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Abstract: In this paper, we present a comprehensive analysis of the lower and upper
bounds of solutions for a nonlinear second-order ordinary differential equation governing the
electrohydrodynamic flow of a conducting fluid in cylindrical conduits. The equation describes the
radial distribution of the flow velocity in an “ion drag” configuration, which is affected by an externally
applied electric field. Our study involves the establishment of rigorous analytical bounds on the radial
distribution, taking into account the Hartmann number H and a parameter α. An analytic approximate
solution is obtained as an improvement of the a priori estimates and it is found to exhibit strong
agreement with numerical solutions, particularly when considering small Hartmann numbers. Further,
estimates for the central velocity w(0) of the fluid occurring at the center of the cylindrical conduit
were also established, and some interesting relationships were found between H and α. These findings
establish a framework that illuminates the potential range of values for the physical parameter within
the conduit.
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1. Introduction

The nonlinear differential equations of electrohydrodynamics (EHD) describe the behavior of
electrically charged fluids or particles in the presence of electric and magnetic fields. These equations
are used to model a wide range of phenomena, including the motion of charged droplets or particles
in electric fields, the behavior of ionic solutions, and various electrokinetic effects. The governing
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equations of EHD are typically derived from fundamental principles, such as the conservation of mass,
momentum, and charge, along with the equations of electrostatics [1–3].

In EHD, the interaction between an applied electric field and a conducting fluid gives rise to various
flow phenomena, and these phenomena can be described by partial differential equations (PDEs) or, as
in this case, a nonlinear second-order ordinary differential equation (ODE). The (EHD) flow of a fluid
in an ion drag configuration in a circular cylindrical conduit is governed by w′′(r) + w′(r)

r + H2
(
1 − w(r)

1−αw(r)

)
= 0, 0 < r < 1,

w′(0) = 0, w(1) = 0.
(1.1)

Here, w(r) represents the fluid velocity, r is the radial distance to the center of the conduit, and the
parameter α measures the degree of nonlinearity. The equation includes second-order and first-order
derivative terms concerning r. The choice of w(r) depends on the specific problem being analyzed. As
for the derivation of this boundary value problem (1.1), one can refer to the details provided in [4]. The
equation of EHD, along with the boundary conditions, must be interpreted in the context of the physical
system under consideration to determine the appropriate physical quantity that w(r) represents, and it
may represent the electric potential or voltage distribution within the conduit, the flow rate of the fluid,
or the electrokinetic mobility, depending on the specific problem under study.

The above equation is an example of an ODE that can describe the radial distribution of velocity
in a circular cylindrical conduit subjected to both electric and magnetic fields. The constant H is
the Hartmann number, which is a parameter related to the conductivity or properties of the fluid, and
characterizes the strength of the applied magnetic field. The coefficient H2 indicates the influence of a
magnetic field.

Due to their nonlinearity nature, solving these equations can be very challenging and often require
numerical or semi-analytic methods. It is worth noting here that the authors in [4] obtained numerical
solutions with perturbation expansions for small and large values of α. Paullet [5] claimed an error in
the solutions given in [4] in the case of large α by finding a different solution in that case and justifying
the error in [4]. In [5], the author proved an interesting result of the existence and uniqueness of the
solution to the boundary value problem (BVP) (1.1):

Theorem 1.1. For any α > 0 and any H2 , 0, there exists a solution to the BVP (1.1). Furthermore,
this solution is monotonic and satisfies 0 < w(r) < 1

α+1 for all r ∈ (0, 1).

The theorem has motivated the exploration of approximate solutions to the problem as noted in [6–9]
using different perturbation and homotopy methods. The authors in [7] and [9] utilized homotopy and
least square methods, respectively, to obtain semi-analytic solutions that are similar to the solution
found in [5] for large α.

