AIMS Mathematics, 9(11): 31926-31946.
DOI: 10.3934/math.20241534
ATMS Mathematics Received: 02 August 2024

Revised: 17 October 2024

Accepted: 29 October 2024
https://www.aimspress.com/journal/Math Published: 11 November 2024

Research article

Advanced Hardy-type inequalities with negative parameters involving
monotone functions in delta calculus on time scales

Ahmed M. Ahmed', Ahmed I. Saied’>, Mohammed Zakarya’, Amirah Ayidh I Al-Thaqfan®,
Maha Ali* and Haytham M. Rezk'-*

! Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
2 Department of Mathematics, Faculty of Science, Benha University, Benha 13511, Egypt

3 Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha
61413, Saudi Arabia

4 Department of Mathematics, College of Arts and Sciences, King Khalid University, P.O. Box
64512, Abha 62529, Sarat Ubaidah, Saudi Arabia

* Correspondence: Email: haythamrezk @azhar.edu.eg.

Abstract: In this study, we introduced several novel Hardy-type inequalities with negative parameters
for monotone functions within the framework of delta calculus on time scales T. As an application,
when T = Ny, we derived discrete inequalities with negative parameters for monotone sequences,
offering fundamentally new results. When T = R, we established continuous analogues of inequalities
that have appeared in previous literature. Additionally, we presented inequalities for other time scales,
such as T = ¢ for ¢ > 1, which, to the best of the authors’ knowledge, represented largely novel
contributions.

Keywords: Hardy’s inequality; negative parameter; monotone functions; Holder’s inequality;
weighted inequalities; delta calculus; time scales
Mathematics Subject Classification: 26D 10, 26D15, 34N05, 42B25, 42C10, 47B38

1. Introduction

In [1], Hardy established a foundational result in the theory of inequalities with positive parameters,
demonstrating the discrete inequality:

oo s Y )
Z[% ZS(K)] < ()%1)7287(.9), (1.1)
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where y > 1, 8(s) > Ofor s > 1, and 0 < X 32, E(s) < co. Hardy [2, Theorem A] also derived the
corresponding integral inequality of (1.1):

0o 1 T Y Y Y 00
f (_ f U(g)d3) dr < (—) f U (v)dr, (1.2)
o \TJo y-1 0

where y > 1, and U(r) > 0 such that 0 < fooo U7(r)dr < oo. The constant (y/(y — 1))” is optimal in both
inequalities.

Since the emergence of these two inequalities (1.1) and (1.2), they have garnered significant
attention from scientists and researchers, with many of them working on improving and generalizing
them using various methods (see [3—5]). In parallel to advancements in positive parameter inequalities,
there has been a growing interest in Hardy-type inequalities with negative parameters. For example,
Bicheng [6] demonstrated thatif y < 0,0 € R, 0 # 1, U(x) > 0, and 0 < fooo ¢ (*O())” dr < oo, then

00 0o Y Y 0
f e ( f U(a)da) dr < (L) f 1 (V) dr; o> 1. (1.3)
0 T I- © 0

He also established that if o < 1, then

0 v Y Y 00
f e ( f U(s)ds) dr < (L) f ¢ (1U()) dr, (1.4)
0 0 0 — 1 0

where (y/ (1 —0))” and (y/ (0 — 1))” is optimal in both inequalities (1.3) and (1.4).
Further advancements are presented in [7], where the authors extended these results. They showed
thatif y <0, 0 > 1, and U(x), I(r) > 0 such that v/ J(r) is a nondecreasing function, then

00 00 Y Y 00
| [8(r>]‘ﬁ’( | U(a)da) drs(ﬁ) [ vy s (1.5)
0 v - 0

Additionally, if 0 < o < 1, and U(r), 3(x) > 0 such that r/J(x) is a nonincreasing function, then

00 v Y Y 00
f [S(r)]‘@( f U(a)ds) drs(i) f V@)Y [3@)] ™ dr. (1.6)
0 0 o—1 0

Moreover, if y < 0, 0 < 0, and U(x), J(r) > 0 such that v/ J(r) is a nondecreasing function, then

00 T Y Y 00
f [Sm]*’( f U(s)ds) drs(i) f @O [30)] dr. (1.7)
0 0 o—1 0

The transition from Hardy’s inequalities with positive parameters to those involving negative
parameters illustrates a rich field of study, revealing a deeper structure and broader applicability
of these mathematical tools. These developments highlight the ongoing evolution in the theory of
Hardy-type inequalities, encompassing both positive and negative parameter cases and their various
generalizations.

