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Abstract: In this study, the stability and stabilization analyses are discussed for Takagi-Sugeno (T-
S) fuzzy systems with input saturation. A fuzzy-based sampled-data control is designed to stabilize
the T-S fuzzy systems. Based on the Lyapunov method and some integral inequality techniques, a
set of sufficient conditions is obtained as linear matrix inequality (LMI) constraints to guarantee the
asymptotic stability of the considered system. In this process, the linear switching method is utilized
to design a controller that is dependent on the membership function, and an integral inequality is
utilized. Additionally, determination of the controller parameters is achieved by resolving a series
of LMI constraints. The effectiveness of these criteria is demonstrated through a real system that is
modeled by the T-S system.
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1. Introduction

The Takagi-Sugeno (T-S) fuzzy model has emerged as a useful framework for controlling and
analyzing complex nonlinear systems [1]. The T-S fuzzy approach approximates the original nonlinear
system by dividing a nonlinear dynamic system into a set of linear subsystems through the use of
IF-THEN rules, and by combining a series of models via a membership function. Therefore, many
researchers have utilized the T-S fuzzy approach by establishing the Lyapunov functions to provide
the stability criteria of nonlinear systems [2–4]. For instance, Kwon et al. [3] used the augmented
Lyapunov-Krasovskii functionals (LKFs) to derive the delay-dependent stability and stabilization
criteria for T-S fuzzy systems as linear matrix inequalities (LMIs). Previous work [4] investigated
the problem of memory-based sampled-data control for T-S fuzzy chaotic systems.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024118


2390

On the other hand, as modern high-speed computers and network technologies continue to advance,
sampled-data control systems have increasingly become the focus of research and application [5, 6].
Typically, in the implementation of sampled-data control systems, control signals are updated only
at discrete sampling instants, offering reduced data consumption and better bandwidth performance.
Hence, the study of sampled-data control for T-S fuzzy systems has considerable realistic significance.
At present, there are various methodologies to deal with sampled-data control systems, such
as discrete-time technique [7], impulsive control approach [8] and input delay method [9]. In
recent years, lots of meaningful stabilization results on T-S fuzzy systems with fuzzy sampled-data
control achieved via an input delay method have been presented [10–21]. In the field of sampled-
data system stability, several methods have been used. These methods are the time-dependent
Lyapunov functional technique [10, 11], discontinuous Lyapunov functional approach [12, 13],
looped-functional-based approach [14,15], free-matrix-based time-dependent discontinuous Lyapunov
functional approach [16, 17], two-sided looped-functional approach [18] and sampling-instant-to-
present-time fragmentation method [19]. As shown in these papers, various Lyapunov approaches have
been made to derive a less conservative result and determine a maximum upper bound of the sampling
period. These methods have been applied to problems in many systems with sampled-data controls, as
seen in [20, 21]. In addition, the Lyapunov method in the T-S fuzzy system has also been developed,
particularly with various studies focusing on membership function-based LKFs. In the past years, many
stability conditions have been obtained on the fuzzy control issue of nonlinear systems via various
LKFs [22–30]. For instance, Tanaka et al. [22] obtained the stability and stabilization conditions of
fuzzy control systems based on multiple LKFs. Wang and Lam [5] proposed a switching idea to ensure
that the differential of the membership function was negative, resulting in less conservative results.
Zhang et al. [25] designed membership function-dependent LKFs for T-S fuzzy systems to obtain the
stability and stabilization conditions, effectively reducing conservatism while significantly increasing
the number of decision variables. Yang et al. [27] studied the issue of the sampled-data stabilization of
uncertain fuzzy systems by using a membership function dependent approach. Furthermore, saturation
nonlinearity can be caused by the constraints of magnitude and the rate of the actuator inputs [31].
Ignoring input saturation in a control design can severely degrade the closed-loop control performance
and lead to instability. Recently, only a few studies have dealt with the problem of T-S fuzzy systems
with input saturation [31–33].

Motivated by the above discussions, this paper investigates the problem of stability and stabilization
for T-S fuzzy systems with sampled-data control and input saturation. The criteria are derived under the
framework of LMIs to guarantee the asymptotic stability and stabilization of the system. The following
points are the contributions of this work:

• Appropriate looped-functionals for the sampled-data system are constructed, and some advanced
integral inequalities derived from Jensen and Wirtinger-based integral inequalities are utilized.
• The proposed control design takes into account the actuator saturation effect and

minimizes implementation costs. Due to this, the proposed control design is suitable for
practical implementation.
• To facilitate the analysis of nonlinear sampled-data systems, a T-S fuzzy modeling approach is

applied, and a linear switching method is used to extend the viable inter-sampling period.

Finally, experimental results with a rotary inverted pendulum (RIP) model are given to demonstrate
the effectiveness of the proposed sampled-data control design via the T-S fuzzy approach.
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Notation: Rn and Rm×n respectively represent the n-dimensional Euclidean space and m × n real
matrices. Sn

+ and Sn are the set of symmetric positive definite and symmetric matrices, respectively.
X > 0 and X ≥ 0 respectively signify that the matrix X is a real symmetric positive definite matrix
and positive semi-definite matrix. In denotes the n × n identity matrix. 0n and 0m×n denote the n × n
and m × n zero matrices, respectively. diag{· · · } denotes the block diagonal matrix. ∗ represents the
elements below the main diagonal of a symmetric matrix. X[ f (t)] ∈ R

m×n indicates that X[ f (t)] is the
matrix with respect to f (t), i.e., X[ f0] = X[ f (t)= f0]. S ym{X} denotes X + XT .

