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Abstract: Accurate prediction of sewage flow is crucial for optimizing sewage treatment processes,
cutting down energy consumption, and reducing pollution incidents. Current prediction models,
including traditional statistical models and machine learning models, have limited performance when
handling nonlinear and high-noise data. Although deep learning models excel in time series prediction,
they still face challenges such as computational complexity, overfitting, and poor performance in
practical applications. Accordingly, this study proposed a combined prediction model based on an
improved sparrow search algorithm (SSA), convolutional neural network (CNN), transformer, and
bidirectional long short-term memory network (BiLSTM) for sewage flow prediction. Specifically, the
CNN part was responsible for extracting local features from the time series, the Transformer part
captured global dependencies using the attention mechanism, and the BILSTM part performed deep
temporal processing of the features. The improved SSA algorithm optimized the model’s
hyperparameters to improve prediction accuracy and generalization capability. The proposed model
was validated on a sewage flow dataset from an actual sewage treatment plant. Experimental results
showed that the introduced Transformer mechanism significantly enhanced the ability to handle long
time series data, and an improved SSA algorithm effectively optimized the hyperparameter selection,
improving the model’s prediction accuracy and training efficiency. After introducing an improved SSA,
CNN, and Transformer modules, the prediction model’s R* increased by 0.18744, RMSE (root mean
square error) decreased by 114.93, and MAE (mean absolute error) decreased by 86.67. The
difference between the predicted peak/trough flow and monitored peak/trough flow was within 3.6%
and the predicted peak/trough flow appearance time was within 2.5 minutes away from the monitored
peak/trough flow time. By employing a multi-model fusion approach, this study achieved efficient and
accurate sewage flow prediction, highlighting the potential and application prospects of the model in
the field of sewage treatment.
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1. Introduction

With the ongoing urbanization process and the constant need for water environment improvement,
the demand for urban sewage treatment is increasing, placing greater operational pressure on sewage
treatment plants. In this context, accurate prediction of sewage flow plays a crucial role in the operation
of sewage treatment plants [1]. Timely and accurate sewage flow prediction not only helps managers
better allocate resources, optimize treatment processes, and reduce energy consumption, but also aids
in preventing and responding to sudden sewage treatment demands and potential environmental
pollution incidents [2]. For example, during heavy rainfall, sewage treatment plants can adjust
treatment processes in advance based on predicted flow changes to minimize the loss which overflow
and pollution accidents may bring [3]. Moreover, changes in sewage flow not only affect the normal
operation of sewage treatment facilities, but also directly relate to environmental protection and public
health [4]. Therefore, establishing effective sewage flow prediction models has become an urgent issue
for modern sewage treatment plants.

Currently, mainstream sewage flow prediction models mainly include traditional statistical
models [5] and machine learning models [6]. Traditional statistical models such as autoregressive
integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) rely on the historical trends
and periodic changes of time series data. They have solid theoretical foundations and simple model
structures but perform limitedly when dealing with nonlinear and high-noise data [7]. Li et al. [8]
adopted an ARIMA model to reduce the delay of rainfall data used as model input. This model was
used to predict sewage flow in two real sewage pumping stations (SPS) with different hydraulic
characteristics and climatic conditions. Liu et al. [9] employed the ARIMA method to establish an
emergency prediction model for water pollution in different sections of the Qingzhang River and
formulated adaptive urban river water purification strategies based on its variation patterns. Machine
learning models such as support vector machines (SVM) and random forests (RF) predict by training
on large amounts of historical data, demonstrating strong nonlinear fitting capabilities. Ekinci et al. [10]
developed a prediction model based on machine learning algorithms to accurately and quickly predict
sewage sludge. They tested the predictive performance of different machine learning algorithms using
data obtained from a real advanced biological wastewater treatment plant in Kocaeli, Turkey. Machine
learning models typically require large amounts of historical data for training, necessitating high-
quality and large datasets, and still have limitations in handling complex spatiotemporal relationships.

Additionally, deep learning models such as long short-term memory (LSTM) and bidirectional
LSTM(BiLSTM) have shown outstanding performance in time series prediction [11]. Yaqub et al. [12]
proposed and developed a neural network based on LSTM to predict the removal efficiencies of
ammonia (NH-N), total nitrogen (TN), and total phosphorus (TP) in an anaerobic-anoxic-oxic
membrane bioreactor (A-A-O MBR) system. Farhi et al. [13] proposed a novel machine learning
method based on LSTM architecture to predict anomalies in sewage treatment plants several hours in
advance. Alfwzan et al. [ 14] enhanced water quality prediction by combining BiLSTM networks with
computational fluid dynamics (CFD). This combined model leveraged the synergy between deep
learning and fluid dynamics simulation to overcome the limitations of existing methods, thereby
improving prediction accuracy and efficiency. Despite the excellent performance of BiLSTM in
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handling time series prediction, it still faces several challenges in practical applications [15]. First, due
to the need for both forward and backward computation paths, BILSTM models have high computational
and memory requirements, leading to relatively low training and inference efficiency [16]. Second, while
BiLSTM models can capture long-term temporal dependencies, their complex model structure can
easily lead to overfitting, especially with limited data [17]. Moreover, BILSTM models require the
complete time series data for bidirectional computation, posing latency issues for prediction needs [18].
Hence, finding a model that can enhance prediction efficiency and accuracy is particularly important.

The performance of prediction models largely depends on the selection of hyperparameters,
making hyperparameter optimization a key step in improving prediction accuracy. Traditional
hyperparameter optimization methods such as grid search and random search, while simple and easy
to implement, are inefficient when dealing with high-dimensional and complex models [19]. Intelligent
optimization algorithms like genetic algorithm (GA), particle swarm optimization (PSO), and
Bayesian optimization utilize mechanisms such as evolution and swarm intelligence to find better
hyperparameter combinations in a shorter time [20]. Wang et al. [21] established a Tent BP(back
propagation) SSA-based hybrid model combining the tent chaotic map and sparrow search algorithm
(SSA) for predicting the effluent quality of sewage treatment processes. Farzin et al. [22] used artificial
neural networks and support vector regression (SVR) models to predict biogas production in anaerobic
digesters at a municipal sewage treatment plant in southern Tehran, combining GA and PSO for model
hyperparameter optimization to enhance training performance and obtain optimal input parameters. Ye
etal. [23] developed models to predict effluent TN (total nitrogen) and TEC (total energy consumption)
by selecting influent quality and process control indicators as input features, exploring the predictive
performance of machine learning methods under different random seeds, and using moving average
for data amplification and Bayesian algorithms for hyperparameter optimization. Intelligent
optimization algorithms are widely used in hyperparameter optimization of machine learning models
due to their strong global search capability and fast convergence [24]. However, these algorithms also
face issues such as high computational complexity, susceptibility to local optima, and sensitivity to
initial parameters [25]. Therefore, there is a need to develop more efficient optimization algorithms
for hyperparameter optimization to further improve the training efficiency and prediction performance
of sewage flow prediction models.

As mentioned above, to address research gaps, we propose an innovative prediction model
integrating an enhanced SSA algorithm, CNN, Transformer, and BILSTM for sewage flow forecasting.
This novel approach utilizes CNN for extracting local features and detecting short-term patterns [51],
Transformer for capturing global dependencies through its attention mechanism, and BiLSTM for
advanced temporal processing of the features. The improved SSA algorithm optimizes hyperparameter
selection within the CNN-Transformer-BiLSTM framework, aiming to surpass the limitations of single
models. The novelty of this model is combining CNN, Transformer, and the BILSTM model. Moreover,
the introduction of the improved SSA is also an innovation. This multi-model fusion aims to enhance
the prediction accuracy and generalization, offering a cutting-edge solution for efficient sewage flow
prediction. The contributions of this paper are as follows:

(1) Development of a CNN-Transformer-BiLSTM model for sewage flow prediction to address
the challenges of BILSTM in capturing global important features and overfitting.

(2) A multi-strategy integrated improved SSA algorithm is proposed to enhance training
efficiency and prediction performance.

(3) Achieving efficient and accurate sewage flow prediction using a multi-model fusion method
based on an improved SSA-CNN-Transformer-BiLSTM framework, overcoming the limitations of
single models.

AIMS Mathematics Volume 9, Issue 10, 26916-26950.
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2. Materials and methods
2.1. Moving average smoothing

Moving average smoothing (MAS) [26] is a commonly used data preprocessing technique widely
applied in signal processing and time series analysis. Its primary objective is to smooth data and reduce
the influence of random noise, making the data trends more apparent. The basic idea of MAS is to
calculate the average of data points within a certain range around each data point in the data sequence
and replace the original data point with this average. This process slides a fixed-size window over the
data sequence. We used MAS to process the sewage flow: one spanning from 07:05:00 on December
4, 2023, to 14:45:00 on January 12, 2024, and the another one spanning from 00:00:00 on April 1,
2024, to 16:35:00 on May 7, 2024. After applying MAS, the sewage flow trend became more obvious,
which is conducive to more accurate prediction of the flow in the future.

Considering a data sequence {x.%.L.x} with a sliding window size @ (typically an odd
number), the smoothed value »; for each data point X, can be represented as:

+[w/ 2]

Z Xjo (1)
7[w/2]

where [ 1signifies floor division to ensure alignment of the window center point. The data sequence
processed by MAS exhibits reduced fluctuations compared to the original data sequence, better
reflecting the overall data trend. Overall, MAS is a fundamental and practical data smoothing method
that effectively enhances data quality and interpretability in various application scenarios. Therefore,

MAS algorithm is selected in this study to preprocess the wastewater flow dataset, aiming to improve
the quality of predictive data.

i

1
Yi=—
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2.2. CNN-Transformer-BiLSTM prediction model

The combined prediction model constructed in this study integrates CNN [27], BILSTM [28], and
Transformer [29] architecture, referred to as the CNN-Transformer-BiLSTM model. The architecture
of this model is illustrated in Figure 1, comprising convolutional layers, pooling layers, Transformer
layers, BILSTM layers, and fully connected layers. Combining the advantages of these three methods,
we can obtain more powerful sequence modeling capabilities, from local to global and from one-way
to two-way, and improve the performance of the model in an all-round way.