More recently, many scientists have used the famous theory known as time scale theory to study
various classical inequalities, especially the famous Hardy inequality.
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Among these scientists was P. Rehdk [8], who was able to obtain the time scale form of Hardy’s
inequality, making discrete inequality (1.1) and integral version (1.2) a special case of it. He proved
that if T is a time scale, o > 1, and Q(z) = jj &E(0)AG, for z € [d, oo)r, then

) QU'(Z) o L)Qfoo X

unless & = 0. If, in addition, u(z)/z — 0 as z — oo, then (Q%I)Q is sharp. Refer to Section 2 for the
notations used here and for the calculus applied in proving the main results of this paper.

In [9], the authors presented a time scale form of (1.5)—(1.7) by using nabla calculus, respectively,
as follows: Letb e T, e <0, " =¢/(e—1),0 > 1and U, I € Ciy ([b, o)y, R*) with ({ — b) /T ({) is

nondecreasing. If

% > %, such that p({) > b and £ is a positive constant, (1.9)
then . .
fb [BOI?[GD] VL < be (o) = b)Y [U] [3(D]* V¢, (1.10)

where G(0) = f;" U(3)V3 and
Q- (ﬁ)gkgs;*l, l-o0<e¢;
(=) ke 1-02=

Additionally, if b € T, e < 0,0 < o < 1, and U, 3 € Cj; ([b, )r,R") such that ({ —b) /T () is a
nonincreasing function. If (1.9) holds, then

fb SO MOV <D fb (0(0) = b [T [SQ] Ve, (L11)
where M({) = [ U(3)V3 and

. (Q%I)Zk%‘, (e-Diex1;
(5) k. @-Dle<1.

Moreover, if b € T, e < 0,0 < 0, and O,3 € Cjy([b,0)r,R") such that ((—b)/T () is a
nondecreasing function. If (1.9) holds, then

fb (SO MO V¢ < A f (0 b [ SO Ve, (1.12)

where M({) = f[f 0U(3)V3 and
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Recently, new results have emerged regarding the Hardy inequality through various types of
time scale calculus, such as the time scale delta integral (see [10-13]), which broadens the
applications of dynamic inequalities in studying the qualitative behavior of dynamic equations, as
referenced in [14-16].

In fact, the study of Hardy’s inequality with a negative parameter using the idea of time scale T
has not been exposed to many researchers. Therefore, in this paper, we will attempt to obtain
some new results in this area through time scale calculus. Specifically, we will prove a time scale
version of (1.5)—(1.7) and also obtain the discrete analogues of these inequalities.

The organization of the paper is as follows. In Section 2, we present some lemmas on time scales.
In Section 3, we state and prove our results.

2. Definitions and basic lemmas

In 2001, Martin and Allan [17, 18] introduced the concept of a time scale T, which is defined as a
nonempty closed subset of R. For any %, 0 € T, the forward jump operator is defined by o(x) := inf{s €
T : s > x} and the backward jump operator by p(0) := sup{s € T : s > p}. The graininess function u
for a time scale T is defined by u(7) := o(tr) — 7 > 0. A point £ € T is called:

¢ Right-dense if 0({) = ¢;

e Left-dense if p(¢) = ¢;

¢ Right-scattered if 0({) > ¢;

o Left-scattered if p({) < £.

If T has a left-scattered maximum 7, then T¥ = T — {n}; otherwise, T* = T.

In the following, for a function U : T — R, we denote U(o (7)) as U7(r). The notation [7,0] N T is
denoted as [, 0]7.

Definitions:

e Rd-continuous function [17]: A function U : T — R is rd-continuous if it is continuous at right-
dense points and has finite left-sided limits at left-dense points. The set of rd-continuous functions is
denoted by C,4(T, R).

e Delta derivative [17]: For U : T — R and 3 € T, the delta derivative U (3) exists if, for any
g > (0, there is a neighborhood W = (3 — 9, 3+ 6) N T of 3 for some ¢ > 0, such that

[07(3) = U(s) = UGNoG) — ) < eloG) — sl, Vs e U, s #0@).

e Antiderivative and delta integral [17]: A function G : T — R is a delta antiderivative of U if
G*(3) = U(®3), V3 € TX. The delta integral of U is given by

f U(R)A3 = G(1) - G(0), Yo,T€eT.
o
It is noted that every rd-continuous function U has an antiderivative. In particular, if 3y € T, then

3 A
(f U(T)AT) =0@G3), 3€T.
30

We now present the main lemmas on T that will be utilized to support our conclusions.
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Main lemmas:
e Chain rule [17, Theorem 1.90]: If J : R — R is continuous, J : T — R is A—differentiable, and
U : R — R is continuously differentiable, then