2. Problem statements

Consider the following class of continuous-time T-S fuzzy systems.
Plant rule a : If ς1(t) is Mi1 and · · · and ςp(t) is Mip, then

ẋ(t) = Aax(t) + Bau(t), (2.1)

where x(t) ∈ Rn is the state vector, and u(t) ∈ Rm is the input vector. A ∈ Rn×n, B ∈ Rn×m are the system’s
constant matrices. ς(t) =

[
ς1(t), · · · , ςp(t)

]
is a premise variable which is assumed to be independent

of the input u(t) explicitly. r is the number of IF-THEN rules. And, Mik(a = 1, · · · , r, k = 1, · · · , p)
denotes the fuzzy sets.

The defuzzified fuzzy systems, expressed in (2.1), and their dynamics are outlined as

ẋ(t) =

r∑
a=1

ψa(ς(t)) (Aax(t) + Bau(t)) , (2.2)

where ψa(ς(t)) is the normalized membership function that satisfies the following description:

ψa(ς(t)) =
ϑa(ς(t))

Σr
b=1ϑb(ς(t))

, ϑa(ς(t)) =

p∏
k=1

Mik(ς(t)), (2.3)

in which Mik(ς(t)) is the grade of membership of ς(t) in Mak. And, ϑa(ς(t)) is satisfied with

ϑa(ς(t)) ≥ 0,
r∑

a=1

ϑa(ς(t)) > 0, ∀t ≥ 0. (2.4)

In fuzzy system modeling, it is consistently assumed that

0 ≤ ψa(ς(t)) ≤ 1,
r∑

a=1

ψa(ς(t)) = 1,
r∑

a=1

ψ̇a(ς(t)) = 0. (2.5)

Additionally, to guarantee that Ṗh ≤ 0, where Pa represents constant matrices, Ṗh can be expressed
as follows.

Ṗh =

r∑
a=1

ψ̇a(ς(t))Pa =

r−1∑
k=1

ψ̇k(ς(t))(Pk − Pr). (2.6)
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A switching idea [5] is used as follows:{
ψ̇k(ς(t)) ≤ 0 : Pk − Pr ≥ 0,
ψ̇k(ς(t)) > 0 : Pk − Pr < 0.

(2.7)

In (2.7), there exist 2r−1 scenarios. Let S p denote the set comprising all feasible permutations of
ψk(ς(t)), where p ∈ S, S = {1, 2, · · · , 2r−1} and Cp is the set that contains the constraints of Xa. So, the
inequalities of (2.7) can be presented as follows:

if S p, then Cp. (2.8)

The control signal is generated according to a consecutive sampling time sequence 0 ≤ t0 < · · · <

tk < · · · < ∞ by using a zero-order hold function. It is subject to the constraint that the sampling period
satisfies that tk+1 − tk = hk ≤ hM.

The subsequent sampled-data control method is adopted for the system (2.2).
Controller rule b (b = 1, 2, · · · , r): If ς1(t) is Mi1 and · · · and ςp(t) is Mbp, then

u(t) = Kbx(tk), t ∈ [tk, tk+1), (2.9)

where Kb ∈ R
m×n is the controller gain matrix. Then, the linear switching fuzzy controller can be

described by

u(t) =

r∑
b=1

ψb(ς(tk))Kbx(tk) (2.10)

for tk ≤ t < tk+1. By integrating the controller (2.10) into the system (2.2), the following system is
derived as follows:

ẋ(t) =

r∑
a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk)) (Aax(t) + BaKbx(tk)) (2.11)

for tk ≤ t < tk+1.

Lemma 1. [14,15] Let w(·) : [u, v]→ Rn denote a continuous differential functions. For given scalars
u, v and matrices R ∈ Sn

+, M1,M2 ∈ R
3n×n, the following inequalities hold:

−

∫ v

u
wT (s)Rw(s)ds ≤ ρT (u, v)

(
(v − u)M1R−1MT

1 +M1(u, v)
)
ρ(u, v), (2.12)

−

∫ v

u
wT (s)Rw(s)ds ≤ ρT (u, v) ((v − u)R +M1(u, v) +M2(u, v)) ρ(u, v), (2.13)

where R = M1R−1MT
1 +

(v−u)2

3 M2R−1MT
2 , M1(u, v) = −S ym {M1[In,−In, 0n]}, M2(u, v) =

−S ym {M2[In, In,−2In]} and ρ(u, v) =
[
wT (v),wT (u), 1

v−u

∫ v

u
wT (s)ds

]T
.
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3. Main results

In this section, the fuzzy-based sampled-data control problem of the system (2.11) is investigated
by using the linear switching method. First, the stability criterion for the system (2.11) is discussed.
Based on the first result, the controller design with input saturation is discussed.

For simplicity, block entry matrices are defined as follows: ℘i = [0n×(i−1)n, In, 0n×(5−i)n]T ∈ R5n×n

(i = 1, · · · , 5), along with the subsequent notations:

ηk = t − tk, ηk+1 = tk+1 − t,

ζT (t) =

[
xT (t), xT (tk), xT (tk+1), ẋT (t),

1
t − tk

∫ t

tk
xT (s)ds

]
,

Π1 = [℘1 − ℘2] , Π2 = [℘1 − ℘3] ,
Ξ1[a] = S ym

{
℘1Pa℘

T
4

}
,

Ξ21 = ℘2U℘T
2 , Ξ22 = −℘2U℘T

2 ,

Ξ3 = S ym
{
[−Π1,Π2]

(
R1 [Π1,Π2]T + R2 [℘2, ℘3]T

)}
,

Ξ31 = S ym
{
[℘4, ℘0]

(
R1 [Π1,Π2]T + R2 [℘2, ℘3]T

)
+ [Π1, ℘0] R1 [℘4, ℘4]T

}
,

Ξ32 = S ym
{
[℘0, ℘4]

