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Abstract: Hesitant linguistic preference relations (HLPRs) are useful tools for decision makers
(DMs) to express their qualitative judgements. However, the traditional HLPRs have one prominent
drawback, which is to sort the linguistic values in a hesitant linguistic set. This will distort the DMs’
initial judgements. In the present paper, a revised definition of HLPR, called general HLPR
(GHLPR), was proposed. A characterization was explored for LPRs. Then, the characterization was
extended to GHLPRs. Based on the characterization, the estimation of unknown entries in
incomplete GHLPRs were carried out by two algorithms. The group decision-making problems with
incomplete GHLPRs were settled by another algorithm. Finally, a case study was illustrated, and
comparisons showed that our methods were more reasonable than the existent methods.
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1. Introduction

Pairwise comparisons are useful tools to convey the decision makers’ (DMs) judgements in
group decision-making (GDM). The most frequently used preference relations (PRs) are
multiplicative PR [1], fuzzy PR [2-6], and linguistic PR (LPR) [7].

In the above traditional PRs, each entry only has one value, and this fails to express DMs’
hesitant information when he uses a few values to articulate his preferences. In order to
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accommodate these cases, the hesitant fuzzy set (HFS) emerges ([8]). It also has many extensions,
such as probabilistic picture hesitant fuzzy set [9], general hesitant intuitionistic fuzzy N-soft set [10],
weighted hesitant fuzzy sets [11] and hesitant multi-fuzzy soft set [12]. After this, the hesitant
linguistic term set (HLTS) is extended in [13] to deal with the linguistic hesitant. Some hesitant PRs
are proposed, such as hesitant fuzzy PR [14,15] and hesitant multiplicative PR [14,16]. Based on the
LPR and HLTS, the hesitant linguistic preference relations (HLPRs) is naturally extended ([17]).

At present, HLPRs have been widely investigated [18-21]. As different HLTSs have different
numbers of values, one nature way is to make all the HLTSs with the same length. Therefore, some
normalization methods are proposed, such as a-normalization, f-normalization [17], least common
multiple expansion (LCME) [22], additive consistency (AC) based normalization for hesitant fuzzy
preference relations [23], etc. Consistency and consensus are two important aspects of HLPRs in
GDM. Zhu and Xu [17] first developed the HLPRs and studied the AC of HLPRs based on
[-normalization. After this, several consistency problems were investigated for HLPRs from different
points of view, such as multiplicative consistency (MC) [18], interval consistency index [24],
consistency based on personalized individual semantics [25], worst consistency index [20], etc. For
the consensus of HLPRs, generally, the consistency is also considered at the same time and diverse
models are proposed, such as the expectation model [19], local adjustment strategy [26],
optimization model [27], etc.

However, the DMs may lack necessary knowledge for a specific problem, limited expertise, be
unwilling or unsure to give some of their pairwise preference values, or it is more convenient to omit
some direct key comparisons. In this situation, missing information is emerged [28-33], i.e., the DM
may develop the incomplete HLPRs. Several models have been developed to deal with the
incomplete HLPRs, such as integer programming model [34], optimization models [35-37] and
mathematical programming [38]. However, some drawbacks of the existent studies on incomplete
HLPRs are:

(1) All the existing incomplete HLPRs are the extension of Zhu and Xu [17]’s HLPRs, in which
the known values are sorted. As we can see in our example (see Example 1), the
rearrangement of the values will misinterpret the DMs’ judgment and also contradict with
the consistency property of HLPRs. Thus, the definition of HLPRs is not reasonable.

(2) To estimate the unknown entries, the parameter of the f-normalization is randomly selected,
which also will misinterpret the DMs’ initial preferences.

All the existing work is very important for our study. However, as we have pointed out, there
are some limitations for the existing work, such as the definition of the HLPR and the normalization
process. The main work of the current paper is:

(1) A revised HLPR, called general HLPR (GHLPR), is proposed, in which the elements do not
need to be sorted. As we can see, this will keep the DM’s initial judgment. Furthermore,
normalized GHLPR (NGHLPR) and incomplete NGHLPR are also similarly defined.

(2) A characterization is explored for LPRs, and the characterization is also extended to
NGHLPRs.

(3) The incomplete GHLPR is studied and two algorithm procedures are proposed to estimate
the unknown entries. The obtained NGHLPR will be more consistent than the existing ones.

The reminders are structured as follows. In Section 2, we first study the characterization of
LPRs. Then, we illustrate an example to show the irrationality of the existing definition of HLPRs.
We redefine the concept of HLPR, which is called GHLPR. In Section 3, we develop two algorithms
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to amend the incomplete NGHLPRs. A GDM with incomplete GHLPRs is developed. In Section 4, a
case study is illustrated showing how to execute the algorithms. Section 5 provides the detailed
comparisons with the previous studies to exhibit the performances of the current approach. Section 6
concludes the paper.

2. Preliminaries
2.1. LPRs

For sake of simplicity, let N = {1, 2, ---, n}.

Let S = {so, s1, -, S¢} be a linguistic term set (LTS), where s; represents a possible value for a
linguistic variable, and g + 1 is the granularity in the LTS [39]. A typical LTS has 9 LTs, i.e., S = {so, s1,
-+, §8}, in which so denotes extremely poor, s1 denotes very poor, s2 denotes poor, s3 denotes slightly
poor and the median s4 denotes fair. Inversely, s5 to ss denotes the good corresponding to s4 to so.

A continuous LTS S ={s4|s0< s:< s, 7 €[0, g]} is an extension of the distinct LTS S in Xu [40],
and the following holds:

(1) sﬂ@sp:sﬁp;
(2) 5,Ds,=5,Ds_;
(3) 5S7r:S57r;

4) (6,+0,)s,=0,5,90,5,,0,0,,0,=20;
(5) O(s,Ds,)=0s,D3s,.

