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Abstract: Hesitant linguistic preference relations (HLPRs) are useful tools for decision makers 
(DMs) to express their qualitative judgements. However, the traditional HLPRs have one prominent 
drawback, which is to sort the linguistic values in a hesitant linguistic set. This will distort the DMs’ 
initial judgements. In the present paper, a revised definition of HLPR, called general HLPR 
(GHLPR), was proposed. A characterization was explored for LPRs. Then, the characterization was 
extended to GHLPRs. Based on the characterization, the estimation of unknown entries in 
incomplete GHLPRs were carried out by two algorithms. The group decision-making problems with 
incomplete GHLPRs were settled by another algorithm. Finally, a case study was illustrated, and 
comparisons showed that our methods were more reasonable than the existent methods. 
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1. Introduction  

Pairwise comparisons are useful tools to convey the decision makers’ (DMs) judgements in 
group decision-making (GDM). The most frequently used preference relations (PRs) are 
multiplicative PR [1], fuzzy PR [2–6], and linguistic PR (LPR) [7]. 

In the above traditional PRs, each entry only has one value, and this fails to express DMs’ 
hesitant information when he uses a few values to articulate his preferences. In order to 
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accommodate these cases, the hesitant fuzzy set (HFS) emerges ([8]). It also has many extensions, 
such as probabilistic picture hesitant fuzzy set [9], general hesitant intuitionistic fuzzy N-soft set [10], 
weighted hesitant fuzzy sets [11] and hesitant multi-fuzzy soft set [12]. After this, the hesitant 
linguistic term set (HLTS) is extended in [13] to deal with the linguistic hesitant. Some hesitant PRs 
are proposed, such as hesitant fuzzy PR [14,15] and hesitant multiplicative PR [14,16]. Based on the 
LPR and HLTS, the hesitant linguistic preference relations (HLPRs) is naturally extended ([17]). 

At present, HLPRs have been widely investigated [18–21]. As different HLTSs have different 
numbers of values, one nature way is to make all the HLTSs with the same length. Therefore, some 
normalization methods are proposed, such as α-normalization, β-normalization [17], least common 
multiple expansion (LCME) [22], additive consistency (AC) based normalization for hesitant fuzzy 
preference relations [23], etc. Consistency and consensus are two important aspects of HLPRs in 
GDM. Zhu and Xu [17] first developed the HLPRs and studied the AC of HLPRs based on 
β-normalization. After this, several consistency problems were investigated for HLPRs from different 
points of view, such as multiplicative consistency (MC) [18], interval consistency index [24], 
consistency based on personalized individual semantics [25], worst consistency index [20], etc. For 
the consensus of HLPRs, generally, the consistency is also considered at the same time and diverse 
models are proposed, such as the expectation model [19], local adjustment strategy [26], 
optimization model [27], etc. 

However, the DMs may lack necessary knowledge for a specific problem, limited expertise, be 
unwilling or unsure to give some of their pairwise preference values, or it is more convenient to omit 
some direct key comparisons. In this situation, missing information is emerged [28–33], i.e., the DM 
may develop the incomplete HLPRs. Several models have been developed to deal with the 
incomplete HLPRs, such as integer programming model [34], optimization models [35–37] and 
mathematical programming [38]. However, some drawbacks of the existent studies on incomplete 
HLPRs are: 

(1) All the existing incomplete HLPRs are the extension of Zhu and Xu [17]’s HLPRs, in which 
the known values are sorted. As we can see in our example (see Example 1), the 
rearrangement of the values will misinterpret the DMs’ judgment and also contradict with 
the consistency property of HLPRs. Thus, the definition of HLPRs is not reasonable. 

(2) To estimate the unknown entries, the parameter of the β-normalization is randomly selected, 
which also will misinterpret the DMs’ initial preferences. 

All the existing work is very important for our study. However, as we have pointed out, there 
are some limitations for the existing work, such as the definition of the HLPR and the normalization 
process. The main work of the current paper is: 

(1) A revised HLPR, called general HLPR (GHLPR), is proposed, in which the elements do not 
need to be sorted. As we can see, this will keep the DM’s initial judgment. Furthermore, 
normalized GHLPR (NGHLPR) and incomplete NGHLPR are also similarly defined. 

(2) A characterization is explored for LPRs, and the characterization is also extended to 
NGHLPRs. 

(3) The incomplete GHLPR is studied and two algorithm procedures are proposed to estimate 
the unknown entries. The obtained NGHLPR will be more consistent than the existing ones. 

The reminders are structured as follows. In Section 2, we first study the characterization of 
LPRs. Then, we illustrate an example to show the irrationality of the existing definition of HLPRs. 
We redefine the concept of HLPR, which is called GHLPR. In Section 3, we develop two algorithms 
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to amend the incomplete NGHLPRs. A GDM with incomplete GHLPRs is developed. In Section 4, a 
case study is illustrated showing how to execute the algorithms. Section 5 provides the detailed 
comparisons with the previous studies to exhibit the performances of the current approach. Section 6 
concludes the paper. 

2. Preliminaries 

2.1. LPRs 

For sake of simplicity, let N = {1, 2, ∙∙∙, n}.  
Let S = {s0, s1, ∙∙∙, sg} be a linguistic term set (LTS), where si represents a possible value for a 

linguistic variable, and g + 1 is the granularity in the LTS [39]. A typical LTS has 9 LTs, i.e., S = {s0, s1, 
∙∙∙, s8}, in which s0 denotes extremely poor, s1 denotes very poor, s2 denotes poor, s3 denotes slightly 
poor and the median s4 denotes fair. Inversely, s5 to s8 denotes the good corresponding to s4 to s0. 

A continuous LTS Sത ={sπ|s0 ≤ sπ ≤ sg, π [0, g]} is an extension of the distinct LTS S in Xu [40], 
and the following holds: 

(1) s s s     ; 

(2) s s s s      ; 

(3) s s   ; 

(4) 1 2 1 2 1 2( ) ; , , 0s s s            ; 

(5) ( )s s s s        . 

Here, sπ, sρ S . 

If s = sπ, we define the lower index of s as: f(sπ) = π. On the contrary, there exists the inverse 
function of f, such that: f−1(π) = sπ. 
Definition 1. [7] An LPR is depicted by a matrix L = (lij)n×n, satisfying  

ij ji gl l s  , i, j N          (1) 

Definition 2. [41] An LPR L=(lij)n×n is AC if 

                ( ) ( ) ( ) / 2ij ik kjf l f l f l g   , i, j, k N  (2) 

Theorem 1. [41] Let L=(lij)n×n be an LPR, where ( )ijf l   1
1

( ) ( ) / 2
n

ik kjn k
f l f l g


  , then L is an 

AC LPR. 

2.2. HLTS 

HFS was initially proposed by Torra [8], which allows DM to give his preferences on 
alternatives in a set of fuzzy values. Motivated by this idea, HLTS is an extension of HFS in [13]. Let 
A = {a1, a2, ∙∙∙, an} be a set of alternatives. 
Definition 3. [13] An HLTS HS is a set of consecutive ordered LTs in S. 