(
R1 [Π1,Π2]T + R2 [℘2, ℘3]T

)
+ [℘0,Π2] R1 [℘4, ℘4]T

}
,

Ξ4 = −S ym
{
Π2G2℘

T
2 + [℘4 − ℘1]G5℘

T
4

}
,

Ξ41 = [℘4, ℘2]
[
G1 G2

∗ G3

]
[℘4, ℘2]T − ℘3G6℘

T
3 ,

Ξ42 = [℘4, ℘3]
[
G4 G5

∗ G6

]
[℘4, ℘3]T − ℘2G3℘

T
2 ,

Ξ5[a,b] = −S ym
{
Π1Y1[a,b] + 3[℘1 + ℘2 − 2℘5]Y2[a,b] − Π2Y3[a,b]

}
,

Ξ6[a,b] = S ym
{
(℘1X1 + ℘4X2)

(
−℘T

4 + Aa℘
T
1 + BaKb℘

T
2

)}
,

Φ1[a,b] = Ξ1[a] + Ξ3 + Ξ4 + Ξ5[a,b] + Ξ6[a,b],

Φ2 = Ξ21 + Ξ31 + Ξ41, Φ3 = Ξ22 + Ξ32 + Ξ42. (3.1)

Theorem 1. For given matrices Kb ∈ R
m×n and scalars hM > 0, if the matrices Pa,G1,G3,G4,G6 ∈ S

n
+,

U, X1, X2 ∈ S
n, R1,R2,G2,G5 ∈ R

n×n and Y1[a,b],Y2[a,b],Y3[a,b] ∈ R
m×n satisfy the following LMIs:

Ṗh ≤ 0, (3.2)[
Φ1[a,b] + hMΦ2 hMYT

3[a,b]
∗ −hMG4

]
< 0, (3.3)[

Φ1[a,b] + hMΦ3 hM[Y1[a,b],Y2[a,b]]T

∗ −hMdiag{G1, 3G1}

]
< 0 (3.4)

for all a, b = 1, · · · , r, then the system (2.11) is asymptotically stable.
Proof. Let us choose the following Lyapunov functional and looped-functional candidate:

V(t) =

4∑
i=1

Vi(t), (3.5)
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where

V1(t) = xT (t)Phx(t),
V2(t) = ηk+1ηkxT (tk)Ux(tk),

V3(t) = 2
[
ηk+1(x(t) − x(tk))
ηk(x(t) − x(tk+1))

]T (
R1

[
x(t) − x(tk)

x(t) − x(tk+1)

]
+ R2φ1(tk, tk+1)

)
,

V4(t) = ηk+1

∫ t

tk
φ2(s, tk)T

[
G1 G2

∗ G3

]
φ2(s, tk)ds − ηk

∫ tk+1

t
φ2(s, tk+1)T

[
G4 G5

∗ G6

]
φ2(s, tk+1)ds.

Here, the vectors φ1(α, β) and φ2(α, β) are respectively defined as

φ1(α, β) =
[
xT (α), xT (β)

]T
, φ2(α, β) =

[
ẋT (α), xT (β)

]T
.

Calculating the time derivatives of Vi(t) (i = 1, · · · , 4) leads to

V̇1(t) = 2xT (t)Ph ẋ(t) + xT (t)Ṗhx(t)

=

r∑
a=1

ψa(ς(t))ζT (t)Ξ1[a]ζ(t) + xT (t)Ṗhx(t), (3.6)

V̇2(t) = −ηkxT (tk)Ux(tk) + ηk+1xT (tk)Ux(tk)
= ζT (t) (ηk+1Ξ21 + ηkΞ22) ζ(t), (3.7)

V̇3(t) = 2
[
−(x(t) − x(tk)) + ηk+1 ẋ(t)
(x(t) − x(tk+1)) + ηk ẋ(t)

]T (
R1

[
x(t) − x(tk)

x(t) − x(xk+1)

]
+ R2φ1(tk, tk+1)

)
+2

[
ηk+1(x(t) − x(tk))
ηk(x(t) − x(tk+1))

]T

R1φ̇1(t, t)

= ζT (t) (Ξ3 + ηk+1Ξ31 + ηkΞ32) ζ(t), (3.8)

V̇4(t) = −

∫ t

tk
φ2(s, tk)T

[
G1 G2

∗ G3

]
φ2(s, tk)ds −

∫ tk+1

t
φ2(s, tk+1)T

[
G4 G5

∗ G6

]
φ2(s, tk+1)ds

+ηk+1φ2(t, tk)T

[
G1 G2

∗ G3

]
φ2(t, tk) + ηkφ2(t, tk+1)T

[
G4 G5

∗ G6

]
φ2(t, tk+1)

= ζT (t) (Ξ4 + ηk+1Ξ41 + ηkΞ42) ζ(t)

−

∫ t

tk
ẋT (s)G1 ẋ(s)ds −

∫ tk+1

t
ẋT (s)G4 ẋ(s)ds. (3.9)

By applying Lemma 1 for any matrices Y1[a,b], Y2[a,b] and Y3[a,b], the upper bounds of the integral
terms in (3.9) can be estimated as follows:

−

∫ t

tk
ẋT (s)G1 ẋ(s)ds ≤

r∑
a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))ζT (t)
(
−S ym

{
Π1Y1[a,b] + 3[℘1 + ℘2 − 2℘5]Y2[a,b]

}
+ηkYT

1[a,b]G
−1
1 Y1[a,b] + ηkYT

2[a,b]G
−1
1 Y2[a,b]

