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Abstract: This research paper investigated fixed point results for almost (ζ − θρ)-contractions in the
context of quasi-metric spaces. The study focused on a specific class of (ζ − θρ)-contractions, which
exhibit a more relaxed form of contractive property than classical contractions. The research not only
established the existence of fixed points under the almost (ζ − θρ)-contraction framework but also
provided sufficient conditions for the convergence of fixed point sequences. The proposed theorems
and proofs contributed to the advancement of the theory of fixed points in quasi-metric spaces, shedding
light on the intricate interplay between contraction-type mappings and the underlying space’s quasi-
metric structure. Furthermore, an application of these results was presented, highlighting the practical
significance of the established theory. The application demonstrated how the theory of almost (ζ − θρ)-
contractions in quasi-metric spaces can be utilized to solve real-world problems.
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1. Introduction

The notion of a quasi metric space represents an intriguing extension of the classical metric space,
achieved by relaxing the requirement of symmetry. Among various alternatives to the metric space, the
quasi metric space stands out as a particularly intuitive concept that finds direct applicability in real-
world scenarios. A simple illustration of a quasi metric arises when considering the distance traveled
by a commuter between their home and workplace in a city characterized by one-way streets and two-
way roads. For additional and specific instances of quasi metrics, along with compelling fixed-point
outcomes within this context, please references [4, 5, 7, 8, 12, 13, 15, 24, 26, 27, 31]. Over the past

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2024039


764

few decades, numerous papers on the fixed point theory have been published, many of which extend
the established fixed point results in various ways: By altering the abstract space, by substituting the
contraction condition with a milder one and so on and so forth. As a result, an inherent question arises:
Can the existing outcomes be amalgamated in an uncomplicated manner? Several responses have been
provided, and among these, a few of the most intriguing answers are related to the ‘θ-contraction’ and
the ‘simulation function’. The definition of the θ-contraction is given by Jleli et al. [20], while the
concept of the simulation function is introduced by Khojasteh et al. [22]. Furthermore, using these
functions, a multitude of single-valued fixed point results have been achieved in the standard metric
space. In this work, we will explore the response to the inquiry: How can we amalgamate established
fixed point theorems within the framework of a quasi-metric space by employing the θ-contraction and
the simulation function? In order to provide the most effective solution, we will additionally make
use of another auxiliary function known as an admissible mapping. It is notably intriguing that the
admissible mapping possesses the capability to merge the fixed point theorems within a metric space
coupled with a partially ordered set, as well as the associated fixed point propositions resulting from
cyclic contractions or standard contractions. For a more comprehensive understanding, refer to sources
such as [1, 2, 10, 11, 17, 18, 21, 23]. As a result, we have harmonized various fixed point outcomes
within the framework of a quasi-metric space, utilizing both simulation functions, θ-contraction and
admissible mappings.

2. Preliminaries

Now, review the definitions and notations related to quasi-metric space: Λ , ∅ and ρ are a function
ρ : Λ × Λ→ R such that for each ω, γ, η ∈ Λ:

(i) ρ(ω,ω) = 0,
(ii) ρ(ω, γ) ≤ ρ(ω, η) + ρ(η, γ) (triangle inequality),

(iii) ρ(ω, γ) = ρ(γ, ω) = 0 implies ω = γ,
(iv) ρ(ω, γ) = 0 implies ω = γ.

If (i) and (ii) conditions are satisfied, then ρ is called a quasi-pseudo metric (shortly qpm); if (i)–(iii)
conditions are satisfied, then ρ is called quasi metric (shortly qm); in addition, if a qm ρ satisfies (iv),
then ρ is called T1-qm. It is evident that every metric is a T1-qm, every T1-qm is a qm and every qm is
a qpm. Then, the pair (Λ, ρ) is also said to be a quasi-pseudo metric space (shortly qpms). Moreover,
each qpm ρ on Λ generates a topology τρ on Λ of the family of open balls as a base defined as follows:

