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Abstract: In this work, we propose and investigate a predator-prey model where the prey population is
structured by sex and the predators (unstructured) depredate based on sex-bias. We provide conditions
for the existence of equilibrium points and perform local stability analysis on them. We derive global
stability conditions for the extinction state. We show the possible occurrence of Hopf and saddle-node
bifurcations. Multiple Hopf bifurcations are observed as the sex-biased predation rate is varied. This
variation also shows the opposite consequences in the densities of the sex-structured prey. Our results
show that sex-biased predation can cause both stabilizing and destabilizing effects for certain parameter
choices. It can also cause an imbalanced sex-ratio, which has ecological consequences. Furthermore
when intraspecific competition among predators is minimized, it can lead to the extinction of prey. We
discuss the ecological implications and application of our results to the biocontrol of invasive species
susceptible to sex-biased predation.
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1. Introduction

Ecologists and applied mathematicians have extensively investigated the role of predation by
predators in controlling the numbers of their prey [1–5]. One type of predation that has been observed
is sex-biased predation. Sex-biased predation is the degree by which both sexes of prey are predated
disproportionately to their abundance or general ratio [6]. Often, male and female prey differ in
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vulnerability. This can be due to differing factors such as size, speed, and age, often referred to as
sexual dimorphism. Sexual dimorphism can be in part due to the different responsibilities associated
with reproduction and childbearing in females and the role of males in different species of prey [7].
Many species assign different roles to male and female prey populations, such as foraging for food,
nursing their young, and staking territory [6]. These roles may result in one sex becoming more
exposed to their predators than the other. There are also predation risks associated with mate-finding
in both sexes of prey depending on who searches and who signals [8]. It is well known that in aquatic
environments invasive species cause extensive damage to wetland biodiversity and ecosystem function
[9–11]. For example, the freshwater snail Pomacea Canaliculata is known to be one of the world’s
worst invasive species by the Global Invasive Species Programme [12]. They grow very fast, have high
fecundity and cause extensive damage to agricultural production and wetland biodiversity [7]. Xu et
al. investigated and reported the existence of male-biased predation in Pomacea Canaliculata when
introduced to turtles Chinemys Reevesii as predators. The male-biased predation could be attributed
to males traveling longer distances in search for mates over larger areas when the density of snails is
low. Hence they have a higher encounter rate with predators. Other prey species experiencing male-
biased predation include guppy fish [13] and male possums [14]. Female-biased predation has also
been observed in mosquito fish Gambusia affins [15]. Evidence from the fieldwork of Britton and
Moser [16] showed that captive herons, predators of Gambusia, almost exclusively preyed on females
even when heavily outnumbered by males.

Sex-biased predation can have effects on the life history traits of species. Research experiments
conducted by DeGabriel et al. [14] revealed that about 60% of marked common brushtail Trichosurus
vulpecula male possums in tropical populations were preyed on by pythons due to their mobility
when searching for mates. Their results also brought to light that male possums showed traits of
investing in increased growth during their early stages of life so as to maximize their potential of
mating. The introduction of some prey species to predation threat can result in behavioral adjustments
such as changing reproductive strategies or courting behavior. For instance, male guppies Poecilia
reticulata are more favored to be involved in sneak copulations rather than courtship when exposed
to predators [17]. This leads to missed mating opportunities and negatively affects male reproductive
success [18, 19]. In all, sex-biased predation affects the sex ratio and the evolution of a population.
The consequences of an imbalanced sex-ratio include competition for mates [20], parental care [21],
mate choice [22], alternative mating strategies [23] etc. Boukal et al. [24] studied a predator-
prey system where predators profited from prey exhibiting sexual dimorphism traits. Their findings
showed that sex-biased predation depended on the interaction between the prey mating dynamics and
predation bias. Also, male or female biased predation and mate-finding Allee effect had an impact in
(de)stabilizing the prey mating system. However, there is still more to be explored on the impact of
sex-biased predation on population stability and persistence [24].

In many ecological communities, competition is a common interaction observed when individuals
vie for scarce resources and habitat space. When the density of a population is high, intraspecific
competition negatively affects survivorship and/or fecundity [25]. The impacts of predator intraspecific
competiton on invasive pests have been less understood [26–28]. However, research done by Parshad
et al. [4] showed that competition is able to prevent unbounded growth of an introduced predator to
drive a target pest population to extinction when supplied with high quality and sufficient additional
food resource. Furthermore, intraspecific competition effects enhanced biocontrol and also led to the
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occurrence of non-standard co-dimension one and two bifurcation structures [4]. In this work, we shall
incorporate predator intraspecific competition to our modeling framework. As mentioned earlier, the
impact of sex-biased predation in mating models has been less investigated [24]. The aim of this paper
is to understand the long term dynamics and consequences of sex-biased predation and the effects
of predator intraspecific competition from a mathematical modeling standpoint by investigating the
following ecological questions:

• How does sex-biased predation affect the sex-ratio of the prey?