A helpful technique involves identifying lower and upper solutions, from which one can obtain an
approximate solution using the perturbation technique. These bounds could enhance our understanding
of the system, provide insights into its behavior, and help perform a qualitative analysis. Furthermore,
these bounds provide a foundation for assessing the reliability of the numerical simulations and whether
a numerical solution falls within the established bounds, and can serve as a basis for model validation.
The purpose of this paper is two-fold: The first goal is to find lower and upper bounds for the solution
of (1.1). We will use these bounds to demonstrate the error in the solution obtained in [4] for large
values of α, supporting the claims made by [5] and subsequent research. The second is to utilize
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the lower bound to establish estimates for the central velocity and an approximate explicit solution
to the problem. To the best of our knowledge, there is no approximate explicit solution for (1.1)
found in the literature. The proposed approximate solution shows significant efficiency in the case of
small Hartmann numbers. The Hartmann number is given by H = Bℓ

√
σ
µρ
, where σ is the electric

conductivity, B is the magnetic field associated with the electric current, µ is the dynamic viscosity,
ρ is the fluid density, and ℓ is the characteristic length scale. The Hartmann number represents the
interaction between the electromagnetic and viscous forces. According to its definition, a larger
Hartmann number indicates that electromagnetic forces outweigh the viscous forces, while a smaller
Hartmann number refers to a relatively weaker electromagnetic field in comparison to the viscous
forces effects on the fluid flow, which implies that viscous forces are the dominating force for the fluid
flow, and this justifies why small Hartmann numbers are always preferred for the enhancement of heat
transfer [10]. Some examples of substances with low Hartmann numbers include fluids with a relatively
weak electric conductivity, such as distilled water, gases, and semiconductor materials. In these
substances, the study and analysis of the behavior of the fluid flow is primarily based on viscous forces.
In the study of the unsteady flow of an incompressible viscous and electrically conducting fluid, it was
shown that ignoring the induced electromagnetic field is only permitted at small Hartmann [11–13].
Consideration of small Hartmann numbers finds practical applications in microfluidic devices, and
microchannel cooling systems, in addition to electromagnetic and magnetohydrodynamic pumps and
other chemical industries. Further, three-dimensional numerical simulations of inertial flows are
limited to very low Hartmann numbers [14].

The present paper is structured as follows: Section two establishes the necessary lower and upper
bounds of the solution to BVP (1.1), which will be used in section three to provide some estimates that
will help understand the relationship between different parameters of the equation and give an estimate
of the central radial velocity of the flow β = w(0). In Section four, we establish an approximate solution
for the problem via perturbation expansion. Section five provides a detailed analysis of the obtained
results, in which the bound solutions are compared with numerical solutions for different parameter
values associated with BVP (1.1). Section six summarizes the main findings and their conclusions.

2. A priori estimates for the solution w(r)

We first convert Pr. (1.1) to an equivalent BVP.

Lemma 2.1. Pr.(1.1) can be converted to the nonlinear boundary value problem y′′ + y′

r +
H2

y − H2(1 + α) = 0, 0 < r < 1,
y′(0) = 0, y(1) = 1,

(2.1)

where

y = 1 − αw(r). (2.2)

Proof. Rewrite the nonlinear equation of Pr.(1.1) in the form

−
1
α

(1 − αw(r))′′ −
(1 − αw(r))′

αr
+ H2

[
1 +

(1 − αw(r)) − 1
α(1 − αw(r))

]
= 0 (2.3)
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or

−
1
α

(1 − αw(r))′′ −
(1 − αw(r))′

αr
+ H2

[
1 +

1
α
−

1
α(1 − αw(r))

]
= 0. (2.4)

A simple substitution of y = 1 − αw(r) into (2.4) and taking into account that w′(0) = 0 and w(1) = 0,
we obtain Pr. (2.1). □

Theorem 2.2. For any α > 0, the nonlinear boundary value problem (1.1) has lower and upper bounds
solutions in C2[0, 1] ∩ C[0, 1], such that

w1 ≤ w ≤ w2 on [0, 1], (2.5)

where

w1(r) =
H2

4

[
α + 1
α
−

1
α(1 − αw(0))

]
(1 − r2), 0 ≤ r ≤ 1 (2.6)

and

w2(r) =
H2

4
(1 − r2), 0 ≤ r ≤ 1. (2.7)

Proof. Rewrite the nonlinear equation of Pr.(1.1) in the following form

y′′ + f (r, y, y′) = 0, (2.8)

where

f (r, y, y′) =
y′

r
+

H2

y
− H2(1 + α). (2.9)

Since w is monotonically decreasing, w(0) ≥ w(r) ≥ w(1) = 0, and in view of y(r) = 1 − αw(r), we
have

1 − αw(0) ≤ y ≤ 1. (2.10)

By Theorem 1, we conclude by continuity that w(0) ≤
1

1 + α
. That is, w(0) < 1

α
, then 1 ≤ 1

y ≤
1

1−αw(0) .
This implies

f (r, y, y′) >
y′

r
+ H2 − H2(1 + α) =

y′

r
− αH2, 0 < r < 1. (2.11)