The CNN is utilized to capture local features and detect short-term patterns in sewage flow data,
processing spatial hierarchies to identify critical features influencing flow patterns. However, CNNs
alone struggle with understanding temporal dependencies and long-range relationships.

To address this, the Transformer model is integrated for its advanced attention mechanism, which
captures global dependencies by evaluating the importance of different time steps in the sequence.
This enhances the model’s ability to grasp complex temporal relationships over extended periods. The
BiLSTM networks are also included to further enhance temporal processing. BILSTM improves upon
traditional LSTMs by considering both past and future contexts, processing data in both forward and
backward directions to capture dependencies across a broader temporal scope.

This synergistic combination leverages the CNN’s spatial feature extraction, the Transformer’s global
attention, and the BiLSTM’s bidirectional temporal processing, addressing the individual limitations of
each component and optimizing the model’s overall effectiveness in sewage flow forecasting.

AIMS Mathematics Volume 9, Issue 10, 26916-26950.
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The model first extracts multi-scale features through convolutional layers, followed by pooling
layers for feature selection and simplification, emphasizing important features and reducing
redundancy to enhance the model’s correlation analysis capability. Utilizing Transformer layers to
process one-dimensional convolution outputs, the model identifies and utilizes positional information
in the time series. After deep learning of data sequence features by BiLSTM layers, the prediction
results are output through fully connected layers, achieving precise extraction of temporal features.
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Figure 1. Model framework diagram for CNN-Transformer-BiLSTM.
2.2.1. CNNs

CNNis are a special type of feedforward neural network designed with convolution operations and
deep architectures to address issues such as spatial information loss, low processing efficiency, and
overfitting. With continuous improvements and optimizations in technology, CNNs have been widely
applied in recent decades in areas such as image processing, fault diagnosis, and object recognition.
CNN is mainly used to extract features from the data, so as to have a clearer understanding of the
features of the data and facilitate subsequent prediction. The structure of CNN typically includes input
layers, convolutional layers, pooling layers, fully connected layers, and output layers. Depending on
the dimensionality of the data being processed, CNNs can be categorized into 1D convolution, 2D
convolution, and 3D convolution. 1D convolution is used for processing time series data and language
text, as illustrated in Figure 2.

AIMS Mathematics Volume 9, Issue 10, 26916-26950.
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Figure 2. Model framework diagram for CNN.

(1) Convolutional layer

The convolutional layer is the core component of CNNs, responsible for extracting features from
input data using specific convolution kernels. This layer performs convolution operations by sliding
kernels over input data to generate feature maps. Unlike traditional fully connected layers, this design
shifts to local connections and parameter sharing among kernels. Different convolution kernels are
configured with distinct parameter sets, significantly reducing model complexity and the number of
parameters. In 1D convolutional networks, operations are performed along a single dimension,
adjusting channel numbers to achieve dimension transformation and feature extraction goals. The
calculation process of 1D convolution is described as follows:

Vi = zwi “Xitno (2)
i=l

where ¥, denotes the output at a time step ¢, the number W, represents the convolution kernel, and
¥,_;.; 1s the input time series. Figure 3 illustrates the process where a 5x1 feature input is processed
through a 3x1 convolutional kernel, resulting in an output. In this example, the input data is already
processed by MAS, which spans from 07:05:00 on December 4, 2023 to 14:45:00 on January 12, 2024,
and is convolved with the kernel to extract features. Additionally, another set of input data spanning
from 00:00:00 on April 1, 2024 to 16:35:00 on May 7, 2024 is similarly processed.
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Figure 3. A process with one-dimensional convolution.

(2) Pooling layer

The pooling layer is typically positioned after the convolutional layer. Its main purpose is to use
down sampling to lower the size of feature maps produced by the convolutional layer. This reduces
computational flow and network parameters, albeit it may result in some feature information being
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lost. Common pooling methods include max pooling and average pooling. In max pooling, the
maximum value within each selected region serves as the representative value for that region, while
average pooling computes the average of all values within the region to produce the output. An
example process of max pooling is illustrated in Figure 4.

1 2 o2
2| 1|0

Figure 4. Max pooling operation.

(3) Fully connected layer

The fully connected layer follows the convolutional and pooling layers. Its role is to transform
the output data from previous layers into a one-dimensional array, which serves as the input. It is the
last phase of the model and is closely related to the earlier structures. It is in charge of the last data
dimensionality modification and makes every effort to retain as much of the important information as
possible. In CNNs, ReLU (rectified linear unit) activation functions are commonly applied after the
pooling layer to enhance learning efficiency and processing capability.

2.2.2. Transformer feature extraction network

The transformer model gives weights to feature vectors to better predict sewage flow. The
Transformer model first gained prominence in the field of machine translation, and its exceptional
ability to capture complex relationships between positions in sequence data has garnered significant
attention in academia. The core of this model consists of three main parts: an encoder, a decoder, and
an attention mechanism.

The encoder includes an input layer, a positional encoding layer, and four layers of identical
encoding units. The input layer is typically a fully connected layer that maps time-series data into a
predefined dimensional space within the model. After the CNN layer performs feature extraction and
dimensionality transformation on the input data, this processed data serves as the input to the
Transformer model. The Transformer’s input layer then projects this data into a higher-dimensional
space suitable for the model’s operations.

The positional encoding layer adds positional information to each element in the sequence,
ensuring that the model can recognize the order of elements. This positional information allows the
Transformer to understand the relative position of elements in the sequence, which is crucial for
processing sequential data accurately.

The position-encoded sequence data is then fed into four encoding units. Each encoding unit
processes the data using residual connections and layer normalization to maintain data integrity and
regularity during transmission. The use of residual connections helps in preserving important
information by allowing gradients to flow through the network without vanishing, while layer

AIMS Mathematics Volume 9, Issue 10, 26916-26950.
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normalization ensures stable and efficient training by normalizing the outputs of the previous layer.

The decoder predicts outputs based on the encoder’s output and the previous decoder outputs at
each time step, a process known as dynamic decoding. The decoder uses multi-head attention
mechanisms to focus on different parts of the input sequence and the previously generated outputs,
enabling it to generate accurate predictions by attending to various aspects of the data.

(1) Self-Attention mechanism

The attention mechanism, proposed by Mnih et al. [30] in 2014, aims to selectively focus on the
most critical parts of vast amounts of information for intensive processing, while disregarding
relatively unimportant information. By using this technique in sewage flow prediction models, the
model can focus on the most important relationships between the input and output sequences, giving
more weight to the relevant data in the prediction results and less weight to the less relevant data.

As a branch of the attention mechanism, the self-attention mechanism reduces the model's
reliance on external information, focusing on exploring inherent connections between data or features.
This mechanism demonstrates good performance in analyzing the characteristics of sewage flow and
its influencing factors. By calculating weights within input vectors and adjusting them, it effectively
captures interactions between preceding and subsequent elements in time-series data. The model
architecture of the encoder combined with the self-attention mechanism is depicted in Figure 5,
illustrating its structural layout for sewage flow prediction.

_______________________

Feedforward neural

network
N

Self-attention

Encoder Self-
________________________ attention

Figure S. Encoder and self-attention mechanism architecture.

For each input vector X of the time series, it is mapped into three different spaces to generate
query vector Q, key vector K, and value vector V. These are linearly mapped into three matrices ¥,
W, andw,.. The updated steps are as follows:

1)  Generate query vectors:

0=X W,
K=X-W, (3)
V=X-W,.

2)  Use scaled dot-product as the attention scoring function:

AIMS Mathematics Volume 9, Issue 10, 26916-26950.
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Attention(Q,K,V) = Soﬁmax(M) -V, 4)

D,

where O K/ represents the scores for each sample in the vector, and +/D, represents the training
gradients that need to be optimized.
3) Normalize the residual network and use the result as the input of the feedforward neural network.
(2) Multi-head attention mechanism

The multi-head attention mechanism [31] is built on several self-attention units, which are
parallelly combined. Each self-attention unit is also called a ‘head’, and each head focuses on different
information dimensions. Thus, by combining multiple self-attention heads that focus on their
respective priorities, the multi-head attention mechanism can achieve more extensive and in-depth
information captured when dealing with complex tasks. Each head operates independently without
interference from each other. Figure 6 illustrates the architecture of the multi-head attention
mechanism.

L1 | w°

Positional j:T:I W) 7!
encoding W, R
X H o 4

Figure 6. Structure of the multiple attention mechanism.

The concatenation formulas for the multi-head attention mechanism are:

Multi(Q,K,V) = Concat(haedl,headz)-Wo, (5)

haed, = Attention(QWE , KW, . yw). (6)

The basic structure of the Transformer is shown in Figure 7. The left part illustrates the encoder
structure, where each layer consists of two sub-layers: the first sub-layer is composed of the multi-
head attention mechanism, residual connections, and layer normalization, and the second sub-layer is
composed of the feedforward fully connected networks (FFN), residual connections, and layer
normalization.