• Can sex-biased predation stabilize or destabilize the population dynamics?

• How does predator competition affect the overall population dynamics?

• What are the ecological implications of the bifurcation structures obtained in the study?

• Does predator presence affect the population dynamics?

We organize the rest of the paper as follows: In Section 2 we formulate our mathematical model
with its underlying ecological assumptions. We provide preliminary results such as positivity and
boundedness of solutions to our model in Section 3. We study a special case of our system when
predators are not introduced in Section 4. We show that the system cannot produce oscillatory
dynamics when predators are absent. In Section 5 we provide analytical guidelines on equilibrium
points and their stability properties when the predator population is present. We discuss local
bifurcation results in Section 6 and observe that sex-biased predation can have destabilizing and
stabilizing effects. We provide numerical simulations to validate our theoretical findings in Section
7. We notice that the sex-ratio can be constant and imbalanced, constant and balanced or cyclic which
has ecological consequences. See Figures 4(c), 6(c) and 5(c), respectively. We give a discussion on
our findings in Section 8 and a conclusion in Section 9.

2. Model formulation

Here, we consider a sex-structured prey population divided into female and male classes, who are
depredated based on sex-bias by an unstructured predator population. We let f ,m and p denote the
female, male and predator population, respectively, at any time instant t. We make the following
assumptions in the formulation of our model:

(i) The total prey population can grow up to a carrying capacity K, which is determined by limited
resources and so we include a logistic term L to modulate growth. Also, the prey population
growth is proportional to interactions between the males m and females f [29].

(ii) We assume that there is no bias in the sex-ratio of the prey at birth.

(iii) Predation is sex-biased. We let r denote the sex-biased predation rate on the male population. As
a result, 1 − r is the sex-biased predation rate on females. Also, 0 < r < 1.

(iv) We use the Holling type II functional response to describe the relationship between the predator
and its prey. This is described by the Φ1( f ,m) and Φ2( f ,m) terms, where α is the attack rate of
the predator and ν is the time the predator uses in handling its prey.
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(v) We assume natural death rates δ for the prey and δ1 for the predator.

(vi) We also assume there is intraspecific competition between the predators for resources, which is
modeled by the −cp2 term.

The nonlinear system of ordinary differential equations satisfying our assumptions is given by

d f
dt
=

1
2

f mβL − δ f − Φ1( f ,m)p,

dm
dt
=

1
2

f mβL − δm − Φ2( f ,m)p,

dp
dt
= γ1Φ1( f ,m)p + γ2Φ2( f ,m)p − δ1 p − cp2,

(2.1)

where
L = 1 −

f + m
K
, Φ1( f ,m) =

(1 − r)α f
1 + ν( f + m)

and Φ2( f ,m) =
rαm

1 + ν( f + m)
with positive initial conditions f (0) = f0, m(0) = m0 and p(0) = p0. L is the logistic term. All
parameters used are assumed positive and their descriptions are given in Table 1.

Table 1. Parameters used in system (2.1).

Parameter Description
α rate at which predators attack prey
β prey birth rate
δ prey death rate
r sex-biased predation rate
K prey carrying capacity
δ1 death rate for predators
c predator competition rate
ν prey handling time
γ1, γ2 energy gain from predation

3. Preliminary results

This section provides basic results on the positivity and boundedness of solutions for system (2.1).

3.1. Positivity of solutions

We recap the following result, which guarantees the positivity of solutions from [30, 31].

Lemma 3.1. Consider the following system of ODEs:

d f
dt
= F( f ,m, p) =

1
2

f mβL − δ f − Φ1( f ,m)p,

dm
dt
= M( f ,m, p) =

1
2

f mβL − δm − Φ2( f ,m)p,

dp
dt
= P( f ,m, p) = γ1Φ1( f ,m)p + γ2Φ2( f ,m)p − δ1 p − cp2.
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Non-negativity of solutions is preserved with time, that is,

f (0),m(0), p(0) ≥ 0⇒ (∀t ∈ [0,Tmax), f (t) ≥ 0,m(t) ≥ 0, p(t) ≥ 0)

if and only if
∀ f ,m, p ≥ 0,

we have
F(0,m, p) = 0, M( f , 0, p) = 0, P( f ,m, 0) = 0.