)
ζ(t), (3.10)
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−

∫ tk+1

t
ẋT (s)G4 ẋ(s)ds ≤

r∑
a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))ζT (t)
(
−S ym

{
−Π2Y3[a,b]

}
+ηk+1YT

3[a,b]G
−1
4 Y3[a,b]

)
ζ(t). (3.11)

Thus, from (3.9)–(3.11), V̇4(t) has the following bound:

V̇4(t) ≤
r∑

a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))ζT (t)
(
Ξ4 + ηk+1Ξ41 + ηkΞ42 + Ξ5[a,b] + ηkYT

1[a,b]G
−1
1 Y1[a,b]

+ ηkYT
2[a,b]G

−1
1 Y2[a,b] + ηk+1YT

3[a,b]G
−1
4 Y3[a,b]

)
ζ(t). (3.12)

From the system (2.11), for any free-weighting matrices X1, X2 ∈ S
n, the following equation holds:

0 = 2
r∑

a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))
(
xT (t)X1 + ẋT (t)X2

)
(Aax(t) + BaKbx(tk) − ẋ(t))

=

r∑
a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))ζT (t)Ξ6[a,b]ζ(t). (3.13)

Considering the constraint in (3.2), and by combining (3.6)–(3.13), the derivative of V(t) can be
estimated as

V̇(t) ≤
r∑

a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))ζT (t)
(
Ξ1[a] + Ξ3 + Ξ4 + Ξ5[a,b] + Ξ6[a,b]

+ηk+1

(
Ξ31 + Ξ41 + YT

3[a,b]G
−1
4 Y3[a,b]

)
+ηk

(
Ξ32 + Ξ42 + YT

1[a,b]G
−1
1 Y1[a,b] + ηkYT

2[a,b]G
−1
1 Y2[a,b]

))
ζ(t)

=

r∑
a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))ζT (t)
(
ηk+1

hk

(
Φ1[a,b] + hkΦ2 + hkYT

3[a,b]G
−1
4 Y3[a,b]

)
+
ηk

hk

(
Φ1[a,b] + hkΦ3 + hkYT

1[a,b]G
−1
1 Y1[a,b] + hkYT

2[a,b]G
−1
1 Y2[a,b]

))
ζ(t). (3.14)

The inequality (3.14) is dependent on t and hk. So, the inequality (3.14) is equivalent as follows:

Φ1[a,b] + hMΦ2 + hMYT
3[a,b]G

−1
4 Y3[a,b] < 0, (3.15)

Φ1[a,b] + hMΦ3 + hMYT
1[a,b]G

−1
1 Y1[a,b] + hMYT

2[a,b]G
−1
1 Y2[a,b] < 0. (3.16)

By the Schur complement, the inequalities (3.15) and (3.16) can be further expressed as (3.3)
and (3.4), respectively. Therefore, if LMIs (3.2)–(3.4) are satisfied, the derivative of V(t) can
be guaranteed to be negative. Furthermore, in accordance with Theorem 1, the system (2.11) is
asymptotically stable. This completes the proof. �

Remark 1. Theorem 1 provides the stability condition for T-S fuzzy sampled-data systems. Although
looped-functionals V2(t) to V4(t) lead to more conservative results than recent studies, it has been
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designed as (3.5) for application in actual systems.

Remark 2. Actuator saturation exists in most real-world systems. In particular, the control
performance is significantly degraded by the nonlinear behavior of actuator saturation. Therefore,
in this paper, the input saturation problem is solved by using a method described in [33], and the set,
accordingly, is as follows:

Ellipsoid Υ(P, σ): Let P ∈ Rn×n and σ > 0. Then, denote Υ(P, σ) =
{
x(t) ∈ Rn : xT (t)Px(t) ≤ σ

}
.

Polyhedral Θ(Hi): Let Hi ∈ R
m×n be a matrix, χ be a positive scalar and ci,k be the kth row of the

matrix Hi. Then, define Θ(Hi) =
{
x(t) ∈ Rn | |ci,lx(t)| ≤ χ, l = 1, · · · ,m

}
.

If Υ(P, σ) ⊆ Θ(Hb), b = 1, · · · , r, then the representation for the saturated control input is

sat(u(t)) =

r∑
b=1

ψb(x(tk))Kbx(tk), t ∈ [tk, tk+1), (3.17)

where Kb =
∑2m

s=1 ηs [DsKb + (I − Ds)Hb] with 0 ≤ ηs ≤ 1 and
∑2m

s=1 ηs = 1. And, sat (u(t)) =

[sat(u1(t)), · · · , sat(um(t))]T with sat(uq(t)) = sgn(uq(t))min
{
|uq(t)|, χ

}
, where χ > 0 is a saturation

limit.
If the switching rule given by (2.8) is utilized to establish stabilization conditions, for different S p

and Cp, p = 1, · · · , 2r−1, the corresponding controller is given by

sat(up(t)) =

r∑
b=1

ψb(ς(tk))Kp,bx(tk), t ∈ [tk, tk+1), (3.18)

where Kp,b represents the control gain parameters corresponding to each case. Then, for tk ≤ t < tk+1,
the controller becomes the switching controller described below:

sat(u(t)) :


sat(u1(t)) =

∑r
b=1 ψb(ς(tk))K1,bx(tk) for S 1,

...

sat(up(t)) =
∑r

b=1 ψb(ς(tk))Kp,bx(tk) for S p.