(Vo I)*G)=U (JW@) I*G), de306). Q2.1)

e Integration by Parts [19]: For o, 7 € T and ¢, ¢ € C,4([0, 7], R),
f P3¢ (3)A3 = [p(3)eG)], — f ()¢ (3)A3. (2.2)
© o

¢ Reversed Holder’s inequality [19]: For o, 7 € T and ¢, w € C,4([0, 7], R"),

f ¢(3)w(3)A32[ f ¢7<3)Aa]y[ f w”(s)Aa]v, (2.3)
o Y o

where y < 0,and 1/y +1/v = 1.
3. Main results

In this section, we present our key results. Prior to stating the upcoming theorem, we establish
a few preliminary assumptions: all integrals considered throughout the paper are assumed to exist.
Additionally, we assume the presence of a positive constant 8 > 1, such that

r—>b 1

—— >—, re(b, ) 3.1
—oop N TEbeor (3.1)
In the following theorem, we will present the time scale version of inequality (1.5).

Theorem 3.1. Consider b € T,y <0,v*  =vy/(y—1),0>1 and 0,3 € C,;([b, ), R") such that
(r — b) /3 (v) is nondecreasing. If (3.1) is satisfied, then

f ) [BOIP GO Ar<Q f i (= b [VE) [3®]* Ar, (3.2)
b b

where G(r) = fr * UR)A3 and

Proof. Start with
G7(r) = f VG)A; = f G- by F [(a—b)li?g U(s)] A3, (3.3)
o(r) o(r)

Applying reversed Holder’s inequality (2.3), we obtain

1

00 00 00

G-b)" T Aa)y ( G-b)

(1)

I+y—0 1+y—0

=77 |6-0F Ue)| a2 (

S UG Ag)y . (3.4)

o(r) o(r)
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Applying (2.1) on (3 — b)%l , we have

i (s—b)gw] —@-b, deloQ)l
Sincep > 1,y <0,andd >3, then (0o -1 -7v)/y <0, so

d-b"7 <G-

Substituting (3.6) into (3.5), we find
2|6-p% ] <G-bT.
Integrating (3.7) over 3 from o (v) to co, we observe

00 o-ley 0o @A ol
G-b)T A3z Y f [(a—b)v] A= @ -b)5 .
o(v) Q_l o(r) 1—Q

Since y* > 0, we obtain

1 1
( G- QVVAa) z(li) (0 () = b .
a(v) Y

Substituting (3.8) into (3.4), we get

00

*{‘,_‘

G=b)y 7 G-b) U<3>A3>(17Q) (o (1) - b)w(

o(r) o(v)

From (3.3) and (3.9), we have for y < O that

’y y_l o-1 o0 1+y—0
7 (c(@)-b)7 f G-b) 7
-0 o(r)

Multiplying (3.10) by [3(x)] ™ and then integrating over r from b to oo, we get

(67O < ( [OR)]" A

[ 1moreora
-1 00 1
< (IL) f (c@)=-b)7 [B)]™ ( G- b) 7 [OGR)] AS) Ar.
-0 b o(v)
Applying (2.2) on fbw (o (v) - b)gv;"1 [3()] ™ ( fo © G- b) v [U(a)] Aa) Ar, we conclude

fb () - b5 [8<r>]“-’(

= m(r)( f G-b) 7

ORI Aa)
b

G-b) 7 UG Aa) Ar

a(r)

(3—b) % [U(s)]yAs) .

+ f T (e— ) [UOT @A,
b

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

AIMS Mathematics Volume 9, Issue 11, 31926-31946.



31932

where u;(r) = fbr (@) - b)gv;"1 [3(3)]° A3. Using (3.1), we have

00

fb (o) -b)F [8(r)]‘@( ()(a—b)v [U(s)]VAa)Ar

9] Lyo v o1 _ ©
f C=b) 7 [V ( f (a(s)—b)v*‘@(" ) b) As)Ar
RIE)
— 7 ¥ -0
f (r b) “ O (f (@) -b)7 (S( )) )Ar- (3.12)
Since (3 — b) /3 (3) is nondecreasing and o > 1, we have for 3 < r that
T ~ gy;*l—g 3— b o
f(U(a) D) (—3( )) A3
< ( )f( ® - b)y_QA—( _b)gfr( ()—b)l%)_lA (3.13)
= \3w) J, 7" w) J, Y > |

Substituting (3.13) into (3.12), we observe that

IA

fb (o ()= b)F [S(r)]_g( ()(5—19) % [U(s)]yAa)
< [ (=) T U@ [S0] ( | (- Aa) Ar. (3.14)
b b

From (3.11) and (3.14), we get
f (B3] [G° ()] Ar
b
O] [I)] ( f (e -n)F Aa) Ar. (3.15)
b