An HFLS can be simply specified as:  
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{ , ( ) | }S Sc a c a a A     

where cS(a) is a set of LTs in S, denoting the possible membership degrees of the element a  A to 
the set c. For simplicity, cS is termed a hesitant linguistic element (HLE).  
Remark 1. In [13], the LTs in an HLTS should be consecutive and ordered, and in this situation, the 
HLTS is given by one DM. However, Wang [42] deemed that HLTS may be the union of several LTs 
from different DMs, and in this situation, the HLTS may not be consecutive and called the extended 
HLTSs. In this paper, we still use HLTSs to denote the hesitant linguistic information provided by the 
DMs. 
Definition 4. [43] For an HLE c, the score function of c is defined as 

 #( ) s c

cc 


     (3) 

where #c is the cardinality of the LTs in c.  
Comparison of two HLEs c1 and c2,  
1) c1 > c2 if ζ(c1) > ζ(c2);  
2) c1 = c2 if ζ(c1) = ζ(c2). 

Definition 5. [13] For an HLE c,  
(1) the upper bound c+: c+ = max(si); 
(2) the lower bound c−: c− = min(si); 
β-normalization is proposed to add some values in shorter HLEs in [17]. 

Definition 6. [17] For an HLE, c = {cσ(q)|q =1, 2, ∙∙∙, #c}, cത =ξc+ + (1 − ξ)c− (0 ≤ ξ ≤ 1) is an added LT. 

2.3. HLPRs  

The concept of HLPR is introduced in Zhu and Xu [17], which is described as:  
Definition 7. [17] Matrix C = (cij)n×n is an HLPR if 

    

112

221

1

(# )(# )(1) (1)
/2 12 12 1 1

(# )#(1) (1)
21 21 /2 2 2

/2
(# )(1)

1 1 /2

{ } { , , } { , , }

{ , , } { } { , , }

{ }

{ , , } { }

n

n

n

cc
g n n

cc
g n n

g
c

n n g

s c c c c

c c s c c
C

s

c c s

       
 

         
       

  
 (4) 

where cij = {cij
σ(q)| q =1, 2, ∙∙∙, #cij} (#cij is the cardinality of LTs in cij) is an HLE, and 

            

( ) ( )

2

( ) ( 1) ( 1) ( )

,

{ },

# # ,

, , , ,

q q
ij ji g

ii g

ij ji

q q q q
ij ij ji ji

c c s

c s

c c

c c c c i j i j N

 

    

  



 
     

 (5) 

As the numbers in different entries cij are not identical, Zhu and Xu [17] used β-normalization to 
define a normalized HLPR (NHLPR). 
Definition 8. [17] Matrix Cഥ = (cതij)n×n is an NHLPR if 
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(1) # (1) (# )
/2 12 12 1 1

(1) (# ) (1) (# )
21 21 /2 2 2

/2
(1) (# )
1 1 /2

{ } { , , } { , , }

{ , , } { } { , , }

{ }

{ , , } { }

cN cN
g n n

cN cN
g n n

g
cN

n n g

s c c c c

c c s c c
C

s

c c s

        
 

         
        

  
 (6) 

and 

 
2

( ) ( 1) ( 1) ( )

# max{# | , , }

,

{ },

, , , , .

ij

q q
ij ji g

ii g

q q q q
ij ij ji ji

cN c i j N i j

c c s

c s

c c c c i j i j N    

  


 
 
     

 (7) 

with some of the added values ( )q
ijc  with ξ (0 ≤ ξ ≤ 1). 

Definition 9. [17] Let C=(cij)n×n be an HLPR, and its NHLPR Cഥ = (cതij)n×n with ξ, if  

 ( ) ( ) ( )
2

q q q
ij g ik kjc s c c     , , ,i k j N .    (8) 

Then, C=(cij)n×n is an AC HLPR with ξ. 
However, in some time, the lower index of obtained entries in an HLPR may be out of the 

interval [0, g], but in the interval [−u, g + u], where u > 0. In such a case, we can utilize the next 
transformation function: 

y: [− u, g + u] → [0, g]  

( )
2

x u
y x g

g u





.            (9) 

3. GHLPRs and incomplete GHLPRs 

3.1. GHLPRs 

In Definition 8, the values in each HLE are sorted. We show that this is problematic using the 
below example. 
Example 1. Assume that two DMs E = {e1, e2} participate to give their preferences on three 
alternatives in the LTS S = {s0, s1, ∙∙∙, s8}. Table 1 displays these judgments. 

Table 1 shows that expert e1 reckons that the alternative a1 is very poor comparing to alternative 
a2, and gives s1. However, the second expert e2 reckons that the two alternatives are indifference, 
gives s4, and so on. Thus, the hesitant preferences of these two DMs are {s1, s4}, which constitutes an 
HLE. All these HLEs can be structured into the following HLPR C: 

4 1 4 2 5 2 3

7 4 4 5 5 2 6

6 3 3 3 4 1 5

6 5 6 2 7 3 4

{ } { , } { , } { , }

{ , } { } { , } { , }

{ , } { , } { } { , }

{ , } { , } { , } { }

s s s s s s s

s s s s s s s
C

s s s s s s s

s s s s s s s

 
 
 
 
 
 
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Table 1. Experts’ judgments. 

Pairs of alternatives 
Comparisons 

Expert 1 Expert 2 

a1 versus 
a2 s1 s4 

a3 s2 s5 

a4 s3 s2 

a2 versus 
a1 s7 s4 
a3 s5 s5 
a4 s6 s2 

a3 versus 
a1 s6 s3 

a2 s3 s3 
a4 s5 s1 

a4 versus 
a1 s5 s6 

a2 s2 s6 
a3 s3 s7 

To verify whether the HLPR C is AC, we have the following two LPRs: 

4 1 2 2

7 4 5 2(1)

6 3 4 1

6 6 7 4

s s s s

s s s s
C

s s s s

s s s s



 
 
 
 
 
 

, 

4 4 5 3

4 4 5 6(2)

3 3 4 5

5 2 3 4

s s s s

s s s s
C

s s s s

s s s s



 
 
 
 
 
 

. 

As per Definition 9, it is not difficult to examine that Cഥ
σ(1)

 is inconsistent. According to Eq (8), 
f(cത12

σ(1)) + f(cത24
σ(1)) − g/2 = 1 + 2 – 4 = –1 ≠ f(cത14

σ(1)) = 2. Similarly, we can verify f(cത12
σ(2)) + f(cത24

σ(2)) − g/2 = 

4 + 6 – 4 = 6 ≠ f(cത14
σ(2)) = 3. Therefore, C is not AC. 

However, according to the preferences e1 and e2 given in Table 1, the two LPRs A1 and A2 of the 
two experts are: 

4 1 2 3

7 4 5 6
1

6 3 4 5

5 2 3 4

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
 
 

, 

4 4 5 2

4 4 5 2
2

3 3 4 1

6 6 7 4

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
 
 

.