Here, sz, spe S .

If s = sz, we define the lower index of s as: f{sz) = 7. On the contrary, there exists the inverse
function of £, such that: f () = sy.
Definition 1. [7] An LPR is depicted by a matrix L = (/jj)nxa, satisfying

[,®l,=s,,i,jeN (D
Definition 2. [41] An LPR L=(lj)uxx is AC if

fUp=fG)+fU)-g/2,i,j,keN )

n

Theorem 1. [41] Let L=(/;j)»<n be an LPR, where f(/;) = lzzzl(f(lik)+f(l,g) -g/ 2) , then L is an
AC LPR.

2.2. HLTS

HFS was initially proposed by Torra [8], which allows DM to give his preferences on
alternatives in a set of fuzzy values. Motivated by this idea, HLTS is an extension of HFS in [13]. Let
A={ai, a2, -, an} be a set of alternatives.

Definition 3. [13] An HLTS Hjs is a set of consecutive ordered LTs in S.

An HFLS can be simply specified as:
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¢, ={<a,cg(a) > a e 4}

where cs(a) is a set of LTs in S, denoting the possible membership degrees of the element a € 4 to
the set c. For simplicity, cs is termed a hesitant linguistic element (HLE).

Remark 1. In [13], the LTs in an HLTS should be consecutive and ordered, and in this situation, the
HLTS is given by one DM. However, Wang [42] deemed that HLTS may be the union of several LTs
from different DMs, and in this situation, the HLTS may not be consecutive and called the extended
HLTSs. In this paper, we still use HLTSs to denote the hesitant linguistic information provided by the
DMs.

Definition 4. [43] For an HLE c, the score function of ¢ is defined as

T

Ce)=2 3)

where #c is the cardinality of the LTs in c.
Comparison of two HLEs ¢ and c2,
1) c1>caif {(e1) > {{c2);
2) a=aiflc)={c).
Definition 5. [13] For an HLE c,
(1) the upper bound ¢*: ¢" = max(s;);
(2) the lower bound ¢: ¢~ = min(s;);
f-normalization is proposed to add some values in shorter HLEs in [17].
Definition 6. [17] For an HLE, ¢ = {¢"@|g =1, 2, -+, #c}, ¢ =C¢"+ (1 —&c (0<&E<1)is an added LT.

2.3. HLPRs

The concept of HLPR is introduced in Zhu and Xu [17], which is described as:
Definition 7. [17] Matrix C = (cjj)nxn is an HLPR if

N 4 1 (i)
{Sg/z} {C1(2 5 Cl(zclz)} {Cl(n)a"'a e, "y
1 # 1 #
C= {Cgl)’ 5 Cyp {Sg/z} {Cén)’.“’ ancz )} (4)
: {Sg/z}
1 #
{C;(u)’ : (C Y {8¢10}
where ¢; = {c; (Q)| q =1, 2, -, #c;j} (#cyj 1s the cardinality of LTs in ¢;) is an HLE, and
c;(q) +Cl:-(q) =5,
#c —#cﬂ,
c;(q) < C;(qﬂ),c‘t;(qﬂ) < c;(q)’\v/l' <j,ije N

As the numbers in different entries c;; are not identical, Zhu and Xu [17] used f-normalization to
define a normalized HLPR (NHLPR).
Definition 8. [17] Matrix C = (;;)uxx is an NHLPR if
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—(1 —#HeN 1 (#eN
{Sg/z}> {61(2)""5 ¢y} {Cl(n)" clnc )}
o RS Rt St S O S R ()
: {Sg/2} E
1 —
{0;1(1)> -,C UN)} {Sg/z}

and
#cN =max{#fc; |i,j e N,i# j}

=4 =9 —
C +Ci=5,,

_ (7
c :{Sé/Z}
Ua(q) <C0(q+1) jo(q+l) <Cd(q) Vi< ],l,] e N.
with some of the added values ¢,* with &(0<¢<1).
Definition 9. [17] Let C=(c;j)n<» be an HLPR, and its NHLPR C = (Cij)nen with &, if
& Ds,, =0, "D, ik, jeN. ®)

Then, C=(cjj)nxn 1s an AC HLPR with ¢

However, in some time, the lower index of obtained entries in an HLPR may be out of the
interval [0, g], but in the interval [—u, g + u], where u > 0. In such a case, we can utilize the next
transformation function:

yi[-u,g+u]l —10,g]

©)

3. GHLPRs and incomplete GHLPRs
3.1. GHLPRs

In Definition 8, the values in each HLE are sorted. We show that this is problematic using the
below example.

Example 1. Assume that two DMs E = {ei, e} participate to give their preferences on three
alternatives in the LTS S = {so, 51, -, s3}. Table 1 displays these judgments.

Table 1 shows that expert e reckons that the alternative a; is very poor comparing to alternative
a>, and gives s1. However, the second expert e> reckons that the two alternatives are indifference,
gives s4, and so on. Thus, the hesitant preferences of these two DMs are {s1, 54}, which constitutes an
HLE. All these HLEs can be structured into the following HLPR C:

{sab Aspsyd {sy,85h {85,850

_ {87,8,} {84} {55,555 155586}

{86550 Assss {sgh {soss)
{86,558 {8683 {sp,85) sy}
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Table 1. Experts’ judgments.

Comparisons
Pairs of alternatives
Expert 1 Expert 2
a S1 S4
aj versus a3 52 Ss
as $3 52
ai 87 S4
a versus a3 S5 S5
as S6 82
ai S6 53
asz versus a $3 53
aq S5 S1
ai S5 56
a4 versus a 52 6
as §3 57

To verify whether the HLPR C is AC, we have the following two LPRs:

Sy S S, 8, S, S, S5 8,
— S, S, S5 — S, S, S5 8
7 4 5 2 4 4 5 6

com — . C° =
Sg Sy S, S Sy 8y S, S
Se Sg S; 8, Ss S, S 8,

As per Definition 9, it is not difficult to examine that " is inconsistent. According to Eq (8),
fEY + AT —gl2=1+2—-4=—1#AZ]) =2. Similarly, we can verify AZ]s") + Ac3y)) — g/2 =
4+6-4=6#Ac])=3. Therefore, C is not AC.