So we have
−y′′ >

y′

r
− αH2, 0 < r < 1 (2.12)

or
−ry′′ > y′ − αH2r, 0 < r < 1. (2.13)

Integration from zero to r yields

−ry′ ≥ −
αH2

2
r2, 0 < r < 1 (2.14)

or

y′ ≤
αH2

2
r, 0 < r < 1. (2.15)
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Integrating again from r to one and taking into account that y(1) = 1, we obtain

1 − y ≤
αH2

4
(1 − r2), 0 ≤ r ≤ 1, (2.16)

or from (2.2),

αw(r) ≤
αH2

4
(1 − r2), 0 ≤ r ≤ 1. (2.17)

Hence,

w(r) ≤
H2

4
(1 − r2), 0 ≤ r ≤ 1. (2.18)

On the other hand, since 1 − αw(0) > 0 and 1
y ≤

1
1−αw(0) , we get

f (r, y, y′) <
y′

r
+

H2

1 − αw(0)
− H2(α + 1), 0 < r < 1. (2.19)

Hence,

−y′′ <
y′

r
+

H2

1 − αw(0)
− H2(α + 1), 0 ≤ r ≤ 1. (2.20)

Proceeding as before, we obtain

w(r) ≥
H2

4

[
α + 1
α
−

1
α(1 − αw(0))

]
(1 − r2), 0 ≤ r ≤ 1. (2.21)

Now, (2.5) follows from (2.18) and (2.21). □

Remark 2.3. The lower bound (2.5) is particularly important in the sense that it satisfies the boundary
conditions of BVP (1.1). Further, it can also be shown that it satisfies the properties of the solution

as predicted by Theorem 1. Indeed, (2.5) implies that w1(r) <
1

1 + α
for all 0 < r < 1. Since

w(0) = β ≤
1

1 + α
, this implies that β ≤ 1 − αβ. We rewrite w1 as

w1(r) =
H2

4

[
1 −

β

1 − αβ

]
(1 − r2), (2.22)

from which we obtain 0 ≤ w1(r). Finally, it is readily seen that w
′

1(r) < 0 for all 0 < r < 1. The
estimate w1 is therefore in good position to serve as an approximate solution to (1.1), provided that
additional enhancement to w1 can be made using perturbation expansion.

3. Estimates for the value β = w(0)

In this section, we are concerned with the value β = w(0) of the radial velocity function. It was

concluded earlier that β ≤
1

1 + α
. This allows us to obtain the following estimate
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Theorem 3.1. Under the hypotheses of Theorem 3, we have

H2

4
≤

α

(α + 1)
[
α + 1 −

1
1 − αβ

] . (3.1)

Proof. The first estimate follows by substituting with r = 0 in w1(r) and taking into account that

w1(0) ≤ β ≤
1

1 + α
, (3.2)

and this gives

H2

4

[
α + 1
α
−

1
α(1 − αβ)

]
≤

1
1 + α

. (3.3)

Now, the inequality (3.1) follows directly from (3.3). □

Given the inequality above, we notice the following observations:

1. From (3.1), as H2 increases, the quantity
(
α + 1 −

1
1 − αβ

)
should decrease, i.e. β −→

1
1 + α

,

which implies that for sufficiently large H, β �
1

1 + α
. Figure 1 presents this fact numerically for

the case H2 = 25. This conclusion agrees with the findings in [3].
2. (3.1) also suggests that if α increases without bounds, then the righthand side of (3.1) approaches

to zero, from which we deduce that H → 0. This suggests that for very high degrees of
nonlinearity, the Hartmann number annihilates, which reflects the fact that the flow fluid is no
longer influenced by the electromagnetic field.

Theorem 3.2. Under the hypotheses of the previous Theorem, we have.