(3.19)

Using (3.17) and (3.19), closed-loop systems can be formulated as

ẋ(t) =

r∑
a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))
(
Aax(t) + BaKp,bx(tk)

)
(3.20)

for tk ≤ t < tk+1.
Based on Theorem 1, the linear switching fuzzy-based sampled-data controller design for

system (3.20) is derived. The notations are defined as follows:

P̂a = XPaX,

Ĝ1 = XG1X, Ĝ2 = XG2X, Ĝ3 = XG3X, Ĝ4 = XG4X, Ĝ5 = XG5X, Ĝ6 = XG6X,

Û = XUX, R̂1 = XR1X, R̂2 = XR2X,

Ŷ1[a,b] = XY1[a,b]X, Ŷ2[a,b] = XY2[a,b]X, Ŷ3[a,b] = XY3[a,b]X,

X5 = diag {X, X, X, X, X} ,
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Ξ̂1[a] = X5Ξ1[a]X5, Ξ̂21 = X5Ξ21X5, Ξ̂22 = X5Ξ22X5, Ξ̂3 = X5Ξ3X5,

Ξ̂31 = X5Ξ31X5, Ξ̂32 = X5Ξ32X5, Ξ̂4 = X5Ξ4X5, Ξ̂5 = X5Ξ5X5,

V[p,b] =

2m∑
s=1

ηs

[
DsVp,b + (Im − Ds)Np,b

]
,

Ξ̂6[a,b] = S ym
{
(℘1 + α℘4)

(
−X℘T

4 + AaX℘T
1 + BaVp,b℘

T
2

)}
,

Φ̂1[a,b] = Ξ̂1[a] + Ξ̂3 + Ξ̂4 + Ξ̂5 + Ξ̂5[a,b] + Ξ̂6[a,b],

Φ̂2 = Ξ̂21 + Ξ̂31 + Ξ̂41,

Φ̂3 = Ξ̂22 + Ξ̂32 + Ξ̂42, (a, b = 1, · · · , r). (3.21)

Theorem 2. Let us assume that Υ(Pa, σ) ⊂ Θ(Hb). For the given positive scalars hM, α, χ, σ, ηs (s =

1, 2, · · · , 2m) and matrices Q and R, if the matrices P̂a, Ĝ1, Ĝ3, Ĝ4, Ĝ6 ∈ S
n
+, Û, X ∈ Sn, R̂1, R̂2, Ĝ2, Ĝ5 ∈

Rn×n, Vp,b,Np,b ∈ R
m×n and Ŷ1[a,b], Ŷ2[a,b], Ŷ3[a,b] ∈ R

m×n satisfy the following LMIs:

˙̂Ph ≤ 0, (3.22)
Φ̂1[a,b] + hMΦ̂2 hMŶT

3[a,b] ℘1X ℘2VT
p,b

∗ −Ĝ2 0n×n 0n×m

∗ ∗ −Q−1 0n×m

∗ ∗ ∗ −R−1

 < 0, (3.23)


Φ̂1[a,b] + hMΦ̂3 hM[Ŷ1[a,b], Ŷ2[a,b]]T ℘1X ℘2VT

p,b

∗ −diag{Ĝ1, 3Ĝ1} 0n×n 0n×m

∗ ∗ −Q−1 0n×m

∗ ∗ ∗ −R−1

 < 0, (3.24)

 1
σ

np,b,k

χ

∗ P̂a

 ≥ 0 (3.25)

for all a, b = 1, · · · , r and k = 1, · · · ,m, then the system (3.20) is asymptotically stabilized. Here, np,b,k

is the kth row of the matrix Np,b. And, the controller gain matrices are given by Kp,b = Vp,bX−1.
Proof. By combining (3.14) and the cost function J =

∫ ∞
0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt derived from the

linear-quadratic regulator (LQR) technique, an upper bound of V̇(t) can be given by

V̇(t) ≤
r∑

a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))ζT (t)
(
ηk+1

hk

(
Φ1[a,b] + Φ2 + YT

3[a,b]G
−1
2 Y3[a,b]

)
+
ηk

hk

(
Φ1[a,b] + Φ3YT

1[a,b]G
−1
1 Y1[a,b] + YT

2[a,b]G
−1
1 Y2[a,b]

))
ζ(t)

≤

r∑
a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))ζT (t)
(
ηk+1

hk

(
Φ1[a,b] + Φ2 + YT

3[a,b]G
−1
2 Y3[a,b]

)
+
ηk

hk

(
Φ1[a,b] + Φ3YT

1[a,b]G
−1
1 Y1[a,b] + YT

2[a,b]G
−1
1 Y2[a,b]

)
−℘1Q℘T

1 − ℘2KT
p,bRKp,b℘

T
2

)
ζ(t) < 0. (3.26)

The inequality (3.26) is dependent on t and hk as proof of Theorem 1. So, based on the Schur
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complement, the inequality (3.26) is equivalent to
Φ1[a,b] + hMΦ2 hMYT

3[a,b] ℘1 ℘2KT
p,b

∗ −G2 0n×n 0n×m

∗ ∗ −Q−1 0n×m

∗ ∗ ∗ −R−1

 < 0, (3.27)


Φ1[a,b] + hMΦ3 hM[Y1[a,b],Y2[a,b]]T ℘1 ℘2KT

p,b

∗ −diag{G1, 3G1} 0n×n 0n×m

∗ ∗ −Q−1 0n×m

∗ ∗ ∗ −R−1

 < 0. (3.28)

Define X = X−1
1 , X2 = αX1, Vp,b = Kp,bX and the matrices Xq = diag {X, · · · , X}︸      ︷︷      ︸

q elements

. By pre-

and post-multiplying the matrices (3.27) and (3.28) by diag{X6, In, Im} and diag{X7, In, Im}, then the
inequalities (3.27) and (3.28) are respectively equivalent to (3.23) and (3.24).