{Bρ(ω, ε) : ω ∈ Λ and ε > 0},

where Bρ(ω0, ε) = {γ ∈ Λ : ρ(ω0, γ) < ε}.
If ρ is a qm on Λ, then τρ is a T0 topology, and if ρ is a T1-qm, then τρ is a T1 topology on Λ. If ρ is

a qm and τρ is a T1 topology, then ρ is T1-qm.
The mapping ρ defines

ρ(ω, γ) = ρ(γ, ω)

as a qpm whenever ρ is a qpm on Λ. To find the fixed point, the most important part is to use the
completeness of the metric space. However, since there is no symmetry conditions in a qm, there are
many kinds of completeness in these spaces in the literature (see [9, 28, 30]).
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Let (Λ, ρ) be a qms, then the convergence of a sequence {ωn} to ω w. r. t. τρ called ρ-convergence
is defined as ωn

ρ
→ ω if, and only if, ρ(ω,ωn) → 0. Similarly, the convergence of a sequence {ωn} to

ω w. r. t. τρ called ρ-convergence is defined ωn
ρ
→ ω if, and only if, ρ(ωn, ω) → 0 for ω ∈ Λ. A more

detailed explanation of some essential metric properties can be found in [26]. Also, a sequence {ωn}

in Λ is called left (right) K-Cauchy if for every ε > 0, there exists n0 ∈ N such that for all n, k ∈ N
with n ≥ k ≥ n0 (k ≥ n ≥ n0), ρ(ωk, ωn) < ε. The left K-Cauchy property under ρ implies the right
K-Cauchy property under ρ. Assuming

+∞∑
n=1

ρ(ωn, ωn+1) < +∞,

the sequence {ωn} in the quasi-metric space (Λ, ρ) is left K-Cauchy.
In a metric space, every convergent sequence is indeed a Cauchy sequence, but since this may not

hold true in qms, there have been several definitions of completeness. A qms (Λ, ρ) is said to be left
(right) K (resp. M)-complete if every left (right) K-Cauchy sequence is ρ (resp. ρ)-convergent.

Now, we explain the approach of α-admissibility as constructed by Samet et al. [29].
Let Λ , ∅, Υ : Λ → Λ be a mapping and α : Λ × Λ → [0,+∞) be a function. In this context, Υ is

said to be α-admissible if it satisfies the following condition:

If α(ω, γ) ≥ 1, then α(Υω,Υγ) ≥ 1.

By introducing the approach of α-admissibility, Samet et al. [29] was able to establish some general
fixed point results that encompassed many well-known theorems of complete metric spaces.

In addition to these, in the study conducted by Jleli and Samet in [20], they led to the introduction of
a new type of contractive mapping known as a θ-contraction. This θ-contraction serves as an attractive
generalization within the field. To better understand this approach, let’s review some notions and
related results concerning θ-contraction.

The family of θ : (0,+∞)→ (1,+∞) functions that satisfy the following conditions can be denoted
by the set Θ :
(θ1) θ is nondecreasing;
(θ2) Considering every sequence {κn} ⊂ (0,+∞) , limn→+∞ κn = 0+ if, and only if, limn→+∞ θ(κn) = 1;
(θ3) There exists 0 < p < 1 and β ∈ (0,+∞] such that limκ→0+

θ(κ)−1
κp = β.

If we define θ(κ) = e
√
κ for κ ≤ 1 and θ(κ) = 9 for κ > 1, then θ ∈ Θ.

Let θ ∈ Θ and (Λ, ρ) be a quasi metric space, then Υ : Λ → Λ is said to be a θ-contraction if there
exists 0 < δ < 1 such that

θ(ρ(Υω,Υγ)) ≤
[
θ(ρ(ω, γ))

]δ (2.1)

for each ω, γ ∈ Λ with ρ(Υω,Υγ) > 0.
By choosing appropriate functions for θ, such as θ1(κ) = e