1. If
αH2

4
< 1, then

H2

4

α + 1
α
−

1

α(1 − α
H2

4
)

 ≤ β ≤ H2

4
. (3.4)

2. If
αH2

4
≥ 1, then

(α + 1)H2 − 4
(α + 1)H2 + α(α + 1)H2 − 4α

≤ β ≤
H2

4
. (3.5)

Remark 3.3. The condition
αH2

4
< 1 can be naturally obtained if we make the restriction that w2(0)

doesn’t exceed
1

1 + α
, the upper bound of the velocity w(r). This constraint enhances our upper bound

w2 obtained in Theorem 4. Indeed,

H2

4
= w2(0) ≤

1
1 + α

<
1
α
. (3.6)
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Proof. To prove (1), note that from Theorem 3, we have w1(0) ≤ w(0) ≤ w2(0). This gives

H2

4

[
α + 1
α
−

1
α(1 − αβ)

]
≤ β ≤

H2

4
. (3.7)

From the condition
αH2

4
< 1, we see that 0 < 1 − α

H2

4
≤ 1 − αβ, which implies that

1
α(1 − αβ)

≤
1

α(1 − αH2/4)
. (3.8)

From (3.6)-(3.7) we obtain (3.4).
To prove (2), we use (3.1) to get

H2

4
≤

α

(α + 1)2 −
α + 1

1 − αβ

=
1 − αβ

α + 1 − α2β − 2αβ − β
=

1 − αβ
(1 + α)(1 − β(α + 1))

. (3.9)

This implies that

1 − β(α + 1)
1 − αβ

≤
4

H2(α + 1)
(3.10)

or

1 −
β

1 − αβ
≤

4
H2(α + 1)

, (3.11)

from which we get

β

1 − αβ
≥ 1 −

4
H2(α + 1)

=
H2(α + 1) − 4

H2(α + 1)
. (3.12)

Now, the condition
αH2

4
≥ 1 allows us to write

H2(α + 1)
H2(α + 1) − 4

≥
1 − αβ
β
=

1
β
− α. (3.13)

Moving α to the other side and unifying denominators and taking the reciprocal again gives (3.5). □

4. Approximate solutions

In the following, we use a perturbation expansion to obtain approximate analytic solutions by
applying our lower and upper bounds to the solution. Indeed, we write Pr. (1.1) as follows

w′′(r) +
w′(r)

r
= −H2

(
1 −

w(r)
1 − αw(r)

)
, 0 < r < 1. (4.1)
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Inserting the lower bound w2(r) of the solution of Pr. (1.1) into the righthand side of (4.1), we obtain

w′′(r) +
w′(r)

r
= −H2

(
1 −

w1(r)
1 − αw1(r)

)
, 0 < r < 1 (4.2)

or

(rw′(r))′ = −H2
(
r −

rw1(r)
1 − αw1(r)

)
, 0 < r < 1. (4.3)

Integrating (4.3) from zero to r and taking into account that w′(0) = 0, we obtain

w′(r) =
−H2

2
r + H2 1

r

∫ r

0

tw1(t)
1 − αw1(t)

dt. (4.4)

Integrating again this equation from r to one and taking into account that w(1) = 0, we obtain

w1(r, α) =
H2

4
(1 − r2) − H2

∫ 1

r

[
1
s

∫ s

0

tw1(t)
1 − αw1(t)

dt
]

ds, (4.5)

which can be considered as an improved approximate solution with the given condition α < 4
H2 .

Similarly, inserting the upper bound w2(r) of the solution into the righthand side of (4.1), we get

w2(r, α) =
H2

4
(1 − r2) − H2

∫ 1

r

[
1
s

∫ s

0

tw2(t)
1 − αw2(t)

dt
]

ds. (4.6)

This is the approximate solution of Pr. (1.1) with α < 4
H2 .

5. Discussions

We utilized the robust Maple software for numerical validation and developed a program that is
effortlessly navigable with straightforward statements to tackle BVPs. The program can identify the
type of issue and choose the most suitable algorithm to solve it. We employed the mid-defer method,
which is a midpoint method that incorporates enhancement schemes. For enhancement schemes, the
Richardson extrapolation method is the faster option, and deferred corrections are better suited for
challenging problems due to their lower memory usage. Furthermore, this method can handle endpoint
singularities that the trapezoidal scheme cannot address. Utilizing the continuation method is crucial
in reducing global error when selecting an appropriate number of max mesh. This numerical technique
modifies the coefficient of the second-order derivative and has been proven effective [15–19]. The
numerical method utilizes carefully selected parameters. Specifically, the absolute error criterion is set
to 10−4, while the maximum mesh size is determined as 256.

Let’s start by examining the numerical outcomes of the problem at hand with varying values of the
parameter α, which pertains to the fluid’s conductivity or characteristics, and for specific Hartmann
numbers H, which indicates the intensity of the magnetic field applied.