The saturated controller in (3.20) exists if Υ(Pa, σ) ⊂ Θ(Hb) [33]; it can be equivalently written as

Pa ≥
σ

χ2 cT
p,b,kcp,b,k, a, b = 1, · · · , r, k = 1, · · · ,m. (3.29)

By the Schur complement, the inequality (3.29) is equivalent to[ 1
σ

cp,b,k

χ

∗ Pa

]
≥ 0. (3.30)

The inequality (3.30), by pre- and post-multiplying it with diag{1, X} can yield the inequality (3.25).
This completes the proof. �

In order to show the effectiveness of the Lyapunov function and looped-funtionals, the following
system without input saturation is considered:

ẋ(t) =

r∑
a=1

r∑
b=1

ψa(ς(t))ψb(ς(tk))
(
Aax(t) + BaKp,bx(tk)

)
. (3.31)

Then, the following theorem can be obtained easily.

Corollary 1. For given positive scalars hM, α and matrices Q and R, the system (3.31) is asymptotically
stable if the matrices P̂a, Ĝ1, Ĝ3, Ĝ4, Ĝ6 ∈ S

n
+, Û, X ∈ Sn, R̂1, R̂2, Ĝ2, Ĝ5 ∈ R

n×n, Vp,b,Np,b ∈ R
m×n and

Ŷ1[a,b], Ŷ2[a,b], Ŷ3[a,b] ∈ R
m×n satisfy LMI (3.22) and the following LMIs for all a, b = 1, · · · , r:

Φ̄1[a,b] + hMΦ̂2 hMŶT
3[a,b] ℘1X ℘2VT

p,b

∗ −Ĝ2 0n×n 0n×m

∗ ∗ −Q−1 0n×m

∗ ∗ ∗ −R−1

 < 0, (3.32)


Φ̄1[a,b] + hMΦ̂3 hM[Ŷ1[a,b], Ŷ2[a,b]]T ℘1X ℘2VT

p,b

∗ −diag{Ĝ1, 3Ĝ1} 0n×n 0n×m

∗ ∗ −Q−1 0n×m

∗ ∗ ∗ −R−1

 < 0, (3.33)
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where

Φ̄1[a,b] = Ξ̂1[a] + Ξ̂3 + Ξ̂4 + Ξ̂5 + Ξ̂5[a,b] + Ξ̄6[a,b],

Ξ̄6[a,b] = S ym
{
(℘1 + α℘4)

(
−X℘T

4 + AaX℘T
1 + BaVp,b℘

T
2

)}
.

And, the controller gain matrices are given by Kp,b = Vp,bX−1.

4. Examples

In this section, there are two examples to show the superiority and effectiveness of the
proposed results.
Example 1: Consider the following chaotic Lorenz system modeled as T-S fuzzy system (2.2):

A1 =


−a a 0
c −1 −d
0 d −b

 , A2 =


−a a 0
c −1 d
0 −d −b

 , B1 = B2 =


1
0
0

 . (4.1)

The fuzzy membership functions are ψ1(x(t)) = (1/2)(1 + x1(t)/d) and ψ2(x(t)) = 1 − ψ1(x1(t)).
In this example, the following parameters are chosen as a = 10, b = 8/3, c = 28, d = 25, and the

initial conditions are applied as x(0) = [10, 5,−15]T . In Table 1, the maximum allowable sampling
bound hM is calculated by applying Theorem 2, and it is listed with the existing works. Here, the result
is obtained for hM = 0.0442, α = 0.012,Q = 1,R = diag{1, 1, 1}. The corresponding control gains are
given as

K1,1 = [−31.9071,−26.9334,−0.2229],K1,2 = [−31.9071,−26.9334,−0.2229],
K2,1 = [−31.8505,−26.9543, 0.1921],K2,2 = [−31.8505,−26.9543, 0.1921]. (4.2)

Although simple looped-functionals are utilized in Corollary 1, unlike in [38], the use of a
linear switching method in Corollary 1 leads to less conservative results, as presented in Table 1.
Figure 1 (a),(b) respectively show the state and input trajectories of the system (3.31).
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Time(s)
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(a) Controlled state trajectories.
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(b) Control input trajectory

Figure 1. Controlled state and control input trajectories of the system (3.31).
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Table 1. The maximum sampling bound hM.

Method [34] [35] [36] [37] [38] Corollary 1
hM 0.0158 0.0299 0.0347 0.0412 0.0438 0.0442

Example 2: The inverted pendulum, an under-actuated system, is often used as a benchmark for the
performance of nonlinear control laws in control system theory due to its nonlinear behaviors, like
gravity and centripetal force. For this reason, many papers have used examples modeled with a T-S
fuzzy system [26, 27], and in this paper, a more complex model, the RIP system, is utilized.

Consider the following nonlinear RIP system of Figure 2:

Figure 2. RIP from Quanser.

(
mpL2

r +
1
4

mpL2
p −

1
4

mpL2
pcos2(α) + Jr

)
θ̈ −

(
1
2

mpLpLrcos(α)
)
α̈ +

(
1
2

mpL2
psin(α)cos(α)

)
θ̇α̇

+

(
1
2

mpLpLr sin(α)
)
α̇2 = τ − Brθ̇, (4.3)

−
1
2

mpLpLrcos(α)θ̈ +

(
Jp +

1
4

mpL2
p

)
α̈ −

1
4

mpL2
pcos(α)sin(α)θ̇2 −

1
2

mpLpgsin(α) = −Bpα̇. (4.4)

In the system, θ(t) represents the angle of the rotary arm, θ̇(t) signifies its angular velocity and
α(t) and α̇(t) depict the angle and angular velocity of the pendulum rod, respectively. The detailed
definitions of the system parameters from (4.3) and (4.4) are shown in Table 2 and can be viewed in
more detail in [39]. Additionally, the equation for torque, in terms of voltage, is as follows:

τ(t) =
ηgKgηmkt

(
Vm(t) − Kgkmθ̇

)
Rm

, (4.5)

where Vm(t) is the input servo motor voltage, subsequently being converted into u(t). And, if α̇(t) and
θ̇(t) are close to zero, the nonlinear Eqs (4.3) and (4.4) are expressed as follows:

F (x(t)) ẋ(t) = A (x(t)) x(t) + Bu(t), (4.6)
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where

x(t) = [x1(t), x2(t), x3(t), x4(t)]T =
[
θ(t), α(t), θ̇(t), α̇(t)

]T
,

u(t) = Vm(t),

F (x(t)) =


1 0 0 0
0 1 0 0
0 0 F33 −1

2mpLpLrcos(x2(t))
0 0 −1

2mpLpLrcos(x2(t)) Jp + 1
4mpL2

p

 ,

A (x(t)) =


0 0 1 0
0 0 0 1

0 0 −
ηgηmK2

g ktkm

Rm
− Br 0

0 1
2mpLpgsinc(x2(t)) 0 −Bp

 ,

B =


0
0

ηgηmKgkt

Rm

0

 ,
F33 = mpL2

r +
1
4

mpL2
p −

1
4

mpL2
pcos2(x2(t)) + Jr.

By multiplying F −1(x(t)) to the Eq (4.6) and defining F −1(x(t))A(x(t)) = A(x(t)) and F −1(x(t))B =

B(x(t)), system (2.2) can be derived.

Table 2. Physical parameters of the RIP.

Symbol Value Symbol Value
Lp 0.337 [m] Lr 0.216 [m]
kt 0.00767 [Nm/A] km 0.00767 [V s/rad]
mp 0.127 [kg] Rm 2.6 [Ω]
Bp 0.0024 [Nms/rad] Br 0.0024 [Nms/rad]
ηg 0.9 ηm 0.6
Jp 0.0012 [kgm2] Jr 0.000998 [kgm2]
Kg 70 g 9.81 [m/s2]

To formalize the T-S fuzzy model in Eq (4.6), the following two premise variables (r = 2) were
selected, resulting in the utilization of 2r IF-THEN rules:

ς1(t) = cos(x2(t)), ς2(t) = sinc(x2(t)). (4.7)

When utilizing the local sector nonlinearity approach, it becomes possible to approximate nonlinear
systems within the limitations of the fuzzy model. Therefore, the bounds of the premise variables
described by (4.7) can be determined as follows by using |α| ≤ π

6 [rad]:

ς1,max = 1, ς1,min = 0.8660, ς2,max = 1, ς2,min = 0.6063. (4.8)
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Let us define

M11(t) =
ς1(t) − ς1,min

ς1,max − ς1,min
,M12(t) = 1 − M11(t),

M21(t) =
ς2(t) − ς2,min

ς2,max − ς2,min
,M22(t) = 1 − M21(t). (4.9)

Therefore, the membership functions can be calculated as

ϑ1(t) = M11(t)M21(t), ϑ2(t) = M12(t)M21(t),
ϑ3(t) = M11(t)M22(t), ϑ4(t) = M12(t)M22(t),

ψa(ς(t)) =
ϑa(ς(t))

Σr
b=1ϑb(ς(t))

. (4.10)

And, this is shown in Figure 3 for x2(t).
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Figure 3. Membership function of RIP.

The matrices of system (2.2) according to the premise variables described by (4.7) and (4.8) and the
parameters of Table 2 are as follows:

A1 =


0 0 1 0
0 0 0 1
0 81.4085 −25.1327 −0.9317
0 121.9360 −24.1728 −1.3955

 , A2 =


0 0 1 0
0 0 0 1
0 38.9003 −13.8672 −0.4452
0 76.0390 −11.5507 −0.8702

 ,

A3 =


0 0 1 0
0 0 0 1
0 49.3555 −25.1327 −0.9317
0 73.9262 −24.1728 −1.3955

 , A4 =


0 0 1 0
0 0 0 1
0 23.5841 −13.8672 −0.4452
0 46.1002 −11.5507 −0.8702

 ,

B1 = B2 =


0
0

45.0065
43.2876

 , B3 = B4 =


0
0

24.8328
20.6846

 . (4.11)
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The experimental equipment shown in Figure 4 consists of a Quanser RIP, UPM-1503 voltage
amplifier, q8 terminal board and SRV-02 plant. The Matlab/Simulink platform, as shown in Figure 5,
is utilized to execute real-time controllers for the RIP. The Simulink file can be downloaded from [39],
except for the internal controller blocks. The controller gain Kp, j can be obtained by applying
Theorem 2 using the sampling period hM = 0.01, tuning parameters α = 0.47, γ = 5, δ = 1,Q =

diag{5, 2, 1, 1}, η1 = η2 = 0.5 and R = 0.1; the results are listed in Table 3.

Figure 4. Experimental system for the RIP.

Figure 5. Matlab/Simulink program for RIP system with controller.
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Table 3. The feedback gain.

