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Abstract: In this paper, we discussed some qualitative properties of solutions to a thermostat system
in the framework of a novel mathematical model designed by the new (p, g)-derivatives in fractional
post-quantum calculus. We transformed the existing standard model into a new control thermostat
system with the help of the Caputo-like (p, g)-derivatives. By the properties of the (p, g)-gamma
function and applying the fractional Riemann-Liouville-like (p, g)-integral, we obtained the equivalent
(p, g)-integral equation corresponding to the given Caputo-like post-quantum boundary value problem
((p, 9)-BOVP) of the thermostat system. To conduct an analysis on the existence of solutions to this
(p, q)-system, some theorems were proved based on the fixed point methods and the stability analysis
was done from the Ulam-Hyers point of view. In the applied examples, we used numerical data to
simulate solutions of the Caputo-like (p, g)-BOVPs of the thermostat system with respect to different
parameters. The effects of given parameters in the model will show the performance of the thermostat
system.

Keywords: (p, g)-fractional calculus; (p, g)-gamma function; thermostat mathematical model;
stability; fixed point
Mathematics Subject Classification: 26A51, 39A10, 39A13, 39A70

1. Introduction

Fractional calculus, which deals with special operators of arbitrary order, has led to enormous
advances in the theoretical and practical development of various fields of engineering science. In
order to understand the reasons for this importance and extent, we can refer to useful mathematical
results that include the investigation of the existence of solutions to fractional differential equations
and the design of different numerical algorithms for simulating fractional processes. For example, the
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trace of the fractional calculus can be seen recently in a variety of clinical disciplines, economics and
analysis of economic models, medical models, image processing, engineering, physics etc. [1-3]. In
the part of existence of solution and study of approximate solutions, fractional calculus has shown its
simulation power well. In most classical mathematical models, standard integer-order operators were
used, but nowadays it has been proven to everyone that for existing models, fractional operators can
also provide better results with the least simulation error. Examples of these fractional order redesigns
of mathematical models can be seen in the articles published by [4-17].

In 1910, quantum calculus, which is also called g-calculus in some sources, was proposed and
introduced by Jackson [18,19]. Along with the advances in modern analysis, g-calculus paved the way
for more applicability with the definitions of new concepts offered. Gradually, g-calculus found its way
into some physical and mathematical problems, so that Fock [20] defined special g-difference equations
in which he could study the symmetry of hydrogen atoms. Later, using the concepts and properties
in g-calculus, researchers took help from g-operators and g-series to analyze the theory of quantum
mechanics, number theory, hypergeometric functions, orthogonal polynomials and combinations [21,
22]. For more studies in this regard, see [23-27].

Along with the evolution of g-calculus, a new extension of this field has recently been generalized
by two parametric operators and notions in (p, g)-calculus. The starting point of this theory is related to
a resaerch done by Chakrabarti and Jagannathan [28]. The trace of (p, g)-operators can be followed in
some theories such as approximation theorey [29, 30], Lie groups, Bézier curves and surfaces [31],
physical sciences [32] and hypergeometric series [33]. Later, Sadjang [34] proved several basic
theorems in (p, g)-calculus and also established the (p, g)-Taylor formula. The (p, g)-gamma and (p, g)-
Beta functions are obtained by Cheng et al. and Milovanovic et al. [35, 36], respectively. Next, some
researchers imported (p, g)-calculus in the boundary value problem (BOVP) theory and derived the
existence properties for solutions of (p, g)-difference equations. After that, in 2020, Soontharanon
et al. [37] derived and proved some useful properties on (p, g)-calculus.

In 2020, Soontharanon and Sitthiwirattham [38] studied a Riemann-Liouville-like (p, g)-integro-
difference w”*-order BOVP under the (p, g)-Robin boundary conditions with the fixed point theory,
which takes the form

RDLY W (1) = (s, (1), RL, . (0 ¥)(1), "D, P(1)), wi,wa € (0,1], t € J

p.q’

Wo € (1’2]3
o'P(p) + OézRD;qu‘P(p) =Gi(Y(@®), wsz€(0,1], o, x; €RT,

a ey, @
Bl‘P(I—?) + BzRDp;q‘P(;) =G (Y1), Bi1,B2€R", 0<g<p<I,

a J .
where p € J¢_ - {0,1—?} and J5, = {——a : j € NoJ U {0}. Also, F € C(J%,, x R, R) and Gy, G, :

C{J;,,-R) = R. Note that ¢ € C(J5,, X J7 ,, [0, 00)) and

P9’ P9’
RD (W)(1) = —— f t(t—qv)(wl_l)tp(t ¥(—=)d, v
" T gw)p2) Jo - prtr

and also R]D;,“fq is the fractional Riemann-Liouville-like (p, g)-derivative of w*™_order so that w* =
wi(i =0,2,3).
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In 2021, Neang et al. [39] studied the existence results with the help of the same techniques
used in [38] for another nonlinear Caputo-like (p, g)-difference w”-order BOVP under the separated
boundary conditions, given by

cD;)V,q\P(l) = F(l, lP(sz‘)), we(l,2], 0<t< 1%’

o W(0) + 31D, ,F(0) =vi¥(r1), «1,B1,v1 €R,

a
x¥(a) + BZDp,q\P(;) =V,¥(r), ®,B2,v2€R, 0<g<p<l,

with the first order (p, ¢)-difference D, ,, the w™-order Caputo-like (p, ¢)-derivative ‘Dy, and the
continuous function F : [0, pi] xR — R.

In 2022, Neang et al. [40] completed their study by defining a new continuous function F : [0, a] X
R — R to reduce the complication of the domain of function and proved their results for solutions of
the Caputo-like (p, g)-difference BOVP

‘D, Y@ =F(p"t, ¥(p"n), we(l,2], 0<t<a,
o' P(0) + 1D, ,¥(0) =vi, o, Pi, V1 €R,
ox¥(a) + 3D, ,¥Y(pa) =v2, x,P2,v2€R, 0<g<p<l,

with the first order (p, g)-difference D, , and the w*-order Caputo-like (p, g)-derivative ‘D), ,- For more
studies based on (p, g)-calculus, see [41-46].