7_1 0 1+
S(L) N@f (t - b)
-0 b

Applying (2.1) on (3 — b)%} , we observe

A o
T L (6-07) =@-n7", debool (3.16)

Now, we consider two cases: .
Casel: For1 —p <7y, we have =2 — 1 > 0. From (3.16), we have (d — b) 7l > >3- b)Tg_1 , and
T ((3—b) g ) >G-b)7 " (3.17)

Integrating (3.17) over 3 from b to r, we get

f(a—b)flAa<—f (3—b)v

AIMS Mathematics Volume 9, Issue 11, 31926-31946.
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Using (3.1), (3.15), and (3.18), we have

f (SO IG7O) Ar

b

L ! 1-o 0 I+y-0 ' -
s(ﬁ) N e f (r—b)WQ[U(r)]Y[S(r)]‘@( f (a—b)flAs)Ar
— b

<(1— )Ngylf (r =) [OO] [3(W]* Ar,

which matches (3.2) with @ = (y/ (1 — 0))’ N7 .
1-0
Case 2: For 1 — o > v, we have 1%’ — 1 < 0. From (3.16), we see that (d —b)7 ' >

G -b

I CRC R (3.19)
Integrating (3.19) over 3 from b to r, we have
' Loy Y ' 10\ 0% 1o
(C@H-h7 " A< (6-07) 4= -0 (3.20)
b 1-0Up -0

Substituting (3.20) into (3.15), we observe

f (SO G7C] Ar < (

) f (r=b) [O®] [3()] A,
b
which matches (3.2) with Q = (y/ (1 — p))” N¢. O

Remark 3.1. In Theorem 3.1, when T =R and b = 0, we have o (x) = t. Consequently, we see
that (3.1) holds with X = 1. As a result, (3.2) simplifies to (1.5), and for 3(x) =, we obtain (1.3).

Corollary 3.1. If T=Ny, b =0,0 > 1, y <0, and {s,},_, {t.},o are positive sequences such that
n/t, is nondecreasing, then

Z [£17° [ > sk)y <Q i w7 [s,) (017,
n=0

k=n+1
where
Sy, -
Q={2 (). 1-e<w
Y
2(%). 1-exy.
Here,
n-b _ om0
omn)—-b n+1 n+1

Since =1/ (n+1) > —=1/2, then (n —b) | (cc(n) — b) > 1/2, and (3.1) holds with & = 2.

AIMS Mathematics Volume 9, Issue 11, 31926-31946.
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Corollary 3.2. Let T = ¢ forq > 1,b € T,y < 0,v* = y/(y—1),0 > 1, and U, T be posituve
sequences on [b, o) such that (x — b) /3 (x) is nondecreasing. If
r—b 1
> N
qgqe—b N

t € (b, co)r,

then N
D B [G@] < er(r—W (DO [3©)]

1=b

where G(v) = Y2.(q — 1)30(3) and

In the following theorem, we will present the time scale version of inequality (1.6).

Theorem 3.2. Assume b € T,y <0,y =y/(y—-1),0<0<1,and 0,3 € C,;([b, ), R*) such
that (v — b) | 3(x) is nonincreasing. If (3.1) holds, then

f ) (SO QW Ar< T L i (=) [OO] [3(®)] * Ar, (3.21)

b

where Q(v) = [ U()A3 and

j_{ N7 (L), @-D/yz1
N (L), e-D/y<l

Proof. To prove this theorem, we consider two cases:
Case 1: For (0o — 1) /y > 1. Start with

(1) o (1)
@w= [ vom= [ [eo-57][co-0F vos (3.22)
b b

Applying (2.3) on (3.22), we get

fh " |06 -0F |6 -0 v as

o) s\ (OO 7
> ( f (@) -b) T As) ( f (@) - b [UET A ) .
b b

From this and the previous inequality, we have

Y

® e\ (D
Q7(v) 2( (c®@—=b) 7 AS) ( f (@ -b) 7 [UEP AS) : (3.23)
b b

AIMS Mathematics Volume 9, Issue 11, 31926-31946.
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Applying (2.1) on (3 — b)%l , we observe that