 

As per Eq (2), both A1 and A2 are AC. Because lij ⊕ s4 = lik ⊕ lkj  holds for L1 and L2, if we 
combine L1 and L2 into an HLPR C, the consistency is destroyed as per Definition 9. 
Remark 2. From the above Example 1, we conclude that the rearrangement of the values in an HLE 
distorts the DMs’ initial preferences. What’s more, the consistency may be inversely. To remedy the 
problems, in the following, we introduce the following definitions called GHLPR, and NGHLPR, 
respectively. 
Definition 10. Matrix C = (cij)n×n is a GHLPR if 
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112

221

1 2

##1 1
/2 12 12 1 1

##1 1
21 21 /2 2 2

/2
# #1 1

1 1 2 2 /2

{ } { , , } { , , }

{ , , } { } { , , }

{ }

{ , , } { , , } { }

n

n

n n

cc
g n n

cc
g n n

g
c c

n n n n g

s c c c c

c c s c c
C

s

c c c c s

      
 

         
        

  
     (10) 

where cij = {cij
q | q=1, 2, ∙∙∙, #cij}(#cij is the number of LTs in cij) is an HLE, and for all i, j N 

2

,

{ },

# # .

q q
ij ji g

ii g

ij ji

c c s

c s

c c

  



 

           (11) 

Definition 11. Matrix Cഥ = (cതij)n×n is an NGHLPR if 

1 # 1 #
/2 12 12 1 1

1 # 1 #
21 21 /2 2 2

/2
1 # 1 #
1 1 2 2 /2

{ } { , , } { , , }

{ , , } { } { , , }

{ }

{ , , } { , , } { }

cN cN
g n n

cN cN
g n n

g
cN cN

n n n n g

s c c c c

c c s c c
C

s

c c c c s

       
 

        
       

  
    (12) 

and 

2

# max{# | , , }

,

{ }.

ij

q q
ij ji g

ii g

cN c i j N i j

c c s

c s

  


 
 

       (13) 

with some added values cതij
q  with ξ. 

Remark 3. In Eq (12), some of the cതij
q are the added values. Here, the added value cതij

q  may not be 

between the upper and lower bounds of cij, i.e., ξ may be not in the interval [0, 1], which is different 
from Definition 8. Furthermore, the added values are always appended after the original values.  
Definition 12. Given an GHLPR C = (cij)n×n and its NGHLPR Cഥ = (cതij)n×n with ξ, if  

    ( ) ( ) ( ) / 2q q q
ij ik kjf c f c f c g   , , ,i j k N     (14) 

then C = (cij)n×n is an AC GHLPR with ξ. 
Example 2. For Example 1, we can obtain that GHLPR is: 

4 1 4 2 5 3 2

7 4 4 5 5 6 2

6 3 3 3 4 5 1

5 6 2 6 3 7 4

{ } { , } { , } { , }

{ , } { } { , } { , }

{ , } { , } { } { , }

{ , } { , } { , } { }

s s s s s s s

s s s s s s s
C

s s s s s s s

s s s s s s s

 
 
 
 
 
 

.

 

As per Eq (14), it is easy to verify that C is AC, which shows that the DMs’ original information 
is consistent, and conforms to the reality. 

Herrera-Viedma, Herrera, and Chiclana et al. [44] explored the characterization of fuzzy PR, 
and Xu, Li, and Wang [45] extended the characterization to a more general case. In the following, we 
study the characterization of LPRs.  
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Proposition 1. An LPR L = (lij)n×n is AC and the following equations holds: 

(1) 
3

2ik kj ji gl l l s   , i k j   . 

(2) ( 1) ( 1)( 2) ( 1)

1

2j j j j k k kj g

k j
l l l a s   

 
    , j k  . 

(3) 
1 1 2 1

1

2t t tjk k k k k k j g

t
l l l l s




    , 1 2 tj k k k      . 

Based on Proposition 1, we have the following results: 
Proposition 2. An NGHLPR C = (cij)n×n is AC, the following equations are identical: 

(1) 
3

2
q q q
ji ik kj gc c c s   , i k j   ;                 (15) 

(2) ( 1) ( 1)( 2) ( 1)

1

2
q q q l
j j j j k k kj g

k j
c c c c s   

 
    , j k  ;         (16) 

(3) 
1 1 2 1

1

2t t t

q q q q
jk k k k k k j g

t
c c c c s




    , 1 2 tj k k k      .        (17) 

Proof. (15) (17). When t = 1, Eq (17) becomes l l
ij ji gc c s  . Next, we assume t = n is true, i.e.,  

1 1 2 1

1
( ) ( ) ( ) ( )

2n n n

q q q q
jk k k k k k j

n
f c f c f c f c g




     . 

Then, when t = n + 1, we have: 

1 1 2 1 1 1
( ) ( ) ( ) ( ) ( )

n n n n n

q q q q q
jk k k k k k k k jf c f c f c f c f c

  
     

 
1 1 2 1 1 1

( ) ( ) ( ) ( ) ( )
n n n n n

q q q q q
jk k k k k k k k jf c f c f c f c f c

  
       

1 1

1
( ) ( ) ( )

2 n n n n

q q q
k j k k k j

n
g f c f c f c

 


     

 
1 1

1
( ) ( ) ( )

2 n n n n

q q q
jk k k k j

n
g g f c f c f c

 


      

1 1

1
( ) ( ) ( )

2 n n n n

q q q
jk k k k j

n
g f c f c f c

 


     

1 3

2 2

n
g g


   

( 1) 1

2

n
g

 
 . 

So, the result is established. 
(17) (15) 
As per Eq (17), one has: 

1 1 2 1

1
( ) ( ) ( ) ( )

2t

q q q q
jk k k k i ij

t
f c f c f c f c g




    

 

1 1 2 1

1
( ) ( ) ( ) ( )

2t

q q q q
ik k k k k ki

t
f c f c f c f c g

   


    
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1 1 2 1

1
( ) ( ) ( ) ( )

2t

q q q q
kk k k k i ik

t
f c f c f c f c g

   


     .

 

Adding the above three formulas, the left side of Eq (17) is: 

1 1 2 1 1 1 2

1 1 1 2 1

1 1 2 1 1 1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t

t t

t

q q q q q q
jk k k k i ij ik k k

q q q q q q
k k ki jk k k k i ij

q q q q q
jk k k k i ik k k

f c f c f c f c f c f c

f c f c f c f c f c f c

f c f c f c f c f c

  

     

  

       

      

       






1 1 1 2 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

3
( ) ( ) ( )

2

t t

q q q q q q q
k k jk k k k j ij ki jk

q q q
ij ki jk

f c f c f c f c f c f c f c

t
g f c f c f c

     



       

   



.
 

The right side of Eq (17) is: 
3 3

2

t
g


. 

Thus, 

3 3 3
( ) ( ) ( )

2 2
q q q

ij ki jk

t t
g f c f c f c g


   

 

i.e., 

3
( ) ( ) ( )

2
q q q

ij ki jkf c f c f c g  
 

      3
( ) ( ) ( )

2
q q q
ji ik kjg f c g f c g f c g     

 

i.e., 

3
( ) ( ) ( )

2
q q q
ji ik kjf c f c f c g   .

 

The results are proved. 
Theorem 2. Let C = (cij)n×n be GHLPR, and its associated NGHLPR is Cഥ = (cതij)n×n with ξ. Let 

  1

1

1
( ) ( ) / 2

n
q q q
ij ik kj

k

bc f f c f c g
n





    
 
 .    (18) 

Then, bC = (bcij)n×n is called AC GHLPR with ξ. 
Proposition 3. Let Cഥ1, Cഥ2, ∙∙∙, Cഥm, be m NGHLPRs, then their weighted average 

 1 1 2 2 m mC C C C     , [0,1]i  , 
1

1
m

ii



    (19) 

is also an NGHLPR, which satisfies q q
ij ji gc c s  , , 1, 2, ,i j n   . 

Proof. Since Cഥ1, Cഥ2, ∙∙∙, Cഥm are NGHLPRs, it follows that 

q q
ij ji gc c s  . 