AIMS Mathematics Volume 9, Issue 10, 26916-26950.
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Figure 7. The basic structure of Transformer.
2.2.3. BIiLSTM

LSTM neural networks are a type of RNN (recurrent neural network) specifically designed to
address the issue of long-term dependencies that traditional RNNs struggle with. All RNNs have a
chain-like structure of repeating neural network modules. In standard RNNSs, this repeating module
has a very simple structure, such as a tanh layer. LSTM neural networks replace the simple hidden
layer neurons of RNNs with gate mechanisms, which can effectively tackle long-term dependency
issues and perform exceptionally well on sequential tasks. LSTM neural networks exhibit excellent
nonlinear fitting capabilities and have become one of the most popular frameworks in deep learning.
They resolve the issue of insufficient cognitive abilities in shallow networks. The specific principles
for LSTM are in the attachment.

Traditional LSTM networks can only encode forward based on historical states and cannot
consider the influence of backward sequences. However, changes in sewage flow data are closely
related to time development, where future data typically resemble past data. To achieve more
comprehensive and accurate predictions, it is necessary to consider the impact of backward sequences.
BiLSTM networks introduce the concept of bidirectional computation. They enable simultaneous
forward and backward computations based on the original LSTM network. BILSTM networks can
extract both forward and backward information, better exploring the temporal characteristics of sewage
flow data and further improving the accuracy of prediction models. BILSTM has significant
advantages in wastewater flow prediction. Through a bidirectional processing mechanism, BILSTM is
able to capture both forward and backward information in time series. Its long short-term memory (SM)
allows BiLSTM to effectively deal with long-term dependency problems and capture seasonal changes
and long-term trends in traffic data. This capability of BILSTM allows it to provide more accurate and
stable results when predicting wastewater flows. By integrating historical data, BILSTM not only takes
into account past traffic trends, but also incorporates future information to improve prediction accuracy.

The data processed by the Transformer layer is compiled and decoded, and the resulting feature-
extracted data is then used as input for the BILSTM. During the forward pass, the input at current time
t is composed of external input data and the output value of the previous unit at time #-1. In contrast,
during the backward pass, the input at time ¢ requires the output value of the state at time #+1 as the
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output of the previous unit differs from the forward pass. The structure diagram of the BiLSTM
network is shown in Figure 8.

Output
Layer Yo N

Activation
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ayer ./ Y
0 2

Input
Layer 1

Figure 8. Model framework diagram for BILSTM.

The final output of the BILSTM network is determined by both the forward and backward
outputs. Therefore, the inputs and outputs of the forward and backward passes are different, as
shown in Eqgs (7) to (10):

h=fWx +Uh_ +b), 7)
h=fWx +Uh_ +b,), @®)
h=hoh, ©)

O, =g(Vh, +b,), (10)

where llzt denotes the forward output of the LSTM network, %, represents the input layer weight
matrix for forward propagation, U, represents the hidden layer weight matrix, and & represents the
bias vector. 4, denotes the backward output of the LSTM network, 7. represents the input layer weight
matrix for backward propagation, U. represents the hidden layer weight matrix, and b, represents
the bias vector. O, represents the final output value, V' represents the output layer weight matrix, b,
represents the bias vector, and @ denotes concatenation.

2.3. An improved SSA

In this study, six benchmark test functions with unimodal and multimodal characteristics, all
having optimal solutions of 0, were selected to test the performance of SSA and proposed an improved
SSA. The basic information of the selected benchmark test functions was shown in Table 1. The first
four functions are unimodal, and the last two are multimodal functions. Additionally, the parameters
for both an improved SSA and SSA algorithms were set as follows: The initial population size was set
to 20, the maximum number of iterations was set to 1000, the warning value was set to 0.6, the
proportion of discoverers was set to 0.7, and the proportion of the population perceiving danger was
set to 0.2. To ensure the fairness and effectiveness of the experiments, all tests were conducted in the
same operating environment.

AIMS Mathematics Volume 9, Issue 10, 26916-26950.
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Table 1. Benchmark functions.

Function Expression Dimension Range Optimal value
Sphere r 5,

J(x) =Y X ]
(F1) ) 30 [-100,100] 0
Schwefel 2.22 " "

F,(x) = x|+ X, -

(F2) 2 bl + 1 1] 30 [-10,10] O
Schwefel 12 1 ()2 3 (3 x))° 30 [-100,100] 0
(F3) |
Rosenbrock () _ f[loO(x,-H —x))PH(x -1 30 [-100,100] O
(F4) purt ]
Griewank

X)=——0 x =1 |cos(—=)+1 -
(F) F(x) 40011 H (\[) 30 [-5.12,5.12] 0
éag;rlgln Fy(x)= Y [x ~10cos(27x, )+ 10] 30 [-600,600] 0

i=1

Figure 9 shows the convergence graphs of the algorithm optimization benchmark test functions.
From the convergence curves of an improved SSA and SSA, it can be observed that an improved
SSA’s convergence speed is significantly faster than SSA’s for both unimodal and multimodal test
functions, requiring 10-25% less iterations to find the optimal solution of the function.
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Figure 9. Algorithm optimization benchmark function test results.
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This indicates that an improved SSA has a stronger optimization capability. In the multimodal
test functions, an improved SSA’s convergence curves are consistently lower than those of SSA,
demonstrating that an improved SSA algorithm has higher convergence precision and stronger global
search ability. By comparing the six test functions, it can be concluded that an improved SSA algorithm
is characterized by high search efficiency and strong optimization capability, while also verifying the
effectiveness of the proposed improvement strategies.

3. Multi-strategy integrated improved SSA

The selection of hyperparameters for predictive models can be viewed as an optimization problem,
typically addressed using precise algorithms such as Bayesian optimization, gradient descent, and
stochastic gradient descent. While precise algorithms can obtain exact solutions to optimization
problems, they often exhibit lower efficiency in computation. In contrast, heuristic algorithms possess
powerful optimization capabilities and operate with high efficiency, making them competitive in
solving hyperparameter optimization problems. Therefore, this paper proposes an intelligent
optimization algorithm called an improved SSA to address the issue of hyperparameter optimization.

3.1. Traditional SSA

The core idea of the SSA [32] is to mimic the foraging and antipredatory behaviors of sparrows,
applying them to local and global search optimization processes. The specific principles for traditional
SSA are in the attachment.

The SSA has advantages such as high search efficiency and simple parameter settings, but it also
has the following shortcomings.

(1) The random generation of the initial population leads to uneven distribution within the
population, reducing diversity and resulting in poorer initial solutions, thereby affecting the
convergence speed of the algorithm.

(2) In the early stages of population search, discoverers may approach the global optimum easily.
However, due to limited exploration space, they may get trapped in local optima, making it difficult to
escape.

(3) The control parameters £ and k for step size are crucial for balancing global search and local
exploitation capabilities. However, being random variables, their uncertainty makes it challenging to
effectively coordinate global search and local exploitation, potentially causing the algorithm to
converge to local optima.

(4) As the algorithm progresses through iterations, the reduction in population diversity may lead to
a decrease in the quality of the optimal solution and weaker global search capability. Therefore, there
is still room for further optimization of the SSA to enhance its optimization capabilities.

3.2. Multiple optimization strategies

To enhance the optimization accuracy of the SSA algorithm, this paper adopts a series of strategies.

(1) Utilization of Sin chaotic mapping mechanism [33] for population initialization: This strategy
aims to improve population diversity and the quality of initial solutions.

(2) Dynamic adaptive weight improvement for discoverer position updates: This approach enhances
the algorithm’s convergence speed and search efficiency.
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(3) Introduction of Cauchy mutation mechanism [34]: This mechanism is introduced to strengthen
the algorithm’s global search capability, aiding in escaping local optima.

(4) Implementation of random reverse learning strategy [35]: This strategy is employed to obtain
corresponding reverse solutions, thereby enhancing the algorithm's optimization efficiency and stability.

3.2.1.  Chaotic mapping mechanism

Chaos variables are commonly used in optimization problems due to their traversal and regularity
properties. Logistic and Tent mappings are well-known chaotic models; however, they have limited
folding times within the iteration region and exhibit a significant number of rational fixed points,
adversely affecting mapping quality. In contrast, the Sin mapping is a chaotic model with an infinite
folding number, characterized by uniform traversal and rapid convergence advantages. Therefore, this
paper chooses to use the Sin mapping for initializing the SSA population. The one-dimensional self-
mapping expression of Sin chaotic mapping is as follows:

z ., =sin(ZE),a € (0,1),
z, 11

-1<z <Lz #0.

Mapping the Sin chaotic mapping into the search space yields the initial positions of the population:

1+z
X, =Xy + (X, —x,) 5 (12)

where X, and X, represent the lower and upper bounds of each individual in each dimension, and
z, denotes the chaotic sequence generated by Eq (11).

3.2.2. Dynamic adaptive weight

To prevent the algorithm from falling into local optima, this paper proposes an improved way to
update the discoverer’s position, incorporating the global best solution from the previous generation.
Thus, the update of the discoverer’s position is influenced by historical optimal solutions, thereby
increasing the algorithm’s ability to escape local optima. Meanwhile, a dynamic weight factor ® is
introduced to balance the algorithm’s global search capability and local exploration capability. Initially,
o has a larger value in the early iterations, facilitating global exploration. In later iterations, it adaptively
decreases, promoting local search and enhancing convergence speed. The formula for calculating the
weight coefficient  and the updated discoverer's position after improvement are as follows:

k
w_—,(l,;) Jke[l1,2], (13)

Tmax
e

i _ | Koy + @y, = ) rand, R<ST, (14)
i,j Xit,j =+ Q, R > ST,

where f,, isthe J, dimensional globally optimal solution in the previous generation.
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3.2.3. Improved scout position update

The parameters B and k, controlling the step size, are crucial for balancing global search capability
and local exploitation capability. However, due to their random nature, they introduce significant
uncertainty, which may lead to uncontrolled updates of scout positions, causing them to deviate from the
global optimal position. Therefore, this paper proposes an improved method for updating scout positions:

XHI X[iest +IB"‘}(it,j _X/iest b Jp[ # fga ( )
L= 15
l’j

Xliest +ﬂ"thvorst _Xliest 2 ﬁ :j:g‘

The improved position update formula indicates that if a sparrow individual is at the current best
position, it will fly toward a randomly chosen position between the best and worst positions. Otherwise,
it will choose to fly toward a randomly chosen position between its current position and the best position.