√
κ and θ2(κ) = e

√
κeκ , it is possible to

obtain different types of nonequivalent contractions using (2.1).
Jleli and Samet proved that every θ-contraction on a complete metric space possesses a unique fixed

point. This result provides a valuable insight into the uniqueness and existence of fixed points for
a wide range of contractive mappings. If you are interested in exploring more papers and literature
related to θ-contractions, there are several resources available (see [3, 19]).
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On the other hand, Khojasteh et al. [22] introduced an innovative category of contractions
through the utilization of the following concept of simulation functions. By employing the concept,
they [22] established numerous fixed point theorems and demonstrated that numerous well-established
findings in the literature stem directly from the outcomes they derived. Furthermore, using the
simulation function, generalizations of many known theorems have been obtained (see [6, 25, 30]).
To better understand this approach, let’s review some notions and related results concerning simulation
functions.

The function ζ : [0,+∞)×[0,+∞)→ R is said to be a simulation function that satisfies the following
conditions and can be denoted by the set Z :
(ζ1) ζ (0, 0) = 0;
(ζ2) ζ (t, s) < s − t for all t, s > 0;
(ζ3) if {tn} , {sn} are sequence in (0,+∞) such that

lim
n→+∞

tn = lim
n→+∞

sn > 0,

then lim
n→∞

ζ (tn, sn) < 0.
If we define ζ1(t, s) = ψ(s)−ϕ(t) for all t, s ≥ 0, where ψ, ϕ : [0,+∞)→ [0,+∞) are two continuous

functions such that ψ(t) = ϕ(t) = 0 if, only if, t = 0 and ψ(t) < t ≤ ϕ(t) for all t > 0, then ζ ∈ Z.

3. The results

Our results are based on a novel approach that we have developed.
Let (Λ, ρ) be a qms, Υ : Λ → Λ be a given mapping and α : Λ × Λ → [0,+∞) be a function. We

will consider the following set

Υα = {(ω, γ) ∈ Λ × Λ : α(ω, γ) ≥ 1 and ρ(Υω,Υγ) > 0}. (3.1)

Definition 1. Let (Λ, ρ) be a qms and Υ : Λ→ Λ be a mapping satisfying

ρ(ω, γ) = 0 implies ρ(Υω,Υγ) = 0. (3.2)

Let α : Λ × Λ → [0,+∞), ζ ∈ Z and θ ∈ Θ be three functions, then we say that Υ is an almost
(ζ − θρ)-contraction if there exists 0 < δ < 1 and L ≥ 0 such that

ζ
(
α (ω, γ) θ(ρ(Υω,Υγ)),

[
θ(M(ω, γ) + LN(ω, γ))

]δ)
≥ 0, (3.3)

for each (ω, γ) ∈ Υα, where

M(ω, γ) = max
{
ρ(ω, γ), ρ(Υω,ω), ρ(Υγ, γ),

1
2

[
ρ(Υω, γ) + ρ(ω,Υγ)

]}
,

N(ω, γ) = min {ρ(Υω, γ), ρ(ω,Υγ)} .

Before presenting our main results, let us recall some important remarks:

• If (Λ, ρ) is a T1-qms, then every mapping Υ : Λ→ Λ satisfies the condition (3.2).
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• It is clear from (3.1)–(3.3) that if Υ is an almost (ζ − θρ)-contraction, then

ρ(Υω,Υγ) ≤ M(ω, γ) + LN(ω, γ),

for each ω, γ ∈ Λ with α(ω, γ) ≥ 1.

By utilizing the approach of the almost (ζ − θρ)-contraction, we will now present the following
theorem.

Theorem 1. Let (Λ, ρ) be a Hausdorff right K-complete T1-qms and let Υ : Λ→ Λ be τρ-continuous,
α-admissible and an almost (ζ − θρ)-contraction. If there exists ω0 ∈ Λ such that α(Υω0, ω0) ≥ 1, then
Υ has a fixed point in Λ.