3.2. Boundedness of solutions

We state the following theorem:

Theorem 3.2. All solutions of system (2.1) which initiate from R+3 are bounded.

Proof. The female and male populations are already assumed to grow up to a carrying capacity K. So
we have f ≤ K and m ≤ K. Therefore

dp
dt
=
γ1(1 − r)α f p
1 + ν( f + m)

+
γ2rαmp

1 + ν( f + m)
− δ1 p − cp2

≤ γ1(1 − r)αK p + γ2rαK p − cp2

≤ αK(γ1 + γ2r)p − cp2

by the comparison principle. Next, simple calculations show that lim sup p(t) ≤
αK(γ1 + γ2r)

c
as

t → ∞. Hence, all solutions which initiate from R+3 are bounded for system (2.1). □

4. Case where there are no predators

In the absence of predators, system (2.1) reduces to a classic mating system given by

d f
dt
=

1
2

f mβL − δ f ≡ G1( f ,m),

dm
dt
=

1
2

f mβL − δm ≡ G2( f ,m),
(4.1)

where L = 1 −
f + m

K
with positive initial conditions f (0) = f0, m(0) = m0. Results pertaining to

the equilibrium points of system (4.1) and their stability are well studied [32, 33]. We will prove the
non-existence of limit cycles for system (4.1) using the Dulac theorem.

Theorem 4.1. The system (4.1) cannot exhibit limit cycle dynamics.

Proof. We apply the Dulac theorem to show that system (4.1) does not exhibit cyclic dynamics.
Consider the Dulac function

Ξ( f ,m) =
1
f m

where both f and m are non-zero. Then, we have
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∂(G1Ξ)
∂ f

+
∂(G2Ξ)
∂m

=
∂

∂ f

[
β

2

(
1 −

f + m
K

)
−
δ

m

]
+
∂

∂m

[
β

2

(
1 −

f + m
K

)
−
δ

f

]
,

= −
β

K
< 0.

Hence, system (4.1) cannot produce limit cycle dynamics. □

5. Case where predators are present

5.1. Equilibria

To obtain the equilibria for system (2.1), we solve F( f ,m, p) = 0, M( f ,m, p) = 0 and P( f ,m, p) = 0
simultaneously. The system possesses the following non-negative equilibria:

(a) E0 = (0, 0, 0),

(b) E1 = ( f ∗1 ,m
∗
1, 0) where f ∗1 = m∗1 =

K
4

(1 ±
√

1 − Γ) and Γ =
16δ
Kβ
. We note that when Γ = 1,

f ∗1± = m∗1± =
K
4

. When Γ > 1, there are no real equilibrium points, and when Γ < 1, there are two

distinct interior equilibria given by f ∗1+ = m∗1+ =
K
4

(1 +
√

1 − Γ) and f ∗1− = m∗1− =
K
4

(1 −
√

1 − Γ).

(c) E2 = ( f ∗2 ,m
∗
2, p

∗
2) where p∗2 =

1
c

γ1 (1 − r)α f ∗2 + γ2rαm∗2
1 + ν

(
f ∗2 + m∗2

) − δ1

.
Now, substituting p∗2 into F( f ,m, p) = 0 yields

c
[
1 + ν

(
f ∗2 + m∗2

)2
] {1

2
f ∗2 m∗2β

(
1 −

f ∗2 + m∗2
K

)
− δm∗2

}
−rαm∗2B1 = 0 (5.1)

where B1 = γ1 (1 − r)α f ∗2 + γ2rαm∗2 − δ1

[
1 + ν

(
f ∗2 + m∗2

)]
.

The real positive roots f ∗2 for the solution to equation (5.1) will be in terms of m∗2 and are substituted
into M( f ,m, p) = 0 to find an explicit expression for m∗2. However, it is difficult to find this expression
due to very complicated algebraic calculations. We will illustrate the existence and stability properties
of E2 via time series simulations and bifurcations when certain control parameters are varied.