However, according to the preferences e; and e given in Table 1, the two LPRs A and 4> of the

two experts are:

Sy S8, 8 S, S, S5 S,
S, S, S5 S Sy S, S5 S,
L1 = , L2 =
S Sy S, S Sy Sy S, S
Sg 8, S, 8, S¢ S¢S, S,

As per Eq (2), both 41 and 4> are AC. Because [; © ss=/lx @® [ holds for L and L, if we
combine L1 and L> into an HLPR C, the consistency is destroyed as per Definition 9.
Remark 2. From the above Example 1, we conclude that the rearrangement of the values in an HLE
distorts the DMs’ initial preferences. What’s more, the consistency may be inversely. To remedy the
problems, in the following, we introduce the following definitions called GHLPR, and NGHLPR,
respectively.
Definition 10. Matrix C = (c¢;)nxn i1s @ GHLPR if

AIMS Mathematics Volume 9, Issue 10, 28870-28894.
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S N S (S FREN
C= {Célﬁ 02121} {Sg/Z} {cén’ c;? } (10)
{Sg/z}
{Cllqla T jlcl} {cnza G #(2 } {Sg/2}
where ¢; = {c 1 q=1, 2, -, #c;j} (#cij 1s the number of LTs in ¢;) is an HLE, and for all i, j e N
ci+ci=s,,
cn :{Sg/z}’ (11)
#e, =#c,.
Definition 11. Matrix C = (¢;;)nxx is an NGHLPR if
{Sg/Z} {Clzn Eédv} {Clna""aid\/}
C= {6219 ’ E;lLN} {Sg/z} {Czna"'ogz#nCN} (12)
: {Sg/z} :
{ nl’ ) #LN} {an’ ) n#ZLN {Sg/Z}
and
#cN =max{#c; |i,j € N,i# j}
cl+ci=s,, (13)

C_‘u = {Sg/Z}'

with some added values cz with &

Remark 3. In Eq (12), some of the cz are the added values. Here, the added value EZ may not be

between the upper and lower bounds of ¢, i.e., £ may be not in the interval [0, 1], which is different
from Definition 8. Furthermore, the added values are always appended after the original values.
Definition 12. Given an GHLPR C = (¢j)n=n and its NGHLPR C = (¢;)n=n with ¢, if

fE)=1@)+/1(C5)—-g/2, i,jkeN (14)

then C = (c;j)nn 1s an AC GHLPR with ¢
Example 2. For Example 1, we can obtain that GHLPR is:

{s,0 syt Asy,ss) sy, 8,
_ {s758,0 {5, b {ss,ss) {sg.8,)
{86850 Asss) {syh {ss.s) .
{85,868 {8,860 {s3.8,) {8y}

As per Eq (14), it is easy to verify that C is AC, which shows that the DMs’ original information
is consistent, and conforms to the reality.

Herrera-Viedma, Herrera, and Chiclana et al. [44] explored the characterization of fuzzy PR,
and Xu, Li, and Wang [45] extended the characterization to a more general case. In the following, we
study the characterization of LPRs.

AIMS Mathematics Volume 9, Issue 10, 28870-28894.
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Proposition 1. An LPR L = (/;})xx» 1s AC and the following equations holds:

3 . ,
(1) lik@lkj@l_/i=gs Vi<k<j.

g’
k—j+1
@---@l(k,l)k@akj:#s Vj<k.

g’

@) Ly @1

(J+D(j+2)

3) 1, ®, ®--@I , O, =i215g, <k <k <w<k,.

Based on Proposition 1, we have the following results:
Proposition 2. An NGHLPR C = (¢j)uxn 1s AC, the following equations are identical:

g n—g =g 3

(1) cﬁ@cl.,‘f@c,g.zzsg, Vi<k<j; (15)
_ _ _ _ k—j+1 ,

(2) cj”’(jﬂ)@C(CJ’.H)(H)@---(JBC(‘,’(_]),C@ckj.=ng, Vji<k; (16)
—¢ = _ —, t+1

(3) cj”j(l@ck‘l’kz@---@ck‘ilh@ckf’].ZTSg, Vj <k <k,<--<k. (17)

Proof. (15)=(17). Whent=1, Eq (17) becomes EU[ (—DE},. =, . Next, we assume 7 = n is true, i.e.,

n+l1

f(Ejil)+f@f’kz)+--'+f(@3,lkn)+f(@3,)=7g-
Then, when t=n + 1, we have:

f@+ @)+ +f@ )+ fC )V+fE )
=(f@)+ @) ++ [@ D)+ @&, )+ @)

n+l

=&/ (€ )+ (e, )+ fE,)

:”T“ g—(g-r@))+ 1@, )+ fE)

n—1 _ _ _
:Tg + 1)+ (e, )@ )

_n-1 .3
2 & 2g
n+1)+1

_ (Dl

2

So, the result is established.
(17)=(15)
As per Eq (17), one has:

r+1

S @)+ @)+ G )+ (e =—¢

t+1

S@GE)+ S Cg )4+ e )+ G =—-8

AIMS Mathematics Volume 9, Issue 10, 28870-28894.
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F@h )+ Fhy )+ f(@ )+ FE =g

Adding the above three formulas, the left side of Eq (17) is:
S@L)+F@) 4+ @)+ F @D+ S @)+ f @)+
+ @ D+ F@+ @)+ f @)+ + [ )+ @)
=(f@)+f @)+ -+ f@ )+ F@L)+ [ @)+
+[@ D)+ L@+ [ @)+ + [@ )+ @)+ f @)+ [ (@

:%g+f(a;')+f@‘i)+f @)

The right side of Bq (17) is: S0

g.
Thus,

T @) S@+fED ="

1e.,

@)+ @+ /@) =g

(g r@n)+(g-r@)+(g-r@)=3e
1e.,
f(E,%)+f<az>+f(E,;>=§g.