Case The feedback gain

1

K1,1 =
[
0.8205 −13.8725 1.6758 −2.3288

]
K1,2 =

[
0.8191 −13.8626 1.6735 −2.3265

]
K1,3 =

[
0.8202 −13.8679 1.6751 −2.3280

]
K1,4 =

[
0.8203 −13.8687 1.6754 −2.3282

]

2

K2,1 =
[
0.5321 −9.2269 1.1086 −1.5454

]
K2,2 =

[
0.5325 −9.2339 1.1094 −1.5466

]
K2,3 =

[
0.5326 −9.2392 1.1095 −1.5474

]
K2,4 =

[
0.5331 −9.2406 1.1105 −1.5478

]

3

K3,1 =
[
0.4403 −7.2309 0.8717 −1.2275

]
K3,2 =

[
0.4398 −7.2218 0.8706 −1.2256

]
K3,3 =

[
0.4397 −7.2200 0.8703 −1.2254

]
K3,4 =

[
0.4394 −7.2140 0.8696 −1.2243

]

4

K4,1 =
[
0.9552 −17.1361 2.0117 −2.8536

]
K4,2 =

[
0.9547 −17.1289 2.0109 −2.8525

]
K4,3 =

[
0.9544 −17.1228 2.0100 −2.8513

]
K4,4 =

[
0.9550 −17.1326 2.0113 −2.8530

]

5

K5,1 =
[
1.6443 −26.2578 3.2041 −4.3896

]
K5,2 =

[
1.6442 −26.2566 3.2039 −4.3894

]
K5,3 =

[
1.6443 −26.2589 3.2042 −4.3898

]
K5,4 =

[
1.6443 −26.2579 3.2041 −4.3896

]

6

K6,1 =
[
0.1379 −1.1926 0.2263 −0.2381

]
K6,2 =

[
0.1378 −1.1911 0.2260 −0.2377

]
K6,3 =

[
0.1376 −1.1889 0.2257 −0.2375

]
K6,4 =

[
0.1379 −1.1932 0.2263 −0.2382

]

7

K7,1 =
[
0.9526 −17.0428 1.9949 −2.8525

]
K7,2 =

[
0.9521 −17.0316 1.9937 −2.8505

]
K7,3 =

[
0.9524 −17.0382 1.9943 −2.8517

]
K7,4 =

[
0.9529 −17.0462 1.9953 −2.8530

]

8

K8,1 =
[
2.1742 −36.1862 4.2889 −6.0038

]
K8,2 =

[
2.1737 −36.1771 4.2880 −6.0022

]
K8,3 =

[
2.1736 −36.1739 4.2875 −6.0018

]
K8,4 =

[
2.1732 −36.1693 4.2870 −6.0009

]
When the state exceeds the bounds of the premise variable, an energy-based swing-up control is

employed [40]. To compute θ̇ and α̇, a high-pass filter F(s) = 20πs
s+20π is utilized for the measured angle.

The results obtained by applying the fuzzy switching controller using the gains in Table 3 are shown in
Figures 6–8. In Figures 6 (a)–8 (a), energy-based swing-up control is performed for 0 to 3.34 seconds,
and then stabilization is performed. And, Figures 6 (b)–8 (b) show stabilization when disturbance is
introduced under the stable state. Figure 6 displays the angles and velocities of both the arm and rod
through the results of θ(t), α(t), θ̇(t) and α̇(t). In addition, Figure 6 shows the stability when using the
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control gain Kp, j obtained via Theorem 2. Figure 7 displays the control input u(t) signal, and it shows
that the input saturation conditions are satisfied. Figure 8 depicts the case of the switching controller
at that moment.
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(a) Stabilization results with the swing-up control region.
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(b) Responses to a disturbance in the stable state.

Figure 6. Position and velocity responses of the RIP.
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(a) Stabilization result with the swing-up control region.
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(b) Response to a disturbance in the stable state.

Figure 7. Input response of the RIP.

Remark 3. According to (4.10), there are four membership functions (ψ1–ψ4). Consequently, inspired
by previous work [5], 24−1 switching algorithms are derived by using ψ1–ψ3. However, the RIP system
has only five cases: S 1(ψ̇1 ≤ 0, ψ̇2 ≤ 0, ψ̇3 ≤ 0), S 2(ψ̇1 ≤ 0, ψ̇2 ≤ 0, ψ̇3 > 0), S 4(ψ̇1 ≤ 0, ψ̇2 > 0,
ψ̇3 > 0), S 5(ψ̇1 > 0, ψ̇2 ≤ 0, ψ̇3 ≤ 0) and S 7(ψ̇1 > 0, ψ̇2 > 0, ψ̇3 ≤ 0). S 1 is the unchanged situation,
and S 2, S 4, S 5 and S 7 are shown from the right in Figure 9. Here, each boundary is x2 = −0.3636, 0
and 0.3636 [rad]. As shown in Figure 8, five cases are presented; S 2 and S 7 are visible when x2(t) is
larger than 0.3636 [rad], and S 1, S 4 and S 5 are frequently observed to be in a stable state.
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(a) Stabilization result with swing-up control region. (b) Response to a disturbance in the stable state.

Figure 8. Cases of switching of the RIP.
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Figure 9. Derivative values of membership functions in the RIP.

5. Conclusions

In this paper, the fuzzy-based sampled-data control for the T-S fuzzy system with input saturation
has been investigated. The linear switching method was employed to stabilize the fuzzy systems. By
using the appropriate looped-functionals and some integral inequalities, the stability and stabilization
criteria were obtained as the LMIs. Furthermore, the practical limitation of input saturation was
considered for T-S fuzzy systems, and the LQR technique was employed for controller tuning.
Moreover, the controller gain parameters were determined by solving the obtained set of LMIs. Finally,
through the numerical example of the chaotic Lorenz model and the experiment of the RIP system,
the excellence and effectiveness of the proposed results were confirmed, respectively. The numerical
example showed that Corollary 1 was less conservative than previous results, and the experiments
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confirmed that the stabilization of the RIP system was ensured when using the switching method.
The future work will focus on improving the proposed design conservatism by taking into account
more common phenomena, such as time-varying delays, uncertainties and external disturbances, and
solving them using the active disturbance rejection control strategy and advanced integral inequality
conditions. Additionally, the proposed sampled-data control design will be extended to event-triggered
control in order to conserve communication resources.
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