In the real world, to study the dynamics of some phenomena, we need to have a mathematical model
of them. In fact, mathematical models are the basis of studying all kinds of physical, mechanical and
engineering processes and phenomena. One of these mathematical models in which various studies
have been done recently is the mathematical model presented for the thermostat system. So far,
different versions of this physical equation have been defined and specific research objectives have
been studied in each article. The above new structures inspired us in this paper to continue our study
by introducing a new two-parametric structure of a (p, g)-thermostat equation with the Caputo-like
(p, q)-derivative. In fact, we will manipulate the standard second-order thermostat system formulated
by Infante et al. [47], given by

Y =F@, YY), te€]0,1],
(1.1)

Y(0) =0, b¥'(1)+¥(B) =0,

and transform it into a new framework in the context of (p, g)-calculus (will be introduced in Section 3).

To the best of our knowledge, the Caputo-like (p, g)-difference BOVP of the thermostat has not
yet been studied in the context of the (p, g)-derivatives. In this study, we will generalize the aforesaid
standard BOVP (1.1) to a Caputo-like (p, ¢)-BOVP with the help of the first order (p, g)-difference
D, and the w'-order Caputo-like (p, g)-derivative ‘Dy, so that w € (1,2] is the order of the new
(p, q)-system. Also, we will show that if p = 1 and ¢ — 1, then our suggested (p, g)-model reduces
to a Caputo-like g-BOVP and a standard Caputo BOVP of the thermostat equation, respectively. To
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fill this gap, we first define our desired model by concepts of (p, g)-calculus and find its fractional
Riemann-Liouville-like (p, g)-integral-based solution, and then we prove the existence and stability
results.

It is notable that the g-derivatives and (p, g)-derivatives are based on the finite difference re-scaling,
working with these methods are simple and fast and computational softwares run the commands
quickly. Moreover, note that another main advantage of g-calculus and (p, g)-calculus is that they
deal with nondifferentiable functions. Therefore, these theories are very much suitable to deal with any
physical phenomena, which are described by equations involving nondifferentiable functions.

The organization of this paper is as follows. Some needed notions and definitions of (p, g)-calculus
are collected as the preliminaries in Section 2. Next, in Section 3, the Caputo-like (p, g)-difference
BOVP of thermostat and its special cases are introduced. Also in Section 3, we obtain the integral
structure of the solution and prove the existence results. In Section 4, we investigate stabilities for
the post quantum structure of the thermostat model. Numerical examples are given and investigated
graphically in Section 5. The paper is concluded with conclusions in Section 6.

2. Preliminaries

In two subsections, we review some definitions about g-calculus and (p, g)-calculus. Throughout
the paper, we take g € (0,1) and0 < g < p < 1.

2.1. g-calculus

The g-analogue of (p; — p2)" [g-power function] is formulated as [48]

m—1

(P1—p)Y =1, (p1—p)" = n(pl - 024),  (p1.p2 €R, m € Ny).
i=0

Generally, let m = w € R, then
= 1=
(p1 — pz)(qw) = pY l_[ >

P2y w+i’
T @)ge

(p1 #0). (2.1)

Clearly, we have (pl)f]W) = pY} if po = 0 [48]. Also, the g-number [p], and g-gamma function I',(-),
for p € R and w € R\Z=’, are defined as

] 1-¢° (1-g)f"
[0, =0, [ply=¢" "+ - +q+1= l_qq (p20), T,w) = ﬁ (2.2)
so that I'y(w + 1) = [w],I',(w) [48].
Definition 2.1 ( [49]). The g-difference of the function ¥ is given by
RN (O 100
D,¥(1) = | dt]q‘{’(t) =" (2.3)

Note that Dy"¥(r) = Dy(Dy~" (1)), ¥ m € N and D{¥(2) = W(2) [49].
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Definition 2.2 ( [50,51]). The w"-order fractional Riemann-Liouville-like g-integral of the function
Y € C([0, +0), R) is defined by

!
f (t—gqv))"" "YW dgv, w>0,
0

Ry = { Taw) (2.4)

Y(), w =0,
if the integral exists.

Definition 2.3 ( [50, 51]). Let A = [w] + 1. The w"-order Caputo-like g-derivative of ¥ €
CM([0, +00),R) is defined by

1 t
CTW _ A-w=DTA
DY) = —FqO\ =) j(: (t—qv), D,¥(v)dyv, (2.5)
if the integral converges.

2.2. (p,q)-calculus

Here, we provide some definitions about (p, g)-calculus. It is sufficient to put p = 1, then all
definitions of this subsection reduce to the existing definitions in the previous subsection.
The (p, g)-analogue of (p; — p2)" [(p, g)-power function] is defined by [37]

m—1

er=p) =1, (r=pys =] |(err = p2d), (p1,p2 € R, meNy).
i=0

Generally, let m = w € R, then

W = o a - )&y
(P1 = P2)py = P l_[ ( BYEYE )W+,) (p1 # 0). (2.6)

Also, (pl)(W) = = p”f if p, = 0 [37]. In the sequel, the (p, g)-number [p],, and (p, g)-gamma function
[,,(), forpe R and w € R\Z=°, are defined by

(w=1)

_ P’-q° (P = Dpg

[0, =0, [plpq=p""[pls = , T w)= ——21—,
P4 pa =P 2 P—q P (p—q)" T

sothatT', ,(w+ 1) = [w], I, ,(w) [37]. Moreover, the (p, g)-Beta function B, ,(-, -) is defined by

2.7)

1
r 1
B, ,(w, W) = f VL= g d, v = Mp @DEE2 5w > 0. (2.8)
0 I, w+w)

Definition 2.4 ( [37]). The (p, q)-difference of the function V¥ is defined by
Y(pr) - Y(g1)
(p— gt
Note that if p = 1, then D, ,'¥(¢) = D,'¥(?), and also if ¢ — 1, then D, ,_,;'¥ (1) = ¥’ (?).

Dp,qu(t) = (29)
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Definition 2.5 ( [37]). Let ¥ : [0,a] — R be continuous. The (p, q)-integral of ¥ is defined by

i i

t (o8]
L ¥(@®) = f Yw)d,qv = (p - Q)tz p(i]+1\P[pCi1+l t]'
0

i=0

Definition 2.6 ( [37]). The w"-order fractional Riemann-Liouville-like (p, q)-integral of the function
Y € C([0, a],R) is defined by

1 f ' 1 v
—— | t=q) Y| == |dpv, w>0,
Ry (e = 4 pg)p®) Jo " [P 1 (2.10)
Y(1), w =0,
if the integral exists.
Note that if p = 1, then RI[Y,q‘P(t) = *I"¥(t), which is defined in Definition 2.2.