5.2. Local stability analysis

Next, we calculate the Jacobian of system (2.1) and obtain

J∗ =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 ,
where

J11 =
βm(K − 2 f − m)

2K
− δ +

αp(r − 1)(mν + 1)
(ν( f + m) + 1)2 ,
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J12 =
1
2

f
(
β(K − f − 2m)

K
−

2ανp(r − 1)
(ν( f + m) + 1)2

)
,

J13 =
α f (r − 1)
ν( f + m) + 1

,

J21 =
βm(K − 2 f − m)

2K
+

αmνpr
(ν( f + m) + 1)2 ,

J22 =
1
2

(
−2δ +

β f (K − f − 2m)
K

−
2αpr( f ν + 1)

(ν( f + m) + 1)2

)
,

J23 = −
αmr

ν( f + m) + 1
,

J31 = −
αp (γ1(r − 1)(mν + 1) + γ2mνr)

(ν( f + m) + 1)2 ,

J32 =
αp (γ1 f ν(r − 1) + γ2r( f ν + 1))

(ν( f + m) + 1)2 ,

J33 =
− (2cp + δ1) (ν( f + m) + 1) + αγ1 f (1 − r) + αγ2mr

ν( f + m) + 1
.

Theorem 5.1. The extinction state E0 is locally stable.

Proof. We evaluate J∗ at E0 and obtain

J∗E0
=


−δ 0 0
0 −δ 0
0 0 −δ1

 .
The eigenvalues are λ1 = −δ < 0, λ2 = −δ < 0, λ3 = −δ1 < 0. Therefore the extinction state E0 is
locally stable.

□

Similarly, we evaluate J∗ at E1 and obtain

J∗E1
=



βm∗(K − 2 f ∗ − m∗)
2K

− δ
β f ∗(K − f ∗ − 2m∗)

2K
α f ∗(r − 1)
ν( f ∗ + m∗) + 1

βm∗(K − 2 f ∗ − m∗)
2K

−δ +
β f ∗(K − f ∗ − 2m∗)

2K
−

αm∗r
ν( f ∗ + m∗) + 1

0 0
−δ1(ν( f ∗ + m∗) + 1) + ρ
ν( f ∗ + m∗) + 1


where ρ = αγ1 f ∗(1 − r) + αγ2m∗r.

Theorem 5.2. If Γ = 1, then E1 = ( K
4 ,

K
4 , 0) is locally stable provided β <

16δ
K

and

αK
[
γ1(1 − r) + γ2r

]
2(Kν + 2)

< δ1.
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Proof. Let Γ = 1, β <
16δ
K

and
αK

[
γ1(1 − r) + γ2r

]
2(Kν + 2)

< δ1. Then, evaluating J∗ at E1 yields

J∗E1(Γ=1)
=



βK
32
− δ

βK
32

αK(r − 1)
2(Kν + 2)

βK
32

βK
32
− δ −

αKr
2(Kν + 2)

0 0
−2δ1(Kν + 2) + αγ1K(1 − r) + αγ2Kr

2(Kν + 2)


.

The characteristic equation for J∗E1(Γ=1)
is given by

(
λ2 −

(
βK
16
− 2δ

)
λ + δ

(
δ −
βK
16

)) (
−2δ1(Kν + 2) + αγ1K(1 − r) + αγ2Kr

2(Kν + 2)
− λ

)
= 0

and the eigenvalues are λ1 =
Kβ
16
− δ, λ2 = −δ < 0, λ3 =

−2δ1(Kν + 2) + αγ1K(1 − r) + αγ2Kr
2(Kν + 2)

. Since

Γ = 1, β <
16δ
K

and
αK

[
γ1(1 − r) + γ2r

]
2(Kν + 2)

< δ1 by our assumption, E1 is locally stable. □

Now, when Γ < 1, we have the characteristic equation

λ3 + A1λ
2 + A2λ + A3 = 0 (5.2)

where A1 = −η1 − η4 − η5, A2 = η4η5 + η1(η4 + η5) − η2η3 and A3 = η2η3η5 − η1η4η5 with

η1 =
βm∗(K − 2 f ∗ − m∗)

2K
− δ, η2 =

β f ∗(K − f ∗ − 2m∗)
2K

, η3 =
βm∗(K − 2 f ∗ − m∗)

2K
, η4 = −δ +

β f ∗(K − f ∗ − 2m∗)
2K

and η5 =
−δ1(ν( f ∗ + m∗) + 1) + ρ
ν( f ∗ + m∗) + 1

.

The equilibrium point E1 = ( f ∗1 ,m
∗
1, 0) is locally stable if A1 > 0, A2 > 0, A3 > 0, and A1A2−A3 > 0

by the Routh-Hurwitz theorem.
In ascertaining the local stability of the coexistence equilibrium E2, the characteristic equation of

J∗E2
is

λ3 + σ1λ
2 + σ2λ + σ3 = 0, (5.3)

where

σ1 = − J11 − J22 − J33,

σ2 =J22J33 + J11 (J22 + J33) − J12J21 − J13J31 − J23J32,

σ3 =J13J22J31 − J12J23J31 − J13J21J32 + J11J23J32 + J12J21J33 − J11J22J33.