Proof. Let ω0 ∈ Λ be such that α(Υω0, ω0) ≥ 1. Define a sequence {ωn} in Λ by ωn+1 = Υωn for
each n in N. Since Υ is α-admissible, then α(ωn+1, ωn) ≥ 1 for each n in N. If there exists k ∈ N
with ρ(Υωk, ωk) = 0, then ωk = Υωk, since ρ is T1-qm. Hence, ωk is a fixed point of Υ. Presume
ρ(Υωn, ωn) > 0 for each n in N. In this case, the pair (ωn+1, ωn) for each n in N belongs to Υα. Since Υ

is an almost (ζ − θρ)-contraction, we have

ζ(α(ωn, ωn−1)θ(ρ(Υωn,Υωn−1)), [θ(M(ωn, ωn−1) + LN(ωn, ωn−1))]δ) ≥ 0,

and so from (ζ2), we have

0 ≤ [θ(M(ωn, ωn−1) + LN(ωn, ωn−1))]δ − α (ωn, ωn−1) θ(ρ(ωn+1, ωn)).

Hence, from (θ1) we obtain

θ(ρ(ωn+1, ωn)) ≤ [θ(M(ωn, ωn−1) + LN(ωn, ωn−1))]δ

=

 θ(max
{
ρ(ωn, ωn−1), ρ(ωn+1, ωn), ρ(ωn, ωn−1),

1
2

[
ρ(ωn+1, ωn−1) + ρ(ωn, ωn)

] }
+L min {ρ(ωn+1, ωn−1), ρ(ωn, ωn))})


δ

≤
[
θ(max {ρ(ωn+1, ωn), ρ(ωn, ωn−1)}

]δ . (3.4)

If max {ρ(ωn+1, ωn), ρ(ωn, ωn−1)} = ρ(ωn+1, ωn), using (3.4), we get

θ(ρ(ωn+1, ωn)) ≤
[
θ(ρ(ωn+1, ωn))

]δ < θ(ρ(ωn+1, ωn)),

which is a contradiction. Thus, max {ρ(ωn+1, ωn), ρ(ωn, ωn−1)} = ρ(ωn, ωn−1), and then we obtain

θ(ρ(ωn+1, ωn)) ≤
[
θ(ρ(ωn, ωn−1))

]δ , (3.5)

for each n in N. Denote fn = ρ(ωn+1, ωn) for n in N, then fn > 0 for each n in N, and repeating this
process by using (3.5) we have

1 < θ( fn) ≤
[
θ( f0)

]δn
(3.6)

for each n in N. When taking the limit as n→ +∞ in (3.6), we obtain

lim
n→+∞

θ( fn) = 1. (3.7)
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Using (θ2), we can deduce that limn→+∞ fn = 0+; thus, using (θ3), there exists p ∈ (0, 1) and β ∈ (0,+∞]
such that

lim
n→+∞

θ( fn) − 1
( fn)p = β.

Presume that β < +∞. In this case, let F =
β

2 > 0. Using the definition of the limit, there exists n0 in N
such that, for each n0 ≤ n, ∣∣∣∣∣θ( fn) − 1

( fn)p − β

∣∣∣∣∣ ≤ F.

This implies that for each n0 ≤ n,
θ( fn) − 1

( fn)p ≥ β − F = F,

then, for each n0 ≤ n,
n( fn)p ≤ Dn

[
θ( fn) − 1

]
,

where D = 1/F.
Presume now that β = +∞. Let F > 0 be an arbitrary positive number. Using the definition of the

limit, there exists n0 in N such that for each n0 ≤ n,

θ( fn) − 1
( fn)p ≥ F.

This implies that for each n0 ≤ n,
n
[
fn
]p
≤ Dn

[
θ( fn) − 1

]
,

where D = 1/F.
Thus, in all cases, there exists D > 0 and n0 in N such that

n
[
fn
]p
≤ Dn

[
θ( fn) − 1

]
,

for each n0 ≤ n . Using (3.6), we obtain

n
[
fn
]p
≤ Dn

[[
θ( f0)

]δn
− 1

]
,

for each n0 ≤ n. Letting n→ +∞ from the last inequality, we have

lim
n→+∞

n
[
fn
]p

= 0.