Definition 2.7 ([37]). Let A = [w]+1. The w"-order Caputo-like (p, q)-derivative of ¥ € CM([0, a], R)
is defined by

1 ! %
‘DY W(r) = RI"DN W(r) = f (t—gv)Ipr §|——1d, v, (2.11)
D-q Dq " P4q rp’q (7\ _ w)p(AZ ) 0 Pq P.q [ p?\—w—l] P4

if the integral converges.

Note that if p = 1, then CD;”,(I‘P(I) = ‘Dy¥(), which is defined in Definition 2.3.
The following properties are important and are proved in [37].

Lemma 2.8. [37] Let w,w > O, then
(Apy) RJI;V’Q[RI[;VH‘P(I)] = RI[;?’q[RI[;f’q‘I’(t)] = R]I;V;W‘I’(t).
(Bpg) Dy [FTy ()] = ().

Lemma 2.9. [37] Let w,w > 0 and ¥(¢) = t*, then
L, + 1)
r,,w+w+1)

w+w

(Cpg) FI (D) =

T, W +1)

VO > w
,,w-w+1) ’

(Dpq) Dy ¥(0) = p*

t
(Epy) f (= qv)\ v, v = B, 00 + 1w
0
The results of the following example will be used in the paper.

Example 2.10. Let 8 € R, then

B
(i) f B=qv)\ Vd, v = BB, (6, w).
0
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pa
(ii) (pa — qv)(w Nd, v = (pa)** B, ,(6,w — 1).
0

Proof. We just proved the (p, g)-integral (1). The second one is similar. By Definition 2.5, we can write

i

[ 6= = -8, Ll g-Lopl (L)
i=0

i

=(p- q)ﬁz ,H(,B)(w "1 - pq+l]::1)ﬁ5(p?+l)5
KA W 3 Ll W

1
=7 [0 = @y = BB 6.0,
0

This ends the proof. O
Theorem 2.11 ( [37]). Let A = [w] + 1, then

A-1 l ‘P(O)
RI[W C]Dw \P 7] _pg 7
v DY W] = W) — Z ,,q<,+1)p<>

Shortly, we have
K D W] = W) + kg + kit + -+ k1

where Ky € R; i=0,1,...,A-1.
Finally, we recall the Brouwer fixed point theorem, which will be used in the sequel.

Theorem 2.12 ( [52]). If G is a nonempty, closed, bounded and convex set and g : G — G is
continuous, then there exists s € G such that g(s) = s.

3. The Caputo-like (p, ¢)-BOVP of thermostat model

In the present section, we intend to introduce our Caputo-like (p, g)-difference w’-order BOVP of
the thermostat system inspired by the standard second-order BOVP (1.1). For w € (1, 2], the fractional
(p, g)-difference thermostat BOVP is formulated by

‘Dy Y (@) = F(p"t, ¥(p"1)),
Dp,q\P(O) :Mla (W€(1’2]7t€ [Oaa]aMl’MZ ER)’ (3'1)
bD, ¥ (pa) +¥(B) = M>, (a=1,0>0,B¢€]0,al),

with the first order (p, g)-difference D, , and the w'-order Caputo-like (p, g)-derivative ‘Dy , defined
in Definitions 2.4 and 2.7, respectively. F : [0,a] X R — R is continuous and 0 < ¢ < p < 1.
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It is natural that if p = 1, then the above Caputo-like (p, g)-difference w”-order BOVP of the
thermostat system reduces to the Caputo-like g-difference w™-order BOVP, which takes the form

{CD;V\P(Z‘) = F(1, ¥()), (3.2)

D,Y(0) = My,  bD,¥(a) + V(B) = M,

with the first order g-difference D, and the w"-order Caputo-like g-derivative ‘D) defined in
Definitions 2.1 and 2.3, respectively. Moreover, if p = 1 and ¢ — 1, then the Caputo-like (p, g)-
difference w”-order BOVP (3.1) reduces to the Caputo w”-order BOVP, which takes the form

(3.3)
D'¥(0) = M,, bD'"¥(a)+¥(B) = M>,

{CDW‘P(t) = F(1, ¥(1)),
. . . 1 d th . . a . .
with the first order derivative D' = 5 and the w"-order Caputo derivative ‘D" [1, 3]. Finally, if p = 1,

g — 1,w=2and M, = M, = 0, then our Caputo-like (p, ¢)-difference w”-order BOVP (3.1) reduces
to the standard second-order thermostat system (1.1).

In this paper, we focus on the main Caputo-like (p, ¢)-difference w”-order BOVP (3.1) and then,
we will compare our numerical solutions to solutions of the g-difference, fractional and second-order
BOVPs (3.2), (3.3) and (1.1), respectively. For the next computations, the Banach space H is considered
under the norm ||'P|| = sup [P (¢)| for all ¢ € [0, a].

3.1. The structure of solutions for (3.1)

In this subsection, by considering the given Caputo-like (p, g)-difference w”-order BOVP (3.1) of
thermostat system, we first find the fractional Riemann-Liouville-like (p, g)-integral-based structure of
the solutions.

Theorem 3.1. Letb >0,a>1,we (1,2], B € [0,a], M|, M, € Randt € [0, a]. For the given function
A : [0,a] — R, ¥ satisfies (as a solution) the linear Caputo-like (p, q)-BOVP of thermostat

DY (@) = A(p"r),
{ P (3.4)

D, s¥(0) =M, 0bD,,¥(pa)+¥(PB) =M,

if and only if Y(t) for all t € [0, a] satisfies (as a solution) the (p, q)-integral equation

_ 1 t _ (w=1)
O =00+ fo (t = g VAV, v

1 B
- - dv (W_l)A v d 1%
o fo B=qv),, "Alpv)d,,

b pa -
_ e l)p(w;) fo (pa — qv)gfq 2) A(va)dp,qv, 3.5
pPq
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so that the unique solution  satisfies the homogeneous Caputo-like (p, q)-BOVP
{CD?qwa) =0,

Dpg(0) = My, bD,, ¥ (pa) + ¥ (B) = M.