Then, by Eq (19), we have 
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1 ,1 2 ,2 ,
q q q q

ij ij ij m ij mc c c c     , 

1 ,1 2 ,2 ,
q q q q
ji ji ji m ji mc c c c     ,

 

   1 ,1 2 ,2 , 1 ,1 2 ,2 ,

1 ,1 ,1 2 ,2 ,2 , ,

1 2

1

( ) ( ) ( )

q q q q q q q q
ij ji ij ij m ij m ji ji m ji m

q q q q q q
ij ji ij ji m ij m ji m

g g m g

m

i g
i

g

c c c c c c c c

c c c c c c

s s s

s

s

     

  

  




      

     

  

 



.
 

The proof is thus completed. 

3.2. Incomplete GHLPRs 

In this part, we introduce the incomplete GHLPRs. 
Tang, Liao, and Li et al. [46] extended the HLPRs into incomplete environment and defined the 

incomplete HLPRs. It also needs the known values in an HFLE to be in ascending or descending order. 
They further developed some produces to estimate the missing hesitant LTs. For the same reason 
presented, there exist some problems for the estimated complete HLPRs. This also can be verified from 
their Example 4, the estimated value cത45

'  = {s−5, s−5, s−6, s−7} which contradicts with their definition for 

HLPRs and requires cij
σ(q) < cij

σ(q + 1) (i < j). Similarly, we define incomplete GHLPRs. 

Definition 13. An incomplete GHLPR is matrix C = (cij)n×n if some of the entries are not provided, 
and the given entries satisfy Eq (11).  

Generally, the incomplete GHLPR can be expressed in the form of matrix as: 

112

221

1 2

##1 1
/2 12 12 1 1

##1 1
21 21 /2 2 2

# #1 1
1 1 2 2 /2

{ } { , , } { , , }

{ , , } { } { , , }

{ , , } { , , } { }

n

n

n n

cc
g n n

cc
g n n

c c
n n n n g

s c c c c

c c s c c

C x

x

c c c c s

        
 

         
 
 
 
          

   
   

. (20) 

Definition 14. An incomplete NGHLPR is Cഥ = (cതij)n×n if some of the entries are not provided, and 

the given entries satisfy Eq (13) where some of the added values are q
ijc  with ξ. 

Similarly, the incomplete NGHLPR can be expressed in the form of matrix as: 

1 # 1 #
/2 12 12 1 1

1 # 1 #
21 21 /2 2 2

1 # 1 #
1 1 2 2 /2

{ } { , , } { , , }

{ , , } { } { , , }

{ , , } { , , } { }

cN cN
g n n

cN cN
g n n

cN cN
n n n n g

s c c c c

c c s c c

C x

x

c c c c s

         
 

          
 
 
 
          

   
   

.  (21) 

Remark 4. In the incomplete (N)GHLPR, we use “x” to denote the entries which are not provided by 
the DM. This means that the DM does not provide his hesitant preferences due to various reasons, 
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such as do not have the knowledge on the problem, do not have time, or are reluctant to provide his 
judgements for some sensitive issues. For the incomplete preference relations, the number of 
unknown entries “x” should not be very large. Each alternative should be compared with the other 
alternatives at least once. Otherwise, some of the unknown “x” could not be estimated. In this case, it 
is unacceptable. In this paper, we assume the incomplete GHLPR is acceptable. That is, all the 
unknown entries “x” could be finally inferred by other entries directly or indirectly.  

4. Missing elements estimation for incomplete GHLPRs based on AC 

4.1. Estimation of unknown entries in incomplete GHLPRs  

As the GHLPRs may be incomplete, the main purpose is to estimate the unknown entries, and 
this is mainly to fill the unknown elements to get a complete NGHLPRs. Thus, we could first get an 
incomplete NGHLPR. We have two methods. One is the parameter ξ predetermined in Definition 6, 
and the other is the parameter ξ unknown. Thus, we design these two methods separately.  

(1) The parameter ξ predetermined based method 

As the parameter ξ is predetermined, we can obtain an incomplete NGLPR as per Definition 14. 
In this case, to estimate an unknown entry, we should find a chain 

1jkc , 
1 2k kc , ∙∙∙,

1t tk kc


,
tk jc  (j< k1 < 

k2 <∙∙∙ < kt) which only includes one unknown entry, and assume the only unknown entry is 
1i ik kc


. If 

ki−1 < ki, then 
1i ik kc


 is the intermediate entry in the chain, which can be measured by Eq (17), that is: 

      
1 1 2 1 1

1 2

1

...

1 1
( ) ( ) ( ) ( )

# 2i i i i i i t

t

q q q q q
k k jk k k k k k j

j k k k

t
c I g f c f c f c f c

Q   



   

         
  

 L .     (22) 

If ki−1 > ki, 
1i ik kc


 is the final entry in the chain, i.e., 
1i i tk k k jc c


 , 
1i i

q
k kc


 equals: 

1 1 2 1

1 2

1

...

1 1
( ) ( ) ( )

# 2t t t

t

q q q q
k j jk k k k k

j k k k

t
c f g f c f c f c

Q 



   

        
  

   (23) 

where #Q denotes the number of chains (
1jkc , 

1 2k kc , ∙∙∙, 
1t tk kc


, 
tk jc ), which includes 

1i ik kc


. 

Example 2. Let S = {sπ | π =0, 1, ∙∙∙, 8}, C = (cij)4×4 be an incomplete GHLPR: 

4 3 5 2 2 3

5 3 4 6 8

6 2 0 4

6 5 4

{ } { , } { } { , }

{ , } { } { , }

{ } { , } { }

{ , } { }

s s s s s s

s s s s s x
C

s s s s x

s s x x s

 
 
 
 
 
 

. 

Step 1. We use Definition 14 to convert C to its incomplete normalized NGHLPR with ξ = 1, and 
we have: 
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4 3 5 2 2 2 3

5 3 4 6 8

6 6 2 0 4

6 5 4

{ } { , } { , } { , }

{ , } { } { , }

{ , } { , } { }

{ , } { }

s s s s s s s

s s s s s x
C

s s s s s x

s s x x s

 
 
 
 
 
 

.

 

Step 2. By Eqs (22) or (23), we estimate the unknown entry 24c  as follows: 

There exists only one eligible sequence { 12c , 24c , 41c }, then we have: 

1 1 1 1
24 12 41 3

3
8 ( ) ( )

2
c f f c f c s       

 
. 

2 1 2 2
24 12 41 2

3
8 ( ) ( )

2
c f f c f c s       

 
. 

Therefore, 

24 3 2{ , }c s s . 

Similarly, the other missing HFLEs can be obtained: 

34 4 5{ , }c s s . 

Step 3. The complete NGHLPR of C is: 

4 3 5 2 2 2 3

5 3 4 6 8 3 2

7 2 0 4 4 5

6 5 5 7 4 3 4

{ } { , } { , } { , }

{ , } { } { , } { , }

{ } { , } { } { , }

{ , } { , } { , } { }

s s s s s s s

s s s s s s s
C

s s s s s s

s s s s s s s

 
 
 
 
 
 

. 

We summarize the parameter ξ predetermined based method to estimate the unknown entries in 
the following Algorithm 1. 

Algorithm 1. 

Input: The incomplete GHLPR, C = (cij)n×n. 