By applying the Routh-Hurwitz stability criteria, E2 is asymptotically stable if σ1 > 0, σ2 > 0, σ3 >

0, and σ1σ2 − σ3 > 0.
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5.3. Global stability analysis

Theorem 5.3. The extinction state E0 is globally stable if β <
2γ1δ

K(γ1 + γ2)
.

Proof. Suppose that β <
2γ1δ

K(γ1 + γ2)
and consider the Lyapunov function V(t) = γ1 f (t) + γ2m(t) + p(t)

where γ1 and γ2 are positive as already assumed. Clearly, V = 0 at ( f ,m, p) = (0, 0, 0) and V > 0 when
( f ,m, p) , (0, 0, 0). Now, we compute the time derivative of V and get

V̇ = γ1 ḟ + γ2ṁ + ṗ,

≤
1
2

f mβ(γ1 + γ2) − γ1δ f ,

≤
1
2

Kβ(γ1 + γ2) f − γ1δ f ,

=
1
2

K (γ1 + γ2)
[
β −

2γ1δ

K (γ1 + γ2)

]
f ,

< 0.

Therefore E0 is globally stable. Hence the proof is complete. □

6. Bifurcation analysis

Bifurcation studies provide insights on the qualitative changes of the behavior of a dynamical
system when one or more parameters are varied. When a bifurcation happens, the stability attributes of
equilibrium points and periodic orbits changes. Of particular interest to us is the sex-biased predation
rate parameter r, the intraspecific competition among predators parameter c and the predator attacking
rate α.

6.1. Hopf bifurcation

A Hopf bifurcation is said to occur when there is an appearance or disappearance of a periodic orbit
when there is a change in the local stability of an equilibrium point. The following theorem relates to
the occurrence of a Hopf bifurcation for the sex-biased predation rate r.

Theorem 6.1. If the sex-biased predation rate r crosses a threshold value at r = rH, system (2.1)
experiences a Hopf bifurcation around the coexistence state E2 if the following conditions hold:

σ1(rH) > 0, σ3(rH) > 0, σ1(rH)σ2(rH) − σ3(rH) = 0 (6.1)

and

[σ1(r)σ2(r)]′r=rH
− σ′3(rH) , 0. (6.2)

Proof. Let us suppose that the characteristic equation (5.3) is of the form[
λ2(rH) + σ2(rH)

]
[λ(rH) + σ1(rH)] = 0, (6.3)
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with roots λ1(rH) = i
√
σ2(rH), λ2(rH) = −i

√
σ2(rH), λ3(rH) = −σ1(rH) < 0. Clearly, σ3(rH) =

σ1(rH)σ2(rH). The next step is to validate the transversality condition

d(Reλ j(r))
dr

∣∣∣∣∣∣
r=rH

, 0, j = 1, 2, (6.4)

to show that periodic solutions exist and bifurcates around E∗2 at r = rH. We substitute λ j(r) = ξ(r) +
iΛ(r) into (6.3) and compute the derivative. We obtain

L1(r)ξ′(r) − L2(r)Λ′(r) + L4(r) = 0, (6.5)
L2(r)ξ′(r) + L1(r)Λ′(r) + L3(r) = 0, (6.6)

where

L1(r) = 3ξ2(r) − 3Λ2(r) + σ2(r) + 2σ1(r)ξ(r),
L2(r) = 6ξ(r)Λ(r) + 2σ1(r)Λ(r),
L3(r) = 2ξ(r)Λ(r)σ′1(r) + σ′2(r)Λ(r),
L4(r) = σ′2(r)ξ(r) + ξ2(r)σ′1(r) − Λ2(r)σ′1(r) + σ′3(r).

We apply the Cramer’s rule to solve for ξ′(rH) in the linear systems in (6.5) and (6.6). Observe that
at r = rH, ξ(rH) = 0 and Λ(rH) =

√
σ2(rH), which yields

L1(rH) = −2σ2(rH),
L2(rH) = 2σ1(rH)

√
σ2(rH),

L3(rH) = σ′2(rH)
√
σ2(rH),

L4(rH) = σ′3(rH) − σ2(rH)σ′1(rH).