Thus, there exists n1 in N such that n
[
fn
]p
≤ 1 for each n ≥ n1, so we have, for each n ≥ n1,

fn ≤
1

n1/p . (3.8)

In order to show that {ωn} is a right K-Cauchy sequence, consider m, n in N such that m > n ≥ n1.

Using the triangular inequality for ρ and using (3.8), we have

ρ(ωm, ωn) ≤ ρ(ωm, ωm−1) + ρ(ωm−1, ωm−2) + · · · + ρ(ωn+1, ωn)
= fm−1 + fm + · · · + fn

AIMS Mathematics Volume 9, Issue 1, 763–774.



769

=

m−1∑
i=n

fi ≤

+∞∑
i=n

fi ≤

+∞∑
i=n

1
i1/p .

By the convergence of the series
+∞∑
i=1

1
i1/p , we get ρ(ωm, ωn) → 0 as n → +∞. This yields that {ωn} is

a right K-Cauchy sequence in the qms (Λ, ρ). Since (Λ, ρ) is a right K-complete, there exists η ∈ Λ

such that the sequence {ωn} is ρ-converges to η ∈ Λ; that is, ρ(η, ωn) → 0 as n → +∞. Since Υ

is τρ-continuous, then ρ(Υη,Υωn) = ρ(Υη, ωn+1) → 0 as n → +∞. Since Λ is Hausdorff, we get
Υη = η. �

We may use the option to substitute the continuity assumption of Υ in Theorem 1 with the following
hypothesis:

(R) If {ωn} is a sequence in Λ such that α(ωn+1, ωn) ≥ 1 for all n inN, when the distance ρ(ω,ωn)→0,
then α(ω,ωn) ≥ 1 for all n in N.

In the theorem below, it is assumed that the space (Λ, ρ) is Hausdorff; that is, τρ is a Hausdorff
topology, in which case it is clear that the limit of the convergent sequence is unique.

Theorem 2. Let (Λ, ρ) be a Hausdorff right K-complete T1-qms such that (R) holds, and let Υ : Λ→ Λ

be an α-admissible and almost (ζ − θρ)-contraction. If θ is continuous and there exists ω0 ∈ Λ such
that α(Υω0, ω0) ≥ 1, then Υ has a fixed point in Λ.

Proof. Similar to the proof of Theorem 1, we obtain {ωn} as a right K-Cauchy sequence in the qms
(Λ, ρ). Since (Λ, ρ) is a right K-complete, there exists η ∈ Λ such that the sequence {ωn} is ρ-convergent
to η ∈ Λ; that is, ρ(η, ωn)→ 0 as n→ +∞. Hence, from (3.3), we have

ζ (α (η, ωn)) θ(ρ(Υη,Υωn)),
[
θ(M(η, ωn) + LN(η, ωn))

]δ
≥ 0,

and so
α (η, ωn) θ(ρ(Υη,Υωn)) ≤

[
θ(M(η, ωn) + LN(η, ωn))

]δ .

Hence, we have
θ(ρ(Υη, ωn+1)) ≤

[
θ(M(η, ωn) + LN(η, ωn))

]δ , (3.9)

where

M(η, ωn) = max
{
ρ(η, ωn), ρ(Υωn, ωn), ρ(Υη, η),

1
2

[
ρ(Υη, ωn) + ρ(η,Υωn)

]}
,

N(η, ωn) = min {ρ(Υη, ωn), ρ(η,Υωn, )} .

Letting n→ +∞ from the given inequality, we have

lim
n→+∞

M(η, ωn) = ρ(Υη, η),

lim
n→+∞

N(η, ωn) = 0.

Therefore, if ρ(Υη, η) , 0, from (3.9),

θ(ρ(Υη, η)) ≤ θ(ρ(Υη, η))δ,

which is a contradiction. Hence ρ(Υη, η) = 0; that is, Υη = η. �
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In Theorem 1, if we consider the approach of τρ-continuity, we can derive the following theorem.