Output: The complete NGHLPR. 

Step 1. Set a predetermined parameter ξ, and we obtained an incomplete NGHLPR. 

Step 2. By Eqs (22) and (23), we estimate the unknown entries, and then obtain a complete NGHLPR. 

Step 3. If there are some of the values in the NGHLPR that are out of the scope [0, g] but within [−u, g + u], we 

use Eq (9) to transform it. 

Step 4. End. 

(2) The parameter ξ unknown based method 

The above parameter ξ predetermined based method is how to determine the parameter. In the 
practice, there is no principle to determine the value. For instance, suppose an HLE c12 = {s4, s7} and 
# 3ijc  . Let ξ = 0.7. The added LT is cത12

3  = 0.7 × s7⊕0.3 × s4 = s6.1, then cത12 = {s4, s7, s6.1}. How 

to set ξ is randomly. In the following, we deem that the parameter ξ is unknown. In the initial 
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normalization process, we also look at the added LT as unknown values, which also need to be 
estimated by the existing values, and can be estimated by Eqs (22) and (23). We reckon this can use 
the DM’s information sufficiently. Below, we still use Example 2 to explain this method. 
Example 3. Let C = (cij)4×4 be an incomplete GHLPR in Example 2. 

To acquire incomplete NGHLPR of C, added LTs are also looked as unknown values.  
Step 1. C is transformed into the following two LPRs: 

4 3 2 2

5 4 61

6 2 4

6 4

s s s s

s s s x
C

s s s x

s x x s

 
 
 
 
 
 

, 

4 5 3

3 4 82

0 4

5 4

s s x s

s s s x
C

x s s x

s x x s

 
 
 
 
 
 

. 

Step 2. Both 1C  and 2C  are incomplete LPRs. To estimate the unknown values “x”, the 
computation is given below: 

For 1
24c  in 1C , there exists only one chain { 1

12c , 1
24c , 1

41c } which includes 1
24c , then we have  

1 1 1 1
24 12 41 3

3
8 ( ) ( )

2
c f f c f c s       

 
. 

Similarly, the other missing LTs can be obtained: 

1
34 4c s , 1

42 5c s , 1
43 4c s . 

1C  is estimated as: 

4 3 2 2

5 4 6 31

6 2 4 4

6 5 4 4

s s s s

s s s s
C

s s s s

s s s s

 
 
 
 
 
 

. 

For 2C , we first estimate 2
13c . There exists only one chain { 2

13c , 2
32c , 2

21c }, and we have: 

2 1 2 2
13 32 21 9

3
8 ( ) ( )

2
c f f c f c s       

 
, and thus 2

31 1c s . 

For 1
24c , there exists only chain { 2

12c , 2
24c , 2

41c }, then we have: 

2 1 2 2
24 12 41 2

3
8 ( ) ( )

2
c f f c f c s       

 
, and thus 2

42 6c s . 

for 2
34c  and 2

43c  cannot be estimated in the first round. Then, 2C  becomes: 

4 5 9 3

3 4 8 22

1 0 4

5 6 4

s s s s

s s s s
C

s s s x

s s x s


 
 
 
 
 
 

. 

Then, we continue to estimate 2
34c  and 2

43c . For 2
34c , there are two chains { 2

13c , 2
34c , 2

41c }, 

{ 2
23c , 2

34c , 2
42c } which includes 2

34c , and we have: 



28883 

AIMS Mathematics  Volume 9, Issue 10, 28870–28894. 

2,1 1 2 2
34 13 41 2

3
8 ( ) ( )

2
c f f c f c s


      
 

, 2,2 1 2 2
34 23 42 2

3
8 ( ) ( )

2
c f f c f c s


      
 

. 

Then, 

2 2,1 2,2
34 34 34 2

1
( )

2
c c c s   . 

Thus,  

2
43 10c s . 

2C  is estimated as: 

4 5 9 3

3 4 8 22

1 0 4 2

5 6 10 4

s s s s

s s s s
C

s s s s

s s s s
 

 
 
 
 
 
 

. 

Cഥ is estimated as: 

4 3 5 2 9 2 3

5 3 4 6 8 3 2

6 1 2 0 4 4 2

6 5 5 6 4 10 4

{ } { , } { , } { , }

{ , } { } { , } { , }

{ , } { , } { } { , }

{ , } { , } { , } { }

s s s s s s s

s s s s s s s
C

s s s s s s s

s s s s s s s
 

 
 
 
 
 
 

. 

Step 3. As the lower index of 2
43 10c s  is 10, which falls outside the interval [0, 8], and u = 2, a 

transformation function y(x) = 
2

3
(x + 2) is applied to the values in Cഥ, and, eventually, Cഥ is: 

4 3.333 4.667 2.667 7.333 2.667 3.333

4.667 3.333 4 5.333 6.667 3.333 2.667

5.333 0.667 2.667 1.333 4 4 0

5.333 4.667 4.667 5.333 4 8 4

{ } { , } { , } { , }

{ , } { } { , } { , }

{ , } { , } { } { , }

{ , } { , } { , } { }

s s s s s s s

s s s s s s s
C

s s s s s s s

s s s s s s s

 
 
 
 
 
 

. 

Remark 5. Sometimes, the separated LPR may be unacceptable [47]. In such cases, we randomly set 
one added LT known by the first method.  

In summary, we design the following Algorithm 2. 

Algorithm 2. 

Input: The incomplete GHLPR, C = (cij)n×n. 

Output: The complete NGHLPR. 

Step 1. Let #cN = max{#cij | i, j N, i ≠ j}. If the number of values in each entry is not #cN, we fill “x” to the entry 
to get an incomplete NGHLPR Cഥ = (cതij)n×n. 

Step 2. We separate Cഥ = (cതij)n×n into #cN number of LPRs. If some of the LPRs are unacceptable, we randomly 

choose one unknown entry in the LPR to duplicate its value in in its original HLE until it is acceptable; 

otherwise, go to the next step. 

Step 3. As per Eqs (22) and (23), we estimate the unknown values in these LPRs. The estimation process may be 

iterative. Then, an NGHLPR is obtained. 
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Step 4. If there are some of the values in the NGHLPR are out of the scope [0, g], but within [−u, g + u], we use Eq (9) 

to transform it. 

Step 5. End. 

4.2. GDM with incomplete GHLPRs 

In the real situation, more and more problems are solved by a group of experts. Thus, to deal 
with a group of incomplete GHLPRs is a challenging work. In the following, we devise Algorithm 3 
to manage GDM problems with incomplete GHLPRs. 

Algorithm 3. 

For a GDM problem, let A = {a1, a2, ∙∙∙, an}, E = {e1, e2, ∙∙∙, em} be sets of alternatives and DMs, respectively. λ 

= (λ1, λ2, ∙∙∙, λm)T is the normalized weight vector of DMs. The decision procedure with acceptable incomplete 

GHLPR is detailed below: 

Step 1. Each DM et (t=1, 2, ∙∙∙, m) gives his/her evaluations on the alternatives by an incomplete GHLPR Ct = 

(cij,t)n×n. 

Step 2. By Algorithm 1 or 2, we obtain the complete group NGHLPR. 

Step 3. Use the hesitant linguistic average (HLA) operator to obtain the group preference LTs for everyone 

alternative. 