Proof. At first, suppose that ¢ satisfies (3.6). With the help of the fractional Riemann-Liouville-like
(p, @)-integral RI[I‘f’q (given in Definition 2.6) and by applying it on the Caputo-like (p, g)-difference
equation (3.6), we get

(3.6)

() = ky+ kit, (¢t €[0,a)), (3.7)

with kg, ki € R (by Theorem 2.11). If we apply D, , on both sides of (3.7), then D, ,4(¢) = kj. Now,
from the condition D, 2/(0) = M, we get kj = M;. On the other hand, the second condition of the
homogeneous Caputo-like (p, )-BOVP (3.6), i.e., bD, ;¥(pa) +y(B) = M, gives ki = M, — M,(b+p3).
We put k; and kj in () given by (3.7), and we have

Y(n) = Myt = (b+p)] + M>. (3.8)

In another step, suppose that \P(¢) satisfies (as a solution) the linear Caputo-like (p, g)-difference w'-
order BOVP (3.4) of thermostat system. By Theorem 2.11, the general solution of (3.4) admits the
following form

Y@ =1, A(p"n + ky" + ki't, (1 €10,al),

with k%, ki* € R. Definition 2.6 immediately gives
1 ! T k%
¥() = ——— f (t = qv)\ AP, v + ky' + ki (3.9)
Ly )p®) Jo

If we apply D, , on both sides of (3.9), then

1 !
D, ¥(t) = f (t — g PA(p*v)d, v + k.
e | 1)P( 2) Jo e M 1

From D, ,'¥(0) = M,, we find that k{* = M,. Also, the second condition of (3.4) gives

*% 1 'B w—
' = Ms = Mi(b+ ) - ——— f B~ g VApY)d,gv
Fp,q(w)p 2) Jo

b pa
— a— qv (W—Z)A 2V d. v
Fp,q(w—l)p(‘”z‘)fo (pa = qv),q = Ap™v)dp,

Now, we put the obtained values for k;*, kj* and () in ¥(z), given by (3.9), and get

1 !
Yiy=—+ | =g A(py)d
® Fp,q(W)p(g) «fo‘ (= g AP

1 &
+ M, — M (b+p) - N TY f B - CJV)S,”; DA(pv)d, v
I, ,(w)p') Jo
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pa
o l)p(” N f (pa — qv)(w 2)A(pzv)dp’qv + M;t.
Lpq
Thus, (by (3.8)) we have

Y1) = y(t) + ————— f (t— qv)(w YA(pvyd,, v (3.10)

qup(

(w)p(z) fﬂ G- qv)(w APy
Lpg

pa
- (pa— gy P A(p*v)d,, v,
T, W - 1)p(zl)fo i e

which is the same desired Eq (3.5). On the other hand, the solution of (3.10) is proved easily
and satisfies the linear Caputo-like (p, ¢)-difference w"-order BOVP (3.4) of the thermostat system.
Therefore, the proof is completed. O

3.2. Existence analysis of solutions

To conduct the existence analysis of solutions related to the Caputo-like w-order (p, ¢)-BOVP (3.1)
of the thermostat system, we get help from Theorem 3.1 and define an operator for 7 € [0, a] as

(AP)@) = (1) + —() f (t — qv)\ "E(pv, ¥(pv))d, gv (3.11)
pa(W)p'2

B
STy ), B9 v ¥(pvd
Fp,q(w)p(g) »ﬂ B = qv)pq Epv, ¥(pv))d,qv

b Pa
TS (pa — qv)o 2 F(p*v, Y(p*v))d,gv.
pq -

Notice that a fixed point of (A is considered as a solution for the given Caputo-like w-order (p, q)-
BOVP (3.1) of the thermostat system. To confirm such a claim, the Brouwer fixed point theorem [52]
will be useful.

Theorem 3.2. Let F € C([0,a] X R,R) and sup{|y(t)| : t € [0,a]} < A so that the unique solution ¥
satisfies the homogeneous Caputo-like w"-order (p, q)-BOVP (3.6) of thermostat system. Set

a = sup{|F#, W) : t€[0,a], ¥ € H,|¥| < 24}.

If
3 AT, (w + 1)
T av+ Y+ [wl,gb(pay!

then the Caputo-like w"-order (p, q)-BOVP (3.1) of the thermostat system has a solution.

(3.12)
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Proof. First of all, since F is continuous, (A is continuous. Next, we intend to prove the theorem by
establishing AG C G, where G := {¥(¢) € H: ||¥Y|| < 24} is a nonempty, closed, bounded and convex
set for A > 0. In other words, this will show that A maps G into G. For ¥(¢) € G, we have

1 t
(AP )| = |¢<r> M ——c fo (t = qv) VE(pv, W(pv))d,, gv

> a)pC:

(W)p( f B = qv)s VE(pv, ¥(pv)d, gv
Pq

T, - Dp( l>f (pa — gl B, (), ]
Ipsw—Dp

1 !
< WO+ ———— f (1 = vy V[F(pv, W(p))|dgv
0

Tpg(w)pG
+— f B — g V[F(pv, W(pv))|dp.qv
(W)p()

b pd _
+ (pa — g2 [F(p™v, ¥ (p™v))|d, v
Lpg(w— 1)P( 2) Jo

<A+ f(t q{v)(w Vd, v
pq(w Ty ()p®

+ f 'B(ﬁ YDy ab 1’“( )-2g

—w - qv 5 v w— pa - qv s B %

r,,w)p® Jo pq P4 r,,w—1)p(3) pa mha
w b w—1

=1+ @ "+ op ab(pa)

r,,(w+1) I,,(w+1) I, ,w)

_ a w w w—1
= A+ E o r D) 1)[1 + B+ Wl gb(pa)™ .

In view of the upper bound of all variables ¢, we get

a
ALY < A+ ———|a” +B" + [l b(pa)* |, (3.13)
Ipow+ 1)[ - ]
by considering || - || as the supremum norm. If we pay attention to (3.12), then the inequality (3.13)
becomes
|[AP] < 24.

Therefore, AY € G or AG C G. The Brouwer fixed point theorem (Theorem 2.12) confirms the
existence of at least a fixed point for A as a solution of the Caputo-like w”-order (p, ¢)-BOVP (3.1) of
thermostat system, and this ends the proof. O
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Theorem 3.3. Let (Jz) AK > 0 such that |[F(t,¥Y) - F@,¥Y)| < K|¥Y -Y¥'|, Vt€[0,a] andV¥,¥ € H.