The results are proved. _
Theorem 2. Let C = (cj)nxn be GHLPR, and its associated NGHLPR is C = (¢;)uxn with . Let

bet = £ Gi(f(aznf@;)—g/z)j. (18)

Then, bC = (bcjj)uxn 1s called AC GHLPR with ¢
Proposition 3. Let C,, C,, -, C,,, be m NGHLPRs, then their weighted average

C=4C®XLC,®--®AC,, 4el01], X" A=1 (19)

m - m?

is also an NGHLPR, which satisfies ¢/ ®@cj=s,, Vi,j=12,--,n.
Proof. Since C,, C,, -, C,, are NGHLPRs, it follows that

E; ® EJCf - Sg ’
Then, by Eq (19), we have

AIMS Mathematics Volume 9, Issue 10, 28870-28894.
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ﬂ'lclj 1 (—D /120172
/1'6][ 1 @ 2’25_/1 2

¢l ©c) =(Ac, ® AT, ®--® AT

mij,m

®---®4,.,,

) (ﬂqcll(-B/lcﬂz(-B

@At

m ji,m

)

=4(c, @)D A, ®c;,) D@ 4,(c], Dci,)
=45, O 5, D DA4,s,

=D s,

=

The proof is thus completed.
3.2. Incomplete GHLPRs

In this part, we introduce the incomplete GHLPRs.

Tang, Liao, and Li et al. [46] extended the HLPRs into incomplete environment and defined the
incomplete HLPRs. It also needs the known values in an HFLE to be in ascending or descending order.
They further developed some produces to estimate the missing hesitant LTs. For the same reason
presented, there exist some problems for the estimated complete HLPRs. This also can be verified from
their Example 4, the estimated value ¢;5 = {s-s, s-s, 56, s—7} which contradicts with their definition for

HLPRs and requires ¢ J(q) < ¢ og*+ D) (i <j). Similarly, we define incomplete GHLPRs.

Definition 13. An 1ncomplete GHLPR is matrix C =
and the given entries satisfy Eq (11).
Generally, the incomplete GHLPR can be expressed in the form of matrix as:

(cij)nxn if some of the entries are not provided,

Sen) {es s (€l
S Gy A8y (o)
C= : : x : (20)
X :
{Crlm " nl"l} {ana " cjghz} {Sg/Z}

Definition 14. An incomplete NGHLPR is C

the given entries satisfy Eq (13) where some of the added values are E;’

with &

= (Cjj)n=n 1f some of the entries are not provided, and

Similarly, the incomplete NGHLPR can be expressed in the form of matrix as:

{Sg/Z} <{012 ) ESCN} e {Cln ) C_'liCN}
{Ezll PR Ez#ldv } {Sg/Z } {CZn , Ez#nLN}
C= : : X : . (21)
: : x :
{ Cots™ s n#lCN} {ana . _n#zCN {Sg/Z}

Remark 4. In the incomplete (N)GHLPR, we use “x” to denote the entries which are not provided by
the DM. This means that the DM does not provide his hesitant preferences due to various reasons,
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such as do not have the knowledge on the problem, do not have time, or are reluctant to provide his
judgements for some sensitive issues. For the incomplete preference relations, the number of
unknown entries “x” should not be very large. Each alternative should be compared with the other
alternatives at least once. Otherwise, some of the unknown “x” could not be estimated. In this case, it
is unacceptable. In this paper, we assume the incomplete GHLPR is acceptable. That is, all the
unknown entries “x” could be finally inferred by other entries directly or indirectly.

4. Missing elements estimation for incomplete GHLPRs based on AC
4.1. Estimation of unknown entries in incomplete GHLPRs

As the GHLPRs may be incomplete, the main purpose is to estimate the unknown entries, and
this is mainly to fill the unknown elements to get a complete NGHLPRs. Thus, we could first get an
incomplete NGHLPR. We have two methods. One is the parameter ¢ predetermined in Definition 6,
and the other is the parameter £ unknown. Thus, we design these two methods separately.

(1) The parameter ¢ predetermined based method

As the parameter ¢ is predetermined, we can obtain an incomplete NGLPR as per Definition 14.
In this case, to estimate an unknown entry, we should find a chain ¢, , ¢, , ¢ ,,¢, (<k<

k2 <+ <'k;) which only includes one unknown entry, and assume the only unknown entry is ¢, , . If

ki-1<ki, then ¢, , is the intermediate entry in the chain, which can be measured by Eq (17), that is:

i

o el V- — F(E V= FE Y= f(E
=1 [#Qj<kl<kzz<...<k,( 5 g—f(c;)-L —f(c , )-f(c,) f(ck,j)jj' (22)

. e 1 1 1 1 - — -4q .
If ki-1> ki, ¢, , 1sthe final entry in the chain, ie., ¢,_, =¢,;, ¢, equals:

— a1 t+1 _ _ —
ck(,{j =/ 1 Z ( g_f(cﬁq ) _f(ck(sz)_"'_f(ck(f,lk, )j (23)
#Q J<k<k,<..<k, 2
where #Q denotes the number of chains (¢, , ¢, , ", ¢ _,, ¢ ;), whichincludes ¢, , .