3.2.4.  Fusion of Cauchy mutation and random backward learning strategy

Backward learning is an important strategy that improves algorithmic optimization by using the
current solution as a basis to search for corresponding backward solutions, keeping the better solution
after evaluation and comparison. However, traditional backward learning strategies generate backward
solutions with a fixed distance from the current solution, lacking sufficient randomness. This limitation
hinders effective diversification of the population and restricts exploration of the search space. To
address this issue, this paper proposes a random backward learning strategy, introducing a random factor
to enhance the position of backward solutions. This enhances the algorithm's ability to escape local
optima and increases population diversity. The formula for random backward learning is as follows:

X[’)ZS[ = Zlub + 12 (lb - Xliest )’ (16)

X"ta-;l = X;):fst + bl (Xliest - XI'J:fst )’ (17)

where X, is the backward solution of the best solution found in the 7, iteration, !, and /, are
the lower and upper bounds, and b, represents control parameters for information exchange. The
formula is as follows:

Y
b = (T, Tmax) : (18)
During foraging, joiners gather around the discoverer and may engage in food competition,
potentially allowing a joiner to replace the discoverer and exacerbate the algorithm’s tendency to fall
into local optima. To prevent this scenario, this paper introduces a Cauchy mutation strategy [63] to
enhance the update formula of the joiners, thereby improving the algorithm's global optimization
capability. The new joiner position update formula is as follows:

+ cauchy(0,1) X}, (19)

best

t+1 t
X=X

where cauchy(0,1) follows a standard Cauchy distribution. The Cauchy distribution random variable
generation function is 7 =tan [ (§—0.5) 7] . To further enhance the algorithm’s optimization
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performance, a dynamic selection strategy is employed to update the target position. This strategy
involves alternating between random backward learning and Cauchy mutation disturbance methods
with a certain probability, dynamically updating the target position. The selection state of these two
improvement strategies is determined by a selection probability, calculated as follows:

(liL)IO

P=-c Toax (20)

Specifically, the selection process is as follows: if rand< Ps, select Eqs (16) to (18) for position updates
based on the random backward learning strategy. Otherwise, choose Eq (19) for updating the target position
based on the Cauchy mutation disturbance strategy, enhancing the algorithm's ability to escape local spaces.
The pseudo-code for the proposed and improved SSA in this paper is shown below:

Algorithm: Pseudo-code for an improved SSA

1: Parameter initialization: Maximum iterations 7..., number of discoverers PD,
percentage m of joiners, warning value R

2: Population initialization: Initialize sparrow population based on Eqgs (22) and (23) using
Sin mapping

3: Compute fitness value for each sparrow based on Eq (18)

4: Loop

5:  while t<Tmax

6 Sort fitness values to find the current best and worst individuals
7: Set R=rand(1)

8 for i=1 to PD do

9: Update discoverer positions based on Eq (25)

10: end for

11: for i= (1+PD) to n do

12: Update joiner positions based on Eq (30)
13: end for

14: for i= 1 to (mxn) do

15: Update scout positions based on Eq (26)
16: end for

17:  Perturb the current best solution using an appropriate strategy based on Eq (31) to
generate a new solution
18:  Check termination condition. If met, proceed; otherwise, go to step 6

19: t=t+1
20: End loop
21: Output results
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3.3. Algorithm optimization steps

The proposed and improved SSA algorithm is applied to hyperparameter optimization of the
CNN-Transformer-BiLSTM model. The model framework is divided into the data preprocessing module,
an improved SSA optimization module, and CNN-Transformer-BiLSTM feature extraction module.

The data preprocessing module performs noise reduction operations on collected data and divides
it into training and testing sets. The an improved SSA optimization module controls the movement of
scouts, discoverers, and joiners based on fitness values, iterating to optimize global solutions and
population structure. This method ultimately obtains optimized hyperparameters and network models.
The CNN-Transformer-BiLSTM feature extraction module decodes the hyperparameters optimized by
an improved SSA, retrieving iteration counts, learning rates, and hidden layer node numbers. Next, using
the training set, the model is trained and predictions are made on the testing set to obtain actual values,
predicted values, and their errors. Fitness values are computed using root mean square error (RMSE) and
fed back into an improved SSA optimization module until convergence of the loss function. The overall
model framework is illustrated in Figure 10.
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Figure 10. The framework diagram of an improved SSA-CNN-Transformer-BiLSTM.
4. Results and analysis
4.1. Simulation environment
(1) Dataset description
The experimental data for this study is the monitored sewage flow of the influent of a wastewater

treatment plant in a city of Guangdong Province, China. The dataset includes historical sewage flow
data and corresponding instantaneous rainfall data. We chose two datasets according to the
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corresponding instaneous rainfall: the first dataset spans from 07:05:00 on December 4, 2023, to
14:45:00 on January 12, 2024, and the second one spans from 00:00:00 on April 1, 2024, to 16:35:00
on May 7, 2024. In the first dataset, the range of sewage flow is from 3252.502 to 10137.42 cubic
meters per hour, and the average sewage flow is 7480.499 cubic meters per hour. There are no rainfall
events at all. In the second dataset, the range of sewage flow is from 3399.66 to 10406.79 cubic meters
per hour, and the average sewage flow is 7356.69 cubic meters per hour. There are 42 rainfall events:
the average total rainfall of the 42 rainfall events are 10.07 millimeters; the maximum total rainfall of
the 42 rainfall events are 66.40 millimeters; the minimum total rainfall of the 42 rainfall events are
0.20 millimeters. We chose the datasets this way in order to test our model under different rainfall and
temperature conditions. Data sampling was performed at 5-minute intervals, resulting in 288 sampling
points per day. The first dataset used for model training comprises the first 9544 samples, while the
last 1024 data samples are used for testing the model’s predictive output. The second dataset used for
model training comprises the first 8520 samples, while the last 2048 data samples are used for testing
the model’s predictive output.
(2) Experimental environment and parameter settings

The experiments were conducted on a Windows 10 system, using PyCharm as the integrated
development environment. The experiments were performed using Python 3.9, with an Intel Core 15-
12100F CPU, an NVIDIA GeForce RTX 3060 GPU, and 32GB of RAM. The sliding window size
was set to 7. The an improved SSA algorithm was used for model parameter optimization, with each
model training iteration set to 10 iterations. By integrating prior knowledge, domain expertise, and
relevant literature, this study has identified the optimal hyperparameter settings for an improved SSA-
CNN-Transformer-BiLSTM model, as shown in Table 2.

Table 2. Parameter settings for CNN-Transformer-BiLSTM network.

Network name Hyperparameter type Parameter optimization range
CNN Number of convolutional layers [1, 5]
) Number of layers [1, 5]
BiLSTM
iLS Number of neurons [16,256]
Number of attention heads 2+ 3. 5. 6. 10, 15)
Number of encoder layers [1, 5]
Transformer .
Number of encoder hidden
: : [16,256]
layer dimensions
Initial learning rate [0.00001, 0.01]
Adam Epoch 20

The parameter settings of an improved SSA algorithm are shown in Table 3:

Table 3. Parameter settings of an improved SSA algorithm.

Parameter Set value
Initial population size 20
Maximum number of iterations 10
Early warning value 0.6
Proportion of discoverers 0.7
Proportion of sparrows sensing danger 0.2
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(3) Evaluation metrics

To valuate the effectiveness and applicability of the prediction model, it is necessary to design
reasonable evaluation metrics for performance assessment. Commonly used prediction error
evaluation metrics [36] include RMSE, mean absolute error (MAE), and the coefficient of
determination (R?). Their expressions are as follows:

I
RMSE = \/ZZ(% _yi)2’ (21)
i=1
I &G .
MAE =1 3)5, - | e
i=1
Z(J’}i_yi)z
R=1-—, (23)
Z(yi_.)_;i)z
i=l1

where 7 is the number of samples, »:is the monitored value of sample 1, ¥ is the mean of the monitored
values, and J;is the predicted value of sample i. Among these metrics, the closer the values of RMSE
and MAE are to 0, the better performance of the model, while the closer R? is to 1, the better
performance of the model.

4.2. Model validation

The loss function variation curve of the CNN-Transformer-BiLSTM prediction model during the
training process is shown in Figures 11 and 12. It can be observed that the loss function values in both
the training and testing sets gradually decrease and approach zero. The closer the loss function value
is to zero, the better the training result of the prediction model. This also indicates that the prediction
model can find optimal hyperparameter values within a limited number of iterations.

The loss function formula is as follows:

1 & —
==>(,-»), 24)
m- -

where m is the number of samples, ); is the monitored value of sample i, and y. is the predicted

value of sample 1.
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Figure 12. Loss function variation curve.(00:00:00 on Apr.1, 2024-16:35:00 on May.7, 2024.).
To validate the predictive capability and performance of the CNN-Transformer-BiLSTM model

constructed in this chapter, the predicted sewage flow from the CNN-Transformer-BiLSTM model is
compared with the monitored values. The comparison results are shown in Figures 13 and 14.
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Figure 13. Comparison between predicted flow from CNN-Transformer-BiLSTM model
and monitored sewage flow (1).