Y o1 A o=y-1
—[(3—17)7] —d-b0)TF, delno @) (3.24)
o—1

oyl

Since (0 — 1) /y > 1, then (d — b)¥ <(oc()—b) v ,and (3.24) becomes

Yy o1 A oyl
L6057 c@w-nT (3.25)
By integrating (3.25) over 3 from b to o (v) , we get
7 (®) o—y-1
f (cB)—b) 7 A3
b
o (1) o110 o1
> v [(3—b)v] A= (cw-n5. (3.26)
o—-1J, o-1
Substituting (3.26) into (3.23), since y* > 0, we observe
Y VL* o-1 ® l+y—0 %
Q7(x) > (g 1) (o () -b)7 ( (c(3)—b) 7 [OR)] Aa) :
- b
For y < 0, this yields
y r-1 o-1 o (r) L+y—o
[Q7(W)] < (ﬁ) (c(@)=b)"™ f (c3)—b) 7 [OR)] As. (3.27)
- b

Multiplying (3.27) by [3(x)] ™ and then integrating over r from b to oo, we find
f (3] [Q7W)] Ar
b

e o o) .
< (Q%) L (c(@®)-b)7 [IJ®)]™* (f[; (cG)=b) 7 [OR)] A3) Ar. (3.28)

Applying (2.2) on

0 o-1 a'(r) 1+y—0
f (@ -7 [3@]* ( f @G -b) 7 VRV Aa) A,
b b

we obtain

(r) 1+y—0
,y*

fb (@) -b)F [%)]‘9( RRCOR e [U(a)]VAa)Ar

[

1+y—0
,y*

= u3(v) ( f (03 -b) 7 VRV A3) [0 Ar,
b

_ f u(®) (0 (1) — b)

b b

where

us(r) = — f (03 —b)7 [IG)] ™ As.

AIMS Mathematics Volume 9, Issue 11, 31926-31946.
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Using (3.1), we have

00 ol o (1)
) (c@)—b)7 [S(r)]_g( fb G -b) 7 [U(s)]VAs)Ar

fb [ f (G -b)F [8(3)]‘%3] (@) —b) 7 [UO)] A

0 o-1 bg
[ f (oG - b)‘@(%) Aa](a(r) b [B)] Av

f [ f (c®) - b)_g(s()) As](cf(r) b) 7 [UY Av. (3.29)

Since (3 —b)/3(3) is nonincreasing and 0 < o < 1, we have for 3 > r that ((3—-5)/3@R))° <
((r = b) /3(x))?, and then (3.29) becomes

IA

00 ol o (1)
fb (c@)—b)7 [S(r)]_g( fb G -b) 7 [U(s)]’Aa)Ar

< x@fbmUm(cr(s)—b)?‘%s](aa) b) >

From (3.16), since (1 — o) /y <0, we have (d - b)%g_1 > (0 @B) - b)lig—‘ and

(r — b [0 [3(x)] ™ Ar. (3.30)

A L .
e 6-07] 2 ce-07" = e -nT,

thus,

0 o1 © 1-o0 A -0
f (@) -h)5 A < lif [6-0%] a3= Lo -nF. (331)
r —0 JUr 0 — 1

Substituting (3.31) into (3.30) and using (3.1), since (1 — o) /y* — 1 > 0, we observe

00 ol o (r)
f (c@)—b)7 [S(r)]_g( fb (03 -b) [U(a)]yAa)Ar

< N ( )f (o () =b) (o (v) - b)y - )Q+ O] [B@]° Ax
< N¢ (Q Z l)f (o (x) - b)T*_1 (xr - b)y+9+7 [O] [I(0)] ™ Ax
< N‘”( ) f (t = bY [U@)] [S@)] Ar. (3.32)

Substituting (3.32) into (3.28), we have
00 Y 00
f [3O]?[Q7(M)] Ar < KT ( 4 1) f (= D) [OO] [I(0)]° A,
b - b

which matches (3.21) with J = N5 (7/ (0c-1).

AIMS Mathematics Volume 9, Issue 11, 31926-31946.
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Case 2: For (0 — 1) /y < 1. We have

o (r) o () o—y-1 1+y—0
Q7(v) = fb U(3)A3 = fh G-b)y» [(3—19)77* U(3) | As. (3.33)

. o (1) o-y-1 I+y-0
Applying (23) on [7 3 — b)'> [(3—b) U(s)] A3, we find

fb%) 6-5F [6-0)F v6)| 23

) i\ O e ¥
> ( f G-b) As) ( f G-b) " [T A3) : (3.34)
b b
From (3.33) and (3.34), we have
7 (®) o—y-1 7% () l+y—o %
Q7(x) > (f G3-b) 7 Aa) (f G-b)" [OR)I Aa) : (3.35)
b b

o-y-l

Using (3.5), since 0 < (0 — 1) /y < 1, we have (d — b)$ <@3-b) 7

and

o—y-1
Y

Q%[(a—b)gvlr <G-hT,

and then

\%

(1) - y 0) o1 1A
f G-b)T Ay > L [(s—bw] A3
b o—1J,

= 2L c-n5. (3.36)
o—1

Substituting (3.36) into (3.35), since y* > 0, we conclude

1

’/i* o=l (®) lty—o 7
Q“(r>2(gf1) (a(r)—b)w*( f (3—b)7"[U(3)]7A3).
b

For y < 0, this yields

vl o1 @ l+y—o
[Q7(0)] < (ﬁ) (oc()-b)" G—=b)" [OR)] As.
- b

Multiplying the last inequality by [J(r)] ™ and then integrating over t from b to oo, we observe

f S Q) A
b

y-1 00 o1 () Y-
< (ﬁ) f (@) - b5 [S(r)]—@( G-b) FOGY A)AL (3.37)
- b )