 1 2
1

1
= ( , , , )

n

i i i in ij
j

c HLA c c c c
n 

     , i N .   (24) 

Step 4. Use Eq (3) to get the scores ζ(ci) for every one alternative. 

Step 5. The alternatives' rankings are obtained by the values ζ(ci). 

Step 6. End. 

5. A case study 

Now, there is a GDM problem which is to evaluate and select cloud server suppliers for the 
computer and software school. The school has to choose five potential suppliers, including Alibaba, 
Tencent, Huawei, Baidu, and Jinshan. Four aspects should be considered: usability, performance, 
security, and costs. 

Three leaders of the school et (t =1, 2, 3) (the importance vector is λ = (1/3, 1/3, 1/3)T) are 
organized to furnish their evaluations on the five alternatives ai (i =1, 2, ∙∙∙ , 5), and these DMs give 
the following incomplete GHLPRs Ct = (cij, t)n×n (t =1, 2, 3): 

4 1 5 6 3 6 8

4 6 7 5 7 8

1 2 1 4 3 5 7

7 3 2 3 1 0 5 3 1 4 4 3 2

5 2 0 4 5 6 4

{ } { , , } { , , }

{ } { , } { , , }

{ , } { } { , , }

{ , , } { , , } { , , } { } { , , }

{ , , } { , , } { }

s x x s s s s s s

x s s s s s s x

C x s s s s s s x

s s s s s s s s s s s s s

s s s x x s s s s

 
 
 
 
 
 
  

, 
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4 1 4 5

4 2 4 5

2 7 4 3 6 4 3 4 3 5 7 2 3 4

5 3 1 4

6 5 4 4

{ } { , , }

{ } { , , }

{ , , } { , , } { } { , , } { , , }

{ , , } { }

{ , , } { }

s x s s s x x

x s s s s x x

C s s s s s s s s s s s s s

x x s s s s x

x x s s s x s

 
 
 
 
 
 
  

, 

4 2 3 4 3 5 8 0 1 2

6 5 4 4 3 4 5 3 6 7

3 5 3 0 4 1 2 4

8 7 6 5 4 3 7 6 4 4 6 7 8

5 2 1 2 1 0 4

{ } { , , } { , , } { , , }

{ , , } { } { , , } { , , }

{ , , } { } { , , }

{ , , } { , , } { , , } { } { , , }

{ , , } { , , } { }

s s s s s s s s s s x

s s s s x s s s s s s

C s s s x s s s s x

s s s s s s s s s s s s s

x s s s x s s s s

 
 
 
 
 
 
  

. 

The following procedures are involved: 
Step 1. As per Algorithm 2, we fill the missing values for these incomplete GHLPRs. For C1, 

we first obtain its incomplete NHLPR 1C : 

4 1 5 6 3 6 8

4 6 7 5 7 8

1 2 1 4 3 5 7

7 3 2 3 1 0 5 3 1 4 4 3 2

5 2 0 4 5 6 4

{ } { , , } { , , }

{ } { , , } { , , }

{ , , } { } { , , }

{ , , } { , , } { , , } { } { , , }

{ , , } { , , } { }

s x x s s s s s s

x s s s x s s s x

C x s s x s s s s x

s s s s s s s s s s s s s

s s s x x s s s s

 
 
 
 
 
 
  

.. 

Then, we have: 

1 1 1 1 1 1
12,1 23,1 34,1 45,1 51,1

1 5
8 ( ) ( ) ( ) ( )

4 2
c f f c f c f c f c          

 

   1 1 1 1 1 1
24,1 45,1 51,1 23,1 34,1 41,12 8 ( ) ( ) ( ) 2 8 ( ) ( ) ( )f c f c f c f c f c f c           

1 1
24,1 41,1

3
8 ( ) ( )

2
f c f c

     
 

 11
(20 6 3 4 5) (16 5 4 5) (16 6 3 7) (12 5 7)

4
f                  

1s  

2 1 2 2 2 2
12,1 23,1 34,1 45,1 51,1

1 5
8 ( ) ( ) ( ) ( )

4 2
c f f c f c f c f c          

 

 2 2 2
24,1 45,1 51,12 8 ( ) ( ) ( )f c f c f c      

 2 2 2 2 2
23,1 34,1 41,1 24,1 41,1

3
2 8 ( ) ( ) ( ) 8 ( ) ( )

2
f c f c f c f c f c

          
 

 11
(20 7 5 3 2) (16 7 3 2) (16 7 5 3) (12 7 3)

4
f                  

2.5s  

 3 1 3 3 3 3 3
12,1 24,1 45,1 51,1 24,1 41,1

1 3
2 8 ( ) ( ) ( ) 8 ( ) ( )

2 2
c f f c f c f c f c f c                 
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 1
4

1
(16 8 2 0) (12 8 2)

2
f s          

 1 1 1 1 1 1 1
13,1 34,1 45,1 51,1 34,1 41,1

1 3
2 8 ( ) ( ) ( ) 8 ( ) ( )

2 2
c f f c f c f c f c f c               

 

 1
3

1
(16 3 4 5) (12 3 7)

2
f s          

 2 1 2 2 2 2 2
13,1 34,1 45,1 51,1 34,1 41,1

1 3
2 8 ( ) ( ) ( ) 8 ( ) ( )

2 2
c f f c f c f c f c f c               

 

 1
5

1
(16 5 3 2) (12 5 3)

2
f s          

 3 1 3 3 3 3 3
13,1 34,1 45,1 51,1 34,1 41,1

1 3
2 8 ( ) ( ) ( ) 8 ( ) ( )

2 2
c f f c f c f c f c f c               

 

 1
5

1
(16 7 2 0) (12 7 2)

2
f s          

 1 1 1 1 1 1 1
52,1 23,1 34,1 45,1 24,1 45,1

1 3
2 8 ( ) ( ) ( ) 8 ( ) ( )

2 2
c f f c f c f c f c f c                 

 1
3

1
(16 6 3 4) (12 5 4)

2
f s         

 2 1 2 2 2 2 2
52,1 23,1 34,1 45,1 24,1 45,1

1 3
2 8 ( ) ( ) ( ) 8 ( ) ( )

2 2
c f f c f c f c f c f c                 

 1
1.5

1
(16 7 5 3) (12 7 3)

2
f s          

 3 1 3 3 1
52,1 24,1 45,1 2

3
8 ( ) ( ) 12 8 2

2
c f f c f c f s          

 
 

 1 1 1 1 1
53,1 34,1 45,1 5

3
8 ( ) ( ) 12 3 4

2
c f f c f c f s          

 
 

 2 1 2 2 1
53,1 34,1 45,1 4

3
8 ( ) ( ) 12 5 3

2
c f f c f c f s          

 
 

 3 1 3 3 1
53,1 34,1 45,1 3

3
8 ( ) ( ) 12 7 2

2
c f f c f c f s          

 
 

 3 1 3 3 1
23,1 34,1 42,1 5

3
8 ( ) ( ) 12 7 0

2
c f f c f c f s          

 
. 

Then, we have: 

1
21,1 7c s , 2

21,1 5.5c s , 3
21,1 4c s , 1

31,1 5c s , 2
31,1 3c s , 3

31,1 3c s , 

1
25,1 5c s , 2

25,1 6.5c s , 3
25,1 6c s , 1

35,1 3c s , 2
35,1 4c s , 3

35,1 5c s , 3
32,1 3c s . 