Theorem 3. Let (Λ, ρ) be a right M-complete T1-qms such that (Λ, τρ) is Hausdorff and Υ : Λ → Λ

is an α-admissible and almost (ζ − θρ)-contraction. Presume that Υ is τρ-continuous. If there exists
ω0 ∈ Λ such that α(Υω0, ω0) ≥ 1, then Υ has a fixed point in Λ.

Proof. Similar to the proof of Theorem 1, we can take iterative sequence {ωn} as right K-Cauchy. Since
(Λ, ρ) is right M-complete, there exists η ∈ Λ such that {ωn} is ρ-convergent to η; that is, ρ(ωn, η)→ 0
as n → +∞. Using τρ-continuity of Υ, we get ρ(Υωn,Υη) = ρ(ωn+1,Υη) → 0 as n → +∞. Since
(Λ, τρ) is Hausdorff, we get η = Υη. �

Based on the outcomes we have derived, we present diverse fixed point conclusions within the
existing literature, and we can derive the following corollaries:

Corollary 1. Let (Λ, ρ) be a Hausdorff right K-complete T1-qms and Υ : Λ → Λ be given a mapping
that satisfies

α (ω, γ) θ(ρ(Tω,Tγ)) ≤
[
θ(M(ω, γ) + LN(ω, γ)

]δ , (3.10)

for each ω, γ ∈ Λ, where 0 < δ < 1 and L ≥ 0. Presume that Υ is α-admissible and τρ-continuous or
(R) holds. If θ is continuous and there exists ω0 ∈ Λ such that α(Υω0, ω0) ≥ 1, then Υ has a fixed point
in Λ.

Proof. It suffices to take a simulation function ζ(t, s) = ks − t for all s, t ≥ 0 in Theorem 1, (resp.
Theorem 2). �

Corollary 2 (see Durmaz and Altun [14]). Let (Λ, ρ) be a Hausdorff right K-complete T1-qms and
Υ : Λ→ Λ be given a mapping that satisfies

θ(ρ(Tω,Tγ)) ≤
[
θ(M(ω, γ)

]δ , (3.11)

for each ω, γ ∈ Λ, where 0 < δ < 1. Presume that Υ is τρ-continuous or (R) holds with θ as continuous,
then Υ has a fixed point in Λ.

Proof. It suffices to choose the mapping α : Λ × Λ → [0,+∞) such that α (ω, γ) ≥ 1 for all ω, γ ∈ Λ

and L = 0 with ζ(t, s) = ks − t for all s, t ≥ 0 in Theorem 1. �

Remark 1. By considering the notion of left completeness in the sense of K, M and S myth, we can
extend similar fixed point results to the setting of qms.

4. Application

In this part, we propose a novel application in which we demonstrate the existence and uniqueness
of the solution to a fractional boundary value problem (FBVP) using Theorem 1: Here, for continuous
functions a : [0, 1]→ R and f : R→ R, we consider the FBVP given as{

Dα
0+ξ(t) + a(t) f (ξ(t)) = 0, t ∈ (0, 1),

ξ(0) = Dβ
0+ξ(1) = 0,

(4.1)
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where α ∈ (1, 2], β ∈ [0, 1] and Dγ
0+ is Riemann-Liouville derivative of order γ. It is well known that

the operator Dγ
0+ is defined as, for positive integer n and γ ∈ (n − 1, n],

Dγ
0+ξ(t) =

1
Γ(n − γ)

dn

dtn

∫ t

0
(t − s)n−γ−1ξ(s)ds

for a function ξ : [0, 1]→ R, provided the righthand side exists. It is demonstrated in [16] that (4.1) is
equivalent to the following integral equation:

ξ(t) =

∫ 1

0
G(t, s)a(s) f (ξ(s))ds, 0 ≤ t ≤ 1, (4.2)

where G(t, s) is the associated Green’s function defined by

G(t, s) =


tα−1(1 − s)α−1−β

Γ(α)
−

(t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−1−β

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

Define an operator Υ : C[0, 1]→ C[0, 1] by

Υξ(t) =

∫ 1

0
G(t, s)a(s) f (ξ(s))ds.

Hence, η is a solution of (4.1) whenever it is a fixed point of Υ.