As shown in Figure 13, the predicted sewage flow of the CNN-Transformer-BiLSTM model is
close to the monitored flow values with R of 0.92115, indicating that the proposed CNN-Transformer-
BiGRU model can effectively capture the trend of sewage flow changes [50]. The difference between
the predicted peak/trough flow and monitored peak/trough flow is within 13.5%, and the predicted
peak/trough flow appearance time is within 2.5 minutes away from the monitored peak/trough flow time.

2024
9500 T T T
——— CNN-Transformer-BiLSTM
0000 | Monitored
= 8500
£
= 8000 |
=7
=0
E |
2 7500 H

7000

6500 I I I I
05-04-03:20 05-05-00:05 05-05-20:55 05-06-17:45 05-07-16:35

Time/Smin

Figure 14. Comparison between predicted flow from CNN-Transformer-BiLSTM model
and monitored sewage flow (2).

As shown in Figure 14, the predicted sewage flow of the CNN-Transformer-BiLSTM model is
close to the monitored flow values with R? of 0.85328, indicating that the proposed CNN-Transformer-
BiGRU model can effectively capture the trend of sewage flow changes. The difference between the
predicted peak/trough flow and monitored peak/trough flow is within 3.6%, and the predicted
peak/trough flow appearance time is within 2.5 minutes away from the monitored peak/trough flow time.
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From the above two graphs and analysis, it can be seen that in January, when there was no
precipitation, the R? reaches 0.92115. In May, when there was precipitation, the R? decrease to 0.85328.
Although the R? decreases, the prediction of the predicted peak/trough flow and monitored peak/trough
flow is relatively accurate. It can be seen that although the accuracy of the model is slightly weakened
when there are rainfall events, the grasp and accuracy of the overall trend are still very good, indicating
that our model can be well applied under different rainfall and temperature conditions.

4.3. Ablation experiment

In this section, we conduct ablation experiments to verify the contribution of each component to
the overall performance of the model. This research method involves gradually adding key components
(CNN, Transformer) to the model and observing their specific impact on model performance. In the
first experiments, the first 9544 samples are used for model training, while the last 1024 data samples
are used for testing the model's predictive output. In the second experiments, the first 8520 samples
are used for model training, while the last 2048 data samples are used for testing the model's predictive
output. The experiments are repeated five times, with the best and worst prediction results removed.
The average sewage flow predictions from the remaining three experiments are recorded and used to
plot the model’s flow prediction curve, as shown in Figures 15 and 16.
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Figure 15. Predicted flow curves of different models versus monitored flow (1).
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Figure 16. Predicted flow curves of different models versus monitored flow (2).

As observed in Figures 15 and 16, the CNN-Transformer-BiGRU (bidirectional gated recurrent
unit) model fits the monitored sewage flow trend better than other models. To more comprehensively
and scientifically evaluate the performance of each model, the evaluation metrics of the models were
calculated and the results are shown in Tables 4 and 5.

Table 4. Results of evaluation metrics for different forecasting models. (match Figure 15).

Model name R’ RMSE MAE
BiLSTM 0.83048 558.9778 420.1193
CNN-BiLSTM 0.89421 441.58713 292.36119
Transformer-BiLSTM 0.82317 570.91810 468.01435
CNN-Transformer-BiLSTM 092115 381.23022 300.22074

As shown in Table 4, the basic BILSTM model performed moderately, with an R’ of 0.83048,
RMSE of 558.9778, and MAE of 420.1193. This indicates that using the BILSTM model alone cannot
fully capture the complex features of the data, leaving significant room for improvement.

After adding the CNN module, the R? increased to 0.89421, while the RMSE and MAE decreased
to 441.58713 and 292.36119, respectively. This shows that the CNN module has significant advantages
in capturing local features and can extract more effective information, thereby improving the overall
performance of the model.

However, when the Transformer module was added to the BiLSTM model, the model
performance didn’t improve further, with R’ decreasing to 0.82317, and RMSE and MAE increasing.
This indicates that the Transformer module has problems in handling long-sequence dependencies,
and it may be due to the separation with CNN.

Finally, the model combining both the CNN and Transformer modules performed the best, with
R? reaching 0.92115, RMSE decreasing to 318.23022, and MAE to 300.22074. This demonstrates the
powerful capability of the combined CNN and Transformer modules in capturing both local features
and global dependencies, significantly enhancing the overall performance of the model and validating
the applicability and superiority of incorporating the CNN and Transformer networks.
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Table 5. Results of evaluation metrics for different forecasting models. (match Figure 16).

Model name R’ RMSE MAE

BiLSTM 0.73859 245.5582 180.7114
CNN-BIiLSTM 0.81971 203.9268 137.8229
Transformer-BiLSTM 0.72807 265.1825 184.7853

CNN-Transformer-BiLSTM 0.85328 183.9647 145.3357

As shown in Table 5, the basic BILSTM model performed moderately, with an R’ of 0.73859,
RMSE of 245.5582, and MAE of 180.7114. This indicates that using the BILSTM model alone cannot
fully capture the complex features of the data, leaving significant room for improvement.

After adding the CNN module, the R? increased to 0.81971, while the RMSE and MAE decreased
to 203.9268 and 137.8229, respectively. This shows that the CNN module has significant advantages
in capturing local features and can extract more effective information, thereby improving the overall
performance of the model.

However, when the Transformer module was added to the BiLSTM model, the model
performance didn’t improve further, with R’ decreasing to 0.72807, and RMSE and MAE increasing.
This indicates that the Transformer module has problems in handling long-sequence dependencies,
and it may be due to the separation with CNN.

Finally, the model combining both the CNN and Transformer modules performed the best, with
R? reaching 0.85328, RMSE decreasing to 183.96479, and MAE to 145.3357. This demonstrates the
powerful capability of the combined CNN and Transformer modules in capturing both local features
and global dependencies, significantly enhancing the overall performance of the model and validating
the applicability and superiority of incorporating the CNN and Transformer networks.

4.4. Algorithm validation

The purpose of this section is to verify the effectiveness and superiority of an improved SSA
algorithm by comparing its performance against some other SSA variant algorithms and newer
metaheuristic algorithms on a competition dataset. The selected comparison metaheuristic algorithms
are as follows: improved SSA (ISSA) - [38], improved PSO algorithm (ISPSO) - [39], adaptive genetic
algorithm (AGA) - [40], grey wolf algorithm (GWO) - [41], whale optimization algorithm (WOA) - [42],
dung beetle optimization algorithm (DBO) - [43], and african vultures optimization algorithm (AVOA)
- [44]. Additionally, appropriate parameters that significantly reflect the performance of these
algorithms were used, as detailed in Table 6. In this experiment, the dimension was set to 20, the
maximum number of iterations was set to 1000, and the population size was set to 20. The experimental
results are based on 2000 runs of the algorithms.

Table 6. Parameter settings of different algorithms in the experiments.

Algorithm Parameter Value Algorithm Parameter Value

GWO Omaxs Omin -~ 2,0 AGA P, Py 0.5,0.05

ISSA PD,SD,R 0.7,0.2,0.6 ISPSO Omax, Omin, ¢, m 0.9, 0.2, 1.496, 5
DBO k, b 0.1,0.3 AVOA W1, W2, Cl, ¥1 0.2,0.2,05,2
WOA a, b, p 1,1,0.5 An improved SSA  PD, m, R 0.7,0.2,0.6
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To evaluate the comprehensive performance of the above algorithms, we selected some of the most
challenging publicly available test functions from the CEC (congress on evolutionary computation) 2017
test suite [45]. These functions include 3 single-modal and 7 multimodal test functions. Details of the
test functions can be found in Table 7, and all problems are minimization problems.

Table 7. CEC2017- unimodal as well as multimodal test functions.

Function ) Range of Optimal
) No. Function name
modality values value
F1 Shifted and Rotated Bent Cigar 100,100] 100
Unimodal  F2 Shifted and Rotated Sum of Different Power 100,100] 200
F3 Shifted and Rotated Zakharov 100,100] 300
F4 Shifted and Rotated Rosenbrock 100,100] 400

[-
[-
[-
[-
F5 Shifted and Rotated Rastriginst [-100,100] 500
[-
[-
[-
[-
[-

Fé6 Shifted and Rotated Expanded Schafer 100,100] 600
Multimodal F7 Shifted and Rotated Lunacek Bi-kastrigin 100,100] 700
F8 Shifted and Rotated Non-Continuous Rastrigin 100,100] 800
F9 Shifted and Rotated Levy 100,100] 900
F10  Shifted and Rotated Schwefel 100,100] 1000

Figure 15 shows the partial function convergence plots of the aforementioned algorithms on
optimizing the CEE2017 test set for both single-modal and multimodal test functions, where the
vertical axis and horizontal axis represent the optimal function values and iteration counts, respectively.

As shown in Figure 17, an improved SSA performs prominently in solving single-modal functions
F3 and F4, slightly trailing ISSA and GWO algorithms. ISSA excels on single-modal functions with
faster convergence speed and higher solution accuracy. In solving the multimodal function F5, an
improved SSA demonstrates superior early optimization efficiency, finding a better solution space in
just 170 iterations compared to other algorithms. In the mid-stage of the search, due to advantages in
Cauchy mutation perturbation and stochastic direction learning mechanisms, an improved SSA
exhibits advanced mobility, effectively preventing premature convergence and local optima traps.
Therefore, around 200 iterations, the algorithm shows a turning point in optimization convergence,
indicating that an improved SSA achieves high-precision global optimal solutions with enhanced
exploration capability. However, an improved SSA performs poorly in solving the multimodal
function F6, where ISPSO excels with faster convergence speed and higher solution accuracy.
Conversely, an improved SSA performs superiorly in solving the multimodal function F4, achieving
higher solution accuracy.
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Figure 17. Variation results of best fitness for different algorithms.