Then, we obtain a complete NHLPR 1C : 
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4 1 2.5 4 3 5 5 1 5 6 3 6 8

7 5.5 4 4 6 7 3 5 7 8 5 6.5 6

1 5 3 3 2 1 5 4 3 5 7 3 4 5

7 3 2 3 1 0 5 3 1 4 4 3 2

5 2 0 3

{ } { , , } { , , } { , , } { , , }

{ , , } { } { , , } { , , } { , , }

{ , , } { , , } { } { , , } { , , }

{ , , } { , , } { , , } { } { , , }

{ , , } { ,

s s s s s s s s s s s s s

s s s s s s s s s s s s s

C s s s s s s s s s s s s s

s s s s s s s s s s s s s

s s s s s



1.5 2 5 4 3 4 5 6 4, } { , , } { , , } { }s s s s s s s s

 
 
 
 
 
 
  

.
 

Similarly, we obtain 

4 3 4 4 1 4 5 0 5 8 1 3 5

5 4 4 4 2 4 5 1 5 8 0 3 5

2 7 4 3 6 4 3 4 3 5 7 2 3 4

8 3 0 7 3 0 5 3 1 4 8 3 0

9 5 3 8 5 3

{ } { , , } { , , } { , , } { , , }

{ , , } { } { , , } { , , } { , , }

{ , , } { , , } { } { , , } { , , }

{ , , } { , , } { , , } { } { , , }

{ , , } { , , }

s s s s s s s s s s s s s

s s s s s s s s s s s s s

C s s s s s s s s s s s s s

s s s s s s s s s s s s s

s s s s s s





6 5 4 0 5 8 4{ , , } { , , } { }s s s s s s s

 
 
 
 
 
 
  

. 

By y(x) = 
8

3
 (x + 1), we convert it to an NGHLPR as  

4 3.200 4.000 4.000 1.600 4.000 4.800

4.800 4.000 4.000 4 2.400 4.000 4.800

2 6.400 4.000 3.200 5.600 4.000 3.200 4

7.200 3.200 0.800 6.400 3.200 0.800 4.800

{ } { , , } { , , }

{ , , } { } { , , }

{ , , } { , , } { }

{ , , } { , , } { ,

s s s s s s s

s s s s s s s

C s s s s s s s

s s s s s s s s



3.200 1.600

8.000 4.800 3.200 7.200 4.800 3.200 5.600 4.800 4.000

, }

{ , , } { , , } { , , }

s

s s s s s s s s s









0.800 4.800 7.200 0 3.200 4.800

1.600 4.800 7.200 0.800 3.200 4.800

3.200 4.800 6.400 2.400 3.200 4.000

4 7.200 3.200 0.800

0.800 4.800 7.200 4

{ , , } { , , }

{ , , } { , , }

{ , , } { , , }

{ } { , , }

{ , , } { }

s s s s s s

s s s s s s

s s s s s s

s s s s

s s s s









. 

For DM e3, the complete NGHLPR is  

4 2.2222 3.1111 4.0000 3.1111 4.8889 7.5556

5.7778 4.8889 4.0000 4 4.8889 5.1111 4.4444

3 4.8889 3.1111 0.4444 3.1111 2.8889 3.5556 4

7.5556 6.6667 5.7778 4.8889

{ } { , , } { , , }

{ , , } { } { , , }

{ , , } { , , } { }

{ , , } { ,

s s s s s s s

s s s s s s s

C s s s s s s s

s s s s s



4.0000 3.1111 6.6667 5.7778 4.0000

5.7778 2.8889 0 4.8889 2.2222 1.3333 4.8889 3.1111 0.4444

, } { , , }

{ , , } { , , } { , , }

s s s s

s s s s s s s s s









 

0.4444 1.3333 2.2222 2.2222 5.1111 8.0000

3.1111 4.0000 4.8889 3.1111 5.7778 6.6667

1.3333 2.2222 4.0000 3.1111 4.8889 7.5556

4 5.7778 6.6667 7.5556

2.2222 1.3333 0.4

{ , , } { , , }

{ , , } { , , }

{ , , } { , , }

{ } { , , }

{ , ,

s s s s s s

s s s s s s

s s s s s s

s s s s

s s s 444 4} { }s









.

 
Step 2. Proposition 3 is utilized to fuse all individual complete GHLPR ,( )t ij t n nC c  ( 1,2,3)t   
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into an NGHLPR C= (cij)n×n as 

4 2.1407 3.2037 4.0000 2.5704 4.6296 5.7852

5.8593 4.7963 4.0000 4 4.4296 5.3704 4.0815

5.4296 3.3704 2.2148 3.5704 2.6296 3.9185 4

7.2519 4.2889 2.8593 4.7630 2

{ } { , , } { , , }

{ , , } { } { , , }

{ , , } { , , } { }

{ , , } { ,

s s s s s s s

s s s s s s s

C s s s s s s s

s s s s s



.7333 1.3037 5.4889 3.9926 2.2000

6.2593 3.2296 1.0667 5.0296 2.8407 2.1778 5.1630 3.9704 2.4815

, } { , , }

{ , , } { , , } { , , }

s s s s

s s s s s s s s s









 

0.7481 3.7111 5.1407 1.7407 4.7704 6.9333

3.2370 5.2667 6.6963 2.9704 5.1593 5.8222

2.5111 4.0074 5.8000 2.8370 4.0296 5.5185

4 5.6593 4.2889 3.4519

2.3407 3.7111 4.5

{ , , } { , , }

{ , , } { , , }

{ , , } { , , }

{ } { , , }

{ , ,

s s s s s s

s s s s s s

s s s s s s

s s s s

s s s 481 4} { }s









. 

Step 3. The preference LTs for each alternative ai (i =1, 2, ∙∙∙, 5) are: 

1 2.2400 4.0630 5.1718{ , , }c s s s , 2 4.0993 4.9185 4.9200{ , , }c s s s , 3 3.6696 3.6074 4.2904{ , , }c s s s , 

 4 5.4326 3.8607 2.7630{ , , }c s s s , 5 4.5585 3.5504 2.8548{ , , }c s s s . 

Step 4. As per Definition 4, the score of each alternative ζ(bi) is: 

1( ) 3.8250b  , 2( ) 4.6459b  , 3( ) 3.8558b  , 4( ) 4.1877b  , 5( ) 3.6546b  . 

Step 5. According to the ζ(bi), we rank the alternatives: 

a2 ≻ a4 ≻ a3 ≻ a1 ≻a5. 

Therefore, a2 is the best choice, i.e., the school should choose Tencent as its final decision. 

6. Comparative analysis 

To show the performances of the presented method, in the following, we do some comparisons 
with the published methods. 