If
a" + "+ Wlpgb(pa)™ 1
WD <z (3.14)

then the Caputo-like w"-order (p,q)-BOVP (3.1) of the thermostat system admits a solution on H
uniquely.

Proof. We begin our proof by considering arbitrary elements ¥,V € H and ¢ € [0,a]. In this case,
by (3.11), we have

(AP (1) - (AY)(@)] < —m f (t = qv)\ P [F(pv, ¥(pv)) = F(pv, ¥’ (pv))|d,qv
pa(W)pL2

1 B
' T, (w)p®) jo‘ 6~ qv)g’”q‘ l)|F(pV’ Y(pv)) — E(pv, ‘I"(PV))|dp,qv

T (w)pC:
b pa
v f (pa - qv) 2 F P, ¥(p™) — B, W (P)|dy gy
I_‘p,q(w - l)p( 2 ) 0
< —() f (t = qv)\ V[ P(py) — W (pv)|d, v
L'y (w)pta

K B
s fo (8= v [¥(pv) =¥ (pw)ldy v
P

Kb pa . ,
+ — (pa — qv)gfq 2)|‘I’(p2v) -Y¥ (pzv)|dp,qv.
r,,w—Dpl) Jo

This gives
. KIY -9 e
|AY - AY|| < ———— o (t qv)oVd,, v
[, w)pt:

KII‘I’ bl "
( f(ﬁ qv)( 1)dl,qv

[, ,w)pt

Kb||¥Y - Y¥|

[pq(w = Dp('2)

f (pa — qv)(w 2)dp 7V
K-
I, w+1)

< [aw +ﬁw + [W]p,qb(pa)w_l
B r,,(w+1)

[t‘” +6" + [W]p,qb(pa)w_l]

LGE A
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The inequality condition (3.14) proves this fact that A is a contraction on the Banach space H.
Therefore, A possesses a fixed point uniquely via the (Banach) contraction principle, and this is
equivalent to the existence of a unique solution for the Caputo-like w”-order (p, g)-BOVP (3.1) of
the thermostat system. The proof is complete. O

4. Ulam stable solutions

In the current situation, the Ulam stable solutions are defined for the given Caputo-like w*-order
(p, q9)-BOVP (3.1) of thermostat system based on the existing sources in which the authors use different
stability cases for different structures of problems [9, 53, 54]. For more detailed information about the
Hyers-Ulam and Hyers-Ulam-Rassias stability, we refer the redaers to [55, 56].

Definition 4.1. If for all V € H satisfying

Dy V() - F(p e, V(p'n)| < £, (Y1€[0,a],¥¢ > 0), 4.1)
there is ¥ € H as a solution of (3.1) and there is 6 > 0, such that for each t € [0, a],
V() =Y ()| < ¢,

then it is said to be that the Caputo-like w"-order (p, q)-BOVP (3.1) of the thermostat system is HU-
stable (in the sense of Hyers-Ulam).

Definition 4.2. [f for every V € H satisfying

Dy, V() - F(p"t, V(pwt))| < Ch(p"t), (Vte[0,a],¥Y>0), 4.2)
there is ¥ € H as a solution of (3.1) and there is 6* > 0, such that for all t € [0, a],
V(1) = ¥(n)| < 6°¢h(p™),

then it is said to be that the Caputo-like w"-order (p, q)-BOVP (3.1) of the thermostat system is HUR-
stable (in the sense of Hyers-Ulam-Rassias).

We call V € H as a solution of (4.1) if and only if there is G : [0, a] — R satisfying

(Sa) [G(p"Dl < &5
(S.42) Dy, V() = F(p"1, V(p" D) + G(p"1).
This fact is similar for inequality (4.2).

Lemma 4.3. If'V solves the inequality (4.1), then

1 !
Vi) -y(t) - ———— t—qv)VE(pv, V d
(1) —y(1) Fp,q(W)p(g) f(; (t=qv)py "F(pv, V(pv))d, 4v

1 fﬁ .
+———— | B-qv)\ PF(pv, V(pv))d, v
T, w)p() Jo P P

b pa 5
+ f (pa — qv)\PF(p*v, V(p*v))d,qv
r,,w—1Dp("2) Jo

AIMS Mathematics Volume 9, Issue 1, 818—846.



831

fa”

L.
r,,(w+1)

Proof. Since V solves the inequality (4.1), then from the above definitions, the solution to (S 4,) satisfies

V() =y(@) + —(W) f (- qV)(W YF(pv, V(pv))d, v
pa(WPL2

B
T, mp® fo (B = qv)yy "E(pv, V(pv))dy v
P4

b pa
B T, (w 1)1)(»1;1) o (pa - C]V)(w Z)F(PZV, V(pzv))dp’qv
pg\W =

+ Tp() f (t- qv)(W 1)(GT(va)dp,qv.
pPq

Hence, we have

V(t) - t/f(t)— f (t — qv)\ "E(pv, V(pv))d, v

qu(z

1 B
+ f B —qv)s VE(pv, V(pv)d,, v
p(z) 0 ’

Lpqw)

b pa _
+ — f (pa—CJV)S,”q E(p*v, V(p*v))d, 4V
r,,,q(w—l)p(z) 0

(w—1) \
< —(W)p( ) f(t qv) |G(p v)|d,,,qv

Lpgw p

_ (W—l)d
oo

la”

S
I, ,(w+1)
and this completes the proof. m|

Theorem 4.4. Let the condition (Jg) be satisfied. Also, assume that the inequality (4.1) holds. If

T, w+1)
< s
a’ + B + [wl,b(pa)*!