Table 8 records the final computational results of optimization tests for six different algorithms,
including optimal solutions, average solutions, and variance indicators. The size of the variance indicator
reflects the stability of the algorithm in optimizing functions. In single-modal function performance tests,
an improved SSA shows mixed results, achieving the best performance only on function F3. In contrast,
ISSA, ISPSO, and WOA perform well on individual functions. In multimodal function tests, an
improved SSA excels, performing best among the six test functions with higher stability, far exceeding
other algorithms. For a more comprehensive assessment of these algorithms’overall performance, this
paper conducts nonparametric tests on the results in Table 8, detailed in Figure 18.
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Table 8. Computational results obtained by different algorithms on the CEC2017.

an

F(x) Indicators ISSA AGA WOA ISPSO AVOA improved
SSA
Best 1.32E+02  2.02E+02  5.33E+02  2.05E+02  5.35E+02 1.78E+02
F1 Mean 1.72E+02  3.22E+02  8.41E+02  3.43E+02  7.09E+02 1.92E+02
Std 1.80E+03  2.21E+03  1.48E+03  6.56E+02  9.44E+02 2.03E+02
Best 2.02E+02  2.04E+02  2.02E+02  2.02E+02  3.24E+02 2.09E+02
F2  Mean 2.03E+02 2.22E+02  2.01E+02  2.35E+02  5.55E+02 2.12E+02
Std 2.25E+02 2.40E+02  2.32E+02  2.33E+02 4.23E+02 2.13E+02
Best 3.05E+02  3.28E+02  3.75E+02  3.12E+02  3.22E+02 3.02E+02
F3 Mean 3.22E+02  1.75E+03  4.17E+04  3.43E+02  3.57E+02 3.13E+02
Std 3.14E+01  2.75E+02  4.68E+03  2.24E+01 4.59E+01 2.14E+01
Best 4.04E+02  4.02E-02 4.04E+02  4.01E+02  4.72E+02 4.00E+02
F4  Mean 4.26E+02 4.74E+02  4.51E+02  4.69E+02 4.66E+02 4.23E+02
Std 5.23E+01  1.32E+02  3.62E+02  3.89E+02 5.21E+01 4.31E+02
Best 529E+02  5.23E+02  5.24E+02  5.14E+02  6.25E+02 5.11E+02
F5 Mean 535E+02  5.34E+02  5.60E+02  541E+02  9.92E+02 5.38E+02
Std 1.38E+01  5.89E+00  8.72E+00  1.23E+01  2.47E+01 1.09E+01
Best 6.22E+02  6.11E+02  6.23E+02  6.31E+02  6.72E+02 6.07E+02
F6  Mean 6.71E+02  6.03E+02  6.42E+02  6.26E+02  8.21E+02 6.18E+02
Std 7.59E+00  2.62E-02 2.33E+01  1.42E-01 1.46E+00 1.45E-01
Best 7.27E+02  7.33E+02  7.78E+02  7.16E+02  7.91E+02 7.09E+02
F7  Mean 736E+02  7.25E+02  7.43E+02  7.14E+02  7.95E+02 7.17E+02
Std 4.25E-01  3.54E-01 9.56E-01 2.33E+00  1.09E+00 2.63E-01
Best 8.25E+02  8.19E+02  8.11E+02  8.11E+02  8.39E+02 8.05E+02
F8 Mean 8.32E+02  8.14E+02  8.13E+02  8.68E+02  8.32E+02 8.16E+02
Std 3.43E+00 2.42E-01 4.92E-01 9.35E-01 1.26E+00  1.27E+00
Best 9.02E+02  9.03E+02  9.03E+02  9.06E+02  1.72E+02 9.41E+02
F9  Mean 9.13E+02  9.32E+02  9.32E+02  1.19E+03  9.92E+02 1.17E+03
Std 2.86E-03  4.56E+00 2.46E+00 2.48E+01 2.35E-01 4.25E+01
Best 1.12E+03  1.41E+03  1.29E+03  1.53E+03  3.27E+03 1.07E+03
F10 Mean 1.87E+03  1.66E+03  1.51E+03  1.62E+03  4.08E+03 1.04E+03
Std 2.52E+01  1.93E+00  2.59E-01 5.56E+00 2.88E+02 1.34E-01

Figure 18 displays the ranking results of all algorithms on the CEC2017 test functions. An
improved SSA outperforms other algorithms significantly in both groups of CEC2017 functions. It
achieves first place rankings in both single-modal and multimodal function categories. Therefore, it
can be concluded that an improved SSA performs best on CEC2017, optimizing to better solution
spaces compared to other algorithms, thus potentially replacing SSA for optimization tasks. The
effectiveness and superiority of the proposed algorithm are validated accordingly.
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Figure 18. Nonparametric test results of CEC2017 test functions.

(3) Application analysis

The an improved SSA algorithm is applied to optimize the selection of hyperparameters for the
CNN-Transformer-BiLSTM prediction model. Therefore, the performance of sewage flow prediction
after optimizing hyperparameter selection reflects the applicability and superiority of the proposed
algorithm. We apply different algorithms, including SSA and an improved SSA, to optimize
hyperparameters of the CNN-Transformer-BiLSTM prediction model, and present their fitness value
variations and evaluation metric results of the prediction model in Figure 17 and Table 8.

Figure 19 shows the fitness value variations of the SSA algorithm and an improved SSA algorithm
at the same number of iterations. From the Figure 19, it can be observed that the fitness value decreases
more rapidly with an improved SSA algorithm compared to the SSA algorithm, stabilizing earlier at
the 5 iteration than at the 7 iteration for SSA, demonstrating better convergence. Additionally, the
final fitness value optimized by an improved SSA algorithm is significantly lower than that of the SSA
algorithm, indicating that an improved SSA can find the optimal solution faster during the optimization
process, showcasing stronger global search capabilities and convergence efficiency.

%107°
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Iteration

Figure 19. Variation of fitness values for SSA and an improved SSA optimization hyperparameters.
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Comparing the evaluation metric results in Table 9, it can be seen that an improved SSA-CNN-
Transformer-BiLSTM model achieves an R? score of 0.92603, an improvement over the CNN-
Transformer-BiLSTM model’s 0.85328 and the SSA-CNN-Transformer-BiLSTM model’s 0.89545.
This demonstrates that an improved SSA algorithm significantly enhances the predictive capability of
the model when optimizing hyperparameter selection. The improved SSA-optimized model also
performs well in terms of RMSE and MAE, with values of 130.6226 and 94.0413, respectively,
reducing by approximately 50 and 25 units compared to other models. This indicates that an improved
SSA algorithm helps reduce prediction errors and improves the accuracy of sewage flow prediction.
The improved SSA algorithm may be more effective in global search compared to the SSA algorithm,
thereby avoiding local optima. This is particularly crucial for enhancing the model's generalization and
stability, especially in complex time-series data prediction tasks.

Table 9. Results of indicator assessment for different forecasting models.

Model name R? RMSE MAE
CNN-Transformer-BiLSTM 0.85328 183.9647 145.3357
SSA-CNN-Transformer-BiLSTM 0.89545 155.2961 102.5557

an improved SSA-CNN-

Transformer-BiLSTM 0.92603 130.6226 94.0413

4.5. Comparative experiments

To demonstrate the superiority of the constructed and improved SSA-CNN-Transformer-
BiLSTM prediction model, this study also introduces four other combined prediction models for
sewage flow prediction experiments. These prediction models include: KOA (kepler optimization
algorithm)-CNN-BiGRU-SE (squeeze and excitation) model [46], CNN-LSTM-SE model [47],
GWO-LSTM-SE model [48], and CNN-BiGRU-MH (multi-head) model [49]. The first 9544 samples
of sewage flow data are used for model training, while the last 1024 data samples are used for testing the
model's prediction outputs. The experiment is repeated five times, removing the best and worst prediction
results, recording the average sewage flow predictions from the remaining three experiments, and using
this data to plot the flow prediction curve of the models, as shown in Figure 20.
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Figure 20. Variation curves of sewage flow predicted by different combination models.
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Based on Figure 21, it can be observed that the predictions of an improved SSA-CNN-
Transformer-BiLSTM model are closest to the actual flow values, indicating that this model performs
best in flow prediction. The KOA-CNN-BiGRU-SE and GWO-LSTM-SE models follow closely in
second and third positions, demonstrating that intelligent optimization algorithms improve the flow
prediction capabilities of combined neural network models. Additionally, Figure 21 shows the relative
errors of these prediction models on 40 sewage flow samples.
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Figure 21. Histogram of relative errors in predicting sewage flows for different models.

According to Figure 21, the area of the green bars representing relative errors in the predictions
of an improved SSA-CNN-Transformer-BiLSTM model is the smallest, followed by the KOA-CNN-
BiGRU-SE model. This suggests that an improved SSA-CNN-Transformer-BiLSTM model has the
best prediction performance, followed by the KOA-CNN-BiGRU-SE model, while the performance
of the other models is relatively average.

From Table 10, it can be seen that the R’ indicators of various models for predicting sewage flow
output results, from smallest to largest, are as follows: CNN-LSTM-SE model, CNN-BiGRU-MH
model, GWO-LSTM-SE model, PSO-GA-BP model, and an improved SSA-CNN-Transformer-
BiLSTM model. Additionally, an improved SSA-CNN-Transformer-BiLSTM model achieves the
minimum values for MAE, and RMSE indicators. Therefore, an improved SSA-CNN-Transformer-
BiLSTM model is closer to the real sewage flow data compared to the other four models,
demonstrating the best prediction performance and validating the superiority of the proposed model.

