=|l0 -3 1 0 0
0 0 0 -3 1
pxn

Sety =y =1, uy = 3.533, Maxiter = 10°, v =36, 0 = 7, p = 1.0001 and « = % We randomly

generate the data as follows:

B=randn(n,m); A=orth(B)’; b=A*x"+0.01*randn(m, 1).

We run numerical experiments with (m, n, p, 5)=(45,45,45,2). Set 1 = 103 in (4.2) and € = 1073 in
the stopping criterion (4.1). We define xo=randn(n, 1). From Figure 2, we can see that the output of x*
obtained by the SGD algorithm is also close to the true solution x*.
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X true solution
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Figure 2. Digital experiment of SGD algorithm in Example 4.1 under the second form of W.

The last special case of W is the penalty matrix in 1-dimensional Fused LASSO [39]:

11 0 -+ 0 0
0 -1 1 -~ 0 0
w=l0 0 -1 0 0
0 0 0 - -1 1

pXxn

Setv =40, p =45, n = 46 and xg=ones(n, 1). The remaining parameter values are the same as the
previous situation (see Figure 3).

T
X true solution

O SGD algorithm solution
0r FHRRRIAR

value

42 I I I L
0 10 20 30 40 50

index

Figure 3. Digital experiment of SGD algorithm in Example 4.1 under the third form of W.

From Figures 1-3, we can see that the output of x* obtained by the SGD algorithm is close to the
true solution x*.
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Example 4.2. (Censored regression problem) The application of censored regression problems
has been studied in machine learning [37], economics [38], biomedical, and technical systems.
The following censored regression problem is also a typical class of composite sparse optimization
problems with nonsmooth convex loss functions. Now we consider the following ¢, regularized
censored regression problem:

1
min W (x) := —||max{Ax, 0} — b, + A||Wxlo,
x€Q m

where A € R™" and b € R™. For the loss function in (1.5), a smoothing function of it can be defined
by

. 1 . L _ |max{s,0} if |s| > g,
S = P ;9@/’(14[&#) — b, ) with ¢(s,p) = {% if 18l < g

Set ¢ = 1072, v = 16.0009, 1 = 1073, yy = 10.8999, o = 4.0003, x = %, p = 1.2006 and
Xo=randn(n, 1). In this example, we run numerical experiments with (m,n, p, 5)=(40,40,40,2), we
randomly generate the problem data as follows:

A=randn(m,n); W= randn(p,n); b = max(A*x"+0.01*randn(m,1),0).

The computational results of x* and x are shown in Figure 4.

8
X true solution
6 ® O S8GD algorithm solution | |
®
4 ®
Q ®
L Q
o 2 @ ©® ® ® ®
3 ® ° ® =)
0 B g 20 ® 8 ® 2
® ® ®
® @
Q
®
2 & ®
®
®
4 ® ®
[

6 I I I I I I I
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index

Figure 4. Numerical results of the SGD algorithm for Example 4.2.

We use the following form of W to solve Example 4.2:

AIMS Mathematics

o -2 0 O --- 0 O
-2 1 -3 0 0 O
0O -3 1 -4 0 O
wW=1. . . . :
0 0 0 O 1 -m
0O 0 0 O -m 1

pxn
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Sety =y =3, uo =2, Maxiter = 10°, v = 1.2200, o = 2.6915, p = 1.0001 and x = 0.711. For
the given positive integers m, n and s, the data are generated by

A=randn(m,n): b=A*x"+0.01*randn(m, 1).

We run numerical experiments with (m, n, p, 5)=(40,40,40,2). Set 1 = 1072 in (4.2), xo=ones(n, 1)
and & = 1073, From Figures 4 and 5, it can be seen that the output of x* is very close to the true
solution.

T T T
X true solution
O SGD algorithm solution

value
o
®

0 5 10 15 20 25 30 35 40
index

Figure 5. Numerical results of the SGD algorithm for Example 4.2.

5. Conclusions

We have intensively studied the composite sparse optimization problem consisting of the sum
of a nonsmooth convex function and the £, penalty term of a matrix times the coefficient vector.
Considering the original cardinality penalty problem and an exact continuous relaxation problem with
capped-{, penalty, we have proved several novel and interesting results: the consistency between global
minimizers of the relaxation problem and the original problem, and local minimizers of relaxation
problems are local minimizers of the original problem. We propose the SGD algorithm based on
the smoothing method and the smoothing gradient descent algorithm. Then SGD algorithm has been
investigated from both a theoretical and an algorithmic point of view. So we prove that if the sequence
generated by the algorithm has an accumulation point, then it is a lifted stationary point of relaxation
problem. This well explains why the algorithm is expected to enjoy an appealing performance from the
theoretical perspective, which is testified by the numerical experiments. Our initial numerical results
confirm the predicted underlying theoretical results.
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