Example 2. Let S = {s:| 7 =0, 1, -, 8}, C = (c¢jj)4x4 be an incomplete GHLPR:
{S4} {SS s SS } {S2 } {SZ > S3 }

| ssess s {seesgd X
B s} {s2,8)  {s4) X
S6s85) X X 154

Step 1. We use Definition 14 to convert C to its incomplete normalized NGHLPR with ¢ = 1, and
we have:

AIMS Mathematics Volume 9, Issue 10, 28870-28894.
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{s,0 {5,850 18,8, {s,,8)

C— {85,585} {s,} {86555} X
- {S6:56F 152580} {54} X
{8655} X X {8,

Step 2. By Eqs (22) or (23), we estimate the unknown entry ¢,, as follows:

There exists only one eligible sequence {c¢,,, ¢,,, ¢, },then we have:
=1 _ -l 3 8 —1 —1 _
024_f EX —f(Clz)—f(Q”) =55

=r" (%X??—f(f‘é)—f@zl)] =S,.
Therefore,
Cyy =153,5,} .
Similarly, the other missing HFLEs can be obtained:
Cyy = 184,55} .
Step 3. The complete NGHLPR of C'is:

{8, {83,850 {8,,8,}  {8,,585}
{55,850 {84} {S6:5)  155,5,}
{s;0 Asysob sy {synss) .

{S6,S5} {S59S7} {54953} {S4}

C=

We summarize the parameter ¢ predetermined based method to estimate the unknown entries in
the following Algorithm 1.

Algorithm 1.

Input: The incomplete GHLPR, C = (¢jj)uxn.

Output: The complete NGHLPR.

Step 1. Set a predetermined parameter ¢, and we obtained an incomplete NGHLPR.

Step 2. By Eqs (22) and (23), we estimate the unknown entries, and then obtain a complete NGHLPR.

Step 3. If there are some of the values in the NGHLPR that are out of the scope [0, g] but within [—u, g + u], we
use Eq (9) to transform it.

Step 4. End.

(2) The parameter ¢ unknown based method

The above parameter ¢ predetermined based method is how to determine the parameter. In the
practice, there is no principle to determine the value. For instance, suppose an HLE c12= {s4, s7} and
#c,=3.Let ¢=0.7. The added LT is ¢}, = 0.7 x 5780.3 x 54 = s6.1, then ¢y = {s4, 57, 56.1}. How

to set ¢ is randomly. In the following, we deem that the parameter ¢ is unknown. In the initial
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normalization process, we also look at the added LT as unknown values, which also need to be
estimated by the existing values, and can be estimated by Eqs (22) and (23). We reckon this can use
the DM’s information sufficiently. Below, we still use Example 2 to explain this method.
Example 3. Let C = (c;j)4x4 be an incomplete GHLPR in Example 2.

To acquire incomplete NGHLPR of C, added LTs are also looked as unknown values.

Step 1. C is transformed into the following two LPRs:

S, 808, s, S, S5 X8
— S S S X — S S S

5 4 6 3 4 8
C'= , C* =

Se S, S8, X X s, S,

S X X s, S X X S8,

Step 2. Both C' and C* are incomplete LPRs. To estimate the unknown values “x”, the
computation is given below:
For ¢,, in C',there exists only one chain {¢,, c,,, ¢, } which includes ¢,,, then we have

. (3 _ _
0214 =/ (EX8—f(C112)—f(C411)j =53
Similarly, the other missing LTs can be obtained:
=1 _ =1 _ =1 _
G4 =845 Cpp =85, C3 =35,

C' is estimated as:

For C?, we first estimate .. There exists only one chain {¢, ¢y, C, },and we have:
ci=r" (% 8- /(c2) —f@ﬁ)) =5, and thus ;, =s.,.

For ¢,,, there exists only chain {Z., ¢,,, ¢, |, then we have:
=3x8 1@ 1@ .. nd thus T =,

for ¢, and c,, cannot be estimated in the first round. Then, C> becomes:
C’=

. . —2 -2 -2 . -2 =2 =2
Then, we continue to estimate c,, and c,;. For c,,, there are two chains {c;, ¢,, ¢, },

-2 =2 =2 -1 -2 .
{¢c;, ¢, ¢, } whichincludes c;,, and we have:
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_ (3 _ _ _ (3 _ _
0324’1 =f" (Exg_f(cé)_f(cfl)j =555 6'324’2 =f 1(5X8—f(0223)—f(c422)J =8,
Then,
—2 1 —=2,1 | =22
Gy == (G +C37)=5,.
2
Thus,

C? is estimated as:

C is estimated as:

{s,} {85,850 {85,800  {8,,53}
{55,585} {84 {S6>850  {85,8,}
{86500 {82580} {54} {s4,5,} '
{86558 {85,86) {84580} {54}

5:

Step 3. As the lower index of ¢, =s,, is 10, which falls outside the interval [0, 8], and u =2, a

transformation function y(x) = %(x + 2)is applied to the values in C, and, eventually, C is:

{54} {33335 0667} 1826675573338 826675533330
C= {S4667>53333) {s4} {853335 566678 1533335526671
{85335 806678 1526675 S1333 ) {54} {84580}
{85335 806678 {Su6672 55333 {54,585} {5}

Remark 5. Sometimes, the separated LPR may be unacceptable [47]. In such cases, we randomly set
one added LT known by the first method.
In summary, we design the following Algorithm 2.

Algorithm 2.

Input: The incomplete GHLPR, C = (¢jj)uxn.

Output: The complete NGHLPR.

Step 1. Let #cN = max{#c; | i, j €N, i #j}. If the number of values in each entry is not #cN, we fill “x” to the entry
to get an incomplete NGHLPR C = (¢;)un.

Step 2. We separate C = (¢j)nxn into #cN number of LPRs. If some of the LPRs are unacceptable, we randomly

choose one unknown entry in the LPR to duplicate its value in in its original HLE until it is acceptable;
otherwise, go to the next step.