In Figure 1, we present the numerical solutions for three cases (H = 1, 2, 5), depicting the plotted
values of (α = 0, 2, 4, 6) against the independent variable r. Notably, the numerical values significantly
increase with an increase in the Hartmann number, while a decrease in the α parameter results in a
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Figure 1. The numerical solution for the boundary problem (1.1) for different values of H
and the parameter α.

decrease in the numerical solution. Additionally, it is evident that as the Hartmann number and the
parameter α both increase, the solution tends to become flatter and is bounded by 1/(1 + α). This
observation aligns closely with the findings presented by Paullet in reference [5].

However, it is evident that the lower bound is contingent upon β = w(0), of the solution. Our
task is to elucidate the approach for estimating this value. Presented in the following Table 1 is a
comparison between the numerical central value and the initial lower and upper bounds about the
condition αH2

4 ≤ 1 for different values of the Hartmann’s number and the parameter α. Notably, the
value w(0) can be approximated as the midpoint between these lower and upper bounds.

Figure 2 displays a comparison between the numerical solution, lower and upper approximations
for α = 2 and H = 0.5, 1., 1.4 against r. The accuracy of the lower solution in approximating numerical
solutions is undeniable, regardless of the Hartmann constant’s value. It is particularly noteworthy that
the lower solution shows excellent alignment with the numerical solution when the Hartmann number
is small.

Figure 2. The numerical solution, lower and upper approximations for the boundary problem
(1.1) for different values of H = 0.5, 1, 1.4 (from the left to the right panel, respectively)
and the parameter α = 2. Black solid line (Numerical solution). Red dashed line (Lower
approximation. Blue dash-dotted line (Upper approximation)
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Table 1. An estimation of w(0) by examining the lower and upper bounds of BVP (1.1) for
varying values of the Hartmann number, specifically, H = 0.5 and 1, in conjunction with
different values of the parameter α. It’s important to note that this analysis is valid when the
condition 1 − αw(0) > 0 is satisfied, which conforms with 3.4.

H = 0.5

α initial value of lower bound wN(0) initial value upper bound
.5 .058468 0.059634 0.0625
1. .0583334 0.059563 0.0625
2. .0580358 0.059411 0.0625
3. .0576922 0.059243 0.0625
4. .0572916 0.059055 0.0625
5. .0568181 0.058845 0.0625
6. .0562500 0.058608 0.0625
8. .0546875 0.058020 0.0625

H = 1

α initial value of lower bound wN(0) initial value upper bound
.1 .18590 0.209556 .25
.2 .18421 0.208944 .25
.3 .18243 0.208316 .25
.4 .18056 0.207670 .25
.5 .17857 0.207010 .25
1. .16667 0.203415 .25

In Figure 3, we explored the results obtained by choosing a small Hartmann number and varying
the parameter α between 4, 6, and 10. The lower solution aligns well with the numerical solution when
the parameter α has modest values. On the other hand, the upper approximation is not affected by the
parameter α and is in accordance with the numerical solution when α has small values, but diverges
when α is large.

To explore the range of errors in lower and upper approximations compared to numerical solutions,
we have provided the Tables 2 and 3 displaying numerical and approximate values and absolute errors
for various Hartmann numbers and α parameters. In all instances, the lower approximation effectively
aligns with the numerical solutions. It is imperative that we thoroughly scrutinize the enhanced
approximation solutions we have acquired, specifically wi(r, α), to determine their level of accuracy. In
Table 4, we compare the numerical solution to the improved approximation solutions obtained using
Eqs (4.5) and (4.6), as well as the corresponding absolute errors. It is imperative to note that, without
exception, for all values of α and H = 1, the second improved solution is indisputably more accurate
and displays impeccable agreement with the numerical solution for the given problem. The condition
1 − αw(0) > 0 is also taken into consideration. On the other hand, we examine situations where the
Hartmann number, H, has a high value.