AIMS Mathematics Volume 9, Issue 11, 31926-31946.
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Applying (2.2) on [~ (o (v) - b5 [T(®)] ™ ( |,

_ u4(r)( fb G-b)' [U(a)]ms)
b

where

o (v)

G-b) " [UG)] Aa) Ar, we obtain

00 - o)
f (@) -b)7 [S0)]® ( f G-b) [U(s)]ms)m
b b

(o)

ug(x) = — f (@3 —b)7 [IG)] ™ As.

With (3.1), (3 — b) /3(3) is nonincreasing, and o > 0, we have for 3 > r that

IA

IA

00 ol (1)
f (0@ -b)T [S©)] ( f G-b) [U(s)]ms) Ar
b b

f (c— by [U(r)]y[ f (G -7 [S(a)]‘QAs]Ar

e e —b
fba—bw [O@)]” U ["gi) ]( G) - b @Aa]
Ne fb <r—b)‘3“[0(r)]7[ f [35()] (0 3) - b)gf‘l“’As]Ar

N¢ f -0 F U (30 [ f TG - As] Ar.
b v

Since (1 — o) /v < 0, then by using (3.16), we have

therefore,

0 1-0 o0 1-0 A 1-0
f (a(a)—b)v‘lAsslif [(s—b)v] A= a—b).
r _Q r Q

1-o [(3 —b)5 ]A > (0 (3)=b) 7!

Substituting (3.39) into (3.38), we obtain

(1)
f (@ -5 [3@)] ( fb G-b) " [U(s)]yAg)

< NQ( )f (r = D) [O@)] [3(x)] ™ Ar.
o-1]Jp

Substituting (3.40) into (3.37), we get

00 Y 00
fb RO [Q”(r)]mrsx@(gy 1) fb (= D) [O@] [I(1)]° Ar,

which matches (3.21) with J = NK¢ (y/ (0 — 1))

AIMS Mathematics

- f i us(®) (t = b) " [T A,
b

(3.38)

(3.39)

(3.40)

O
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Remark 3.2. In Theorem 3.2, when T =R and b = 0, we have o (x) = t. Consequently, we see
that (3.1) holds with X = 1. As a result, (3.21) simplifies to (1.6), and for 3 (x) = v, we get (1.4).

Corollary 3.3. If T =Ny, b = 0 and {s,},_, {t.},, are positive sequences with the property that n/t,
is nonincreasing, then

o0 n Y 00
Dl [Z se| <D ] 617, (3.41)
n=0 k=0 n=0

where L )
g 25 (&), e-Diyz1
- y
2(L),  e-D/y<l
Here, the inequality (3.1) holds with 8 = 2.
Corollary 3.4. Let T = ¢ forg > 1,be T,y <0,y =y/(y—1),0 <0 < 1, and U, J be posituve

sequences on [b, ) such that (x — b) / 3(x) is nonincreasing. If
t—> 1
> N

qe—b N

r € (b, )

holds, then
D SO Q] < T D = b [T [S)] 7,
r=b

1=b

where Q(v) = ¥/ (¢ - 1)30G) and

5 N7 (L), @-D/y=1
Ne(ZL),  e-Diysl
In the following theorem, we will present the time scale version of inequality (1.7).

Theorem 3.3. Assume b € T,y <0,y =y/(y—=1),0<0,and 0,3 € C,;([b, ), R") such that
(v = b) /3(x) is nondecreasing. If (3.1) holds, then

f SO QWP Ar < M f (- by (B[] Ar, (3.42)
b b

where Q(v) = fbr O13)A3 and

©
L)Y RTE e-Diy=1.