(4.3)
then the Caputo-like w"-order (p, q)-BOVP (3.1) of the thermostat system is HU-stable.
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Proof. By considering the solution (3.5) together with Lemma 4.3, for each 7 € [0, a], we get

V() - o] < |V - i) - ————T:fa—wW”W@wW@wmmv
S ap)

1 3
+_ZEﬁlﬁw_waW@%Wmm%w
pq

b pa
+ — (pa — qv)y 2 F(p*v, ¥(p*v))d, gv
T, w—1)p(s)

<|[vn -y - f@—WW”WWN@m%ﬂ

wa()

+— f B = V) "E(pv, V(pv))d,gv

b pa 3 (W_Z)IF 2 V 2 d
+FMM—DATL£(W ) F P, V() 0]
+— f (- LZv)(w 1)|1F(pv, V(pv)) — F(pv, ‘P(pV))|d,,,qv

pq(W)P( )

+———71fw qv)o U [E(pv, V(pv)) = F(pv, ¥(pv))|d,qv
Jw)p®)

b

pa
+ (pa — QV)%_ 2)|F(P2V, V(PZV)) - F(PZ"’ lP(192"))|dp,qv-

T, 0w —1)p(")

It gives that

fa”
[V — e < m
f (t = qv)\5 P |V(py) — P(pv)|d, v
pq(W)p(
+ —f B - qv)(w 1)|V(pv) —T(PV)|dp,qV
(W)p(z)
Kb pa _ (W_z)V 2 —y 2 d
* r,,w—Dp("2) fo‘ (pa— gy |V (p*y) = P(pP)|d,ev
Za” Ka" + KB" + [wl,,Kb(pa)*~!
T v+ 1) +| Tpg(w + 1) v -
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Therefore,
a” Ka" + KB" + [w],,Kb(pa)*!
IV -l < | pa v =,

pgW+ 1) I, (w+1)

In view of the above relation, we can derive
IV -l < é¢,
where .
a
0= = > 0.

L,,w+1)-Kla¥+ Y+ [w],,b(pa)*~!]

So, the Caputo-like w*-order (p, g)-BOVP (3.1) of the thermostat system is HU-stable. |

For the HUR-stabiliy analysis, another condition is needed as follows.
(S 43) Assume an increasing function 7 : [0,a] — R*. Also, 3¢ > 0 such that

#ft ~ (W—l)h " d h(p"
T np® Jo (t = g VR(p"v)d, v < ECR(P1), t € [0, al.

Based on the next lemma and the above condition (S 43), we shall establish the HUR-stability for
the Caputo-like w*-order (p, g)-BOVP (3.1) of the thermostat system.

Lemma 4.5. Let V solves the inequality (4.2) and (S 43) is to be held. In this case, we have the following
estimate:

1 !
V() —y(t) - ———— — ) VF(pv, V(pv))d
(1) = Y (®) r onp fo (t=qv),q "E(pv, V(pv))d, v

1 fﬁ -
+————— | B—g VF(pv, V(pv))d, v
Fp,q(W)p(2) 0 pPq P-q

b pa ) y
+ — (pa — qv) P F(p*y, V(p*v)d, gv| < ELR(P™ D).
r,,w—1Dpl) Jo

Proof. By the hypothesis, we know that the function V satisfies the inequality (4.2). Thus, for ¢ € [0, a],
the function G : [0, a] — R can be found and it satisfies |G(p"1)| < {h(p™t) and

‘Dy V() =F(p"t, V(p"1) + G(p"1).

In this case, according to Theorem 2.11, the solution of the latter Caputo-like w'*-order (p, ¢)-difference
equation is formulated by

— 1 t _ (w=1)
V(r) = o) + o ® fo (t = qv)\ VB (pv, V(pv)d,, gv

1 3
L mp® fo (B = )ty "Epv. V(p)dygv
pq
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b pa -
- o ])p(wgl) o (pa — qv)(pv,”q Z)F(pZV’ V(PZV))dp,qv
pq

+ Tp(w) f (t- qv)(w 1)Gr(pwv)d,,,qv.
17 q

In view of the structure of this solution and by (S 43), we can estimate

1 !
V(@) = (1) - ————= fo (t = qv)5 VF(pv, V(pv)d,, v

T, (w)pG

W f B = qv)yy "E(pv, V(pv)d,,v
Ly qw)pte

L, a0 — DpCs 1>f (pa = ), B (PP, V(pPv)d, v
Ipgw—Dp

!
———— | =)\ "G(p v, v
rp,q(W)P(Z) f(; e M |

(w)p( f (t = )y |G V)[dy v
P‘]

W[(I—QV)(W l)h(PWV)dp,qV
pg\W)P*?

< Cn(p"t).
This completes the proof. O

Theorem 4.6. Assume that the Lipschitz condition (Jg) along with the condition (S 43) are to be held
and inequality (4.3) is fulfilled, then the Caputo-like w"-order (p,q)-BOVP (3.1) of the thermostat
system is HUR-stable

Proof. By considering the solution (3.5) together with Lemma 4.5 for ¢ € [0, a], we get

V() - ()| < [V - i - —w f (t = qv)yy VE(pv, ¥(pv))d,gv
Lpq(w) )p®)

’ Wf B = qv)iyy VE(pv, ¥(pv))d, v
pa\W)P*?

b pa
+ (pa— qv) P F(p*y, ¥(p*v))d, v
Lpg(w - l)P( 2) Jo

1 t
S V@) = () = ——— fo (1 = qv)yy "E(pv, V(pv))d, g

Fp,q(W)p(Z)
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1 fﬁ B
+———— | B—g "F(pv, V(pv))d, v
Ly qw)p®) Jo "

b pa
+ | a— PR, Vv,
]"p’q(w — 1)p( 2 0

+— f (t = ) V[E(pv. V(pv)) - F(pv, W(p))|d, g
pa()p)

B
t f B — g V[F(pv, V(pv)) = F(pv, ¥(pv))|d, v
r,,,q<w>p<z> 0

+ =) f (pa - qv)(w 2)|IF°°(p2v, V(pzv)) —IF(pzv, ‘I’(pzv))|dp,qv.

pq(w - 1)P(

It gives that

[V(t) = P()| < €ch(p™)

K ! _
K f (t = g Vipy) — P(pv)|d, v
T, (W) p(z) 0

(w)p( f B =) D Vipy) = B(pv)|d, v
Pq

Kb
+ _ (pa ) 2| Vp*y) = P(pP)|d,,v
Fpq(w = 1pl2)

Ka" + KB + [w],,Kb(pa)*~!
< th(p"t ’ V-Y.
< CZh(p"D) + | Tt ) Jiv -
Therefore,
. Ka" + KB" + [w],,Kb(pa)"!
IV =¥ < &h(p"t) + | " [Iv = .

r,,(w+1)

In view of the above relation, we can derive
IV =¥ <6 Ch(p"1),

where
ry,,(w+1)

5 =
I,,w+1)—-Kl[a"+ B+ [w],,b(pa)- 1]

So, the Caputo-like w-order (p, g)-BOVP (3.1) of the thermostat system is HUR-stable.