Finally, we compare our results with those obtained from the pure perturbation theory given by
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Figure 3. The numerical solution, lower and upper approximations for the boundary problem
(1.1) for different values of α = 4, 6, 10 (from the left to the right panel, respectively) and the
Hartmann number H = 0.5. Black solid line (Numerical solution). Red dashed line (Lower
approximation. Blue dash-dotted line (Upper approximation)

Mackee et al. [4]. The so-called large-α perturbation solution is given as

wMackee(r;αl) =
H2

4
(
1 +

1
α

)
(1 − r2) +

1
α2

(
2
∫ r

0

log(1 − s2)
s

ds +
π2

6

)
. (5.1)

In Table 5, we present a comparison of practical approaches for the solution of BVP (1.1). We
evaluate the numerical solution wN(r) alongside analytical lower and upper approximations, denoted as
wL(r) and wU(r), respectively. Additionally, we include the large-α perturbation solution wMackee(r;αl),
as obtained by Mckee et al. [4], specifically for the Hartmann number (H = 0.5) and parameter values
(α = 4, 8).

It is worth noting that our modified approximation solution, as presented in Eq (4.6), demonstrates
excellent agreement with the numerical solutions. Furthermore, the large-α perturbation solution yields
significantly higher values for the solution.

Further, it is interesting to notice that the numerical values of the Mackee large α perturbation
solution (5.1) exceed the upper bound w2 for α = 4, 8. This in turn implies that the formula (5.1)
cannot be considered a valid approximate solution of 1.1 according to (2.5). This supports the claims
made by [3] of an error in the perturbation order of the leading term of the formula given by [2].

In summary, our comparative analysis provides actionable insights into the effectiveness of various
solution approaches, highlighting the reliability of our modified approximation method when dealing
with this specific problem.

6. Conclusions

This study delved into the nonlinear EHD differential equation (1.1). We investigated the upper
and lower bounds for the solution and used the lower bound to establish an improved approximate
solution that satisfies the boundary conditions and agrees with the result of Theorem 1. We also found
that this approximate solution shows excellent alignment with the numerical solution, especially when
the Hartmann number is small. As pointed out in the introduction, semiconductors materials, gases,
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Table 2. Comparison between the numerical solution wN(r) of BVP (1.1), the analytical
lower and upper approximations wL(r),wU(r) and the correspondent absolute errors
(ErrL, ErrU) for the Hartmann number H = 0.5 and the parameter α = 2, 6, where the
condition 1 − αw(0) > 0 is satisfied.

α = 2

r wN(r) wL(r) ErrL wU(r) ErrU
0. .594114e-1 .582860e-1 .11254e-2 .625000e-1 .30886e-2

.100000 .588281e-1 .577032e-1 .11249e-2 .618750e-1 .30469e-2

.200000 .570776e-1 .559545e-1 .11231e-2 .600000e-1 .29224e-2

.300000 .541554e-1 .530402e-1 .11152e-2 .568750e-1 .27196e-2

.400000 .500544e-1 .489602e-1 .10942e-2 .525000e-1 .24456e-2

.500000 .447654e-1 .437145e-1 .10509e-2 .468750e-1 .21096e-2

.600000 .382762e-1 .373030e-1 .9732e-3 .400000e-1 .17238e-2

.700000 .305723e-1 .297258e-1 .8465e-3 .318750e-1 .13027e-2

.800000 .216376e-1 .209830e-1 .6546e-3 .225000e-1 .8624e-3

.900000 .114537e-1 .110744e-1 .3793e-3 .118750e-1 .4213e-3
1. 0. 0. 0. 0. 0.

α = 6

r wN(r) wL(r) ErrL wU(r) ErrU
0. .590550e-1 .576675e-1 .13875e-2 .625000e-1 .34450e-2

.100000 .584777e-1 .570908e-1 .13869e-2 .618750e-1 .33973e-2

.200000 .567454e-1 .553608e-1 .13846e-2 .600000e-1 .32546e-2

.300000 .538517e-1 .524775e-1 .13742e-2 .568750e-1 .30233e-2

.400000 .497880e-1 .484408e-1 .13472e-2 .525000e-1 .27120e-2

.500000 .445421e-1 .432505e-1 .12916e-2 .468750e-1 .23329e-2

.600000 .380996e-1 .369072e-1 .11924e-2 .400000e-1 .19004e-2

.700000 .304437e-1 .294105e-1 .10332e-2 .318750e-1 .14313e-2

.800000 .215553e-1 .207603e-1 .7950e-3 .225000e-1 .9447e-3

.900000 .114145e-1 .109568e-1 .4577e-3 .118750e-1 .4605e-3
1. 0. 0. 0. 0. 0.
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Table 3. Comparison between the numerical solution wN(r) of BVP (1.1), the analytical
lower and upper approximations wL(r),wU(r) and the correspondent absolute errors
(ErrL, ErrU) for the Hartmann number H = 1 and the parameter α = 0.1, 0.5, where the
condition 1 − αw(0) > 0 is satisfied.