Table 10. Results of indicator assessment for different forecasting models.

an improved SSA-
KOA-CNN- CNN- GWO-
Indicator CNN- ' CNN-BIGRU-MH
Transformer-BiLSTM BiGRU-SE ~ LSTM-SE  LSTM-SE

MAE 94.04131 108.52029 129.85206  116.33571  132.85206
RMSE 130.62268 138.25524 189.69534  143.96479  169.69535
R’ 0.92603 0.90859 0.84401 0.89328 0.86403
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5. Conclusions

To address the complex problem of sewage flow prediction, this study proposes a combined
prediction model based on ISSA, CNN, transformer, and BiLSTM for sewage flow prediction.
Through this multimodel fusion approach, it is expected to overcome the limitations of individual
models and achieve efficient and accurate prediction of sewage flow.

The proposed and improved SSA-CNN-Transformer-BiLSTM model is applied to a real sewage
plant’s sewage flow dataset, and experimental results demonstrate that the introduced Transformer
mechanism effectively captures global dependencies, enhancing the handling of long-term sequential
data. The proposed and improved SSA algorithm exhibits excellent global search capabilities and
convergence efficiency, effectively optimizing the hyperparameter selection problem of the CNN-
BiGRU-CBAM (convolutional block attention module), improving prediction capability, and reducing
human interference. After introducing the improved SSA, CNN, and Transformer modules, the
prediction model’s R’ increased by 0.18744, RMSE decreased by 114.93, and MAE decreased by 86.67.
The applicability and effectiveness of the model are validated. Compared with other combined
prediction models, the proposed and improved SSA-CNN-Transformer-BiLSTM model achieves the
highest prediction accuracy and higher interval coverage rate, demonstrating stronger model
generalization capability and competitiveness. However, there are limitations to this model. For example,
abnormal sewage flow due to external factors such as broken sewer pipes may not be predicted. That is
what we will work on later.

Future work includes: (1) Further optimizing model performance: Although the proposed model
performs well in the current study, there is space for further optimization. For example, exploring
different network architectures or integrating more advanced technologies to enhance prediction
accuracy and generalization capability. (2) Expanding application scenarios: Consider applying the
proposed model to broader practical scenarios, such as other sewage treatment plants or different
regions for sewage flow prediction. This would validate the model’s applicability in diverse
environments and further demonstrate its effectiveness and practicality.

Author contributions

Jiawen Ye: Conceptualization, Data curation, Investigation, Methodology, Writing-original draft,
Visualization, Funding acquisition; Lei Dai: Formal analysis, Methodology, Writing-original draft,
Validation, Writing-review & editing; Haiying Wang: Conceptualization, Methodology, Supervision,
Funding acquisition, Writing review & editing. All authors have read and approved the final version
of the manuscript for publication.

Acknowledgments

The authors are much grateful to the anonymous referees for their constructive and substantive
comments on our paper, which have considerably improved its presentation and quality.

This work is supported by 2024 University Students’ Innovation and Entrepreneurship Training
Project of China University of Geosciences, Beijing (Grant No. 202411415103). And it is also supported
by 2024 Special Projects for Graduate Education and Teaching Reform from China University of
Geosciences, Beijing (Grant No. JG2024021 and No. JG2024013), and 2024 Subject Development
Research Fund Project of China University of Geosciences, Beijing (Grant No. 2024 XK208).

AIMS Mathematics Volume 9, Issue 10, 26916-26950.



26947

Conflict of interest

The authors declare no conflict of interest.

References

10.

11.

12.

W. Chen, J. Lim, S. Miyata, Y. Akashi, Exploring the spatial distribution for efficient sewage heat
utilization in urban areas using the urban sewage state prediction model, App!l. Energ., 360 (2024),
122776. https://doi.org/10.1016/J. APENERGY.2024.122776

Z. Jaffari, S. Na, A. Abbas, K. Y. Park, K. H. Cho, Digital imaging-in-flow (FlowCAM) and
probabilistic machine learning to assess the sonolytic disinfection of cyanobacteria in sewage
wastewater, J. Hazard. Mater., 468 (2024), 133762.
https://doi.org/10.1016/J.JHAZMAT.2024.133762

A. Osmane, K. Zidan, R. Benaddi, S. Sbahi, N. Ouazzani, M. Belmouden, et al., Assessment of
the effectiveness of a full-scale trickling filter for the treatment of municipal sewage in an arid
environment: Multiple linear regression model prediction of fecal coliform removal, J. Water
Process Eng., 64 (2024), 105684. https://doi.org/10.1016/j.jwpe.2024.105684

M. Ansari, F. Othman, A. El-Shafie, Optimized fuzzy inference system to enhance prediction
accuracy for influent characteristics of a sewage treatment plant, Sci. Total Environ., 722 (2020),
137878. https://doi.org/10.1016/j.scitotenv.2020.137878

X. Wang, B. Zhao, X. Yang, Co-pyrolysis of microalgae and sewage sludge: Biocrude assessment
and char vyield prediction, FEnergy Convers. Manage., 117 (2016), 326-334.
https://doi.org/10.1016/j.enconman.2016.03.013

V. Nourani, R. Zonouz, M. Dini, Estimation of prediction intervals for uncertainty assessment of
artificial neural network based wastewater treatment plant effluent modeling, J. Water Process
Eng., 55 (2023), 104145. https://doi.org/10.1016/j.jwpe.2023.104145

H. Mahanna, N. EL-Rahsidy, M. Kaloop, S. El-Sapakh, A. Allugmani, R. Hassan, Prediction of
wastewater treatment plant performance through machine learning techniques, Desalin. Water
Treat., 14 (2024), 100524. https://doi.org/10.1016/j.dwt.2024.100524

J. Li, K. Sharma, Y. Liu, G. Jiang, Z. Yuan, Real-time prediction of rain-impacted sewage flow
for on-line control of chemical dosing in sewers, Water Res., 149 (2019), 311-321.
https://doi.org/10.1016/j.watres.2018.11.021

Y. Liu, X. Wu, W. Qi, Assessing the water quality in urban river considering the influence of
rainstorm flood: A case study of Handan city, China, Ecol. Indic., 160 (2024), 111941.
https://doi.org/10.1016/j.ecolind.2024.111941

E. Ekinci, B. Ozbay, S. Omurca, F. Sayn, I. Ozbay, Application of machine learning algorithms
and feature selection methods for better prediction of sludge production in a real advanced
biological wastewater treatment plant, J. Environ. Manag., 348 (2023), 119448.
https://doi.org/10.1016/j. jenvman.2023.119448

Z.Gao, J. Chen, G. Wang, S. Ren, L. Fang, Y. Aa, et al., A novel multivariate time series prediction
of crucial water quality parameters with Long Short-Term Memory (LSTM) networks, J. Contam.
Hydrol., 259 (2023), 104262. https://doi.org/10.1016/j.jconhyd.2023.104262

M. Yaqub, H. Asif, S. Kim, W. Lee, Modeling of a full-scale sewage treatment plant to predict the
nutrient removal efficiency using a long short-term memory (LSTM) neural network, J. Water
Process Eng., 37 (2020), 101388. https://doi.org/10.1016/j.jwpe.2020.101388

AIMS Mathematics Volume 9, Issue 10, 26916-26950.



26948

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

N. Farhi, E. Kohen, H. Mamane, Y. Shavitt, Prediction of wastewater treatment quality using LSTM
neural network, Environ. Technol. Inno., 23 (2021), 101632. https://doi.org/10.1016/j.eti.2021.101632
W. Alfwzan, M. Selim, A. Almalki, I. S. Alharbi, Water quality assessment using Bi-LSTM and
computational fluid dynamics (CFD) techniques, Alex. Eng. J., 97 (2024), 346-359.
https://doi.org/10.1016/j.aej.2024.04.030

W. Zhang, J. Zhao, P. Quan, J. Wang, X. Meng, Q. Li, Prediction of influent wastewater quality
based on wavelet transform and residual LSTM, Appl. Soft Comput., 148 (2023), 110858.
https://doi.org/10.1016/j.as0c.2023.110858

Y. Zhang, C. Li, Y. Jiang, L. Sun, R. Zhao, K. Yan, et al., Accurate prediction of water quality in
urban drainage network with integrated EMD-LSTM model, J. Clean. Prod., 354 (2022), 131724.
https://doi.org/10.1016/j.jclepro.2022.131724

L. Zheng, H. Wang, C. Liu, S. Zhang, A. Ding, E. Xie, et al., Prediction of harmful algal blooms
in large water bodies using the combined EFDC and LSTM models, J. Environ. Manag., 295
(2021), 113060. https://doi.org/10.1016/j.jenvman.2021.113060

L. Zhang, C. Wang, W. Hu, X. Wang, H. Wang, X. Sun, et al., Dynamic real-time forecasting
technique for reclaimed water volumes in urban river environmental management, Environ. Res.,
248 (2024), 118267. https://doi.org/10.1016/j.envres.2024.118267

S. Huan, A novel interval decomposition correlation particle swarm optimization-extreme
learning machine model for short-term and long-term water quality prediction, J. Hydrol., 625
(2023), 130034. https://doi.org/10.1016/j.jhydrol.2023.130034

H. Darabi, A. Haghighi, O. Rahmati, A. Shahrood, S. Rouzbeh, B. Pradhan, et al., A hybridized model
based on neural network and swarm intelligence-grey wolf algorithm for spatial prediction of urban
flood-inundation, J. Hydrol., 603 (2021), 126854. https://doi.org/10.1016/j.jhydrol.2021.126854