O
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5. Example

Our examples help us to see the structure and dynamics of solutions in some special cases of the
Caputo-like g-model, (p, g)-model and standard model of the thermostat system.

Example 5.1. We intend to provide an illustration of numerical solutions of the given Caputo-like w'-
order BOVP of thermostat system graphically. For this purpose, we consider some initial and fixed
data as follows: M, =2, M, = 3, 8 = 0.75, b = 0.002, a = 10 and A(t) = . With this data, we
formulate the general form of the Caputo-like w"-order BOVP of thermostat system

‘DrY(r) = pr’, te€][0,10],
(5.1

D,,¥(0) =2, 0.002D,,¥(10p) + ¥(0.75) = 3

where different values can be determined for the order w € (1,2]. In (5.1), we consider three cases for
derivation operator ‘DY as follows:

DY) = D, (D),
DY) = ‘DY),
DIY(r) = Dy P(r),

so that these operators denote the Caputo-like w"-order (p, q)-difference derivative, Caputo-like w"-
order g-difference derivative and Caputo w™-order derivative, respectively.

In Section 3, we discussed on the solution function of the Caputo-like w"-order (p, q)-BOVP (5.1) of
the thermostat system when ‘D¥Y(t) = CD;,V’q‘P(t). For the case ‘DY(¢) = CD}”)Lq‘P(t), by using arbitrary
values for the order w and by (3.5), the solution function of (5.1) is formulated by

Y(t)=M[t—b+B)]+ M, + ——— f (t— qv)<w Vpvd, v
L) gw) P(

pa
T (w - Dp("2) L (pa = qv)y P p''vdy . (5.2)
p-q

Lemma 2.9, the relations (2.7) and (2.8) and Definition 2.5 about the (p, q)-integral of the function
5.5 ¢
p’r give

!
5 f (t = qv)pg "'V dpgy

T, (w)p
_ (w— 1) 5
—pq(w)p(z)f(t CIV) vod, v

5 5
4 %(w—l)(10+w) L)) P

Fpﬂ(w)p(g l"p,q(w + 6)

= p—pr,q(@ ) =

r,,wph
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w+5

Lo w
_ pjpz(w 1)(10+w) Fp,q(6)
p(2) [,,(w+6)

Since
5 pz' _ qz’
pa(6) = [S],q! = ]_1[ -
= (' + P’ +pq + Pa+ VP + PPa+ pd’ + )P+ pg + 4,
we have

1
5 5(w—1)(10+w)
" f(t qv)(w b Sdpqv— rre 2
pq(w)p( ) p(z)

y (p* + P*q* + pg + pPq + ¢ + p*q + pg* + @) p* + pq + ¢*) e
I,,(w+6) ’

(5.3)

Similarly, by Lemma 2.9, Example 2.10, the relations (2.7) and (2.8) and Definition 2.5 about the

(p, q)-integral of the function p°t°, we obtain

f (ﬁ qv)(w 1.5 Sdpqv

_ p pz(w—l)(10+w) rp,q(6) ﬁw+5 p p
p(g) rp’q(W + 6) p(g)

pq<w>p< )
2(w—l)(lO+w)

8 (p* + p*¢* + pg® + PPq + 4P’ + p*q + pq* + )P + pq + q*)
T,,(w+6)

ﬁW+5

Finally, by following the above computations and formulas, we have
b pa
rp’q(w _ l)p(w;l)

(pél qv)(w 2) 10v5dp,qv

_ w=2),,54
pq<w— 1>p<” '>f T W Gt

b 10
= L B, 6,w-1)(pa)*
Ir,,(w- l)p( 2)

bp'"° %(W—Z)(9+w) L) gOL 4w —1) (» )"
l—‘pﬂ(w - l)p(wgl) Fp,q(w +5)

l — w
_ bp10p2(w 2)(9+w) Fp,q(6)
p(2) Lhuw+5)

(pa)w+4 )

(5.4)

(5.5)
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Therefore,
1
b fpa 10 bplopj(W—Z)(%'W)

— (pa — gv)"-? vid, v = —

Do DpCo) Jo P47 0na P B G
y (P*+ P’ +p@ + g+ g )P+ pPPa+pd + )PP+ g+ G, 56
T vt3) (pa)*™. (5.6)

pPq

From (5.3)—(5.6), the solution function (5.2) becomes

1 1
5 E(W—l)(10+w) 0.002 10 5(W—2)(9+W)
W(r) = 2t + 1.496 + | 22 3 - 0.75w) - =P P (10p)"**
p(z)l“p’q(w +6) p( 2 )Fp,q(w +95)
X (p*+p’q¢* +pq + P g+ )P+ p’q+ pg’ + )P+ pg+ q°). (5.7)

In Figure 1, we plot the smooth graphs of the solution function given by (5.7) for orders w =
1.2,1.4,1.6.1.8,2.0 and the parameters (a) p = 0.8 and ¢ = 0.5 and (b) p = 0.7 and 0.5. We see that
as the fractional orders tend to the integer value w = 2.0, the graphs overlap together and have the
same behavior. Also, as the parameter p tends to q, this overlap is much greater. In fact, based on
these graphs, we can be sure that (p, q)-solutions tend to the standard classical solutions of the system
and this confirms that these (p, q)-derivatives (defined without the notion of the limit) give the better
results in the simulations.

In Figure 2, we plot the 3D-surface graphs of the solution function Y(t) (given in (5.7)) with respect
to the parameters 0 <t < 10and 0 < p < 1 with (a)w = 1.15and g = 0.5, (b) w = 1.45 and g = 0.5,
(c)w=1.75and qg = 0.5, and (d) w = 1.95 and g = 0.5.

In the given thermostat system, it discharges and adds an amount of heat based on the detected
temperature by a sensor by varying the value of the constant 3 between zero to 10. In this simulation,
we change the values of B as B = 0.5, 8 =15, 8 =25 =35 =45 8 =55 8= 6.5,
B =715, 8= 8.5, and B = 9.5, respectively. In Table 1, in six different positions, we see that by
increasing the value of B and tending it to 10, the system discharges the heat Y(t;) at specefic times
t;,1=0,2,4,6,8,10; in fact, the released heat decreases by the thermostat when 8 increases.