As per Eq (8), the consistency degree of GHLPR C=(cij)n×n can be calculated by the difference 
between ( )

2
l

ij gc s   and ( ) ( )l l
ik kjc c  . Thus, we propose the CI(C) as follows: 

#

1

2 1
CI( )

( 1)( 2) #

ijcn
q
ijk

i j k qij

C
n n n g c


  


            (25) 

where  

( ) / 2 ( ) ( )q q q q
ijk ij ik kjf c g f c f c     .        (26) 

Obviously, 0 ≤ CI(C) ≤1. The smaller the CI(C), the more reliable the DM. 
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6.1. The performance of GHLPR 

In Example 1, if we use Eq (25) to measure the CI of C, which is derived by Zhu and Xu [17]’s 
definition of HLPR, we obtain CI(C)=0.026. This shows that C is not AC. However, if we use the 
proposed definition of GHLPR in this paper, we have CI(C)=0, which denotes that C is perfectly AC. 
This also conforms to our analysis, that is, the information provided by DM is consistent. However, all 
the existing HLPRs use Eq (4), and as we have pointed out in Example 1, the main difference is that 
the existing HLPR should reorder the values in HLE. If we do not sort the values, the obtained HLPR 
will conflict with Eq (4). On the other hand, if we sort these values, the obtained HLPR will not be 
consistent, the DM’s initial information is distorted. Wu, Zhou, and Chen et al. [22] also found the 
problem; please see their comments after Example 3. This also can be verified in so many other papers. 
Thus, the reordering of values is not reasonable. This shows the reasonableness of the GHLPR. 

6.2. The performance of normalization  

If we use Zhu and Xu [17]’s normalization method to obtain the NHLPR, and ξ = 1, we have: 

4 5 5 2 3 6 6

3 3 4 3 3 4 4

6 5 5 5 4 4 7

2 2 4 4 4 1 4

{ } { , } { , } { , }

{ , } { } { , } { , }

{ , } { , } { } { , }

{ , } { , } { , } { }

Zhu

s s s s s s s

s s s s s s s
C

s s s s s s s

s s s s s s s

 
 
 
 
 
 

. 

By Eq (25), CI(CZhu) = 0.0365. 
However, if we use the proposed method, we have: 

4 5 5 2 3 6 6

3 3 4 3 2 4 5

6 5 5 6 4 4 7

2 2 4 3 4 1 4

{ } { , } { , } { , }

{ , } { } { , } { , }

{ , } { , } { } { , }

{ , } { , } { , } { }

s s s s s s s

s s s s s s s
C

s s s s s s s

s s s s s s s

 
 
 
 
 
 

. 

By Eq (25) CI(B) = 0.0234, which is smaller than 0.0365, denoting the obtained NHLPR based on 
AC is more consistent than the existing one. If we further investigate, this is because Zhu and Xu [17]’s 
normalization method randomly adds the value, while the proposed method uses the AC property to 
add the values. Furthermore, we can find that the added LPR is: 

4 5 3 6

3 4 2 52

5 6 4 7

2 3 1 4

s s s s

s s s s
C

s s s s

s s s s

 
 
 
 
 
 

 

which is perfectly additively consistent LPR. Meanwhile the obtained 2
ZhuC  is: 
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4 5 3 6

3 4 3 42

5 5 4 7

2 4 1 4

Zhu

s s s s

s s s s
C

s s s s

s s s s

 
 
 
 
 
 

 

which is not AC LPR, and this is why the CI(CZhu) is larger than CI(C). 
Additionally, in the obtained C by the proposed method, c12 = {s3, s2}, if we reorder the values, 

will be more inconsistent. This also shows that the proposed GHLPR is more reasonable. 

6.3. Comparison with other methods 

In the following, we do detailed comparisons with the other existing methods, which also study the 
incomplete HLPRs. The results are summarized in Table 2. From Table 2, we can see that all the other 
methods rearrange the values in HLTS, in which the consistency and the concept of HLPRs will conflict 
with each other. In the following, we describe the drawbacks of the other methods, respectively. 

Table 2. Comparisons with the existent methods. 

 Rearrange 

values 

Add values Consistency 

type 

Methods to estimate missing 

elements 

The proposed method N Y AC Estimated by AC property 

Song and Li [38] Y N MC Mathematical programming 

Liu, Ma, and Jiang [35] Y Y AC Optimization models 

Wu, Li, Merigó et al. [34] Y Y AC Integer programming 

Li, Zhang, and Yu [36] Y Y AC Optimization models 

Song and Li [38] constructed the mathematical programming models to estimate the missing 
elements based on the MC. However, their method only can determine one MC LPR, and, thus, the 
estimated missing HLT only has one value. This may obey the real situation, as the determined 
elements only have one linguistic term, which is not the hesitant. Another is that, for the MC of 
HLPRs, the lowest and largest linguistic terms cannot be used, i.e., the evaluation values cannot be 
equal to s0 or sg. However, in the real application, the lowest evaluation (s0= extremely poor) and the 
best evaluation (s8 = extremely good) values are always offered by the DMs. This limits the 
application of Song and Li [38]’s methods.  

Liu, Ma, and Jiang [35] used the worst consistency index (WCI) and best consistency index 
(BCI) to determine the lower and upper bounds of the missing elements of an HLPR. However, as 
we can see from their example (Example 1 in [35]), the estimated HLTs have a wide range, for 
example, {s0, ∙∙∙, s6}. This may be far away from the real situation, as the provided HLTs are only one 
or two linguistic terms, but the estimated elements have 7 linguistic values. 

The LCME principle for normalization HLTSs in [22]. As we can see, their method will add more 
elements to an HLTS, which will cause more inconsistency. Furthermore, Wu, Li, Merigó et al. [34] 
proposed an integer programming model to deal with incomplete HLPRs. As we can see, in their 
examples, the LCME method will generate some redundant LPRs, and the CI obtained by their 
method will be larger than ours. 

Li, Zhang, and Yu [36] used the average consistency index (ACI) to impute the missing HLTSs. 
However, their method also only can determine one linguistic term, and needs to preset the threshold 
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of ACI. Different thresholds may generate different missing values, and there is no rule how to set 
the thresholds. Tang, Liao, and Li et al. [46] also studied the incomplete HLPR and they used the 
existing definition of HLPR. In their Example 4, the estimated value 45c  = {s−5, s−5, s−6, s−7}, which 

contradicts with the definition of HLPRs, and requires ( ) ( 1)q q
ij ijc c   (i < j). This also shows the 

unreasonableness of Tang, Liao, and Li et al. [46]’s definition of incomplete HLPRs. 

7. Conclusions 

In the GDM, the DMs may use linguistic terms to articulate their pair-wise preferences over a 
given set of alternatives. Then, these DMs’ preferences are organized into an HLPR, and each HLE 
has some linguistic values, and these different linguistic values are sorted in the existent studies. 
However, our illustrated example shows that this will obey or distort the DMs’ initial preferences and 
also conflict with the AC property of HLPRs. In order to rectify the unreasonable arrangement of the 
sorting values, we redefined the HLPRs, which is named GHLPR in the present work. The NGHLPR and 
incomplete GHLPR (NGHLPRs) are defined accordingly. We also have investigated the characterization 
of additively consistent LPRs, and the characterization of LPRs is extended to accumulate the NGHLPRs. 
In the real application, the DMs may provide incomplete GHLPRs, and we have developed two 
algorithms to fill the unknown values in NGHLPRs. The first algorithm is based on the traditional 
normalization idea, which adds some linguistic values to the shorter HLEs until all the known HLEs in an 
GHLPR have the same length. The second algorithm is based on the AC property of GHLPRs. The 
shorter HLEs are also treated with unknown linguistic terms, and these unknown linguistic terms should 
be estimated by the known values. Both algorithms to estimate the missing values are based on the 
characterization of NGHLPRs. We also develop an algorithm to solve GDM with incomplete HLPRs. A 
case study is also furnished to illustrate how to perform the algorithms. A comprehensive comparative 
study is carried out to show the merits of the proposed methods. 
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