Z. Wang, H. Dai, B. Chen, S. Cheng, Y. Sun, J. Zhao, et al., Effluent quality prediction of the
sewage treatment based on a hybrid neural network model: Comparison and application, J.
Environ. Manag., 351 (2024), 119900. https://doi.org/10.1016/j.jenvman.2023.119900

F. Farzin, S. Moghaddam, M. Ehteshami, Auto-tuning data-driven model for biogas yield
prediction from anaerobic digestion of sewage sludge at the south-tehran wastewater treatment
plant: Feature selection and hyperparameter population-based optimization, Renew. Energy, 227
(2024), 120554. https://doi.org/10.1016/j.renene.2024.120554

G. Ye, J. Wan, Z. Deng, Y. Wang, J. Chen, B. Zhu, et al., Prediction of effluent total nitrogen and
energy consumption in wastewater treatment plants: Bayesian optimization machine learning methods,
Bioresource Technol., 395 (2024), 130361. https://doi.org/10.1016/j.biortech.2024.130361

J. Piri, B. Pirzadeh, B. Keshtegar, M. Givehchi, Reliability analysis of pumping station for sewage
network using hybrid neural networks-genetic algorithm and method of moment, Process Saf.
Environ., 145 (2021), 39-51. https://doi.org/10.1016/j.psep.2020.07.045

M. Salamattalab, M. Zonoozi, M. Molavi-Arabshahi, Innovative approach for predicting biogas
production from large-scale anaerobic digester using long-short term memory (LSTM) coupled
with genetic algorithm (GA), Waste Manag., 175 (2024), 30-41.
https://doi.org/10.1016/j.wasman.2023.12.046

A. Mohammed, K. Hassan, M. Abdel-Aal, Moving average smoothing for gregory-newton
interpolation: A novel approach for short-term demand forecasting, /FAC-PapersOnLine, 55
(2022), 749-754. https://doi.org/10.1016/j.ifacol.2022.09.499

P. Mei, M. Li, Q. Zhang, G. Li, L. Song, Prediction model of drinking water source quality with
potential industrial-agricultural pollution based on CNN-GRU-Attention, J. Hydrol., 610 (2022),
127934, https://doi.org/10.1016/j.jhydrol.2022.127934

AIMS Mathematics Volume 9, Issue 10, 26916-26950.



26949

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

A. L. de Rojas, M. A. Jaramillo-Moran, J. E. Sandubete, EMDFormer model for time series
forecasting, AIMS Math., 9 (2024), 9419-9434. https://doi.org/10.3934/math.2024459

H. Jin, Y. Liang, H. Lu, S. Zhang, Y. Gao, Y. Zhao, et al., An intelligent framework for
spatiotemporal simulation of flooding considering urban underlying surface characteristics, Int. J.
Appl. Earth Obs., 130 (2024), 103908. https://doi.org/10.1016/j.jag.2024.103908

B. Qu, E. Jiang, J. Li, Y. Liu, C. Liu, Coupling coordination relationship of water resources, eco-
environment and socio-economy in the water-receiving area of the Lower Yellow River, Ecol.
Indic., 160 (2024), 111766. https://doi.org/10.1016/j.ecolind.2024.111766

J. Cai, B. Sun, H. Wang, Y. Zheng, S. Zhou, H. Li, et al., Application of the improved dung beetle
optimizer, muti-head attention and hybrid deep learning algorithms to groundwater depth
prediction in the Ningxia area, China, Atmos. Ocean. Sci. Lett., 2024, 100497.
https://doi.org/10.1016/j.a0s1.2024.100497

M. Wang, G. Zhao, S. Wang, Hybrid random forest models optimized by Sparrow search
algorithm (SSA) and Harris hawk optimization algorithm (HHO) for slope stability prediction,
Transp. Geotech., 48 (2024), 101305. https://doi.org/10.1016/j.trgeo.2024.101305

C. Zhang, S. Ding, A stochastic configuration network based on chaotic sparrow search algorithm,
Knowl.-Based Syst., 220 (2024), 106924. https://doi.org/10.1016/j.knosys.2021.106924

X. Shao, J. Yu, Z. Li, X. Yang, B. Sundén, Energy-saving optimization of the parallel chillers
system based on a multi-strategy improved sparrow search algorithm, Heliyon, 9 (2023), €21012.
https://doi.org/10.1016/j.heliyon.2023.e21012

X. Long, W. Cai, L. Yang, H. Huang, Improved particle swarm optimization with reverse learning
and neighbor adjustment for space surveillance network task scheduling, Swarm Evol. Comput.,
85 (2024), 101482. https://doi.org/10.1016/j.swevo.2024.101482

S. Zhao, Y. Duan, N. Roy, B. Zhang, A deep learning methodology based on adaptive multiscale
CNN and enhanced highway LSTM for industrial process fault diagnosis, Reliab. Eng. Syst. Safe.,
249 (2024), 110208. https://doi.org/10.1016/j.ress.2024.110208

K. Wang, X. Fan, X. Yang, Z. Zhou, An AQI decomposition ensemble model based on SSA-
LSTM using improved AMSSA-VMD decomposition reconstruction technique, Environ. Res.,
232 (2023), 116365. https://doi.org/10.1016/j.envres.2023.116365

Y. Leng, H. Zhang, X. Li, A novel evaluation method for renewable energy development based
on improved sparrow search algorithm and projection pursuit model, Expert Syst. Appl., 244
(2024), 122991. https://doi.org/10.1016/j.eswa.2023.122991

Z. Zhang, X. Cheng, Z. Xing, Z. Wang, Y. Qin, Optimal sizing of battery-supercapacitor energy
storage systems for trams using improved PSO algorithm, J. Energy Storage, 73 (2023), 108962.
https://doi.org/10.1016/j.est.2023.108962

J. Li, R. Liu, R. Wang, Handling dynamic capacitated vehicle routing problems based on adaptive
genetic algorithm with elastic strategy, Swarm Evol. Comput., 86 (2024), 101529.
https://doi.org/10.1016/j.swevo.2024.101529

X. Zhang, J. Xia, Z. Chen, J. Zhu, H. Wang, A nutrient optimization method for hydroponic lettuce
based on multi-strategy improved grey wolf optimizer algorithm, Comput. Electron. Agr., 224
(2024), 109167. https://doi.org/10.1016/j.compag.2024.109167

J. Sahayaraj, K. Gunasekaran, S. Verma, M. Dhurgadevi, Energy efficient clustering and sink
mobility protocol using improved dingo and boosted beluga whale optimization algorithm for
extending network lifetime in WSNs, Sustain. Comput.-Infor, 43 (2024), 101008.
https://doi.org/10.1016/j.suscom.2024.101008

AIMS Mathematics Volume 9, Issue 10, 26916-26950.



26950

43.

44,

45.

46.

47.

48.

49.

50.

51.

\% 1

F. Zhu, G. Li, H. Tang, Y. Li, X. Lv, X.Wang, Dung beetle optimization algorithm based on
quantum computing and multi-strategy fusion for solving engineering problems, Expert Syst.
Appl., 236 (2024), 121219. https://doi.org/10.1016/j.eswa.2023.121219

L. Yin, W. Ding, Deep neural network accelerated-group african vulture optimization algorithm
for unit commitment considering uncertain wind power, Appl. Soft Comput., 162 (2024), 111845.
https://doi.org/10.1016/j.as0c.2024.111845

M. Abdel-Basset, R. Mohamed, M. Abouhawwash, Crested porcupine optimizer: A new nature-
inspired metaheuristic, Knowl.-Based Syst., 284 (2024), 111257.
https://doi.org/10.1016/j.knosys.2023.111257

U. Khan, N. Khan, M. Zafar, Resource efficient PV power forecasting: Transductive transfer
learning based hybrid deep learning model for smart grid in Industry 5.0, Energy Convers. Man.-X,
20 (2024), 100486. https://doi.org/10.1016/j.ecmx.2023.100486

X. Zhou, B. Sheil, S. Suryasentana, P. Shi, Multi-fidelity fusion for soil classification via LSTM
and multi-head self-attention CNN model, Adv. Eng. Inform., 62 (2024), 102655.
https://doi.org/10.1016/j.ae1.2024.102655

M. Javanmard, S. Ghaderi, A hybrid model with applying machine learning algorithms and
optimization model to forecast greenhouse gas emissions with energy market data, Sustain. Cities
Soc., 82 (2022), 103886. https://doi.org/10.1016/j.s¢s.2022.103886

S. Tariq, J. Loy-Benitez, K. Nam, S. Kim, M. Kim, C. Yoo, Deep-Al soft sensor for sustainable
health risk monitoring and control of fine particulate matter at sesnsor devoid underground spaces:
A zero-shot transfer learning approach, Tunn. Undergr. Sp. Tech., 131 (2023), 104843.
https://doi.org/10.1016/j.tust.2022.104843

Z. Wang, N. Xu, X. Bao, J. Wu, X. Cui, Spatio-temporal deep learning model for accurate
streamflow prediction with multi-source data fusion, Environ. Modell. Sofiw., 178 (2024), 106091.
https://doi.org/10.1016/j.envsoft.2024.106091

G. Dai, Z. Tian, J. Fan, C. K. Sunil, C. Dewi, DFN-PSAN: Multi-level deep information feature
fusion extraction network for interpretable plant disease classification, Comput. Electron. Agr.,
216 (2024), 108481. https://doi.org/10.1016/j.compag.2023.108481

© 2024 the Author(s), licensee AIMS Press. This is an open access
s AIMS Press article distributed under the terms of the Creative Commons

X l 5 Attribution License (https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 10, 26916-26950.