Table 1. Values of solution W¥(¢) (given in (5.7)) for w = 1.5, p = 0.5, ¢ = 0.9 with respect to
different values S: The effects of 5.
=05 B=15 =25 =35 =45 =55 =65 p=75 =85 =95
1.9906 -0.0093 -2.0094 -4.0094 -6.0094 -8.0094 -10.009 -12.009 -14.009 -16.009
6.0079 4.0079 2.0079 0.0079 -1.9921 -3.9921 -5.9921 -7.9921 -9.9921 -11.9921
11.5571 9.5571 7.5571 5.5571 3.5571 1.5571 -0.4429 -2.4429 -4.4429 -6.4429
35.844 33.844 31.844 29.844 27.844 25.844 23.844 21.844 19.844 17.844
8 159.77 157.77 155.77 153.77 151.77 149.77 147.77 14577 143.77 141.77
10 626.68 624.68 622.68 620.68 618.68 616.68 614.68 612.68 610.68 608.68

N DO~
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Figure 1. Graphical behavior of Y¥(¢) (given in (5.7)) in Example 5.1 for orders w =
1.2,1.4,1.6.1.8,2.0 based on the Caputo-like w”-order (p,q)-BOVP (5.1) of thermostat

system.

56407 _
4e+07
30407

3 2407
1es07

-1e+07
10

(@w=1.15andg=0.5

(e)w=175and g = 0.5

256407 _
26407 _
15407

5 1es07 _

5e+06

8e+07 _
6e+07 _
4e+07 |

2e+07

-2e+07
10

(b)yw=145and g =0.5

(dw=195and g =0.5

Figure 2. The 3D-surface graphs of the solution function W¥(¢) (given in (5.7)) with respect
to0<r<10andO0< p <.
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Now, we consider two special cases for ‘D)P(¢).
Case (1) We put p = 1 and ‘DY(¢) = CD;V‘P(Z). In this case, the Caputo-like w"-order BOVP (5.1)
reduces to a Caputo-like w"-order g-BOVP of thermostat system as follows

‘DY) = £, tel0,10],
(5.8)

D,¥(0) =2, 0.002D,¥(10) + ¥(0.75) = 3,

with the first order g-difference D, and the w'-order Caputo-like g-derivative ‘Dy. Easily, one can
find that the solution function of the above g-thermostat system is given by

0.002
T,w+5)

w+4

W(r) = 2t + 1.496 + —07?“)—

tw+5
F4w+6%
X(A+q+@+q@ +gHY1+q+@ + @)1 +q+). (5.9)

Case 2) We put p = 1, ¢ — 1 and ‘DY) = “Dy¥Y(?). In this case, the Caputo-like w'-order
BOVP (5.1) reduces to a standard Caputo w™-order BOVP of thermostat system as follows

‘DyY() =r, t€][0,10],
(5.10)

D'¥(0) =2, 0.002D'¥(10) + ¥(0.75) = 3,

w

d
with the first order derivative D' = — and the w"-order Caputo derivative D". As a result, the

t
solution function of the above fractional thermostat system is given by

0.002

W) = 2t + 1.496 + 60 I —
® - * I'w+5)

(7 = 0.75") - 10W”]. (5.11)

I'w+6)

Example 5.2. In the present example, we determine some numerical values like M, = 2, M, = 3,
B =075 b = 0.002, a = 10, p = 0.7 and q = 0.25. Also, the fractional order is chosen as
w = 1.45. Now, the nonlinear form of the Caputo-like w"-order (p, q)-BOVP of the thermostat system
is assumed by

0.7,0.25

DL W(r) = F(0.745¢, P(0.714¢)),
(5.12)

Do.7025s¥(0) =2, 0.002Dg7,025'¥(7) + ¥(0.75) = 3,
with
F(0.7'%, ¥(0.7"%1)) = 0.00085 sin(\¥(0.7'*1)).
In Figure 3, we can see a 3D-suface plot of the continuous function F with respect to ¥ and ¢ €

[0, 10]. In virtue of the condition (Jg) in Theorem 3.3, we find that K = 0.00085 > 0. Therefore, by
the inequality (3.14), we get

a” + " + (Wl b(pa)”!
Tpg(w+ 1)

K{ ]:(1014501< 1.
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The final result of Theorem 3.3 ensures the existence of a unique solution for the given Caputo-like
w'-order (p, ¢)-BOVP (5.12) of the thermostat system.
On the other side, we have

r,,w+1)
av +p" + [wl,b(pa)yr!

~ 0.05861.

As K = 0.00085 < 0.05861, by the condition (4.3), if the inequality
D535 V(@) — 0.00085 sin(V(0.7"1)| < £, (V1 €[0,10],¥¢ > 0),

is satisfied for each V € H, then the Caputo-like w”-order (p, g)-BOVP (5.12) of the thermostat system
is HU-stable by Theorem 4.4.

The graph of the function F(t,W)

Figure 3. 3D-suface plot of the continuous function F with respect to ¥ and ¢ € [0, 10].

6. Conclusions

This paper investigated the qualitative and analytical results for a new fractional (p, g)-model
of the thermostat system. In fact, we applied (p, ¢)-difference and also the Caputo-like w-order
(p, q)-derivative for modeling the thermostat system. The existence results were established and the
stability property was satisfied from the Ulam point of view. In two numerical examples, the behavior
of solutions in the given Caputo-like (p, g)-model was examined carefully. In these examples, we
considered three cases: The Caputo-like g-model, (p, g)-model and standard model of the thermostat
system. In every case, we obtained the corresponding solution and observed the graph of these
solutions by varying some parameters of the models. In fact, we were going to investigate the structure
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of the solutions in the context of a new field of mathematics like post-quantum calculus, which is well-
known to the calculus without the limit. The obtained numerical results and the graphical illustrations
showed that these three models yield the closer results and we can remodel other systems by using the
(p, q)-derivatives, because these operators and other notions of (p, g)-calculus have less complexity in
the computations and computers can run the commands in the fast manner. In future studies, we will
try to expand our results to other real systems equipped with (p, g)-derivatives and symmetric (p, g)-
derivatives. Moreover, we will find a new numerical algorithm for finding approximate solutions of the
(p, q)-difference equations.
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