Step 3. As per Eqs (22) and (23), we estimate the unknown values in these LPRs. The estimation process may be
iterative. Then, an NGHLPR is obtained.
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Step 4. If there are some of the values in the NGHLPR are out of the scope [0, g], but within [—u, g + u], we use Eq (9)
to transform it.
Step 5. End.

4.2. GDM with incomplete GHLPRs

In the real situation, more and more problems are solved by a group of experts. Thus, to deal
with a group of incomplete GHLPRSs is a challenging work. In the following, we devise Algorithm 3
to manage GDM problems with incomplete GHLPRs.

Algorithm 3.
For a GDM problem, let 4 = {ai, a2, **, an}, E = {ei1, 2, **, em} be sets of alternatives and DMs, respectively. 4

= (A1, A2, ***, Am)T is the normalized weight vector of DMs. The decision procedure with acceptable incomplete

GHLPR is detailed below:

Step 1. Each DM ¢, (=1, 2, --*, m) gives his/her evaluations on the alternatives by an incomplete GHLPR C, =
(Cij,t)nxn-

Step 2. By Algorithm 1 or 2, we obtain the complete group NGHLPR.
Step 3. Use the hesitant linguistic average (HLA) operator to obtain the group preference LTs for everyone
alternative.

n

1

¢,=HLA(c;,c,,  c;,) :_®1€""’ ieN. 24)
nJst

Step 4. Use Eq (3) to get the scores {(c;) for every one alternative.

Step 5. The alternatives' rankings are obtained by the values {(c;).

Step 6. End.

5. A case study

Now, there is a GDM problem which is to evaluate and select cloud server suppliers for the
computer and software school. The school has to choose five potential suppliers, including Alibaba,
Tencent, Huawei, Baidu, and Jinshan. Four aspects should be considered: usability, performance,
security, and costs.

Three leaders of the school e (¢ =1, 2, 3) (the importance vector is A = (1/3, 1/3, 1/3)7) are
organized to furnish their evaluations on the five alternatives a; (i =1, 2, -+, 5), and these DMs give
the following incomplete GHLPRs C; = (cij, )nxn (t =1, 2, 3):

{s,} X X {8,,85,8) {85584, 5 }
X {84} {86578 185587, 8} X
C = X {s5,5:} {s,} {85,55,5,} X >
{87:85:8, 0 {85,880} {85,555, } {54} {5,,85,8,}
| 155555550} X X {84,585, {s,}
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{s) x {81,545} x x
X {84} {8,,54,55} X X
C, =] {87:85,850 {86,458} {s,} {85,85,8,F {85,85,8,} |
X X {s5,85,8,} {s,} X
L X X {65555} X {s,}
{54} {82,85,8,0  {83,85,85)  {80,5,,8,} x ]
{86555, } {s,} X {55,5,585)  {835,56,5;}
Cy = {55,83,5,} X {s,} {81,858, } X
{85,87,86F  {85,8,,850  {87,86,8,} {s,} {86557, 85}
X {85,5,,8,} X {8,,5,,8,} {s,}

The following procedures are involved:
Step 1. As per Algorithm 2, we fill the missing values for these incomplete GHLPRs. For (i,

we first obtain its incomplete NHLPR C,:

{54} X X {81,85.86} {S39S6’S8}_
X {s4} {86587, X} {85,8,,85} X
_1 = X {5,,5,,x} {5} {85,55,57} X
{87,85,8,5  {85,8,8)  {85,55,8} {s,} {84,55,5,}
_{S5,S2,S0} X X {54585586} {s,}

Then, we have

B = (Gs S@h) - [ @) - [(@h) - /@ mj
(28— £ (@)~ f@is )~ £ @) +(2x8— (@)~ (@)~ £ (@) +
(_ x8— f(cz41) f(gétlll)jj

NU)

if '((20-6-3-4-5)+(16-5-4-5)+(16-6-3-7)+(12-5-7))
=S

—

R Gs F@)~f@)— [ @) - f(cmj
(2x8— f (@)~ (@) - f@ )+
(2x8- /@)~ S @)~ @)+ ( x8— [ (@)~ f (@, D
=if1((20—7—5—3—2)+(16—7—3—2)+(16—7—5—3)+(12—7—3))
=385

5132,1=;f ((ZXS @)= (e~ f(csu) (_XS @) - f(c4ll)j

AIMS Mathematics Volume 9, Issue 10, 28870-28894.



28886

el
e
Z

_Q
w

_Q
w
=

Csz 1=

Csz 1=

T((16-8-2-0)+(12-8-2))=s

M (2x8- £ @) - f@is)— f@)))+ (—x8 S @)~ f(CmD

((16-3-4-5)+(12-3-T7))=s

- 2X8 f(c341) f(c451) S 511) ( x8— f(c341) f(c411jj

1((16-5-3-2)+(12-5-3)) =+

N T N

((16-7-2-0)+(12-7-2)) =5

S S

T (2x8= f (@)~ £ (@)~ [ (@) + ( x8— f(Cay))—f (Cs B

T((16-6-3-4)+(12-5-4))=s

~ S

- 2X8 f(cz31) f(c341) f(C‘451) (2X8 f(cz41) f(%ﬂ)j

=—f((16-7-5-3)+(12-7-3)) =+,

(
(
(
A
(
1(2x8 f@) = @)= @)+ ( x8—f(Ci) = f(cmjj
(
51
(
ot
(

6_'532,1=f7 EXS f(cz41) f(c451)j=fl 12_8_2)=S2
6_'513,1 =f7 ixg f(0341) f(c451) =f 1(12 4) =S5
0531 fﬁ ixg f(0341) f(c451)j S 1(12 5 3)=S4

&=/ 3x8 @) f@) | =1

J (12-7-2)=s,
5233,1=f‘1(i><8 S@)- f(Ele)j [ (12-7-0)=s;.