Simple calculations show that

dRe(λ j(r))
dr

∣∣∣∣∣∣
r=rH

= ξ′(rH),

= −
L3(rH)L2(rH) + L4(rH)L1(rH)

L2
1(rH) + L2

2(rH)
,

=
σ′3(rH) − σ1(rH)σ′2(rH) − σ2(rH)σ′1(rH)

2
(
σ2(rH) + σ2

1(rH)
) , 0,

subject to [σ1(r)σ2(r)]′r=rH
− σ′3(rH) , 0.

This establishes the transversality condition and hence the occurrence of a Hopf bifurcation around E2

at r = rH. □

6.2. Saddle-node bifurcation

A saddle-node bifurcation occurs when two equilibria collide and annihilate each other. We shall
use Sotomayor’s theorem [34] to show that system (2.1) experiences a saddle-node bifurcation at a
critical intraspecific competition threshold value c = c∗.
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Theorem 6.2. The system (2.1) undergoes a saddle-node bifurcation around E2 at c = c∗ when tr(J∗) <
0 and det(J∗) = 0 are satisfied by system parameters.

Proof. We use Sotomayor’s theorem [34] to show that system (2.1) experiences a saddle-node
bifurcation at c = c∗. At c = c∗, we can have det(J∗) = 0 and tr(J∗) < 0. This shows that J∗

admits a zero eigenvalue. Define X = (x1, x2, x3)T and Y = (y1, y2, y3)T to be the nonzero eigenvectors

of J∗ and J∗T corresponding to the zero eigenvalue, respectively. For J∗23 =
J∗22J∗13

J∗12
and J∗33 =

J∗32J∗13

J∗12

with J∗12 , 0 and J∗T32 =
J∗T22 J∗T31

J∗T21

and J∗T33 =
J∗T23 J∗T31

J∗T21

with J∗T21 , 0, we have

X =
(
0,−

J∗13

J∗12
, 1

)T

and Y =
(
0,−

J∗T31

J∗T21

, 1
)T

.

Furthermore, let Z = (Z1,Z2,Z3)T where

Z1 =
1
2

f mβ
(
1 −

f + m
K

)
− δ f −

(1 − r)α f p
1 + ν( f + m)

,

Z2 =
1
2

f mβ
(
1 −

f + m
K

)
− δm −

rαmp
1 + ν( f + m)

,

Z3 =
γ1(1 − r)α f p
1 + ν( f + m)

+
γ2rαmp

1 + ν( f + m)
− δ1 p − cp2.

Now,

YT Zc(E2, c) =
(
0,−

J∗T31

J∗T21

, 1
) (

0, 0,−p∗2
)T
= −p∗2 , 0

and

YT [D2Z(E2, c)(X, X)] , 0.

Therefore, system (2.1) by Sotomayor’s theorem experiences a saddle-node bifurcation at c = c∗

around E2 and the proof is complete.
□

Theorem 6.3. If the predator attack rate α crosses a threshold value at α = αH, system (2.1)
experiences a Hopf bifurcation around the coexistence state E2 if the following conditions hold:

σ1(αH) > 0, σ3(αH) > 0, σ1(αH)σ2(αH) − σ3(αH) = 0 (6.7)

and

[σ1(α)σ2(α)]′α=αH
− σ′3(αH) , 0. (6.8)

Proof. The proof is similar to Theorem 6.1 and is therefore omitted. □
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(a) (b) (c)

Figure 1. Bifurcation diagram in the r– f , r–m and r–p planes respectively showing multiple
Hopf bifurcations. Parameters used are α = 0.7, β = 0.3, δ = 0.01, K = 40, δ1 = 0.01, c =
0.009, ν = 0.1, γ1 = 0.03, γ2 = 0.03. The blue and red lines represent stable and unstable
equilibria, respectively. (H = Hopf point, NS = Neutral Saddle (not a bifurcation point), LP
= Limit Point.)
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Figure 2. Bifurcation diagram in the α– f , α–m and α–p planes respectively showing Hopf
bifurcation. Parameters used are r = 0.4, β = 0.3, δ = 0.01, K = 40, δ1 = 0.01, c =
0.009, ν = 0.01, γ1 = 0.03, γ2 = 0.03. The blue and red lines represent stable and unstable
equilibria, respectively. H = Hopf point, BP = Branch Point.