Proof. We consider the following two cases to prove this theorem.
Case 1: For (0 — 1) /y < 1. Start with

o (v) o (r) o—y-1 1+y—o
Q7 () = f V()A; = f G-b)F [(3 _ ) uG)| A (3.43)
b b

AIMS Mathematics Volume 9, Issue 11, 31926-31946.
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. o (1) ozy-1 I+y—o
Applying 23) on [ 6= 0)F |- 57 U)| a5, we get

7@ o—y-1 I+y—0
f G- |6-07 U6)| a5
b
() e\ O - v
> ( f G- b~ As) ( f G- b)'F UG As) . (3.44)
b b
From (3.43) and (3.44), we have
) o \F [ D e ¥
Q”(r)Z( f G-b) 7 Aﬁ) ( f G-b) [U(s)]VAa) : (3.45)
b b

Since 0 < (0 — 1) /¥ < 1, and by using (3.5), we find
o-1 A o—y-1
|6-05] <6-nF",
o—1

thus,

\%

(1) omy1 ,y o (1) o1 A
f G-0Ta = L [ o= s
b Q—l b

= 2 e -bn5F. (3.46)
o—1

Substituting (3.46) into (3.45), we conclude

y g ot [ (OO Ly y
1) (o (x)=b)r ( fb G-b) 7 [U(s)]yAa) .

Q7 (r) > (

For y < 0, we have

vl o-1 @ l+y—o
[Q7()] < (ﬁ) (oc()-b)" G—b)" [OR)] As.
- b

Multiplying the last inequality by [J(r)] ™ and then integrating over t from b to oo, we observe
f [B®] Q7] Ar
b
y -1 00 ol B (x) Lty-o
< (g—1) f (c@)=b)7 [3]™ ( G-b) " [0 Aa) Ar. (3.47)
- b b

Applying (2.2) on

(r) Liyo
&

f (o ()= b)7 [T ( G-b) 7 [UG)] As) A,
b

b
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we observe that

where

00 ol o (r)
fb (o (x)=b)"™ [S(r)]_g( fb G-b) 7 [UG)] Aa)Ar

us(r)( f G-b) 7" [U(a)]ma) -
b b

f = 5 us) [U@] A,
b

us(®) = — f (0@ - 05 [9G)As.

Since o (3) > 3and p < 0, we get

IA

(¥)

f () - b5 [S(r>]‘é’( G-b)"F UG As)Ar
b

b

[« wor| [ co-n7 [%)J‘@Aa]m
b | J

RN (e -b e
fb(r—b)y [U(”)]y,fr[ 50 ]( @ -h7 @As]

fbm(r—b)w[v(rm f [33_(')9] (@) -b)F @As]m

Since (3 — b) /3(3) is nondecreasing and o < 0, (3.48) becomes

IA

00 -l o (1)
L (c@-b)7 [3O]™ ( L G-b) 7 [V As) Ar

fh (r—b)li’*'“@m(r)]y[ﬁa)]‘@[ f (0(3)_;,)%:‘9A3]Ar
U] [S0)] [ f G -b)7 ! As] A,

foo(r_b)H
b

Since o < 0 and y < 0, by using (3.16), we get

and then

ﬁ |6- b)'f]A > (o) -b) 7!

(r=b)7 .

” Loy Y ~ 1= |4 Y -0
[ co-nF a2 [ om0 m=

Substituting (3.50) into (3.49), we obtain

AIMS Mathematics

0o ol a(v)
fb (c@-b)7 [BM]? ( fb G-b) 7 [UG)] As)

Ll f " (= by [0 [S)]° A,
- b
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Substituting (3.51) into (3.47), we observe

f [IM]?[Q7()] Ar < ( ) f (c=b) [O®] [3()]™
b

which is (3.42) with M = (y/ (0o — 1))”.
Case 2: For (0o — 1) /y > 1. We have

(v) o (1)
Q‘T(f)=[ U(S)ASZL (@ -b)7 [(0'(3) b) 7 UG) | A (3.52)

Applying (2.3), we get

o (1)
fb (oG - b)F [(cr(a) by U(a)]

o) s\ (OO v
> ( f (cr(a)—b)“vAs) ( f (o) - [UET A ) (3.53)
b b

Substituting (3.53) into (3.52), we obtain

(v) oyl }% o (1)
(cB)-b) 7 As) ( fb (@@ -b) 7 [U(a)]yAs) : (3.54)

Q%(x) > (

b

Since (o — 1) /y > 1, then by using (3.5), we have

o-1 A o=y-1
L6-07| <@ -nT. (3.55)

By integrating (3.55) over 3 from b to o (v) , we get

o (v) - y o (v) o1 1A
f @ -bT A > L [(3—b)w] A3
b 0 - 1 b

= 2 cw-n5. (3.56)
o—1

Vv

Substituting (3.56) into (3.54), since y* > 0, we observe
L (¥) J
Y o-1

Q1) > (ﬁ) (o (1) - b)w*( (@@ -b) 7 [UEV Aa) .