Then, we have:

— — —3 —1 — —3
Co11 =875 Gy =855, Co1p =S84, G =S5, G311 =383, G =353,

—1 — -3 -1 — -3 —3
Cos1 =S5, Cos1=86s5> Cos1 =86, C351 =83, G351 =84, G5 =955, Cypy =53.

Then, we obtain a complete NHLPR C, :
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{s} {51:805,85 1 {85,85,85F {81,85,86)  {85,56, 8%} ]
{87,855>54) {54} {86:87,85)  {85,87,85)  {85,865,5)
_1: {85,858 {85,8,,85} {54} {83,85,8;}  {83,5,,55}
{57,858, {8588} {85,858} {84} {84,55,8,}
L {85,50,80)  {85:81558, ) 185,85,85) {84555, {s,}
Similarly, we obtain
) {sesesy) nsess) {85080 5,858 ]
{85:54,5,) {s,} {82,5,,855 {81,858} {8,,85,585)
Cy=|{57,54:8} {56,845} {54} {85,85,8,}  {85,85,5,}
{85858 ) {87,85,8) {85,858} {s} {S5553,8,}
_{Soassass} {85555585F  {86>55>5,1  {S0>55, 55} {s,}

By y(x) = 2 (x + 1), we convert it to an NGHLPR as

{s,} {55200 54000040005 151.600> 54,0002 4800}
{54,800 54,0005 S4.000 } {s,} {5,405 54,0005 S4.800
C, =] {S6.40054000> 532007 155.600>54.000553.200 ) {84}

1572005532000 508000 156.400> 532000 08005 1548002532005 S1.600 )

L {55,005 548005532000 1572005 548005532005  {55.600> 54,8005 S4.000
{508005 548005572008 150532005 Sa800 )
{51600 548005572005 50,8002 532005 54.500 1

{55200 545800256400 52,4005 53,200 54000} |-

{s,} {72005 532005 S0.800 )

{50.800> 54,8005 57200} {s,}

For DM e3, the complete NGHLPR is

{s,} $59222> 5311115400000 15311112 5488395 57,5556 )
{55778 S 488895 Sa.0000 {54} {54.8880> 5511115 54,4044}
Cs =| {54880> 5311115504444 15311115 5288805 53,5556 § {s,}

{S7A5556 4 S6.6667 4 S5A7778 } <{‘S4.8889 4 S4.0000 4 S3A1 111 } {S6A6667 4 S5A7778 4 S4.0000 }

L {85778 5288895 50} {84 85800 522200513333 ) 15488895 53.1111> So4aas )
{504044>51 333305220 ) 1522222551115 55,0000 )
5511115540000 Sas889 ) 15311112 557778 > S6.6667 )

{8133335 5222225 54.0000) 15311115 Sa8889> 57,5556 ) |-

154} {85778 S6 6667 575556 }
{8220005 5133335 S0.4044 154} ]
Step 2. Proposition 3 is utilized to fuse all individual complete GHLPR C, = (G )wn (E=1,2,3)
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into an NGHLPR C= (c¢;j)n=n as

{84} 15514075 5320370 400008 52,5704 >S4.6206 55,7852 1
{55.8593> 5479635 S4.0000 § {s,} {54.42965 5537042 Sa.0815 )
C = {S5.4206> 3370455221488 {53.5704> 262065 20185} {54}

{S074815 5371115 55.14075 15174075 5477045 S6.9333
1552370 526675 566063 152.07045 55,1503 S5.5222 1

{S2A51 112 S4A0074 4 SSASOOO } {S2.8370 4 S4.0296 > S5A5185 }

{s,} {55.6593> 5428895 S3.4519

{52.34075 5371115 Sa 5481} {s,}

Step 3. The preference LTs for each alternative a; (i =1, 2, -+, 5) are:

Cl = {S2.2400 4 S4.0630 > SS.1718 } H CZ = {5440993 2 S4.9185 2 S4.9200 } H C3 = {S3.6696 2 S3.6074 2 S4.29O4} H

Cy = 18543260 5386072527630+ Cs = 15455855 53,5045 52,8545 ) -

Step 4. As per Definition 4, the score of each alternative {(b;) is:

C(b)=3.8250, £(b,)=4.6459, £(h,)=3.8558, £(b,)=4.1877, ((b)=3.6546.

Step 5. According to the {(b;), we rank the alternatives:

a) > a4 > asz > ay >as.

Therefore, az is the best choice, i.e., the school should choose Tencent as its final decision.

6. Comparative analysis

{572519> 5428800 28503 ) 15476305 52.73330S13037) 1554889 5399265 52,2000 )

L {S625932 532206510667} 155.02965 5284075521778 15516305 53.9704> S2.4815 §

To show the performances of the presented method, in the following, we do some comparisons

with the published methods.

As per Eq (8), the consistency degree of GHLPR C=(c;j).x» can be calculated by the difference

between ¢ @ ®s,, and ¢’ ®c; @ Thus, we propose the CI(C) as follows:

2 1 & &
CI(O)= gl
© n(n—1)(n-2)g #c; ,Zk; "

where

el =|f @) +gl2-f@E@)- 1@

Obviously, 0 < CI(C) <I. The smaller the CI(C), the more reliable the DM.

(25)

(26)
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6.1. The performance of GHLPR

In Example 1, if we use Eq (25) to measure the CI of C, which is derived by Zhu and Xu [17]’s
definition of HLPR, we obtain CI(C)=0.026. This shows that C is not AC. However, if we use the
proposed definition of GHLPR in this paper, we have CI(C)=0, which denotes that C is perfectly AC.
This also conforms to our analysis, that is, the information provided by DM is consistent. However, all
the existing HLPRs use Eq (4), and as we have pointed out in Example 1, the main difference is that
the existing HLPR should reorder the values in HLE. If we do not sort the values, the obtained HLPR
will conflict with Eq (4). On the other hand, if we sort these values, the obtained HLPR will not be
consistent, the DM’s initial information is distorted. Wu, Zhou, and Chen et al. [22] also found the
problem; please see their comments after Example 3. This also can be verified in so many other papers.
Thus, the reordering of values is not reasonable. This shows the reasonableness of the GHLPR.