7. Numerical experiments

In this section, we provide numerical simulations to support our theoretical findings. We used
the Python programming language to generate our time series and phase plots. Figure 4 shows the
existence of three biologically feasible equilibria for system (2.1) for a chosen set of parameter values.
Figure 4(a) shows the extinction state of all the populations, (b) shows the predator free state with
equilibrium point E1 = (19.9328, 19.9328, 0) and (c) shows the coexistence state of all populations
with equilibrium point E2 = (10.1991, 23.2547, 5.3464). It is worth noting that the sex-ratio is constant
and balanced from Figure 4(b), and constant but imbalanced in 4(c). In Figure 5, numerical simulations
show oscillatory dynamics for a different parameter set. Similarly, we observe that the sex-ratio is not
constant but cyclic as seen in Figure 5(c). However, the sex-ratio is constant and balanced when there
is no sex-biased predation and the population is cyclic as seen in Figure 6. We validated a sufficient
condition in Theorem 5.3 with regards to the global stability of the extinction state with experiments
seen in Figure 7. Thus when the birth rate β is less than 2γ1δ

K(γ1+γ2) , all species die out irrespective of the
initial population density.
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(a) (b) (c)

Figure 3. Bifurcation diagram in the c– f , c–m and c–p planes respectively showing saddle-
node bifurcation. Parameters used are r = 0.8, α = 0.7, β = 0.8, δ = 0.04, K =

50, δ1 = 0.01, ν = 0.01, γ1 = 0.5, γ2 = 0.5. The blue and red lines represent stable
and unstable equilibria, respectively. SN=Saddle-Node point, NS=Neutral Saddle (not a
bifurcation point).
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Figure 4. Simulation showing the various equilibria for system (2.1). We choose the
following parameters and initial conditions: β = 0.3, δ = 0.01, r = 0.4,K = 40, ν =
0.01, γ1 = γ2 = 0.03, f0 = 10,m0 = 10, p0 = 6. In (a), α = 0.7, δ1 = c = 0.01. In (b),
α = 0.2, δ1 = 0.1, c = 0.4 and in (c) α = 0.2, δ1 = c = 0.01.

For generating our bifurcation plots, we used MATLAB version R2019a and MATCONT [35]
software. Figure 1 shows the existence of multiple Hopf bifurcations for the sex-biased predation
parameter r when all other parameters are fixed. When r is increased, the coexistence equilibrium
loses its stability at the critical threshold value r∗ = 0.4098569 and oscillatory dynamics emerge. At
this threshold value, there is an occurrence of a Hopf bifurcation around the coexistence equilibrium
E2 = (10.146745, 14.53349, 6.92543). The first Lyapunov coefficient is computed with MATCONT
and is given by χ = 2.90744853e2 and hence a subcritical Hopf bifurcation. A further increase
in r leads to the occurrence of another Hopf bifurcation at the threshold value r∗ = 0.590143
around E2 = (14.53348, 10.14674, 6.92543). A similar computation of the Lyapunov coefficient gives
χ = 2.90742685e2 and hence the Hopf bifurcation is subcritical. Once r is increased again from
r∗ = 0.590143, the system regains its stability. This demonstrates that sex-biased predation has both
stabilizing and destabilizing effects under certain parametric choices.

Numerical experiments also show that the system experiences a Hopf bifurcation for the predator
attack rate α at α∗ = 0.27503 around E2 = (8.37687, 12.49559, 6.49191) as shown in Figure 2 with
Lyapunov coefficient χ1 = −1.925015e−4. The Hopf bifurcation is supercritical. Figure 3 also shows
the occurrence of a saddle-node bifurcation for the intraspecific competition parameter c at the critical
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Figure 5. Simulation showing oscillatory dynamics with sex-biased predation in the system.
(a) and (b) show the time series and phase plots respectively using the following parameters
and initial conditons: α = 0.27502, β = 0.3, δ = 0.01, r = 0.4, K = 40, δ1 = 0.01, c =
0.009, ν = 0.01, γ1 = 0.03, γ2 = 0.03, f0 = 8, m0 = 12, p0 = 16. (c) shows a plot of the
sex ratio of males to females.
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Figure 6. Simulation showing oscillatory dynamics with no sex-biased predation in the
system. (a) and (b) show the time series and phase plots respectively using the following
parameters and initial conditons: α = 0.26915, β = 0.3, δ = 0.01, r = 0.5, K = 40, δ1 =

0.01, c = 0.009, ν = 0.01, γ1 = 0.03, γ2 = 0.03, f0 = 10, m0 = 10, p0 = 6. (c) shows a
time series plot of the sex ratio of males to females using these parameters.

value c∗ = 0.18428 around E2 = (16.72081, 4.28190, 10.57134) where two coexistence equilibria
collide and annihilate each other.