α = 0.1

r wN(r) wL(r) ErrL wU(r) ErrU
0. .209556 .196500 .13056e-1 .250000 .40444e-1

.100000 .207590 .194535 .13055e-1 .247500 .39910e-1

.200000 .201675 .188640 .13035e-1 .240000 .38325e-1

.300000 .191768 .178815 .12953e-1 .227500 .35732e-1

.400000 .177788 .165060 .12728e-1 .210000 .32212e-1

.500000 .159628 .147375 .12253e-1 .187500 .27872e-1

.600000 .137147 .125760 .11387e-1 .160000 .22853e-1

.700000 .110169 .100215 .9954e-2 .127500 .17331e-1

.800000 .784875e-1 .707400e-1 .77475e-2 .900000e-1 .115125e-1

.900000 .418577e-1 .373350e-1 .45227e-2 .475000e-1 .56423e-2
1. 0. 0. 0. 0. 0.

α = 0.5

r wN(r) w1(r) Err1L w2(r) ErrU
0. .207008 .192272 .14736e-1 .250000 .42992e-1

.100000 .205084 .190350 .14734e-1 .247500 .42416e-1

.200000 .199293 .184582 .14711e-1 .240000 .40707e-1

.300000 .189583 .174968 .14615e-1 .227500 .37917e-1

.400000 .175862 .161509 .14353e-1 .210000 .34138e-1

.500000 .158008 .144204 .13804e-1 .187500 .29492e-1

.600000 .135862 .123054 .12808e-1 .160000 .24138e-1

.700000 .109229 .980590e-1 .111700e-1 .127500 .18271e-1

.800000 .778840e-1 .692180e-1 .86660e-2 .900000e-1 .121160e-1

.900000 .415702e-1 .365318e-1 .50384e-2 .475000e-1 .59298e-2
1. 0. 0. 0. 0. 0.
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Table 4. Comparison between the numerical solution wN(r) of BVP (1.1), the
analytical improved approximations w1(r, α),w2(r, α) and the correspondent absolute errors
(Err1, Err2) for the Hartmann number H = 1 and the parameter α = 0.1, 0.5, 2, where the
condition 1 − αw(0) > 0 is satisfied.

α = 0.1

r wN(r) w1(r, α) Err1 w2(r, α) Err2
.100000 .207590 .199537 .8053e-2 .205186 .2404e-2
.200000 .201675 .194159 .7516e-2 .200786 .889e-3
.300000 .191768 .184886 .6882e-2 .191662 .106e-3
.400000 .177788 .171679 .6109e-2 .178126 .338e-3
.500000 .159628 .154422 .5206e-2 .160176 .548e-3
.600000 .137147 .132939 .4208e-2 .137756 .609e-3
.700000 .110169 .107013 .3156e-2 .110732 .563e-3
.800000 .0784875 .0764193 .20682e-2 .0789155 .4280e-3
.900000 .0418577 .0408533 .10044e-2 .0420955 .2378 e-3

1. 0. 0. 0. 0. 0.

α = 0.5

r wN(r) w1(r, α) Err1 w2(r, α) Err2
.100000 .205084 .196035 .9049e-2 .208836 .3752e-2
.200000 .199293 .190634 .8659e-2 .202930 .3637e-2
.300000 .189583 .181566 .8017e-2 .192996 .3413e-2
.400000 .175862 .168708 .7154e-2 .178981 .3119e-2
.500000 .158008 .151894 .6114e-2 .160739 .2731e-2
.600000 .135862 .130917 .4945e-2 .138134 .2272e-2
.700000 .109229 .105533 .3696e-2 .110970 .1741e-2
.800000 .0778840 .0754618 .24222e-2 .0790521 .11681e-2
.900000 .0415702 .0403957 .11745e-2 .0421270 .5568e-3

1. 0. 0. 0. 0. 0.