6.2. The performance of normalization

If we use Zhu and Xu [17]’s normalization method to obtain the NHLPR, and &= 1, we have:

{84} {85,850 {8580  {86,56}
= _ {53580 {sgb Assssb {sy.8,) .
Zh {S6,85F {85,585} {84} {5,,5,}

{55,808, {808} {84}

By Eq (25), CI(Czn.) = 0.0365.
However, if we use the proposed method, we have:

{s,b 85851 {85850 156,86}
{s3850 syt {ss8) {sg.ss)
{86:85F {85:86)  {sgb {84587} .

19250 8480 st {8,

By Eq (25) CI(B) = 0.0234, which is smaller than 0.0365, denoting the obtained NHLPR based on
AC is more consistent than the existing one. If we further investigate, this is because Zhu and Xu [17]’s
normalization method randomly adds the value, while the proposed method uses the AC property to
add the values. Furthermore, we can find that the added LPR is:

C=

C’ =

which is perfectly additively consistent LPR. Meanwhile the obtained C, is:
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=
CZ/m -

which is not AC LPR, and this is why the CI(Cz.) is larger than CI(C).
Additionally, in the obtained C by the proposed method, ci2 = {s3, s2}, if we reorder the values,
will be more inconsistent. This also shows that the proposed GHLPR is more reasonable.

6.3. Comparison with other methods

In the following, we do detailed comparisons with the other existing methods, which also study the
incomplete HLPRs. The results are summarized in Table 2. From Table 2, we can see that all the other
methods rearrange the values in HLTS, in which the consistency and the concept of HLPRs will conflict

with each other. In the following, we describe the drawbacks of the other methods, respectively.

Table 2. Comparisons with the existent methods.

Rearrange Add values Consistency Methods to estimate missing

values type elements
The proposed method N Y AC Estimated by AC property
Song and Li [38] Y N MC Mathematical programming
Liu, Ma, and Jiang [35] Y Y AC Optimization models
Wu, Li, Merigo etal. [34] Y Y AC Integer programming
Li, Zhang, and Yu [36] Y Y AC Optimization models

Song and Li [38] constructed the mathematical programming models to estimate the missing
elements based on the MC. However, their method only can determine one MC LPR, and, thus, the
estimated missing HLT only has one value. This may obey the real situation, as the determined
elements only have one linguistic term, which is not the hesitant. Another is that, for the MC of
HLPRs, the lowest and largest linguistic terms cannot be used, i.e., the evaluation values cannot be
equal to so or sg. However, in the real application, the lowest evaluation (so= extremely poor) and the
best evaluation (ss = extremely good) values are always offered by the DMs. This limits the
application of Song and Li [38]’s methods.

Liu, Ma, and Jiang [35] used the worst consistency index (WCI) and best consistency index
(BCI) to determine the lower and upper bounds of the missing elements of an HLPR. However, as
we can see from their example (Example 1 in [35]), the estimated HLTs have a wide range, for
example, {so, -*, S¢}. This may be far away from the real situation, as the provided HLTs are only one
or two linguistic terms, but the estimated elements have 7 linguistic values.

The LCME principle for normalization HLTSs in [22]. As we can see, their method will add more
elements to an HLTS, which will cause more inconsistency. Furthermore, Wu, Li, Merigo et al. [34]
proposed an integer programming model to deal with incomplete HLPRs. As we can see, in their
examples, the LCME method will generate some redundant LPRs, and the CI obtained by their
method will be larger than ours.

Li, Zhang, and Yu [36] used the average consistency index (ACI) to impute the missing HLTSs.
However, their method also only can determine one linguistic term, and needs to preset the threshold
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of ACI. Different thresholds may generate different missing values, and there is no rule how to set
the thresholds. Tang, Liao, and Li et al. [46] also studied the incomplete HLPR and they used the
existing definition of HLPR. In their Example 4, the estimated value ¢, = {s-s, s-s, s, s-7}, which

contradicts with the definition of HLPRs, and requires c; @) <c @ (; < j). This also shows the

unreasonableness of Tang, Liao, and Li et al. [46]’s definition of incomplete HLPRs.
7. Conclusions

In the GDM, the DMs may use linguistic terms to articulate their pair-wise preferences over a
given set of alternatives. Then, these DMs’ preferences are organized into an HLPR, and each HLE
has some linguistic values, and these different linguistic values are sorted in the existent studies.
However, our illustrated example shows that this will obey or distort the DMs’ initial preferences and
also conflict with the AC property of HLPRs. In order to rectify the unreasonable arrangement of the
sorting values, we redefined the HLPRs, which is named GHLPR in the present work. The NGHLPR and
incomplete GHLPR (NGHLPRs) are defined accordingly. We also have investigated the characterization
of additively consistent LPRs, and the characterization of LPRs is extended to accumulate the NGHLPRs.
In the real application, the DMs may provide incomplete GHLPRs, and we have developed two
algorithms to fill the unknown values in NGHLPRs. The first algorithm is based on the traditional
normalization idea, which adds some linguistic values to the shorter HLEs until all the known HLEs in an
GHLPR have the same length. The second algorithm is based on the AC property of GHLPRs. The
shorter HLEs are also treated with unknown linguistic terms, and these unknown linguistic terms should
be estimated by the known values. Both algorithms to estimate the missing values are based on the
characterization of NGHLPRs. We also develop an algorithm to solve GDM with incomplete HLPRs. A
case study is also furnished to illustrate how to perform the algorithms. A comprehensive comparative
study is carried out to show the merits of the proposed methods.
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