8. Discussion

Our results show that sex-biased predation can cause an imbalanced sex-ratio in the prey population.
See Figure 5(c) and compare with Figure 6(c). This has ecological consequences such as pairing
behavior; male-male, male-female, female-female [36] and competition for mating access, which has
implications for the success of natural populations. When the ratio of females to males is low, it also
impacts population growth and hence has consequences for population dynamics, risk of extinctions
and biodiversity conservation [37–40]. In the absence of predators, system (2.1) reduces to the
classic mating system. We rigorously proved that the classic mating system cannot exhibit oscillatory
dynamics via Theorem 4.1. However, the introduction of predators and the choice of a Holling type
II functional response can cause the populations to fluctuate via oscillations when the predation is
sex-biased. See Figure 5. It is also possible to see cyclic dynamics even when there is no sex-biased
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Figure 7. Simulation showing the global stability of the extinction state E0 under the stated
conditions in Theorem 5.3 using the parameters α = 0.75, β = 0.03, δ = 0.3, r = 0.4, K =
15, δ1 = 0.25, c = 0.02, ν = 0.2, γ1 = 0.7, γ2 = 0.1.

predation (r = 0.5) as shown in Figure 6 as the population densities of males and females are equal
and the sex-ratio is 1. Therefore predator presence affects the dynamics of the populations.

Under certain parametric regimes, we report that sex-biased predation can have stabilizing and
destabilizing effects as the rate of the biased predation is increased or decreased. This corroborates
findings in [24]. This is seen in Figure 1 when the stable interior equilibrium point loses its stability
via a Hopf bifurcation and subsequently gains stability via another Hopf bifurcation as the sex-biased
predation parameter r is varied. Similar bifurcation results are seen in Figure 2 for the rate α at which
predators attack prey. This shows that the populations can continue to thrive or persist. It is clear that
increasing r leads to an increase in the female population density and a decrease in the male population
density as seen in Figure 1 and vice-versa. Depending on the severity of the biased predation, it
can have implications for species conservation and extinction risks. Dynamically, when the predator
intraspecific competition rate crosses some threshold c = c∗, a saddle-node bifurcation occurs when
two coexistence states collide and annihilate each other, see Figure 3, and leaves the extinction state
to be globally attracting. Our saddle-node bifurcation result is very useful in the context of biological
control for those invasive species that are particularly susceptible to sex-biased predation. Examples
include freshwater snail [12], mosquito fish [15] and guppy fish [13]. In 2017, the financial cost of
controlling and mitigating the impact of invasive species in Australia was estimated to be $298.58
billion [41]. Also, the cost incurred in invasive species control in the United States was reported to
total $1.2 trillion in 2020 [42]. It is therefore a paramount concern and curbing their damages to
ecosystems and the shattering of fragile food webs will be of economic and societal value. Therefore,
the introduction of natural enemies (predators) as agents of biocontrol can help in their eradication.
Other mathematical approaches to invasive species control can be seen in [43]. From our system, this
application is possible when competition for resources (prey) is less among predators as this has less
negative impact on their growth/reproduction rate and their density in combating the invasive pest.
Hence, there is a greater chance of eliminating the invasive pests. Conversely, the invasive pest will
not go extinct when rate of intraspecific competition is high.
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9. Conclusions

In conclusion, our study showed that sex-biased predation has an impact on the dynamics of
populations with regards to species coexistence. It can cause the population to stabilize as seen in
Figure 4 and also fluctuate for a chosen parameter set as illustrated in Figure 5 showing a periodic
solution and the periodic nature of the male to female sex-ratio. This has biological consequences for
population dynamics [20–23] as already highlighted in the introduction section. The study also showed
that the presence of predators can lead to cyclic population dynamics. Rich dynamical structures were
also revealed via Hopf and saddle-node bifurcations and global stability results were obtained for the
extinction state with application for invasive species control. See Figure 7 and proof of Theorem
5.3. In all, further investigation is needed to gain more insight on the impact of sex-biased predation
and sexual dimorphism in prey on predator-prey interactions, as these could lead to very interesting
and richer dynamics. It will be an interesting future work to consider other well known functional
responses as well as mating functions in the modeling framework of system (2.1) and approaches from
recent developments in mathematical modeling such as fractional-order density dependent models [44].
Finally, this work adds to the growing literature in investigating and considering the impacts of sex-
biased predation to get a better understanding of evolutionary ecology dynamics [45].
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