α = 2

r wN(r) w1(r, α) Err1 w2(r, α) Err2
.100000 .192891 .168128 .24763e-1 .203655 .10764e-1
.200000 .187737 .164286 .23451e-1 .198055 .10318e-1
.300000 .179037 .157647 .21390e-1 .188629 .9592e-2
.400000 .166629 .147888 .18741e-1 .175240 .8611e-2
.500000 .150299 .134609 .15690e-1 .157709 .7410e-2
.600000 .129790 .117366 .12424e-1 .135827 .6037e-2
.700000 .104815 .95707e-1 .9108e-2 .109360 .4545e-2
.800000 .0750666 .069192 .58746e-2 .0780648 .29982e-2
.900000 .0402316 .037413 .28186e-2 .0416928 .14612e-2

1. 0. 0. 0. 0. 0.
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Table 5. Comparison of the numerical solution wN(r) of BVP (1.1) with the analytical
lower and upper approximations wL(r),wU(r), as well as the large-α perturbation solution
wMackee(r;αl) obtained by Mckee et al. [4]. The absolute errors for the given Hartmann
number (H = 0.5) and parameter values (α = 4, 6) are represented as (ErrL, ErrU , ErrMc),
respectively, where the condition 1 − αw(0) > 0 is satisfied.

α = 4

r wN(r) w1(r, α) ErrL w2(r, α) ErrU wMc(r;αl) ErrMc

.100000 .584777e-1 .582372e-1 .2405e-3 .585857e-1 .1080e-3 1.79527e-1 1.21049e-1

.200000 .567454e-1 .565160e-1 .2294e-3 .568488e-1 .1034e-3 1.75283e-1 1.18538e-1

.300000 .538517e-1 .536402e-1 .2115e-3 .539482e-1 .965e-4 1.68147e-1 1.14295e-1

.400000 .497880e-1 .496003e-1 .1877e-3 .498750e-1 .870e-4 1.58003e-1 1.08215e-1

.500000 .445421e-1 .443828e-1 .1593e-3 .446177e-1 .756e-4 1.44674e-1 1.00132e-1

.600000 .380996e-1 .379717e-1 .1279e-3 .381617e-1 .621e-4 1.27874e-1 .897744e-1

.700000 .304437e-1 .303484e-1 .953e-4 .304906e-1 .469e-4 1.07126e-1 .766823e-1

.800000 .215553e-1 .214929e-1 .624e-4 .215863e-1 .310e-4 .81558e-1 .600027e-1

.900000 .114145e-1 .113841e-1 .304e-4 .114294e-1 .149e-4 .492106e-1 .377961e-1
1. 0. 0. 0. 0. 0. 0. 0.

α = 8

r wN(r) w1(r, α) ErrL w2(r, α) ErrU wMc(r;αl) ErrMc

.100000 .574628e-1 .569142e-1 .5486e-3 .577780e-1 .3152e-3 .951555e-1 .376927e-1

.200000 .557864e-1 .552678e-1 .5186e-3 .560878e-1 .3014e-3 .925702e-1 .367838e-1

.300000 .529807e-1 .525092e-1 .4715e-3 .532596e-1 .2789e-3 .882483e-1 .352676e-1

.400000 .490296e-1 .486180e-1 .4116e-3 .492784e-1 .2488e-3 .821569e-1 .331273e-1

.500000 .439126e-1 .435693e-1 .3433e-3 .441250e-1 .2124e-3 .742545e-1 .303419e-1

.600000 .376062e-1 .373353e-1 .2709e-3 .377778e-1 .1716e-3 .644684e-1 .268622e-1

.700000 .300859e-1 .298879e-1 .1980e-3 .302140e-1 .1281e-3 .526801e-1 .225942e-1

.800000 .213269e-1 .211994e-1 .1275e-3 .214109e-1 .840e-4 .386706e-1 .173437e-1

.900000 .113056e-1 .112445e-1 .611e-4 .113463e-1 .407e-4 .219515e-1 .106459e-1
1. 0. 0. 0. 0. 0. 0. 0.
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distilled water, and microfluidic technologies exhibit small Hartmann numbers, so the approximate
solution obtained in this study can serve as a suitable model to investigate the solutions of (1.1)
in these cases. Further, estimates for the central velocity w(0) were established, and it was found
that sufficiently large α yields a very small Hartmann number. On the other hand, sufficiently large

Hartmann numbers imply β −→
1

1 + α
, which agrees with [3].

Furthermore, this study also confirmed the fact that finding lower and upper bounds for solutions
to differential equations is an important mathematical and analytical tool that can provide valuable
insights in understanding and modeling various physical and engineering systems. The methods used
in this paper are expected to contribute to the development of more effective and efficient strategies for
solving similar problems in the future.
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