b

For y < 0, this yields

y-1 ot [T
[Q”(r)]ys(é%l) (c(-b)7 ﬁ (@@ -b) 7 [UET A3 (3.57)

Multiplying (3.57) with [3(x)] ™ and then integrating over t from b to oo, we see

AIMS Mathematics Volume 9, Issue 11, 31926-31946.
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f BT @ Ar
b

y v-1 o (1)
< (—) f (0 ()= b)7 [S(I)]_Q(f (c@® - b) %
o — 1 b b

o (1)

~ [0G)) As)

Applying (2.2 on [~ (@ ()= 0)F [SOI (7 0 - 5 F [0 45) Ar, we get
(O]

f () - b5 [8(r>]‘9( () —b)
b

b

UG As)

= u6<r)( fb (oG -b) [U(a)]ma)
b

where

us(r) = — f G -b)F [3(3)]7° A3

Since 0 (3) > 3, and o < 0, we find

00 o1 (1)
[ wo-n [%)]‘@( [ o= U(a)ma)m
b b

f (@) -b) "

v [U(r)]y[ f (G -5 [5(3)]_"A3]Ar

b@
f(cf(3) b)_g(s())Aa]Ar

Since (3 — b) /3(3) is nondecreasing, o < 0 and 3 > t, (3.59) becomes

00 ol o (1)
fb (c@=b)7 [3W]™ (fb TG -b) 7

f (@) —b)
b

IA

f (0@ -b) 7 [T

= [OG) As) Ar

IA

Since o < 0 and y < 0, then by using (3.16), we have

L le-n 12 co-n7,

and then

® ];0_1 y 0 1-o0 A
(c@®-b)7" A3 < o

A
—
~~

(=]

|
S
~—~
<|
[

e

(=8

- f,, (0 (@) =b) 7 [OE)] ugAr,

7 (= b [UO)] [I(1)]® [ f (G -b)F As] Ar

f (@) =b) 7 (= bR [V RIGIN [f @ -7 Aa] Ar
b T

(3.58)

(3.59)

(3.60)

(3.61)

AIMS Mathematics Volume 9, Issue 11, 31926-31946.



31944

Substituting (3.61) into (3.60) and using (3.1) (note that 97_1 — 0 > 0), we observe that

00 -l 7 (v)
fb (c@-=b)7 [3W]™ (fz: (T () =) 7 VG A )

IA

IA

2 [ @@-nF - o s

< L f (0 () = BT = b (U [S0] At

Ll f () =) F @ = b U] [90)] At
- b

< Lonie f (= b [T [S0)] A (3.62)
Substituting (3.62) into (3.58), we obtain
fb S QWP Ar < (Q Y 1)y N fb (- b (GO [S®] ™ Ar
which is (3.42) with M = (y/ (0 — 1))’ 85 0

Remark 3.3. In Theorem 3.3, if T =R, and b = 0, then (3.1) holds with 8 = 1, and (3.42) reduces

to (1.7). In addition, for 3 (v) = x, we get (1.4).

Corollary 3.5. If T =Ny, b = 0,0,y <0, and {s,}, {t},— are positive sequences with the property
n/t, bing nondecreasing, then (3.1) holds with X = 2. Consequently, the following inequality holds:

Dl [Z skr <M i w5, 16172,

n=0
where »
(). @-biy<t

o-1

wef
252(L) . @-D/y=1.

Corollary 3.6. Let T =g forg> 1,b€T,v,y* =vy/(y—1),0 <0, and U, 3 be positive sequences

on [b, o) such that (x — b) / 3(v) is nondecreasing. If

r—b 1
>_’ b’
qe—b N ve (b, 0)

holds, then

o0

=b
where Q(v) = 3% (¢ - )30G) and

D SO [Q@) < MY x @ = bY [UO) [S()]
r=b

AIMS Mathematics Volume 9, Issue 11, 31926-31946.
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4. Conclusions

This work extends Hardy’s foundational inequalities by exploring their generalizations with
negative parameters within the framework of time scale theory. We have derived new results
by providing time scale versions of previously established inequalities, along with their discrete
analogues. These contributions offer a more comprehensive perspective on Hardy-type inequalities,
demonstrating their flexibility and potential for further research. Our findings underscore the
importance of integrating time scale calculus into classical inequality theory, unveiling promising
directions for future investigations.

Looking ahead, we plan to expand on these results by applying alpha-conformable fractional
derivatives on time scales, facilitating a deeper exploration of fractional calculus in this setting.
Additionally, we aim to broaden our findings by examining their application within the framework
of diamond-alpha calculus, which we believe will offer fresh insights into this developing field.
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