Let (Λ, ρ) be the T1-qms, where Λ = C[0, 1] and ρ is defined by

ρ(ξ, η) = max
{

sup
t∈[0,1]

{ξ(t) − η(t)} , 2 sup
t∈[0,1]

{η(t) − ξ(t)}
}
.

In this case (Λ, ρ) is both Hausdorff and right K-complete.
Now we can state the following theorem:

Theorem 4. The FBVP (4.1) has a solution under the following assumption: For all ξ, η ∈ Λ,

max
{

sup
s∈[0,1]

{ f (ξ(s)) − f (η(s))} , 2 sup
s∈[0,1]

{ f (η(s)) − f (ξ(s))}
}
≤ ρ(ξ, η)

and
M(α − 1)α−1 < α(α − β)αΓ(α),

where M = ‖a‖∞.

Proof. First of all, we know by Lemma 3.1 of [16] that G(t, s) ≥ 0 for all t, s ∈ [0, 1] and

sup
t∈[0,1]

∫ 1

0
G(t, s)ds =

(α − 1)α−1

α(α − β)αΓ(α)
.
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Consider the operator Υ : C[0, 1]→ C[0, 1] defined by

Υξ(t) =

∫ 1

0
G(t, s)a(s) f (ξ(s))ds,

then for any ξ, ζ ∈ C[0, 1], we have

ρ(Υξ,Υη) = max
{

sup
t∈[0,1]

{Υξ(t) − Υη(t)} , 2 sup
t∈[0,1]

{Υη(t) − Υξ(t)}
}

= max


supt∈[0,1]

{∫ 1

0
G(t, s)a(s) f (ξ(s))ds −

∫ 1

0
G(t, s)a(s) f (η(s))ds

}
,

2 supt∈[0,1]

{∫ 1

0
G(t, s)a(s) f (η(s))ds −

∫ 1

0
G(t, s)a(s) f (ξ(s))ds

}


= max


supt∈[0,1]

{∫ 1

0
G(t, s)a(s) { f (ξ(s)) − f (η(s))} ds

}
,

2 supt∈[0,1]

{∫ 1

0
G(t, s)a(s) { f (η(s)) − f (ξ(s))} ds

}


≤ M max


supt∈[0,1]

{∫ 1

0
G(t, s)ρ(ξ, η)ds

}
,

supt∈[0,1]

{∫ 1

0
G(t, s)ρ(ξ, η)ds

}


= Mρ(ξ, η) sup
t∈[0,1]

{∫ 1

0
G(t, s)ds

}
= Mρ(ξ, η)

(α − 1)α−1

α(α − β)αΓ(α)

=
M(α − 1)α−1

α(α − β)αΓ(α)
ρ(ξ, η).

Therefore, Υ is an (ζ − θρ)-contraction with the functions α(ξ, η) = 1, ζ(t, s) = ks − t and θ(x) = e
√

x.
The other conditions of Theorem 1 are clearly satisfied. Consequently, there exists ζ ∈ C [0, 1], which
is fixed point of the operator Υ. Hence, the (4.1) has a solution in C [0, 1]. �
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3. I. Altun, H. Hançer, G. Mınak, On a general class of weakly Picard operators, Miskolc Math. Notes,
16 (2015), 25–32. http://dx.doi.org/10.18514/MMN.2015.1168

4. A. Arutyunov, A. Greshnov, (q1, q2)-quasimetric spaces. Covering mappings and coincidence
points, Izv. Math., 82 (2018), 245. http://dx.doi.org/10.1070/IM8546

5. A. Arutyunov, A. Greshnov, (q1, q2)-quasimetric spaces. Covering mappings and
coincidence points. A review of the results, Fixed Point Theor., 23 (2022), 473–486.
http://dx.doi.org/10.24193/fpt-ro.2022.2.03

6. H. Aydi, A. Felhi, E. Karapinar, F. Alojail, Fixed points on quasi-metric spaces via simulation
functions and consequences, J. Math. Anal., 9 (2018), 10–24.
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