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Abstract: Threshold selection is challenging when analyzing tail data with a generalized Pareto 

distribution. Data below the threshold was not used in the model, resulting in incomplete 

characterization of the whole data. This paper applied the Gamma distribution, Weibull distribution, 

and lognormal distribution to fit the central data separately, and a generalized Pareto distribution (GPD) 

was used to analyze the tail data. In such composite models, the thresholds are estimated directly as 

parameters. We proposed an empirical distribution function-based parameter estimation method. The 

absolute value of the difference between the empirical distribution function and the composite 

distribution function was used as a loss function to obtain an estimate of the parameter. This parameter 

estimation method is suitable for complex multiparameter distributions. The estimation method based 

on the empirical distribution function was verified to be feasible through simulation studies. The 

composite model and the estimation method based on the empirical distribution function were applied 

to study the earthquake magnitude data to provide a reference for earthquake hazard analysis. 

Keywords: generalized Pareto distribution; composite model; empirical distribution function; seismic 

hazard 
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1. Introduction 

Earthquakes with a magnitude greater than five cause many casualties, and destructive 

earthquakes are a threat to human life and property. Many small and medium-sized earthquakes cause 

https://www.baidu.com/link?url=rfJX_G2RSaDMWNQMJ8tiQOunxAPMNOukcEDWwYZfNL5ihb6vuUjiiIxSZLzRtgMXxEjqLjcQ5omqH5Z1S5cnxuTSLBRDaGu_o_eu2n1i98PQJyrrvcwZEBIuf_yo2tS5RCX3rmXqPqVSdoUZxlMVgq&wd=&eqid=e437134300389bb200000002655ddd13
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more disasters than people expect, even affecting social stability, and are of great concern to the 

government and the public. Therefore, small and medium-magnitude seismic data study is also of 

practical importance. The Peaks Over Threshold (POT) model based on the generalized Pareto 

distribution (GPD) is widely used in data analysis in various industries because it can fully use the 

information of extreme value contained in the data [1]. In recent years, there have been some findings 

of earthquake hazards, especially in the analysis of large-magnitude earthquakes [2]. The classical 

fixed threshold modeling approach uses graphical diagnostics. Coles [3] outlined the common 

graphical diagnostics for threshold choice. Scarrott and MacDonald [4] gave a long review of tail and 

non-tail estimation methods. However, this model falls short in practical data processing in two ways 

as data analysis with such a model is generally done in two steps. In the first, the threshold u is chosen 

graphically by looking at the mean excess plot [5] or simply setting it as some high percentile of the 

data [6]. Both methods are subjective and the parameter estimates depend on the threshold. In such 

areas, the main problem is the scarcity of data or, more specifically, modeling with a fairly small 

amount of observations. 

To address this issue, Arnoldo et al. [7] proposed a new dynamically weighted mixture model, 

where one of the terms is the GPD and the other is a light-tailed density function. Mendes and Lopes [8] 

proposed a procedure to fit a mixture model by maximum likelihood where the tails are GPD and the 

distribution center is normal. The normal spliced with GPD tail developed by Carreau and Bengio [9] 

named the ‘hybrid Pareto’ model was further developed to include constraints on parameters to ensure 

continuity up to the first derivative of the density. Behrens [10] proposed a model to analyze data 

characterized by extreme events where a threshold is estimated directly. Nadarajah and Bakar [11] 

proposed new composite models based on the lognormal distribution. Caladerin-Ojeda [12,13] 

analyzed claim data and all French settlements from 1962 to 2012 using the composite Weibull-Burr 

model and the composite lognormal-Pareto distribution separately. Extreme likelihood estimation is 

widely used in composite models [14]. Carreau & Bengio [15] and Carreau et al. [16 ] implemented a 

neural network learning approach in nonstationary and bivariate modeling situations. Bayesian 

inference was used by Behrens et al. [10] with sensible prior forms for the bulk, tail and threshold 

parameters. Tancredi et al. [17] was the first to propose an extreme value mixture model that combined a 

nonparametric estimator for the bulk distribution spliced with an extreme value tail model. Li et al. [18] 

extended the model by fitting the tails with GPD and the central part with gamma, lognormal, mixed 

gamma and Weibull distributions to build four combined models for the evaluation of post-earthquake 

loss in Yunnan Province, respectively. Due to the complexity of the combined models, the Bayes 

estimates of the parameters were calculated using the Markov chain Monte Carlo (MCMC) method 

used in the previous papers. There are other methods to estimate the parameters. Dupuis [19] proposed 

a robust procedure for fitting GPD, including statistics to guide threshold choice. Thompson et al. [20] 

developed an automated procedure for threshold estimation and uncertainty quantification. They set a 

uniformly spaced grid of possible threshold values (between the median and the 98% empirical 

quantile). For each potential threshold, the GPD is fitted (using maximum likelihood (ML) estimation) 

and the differences in the modified scale parameters for neighboring thresholds are calculated. 

The composite model allows fitting all the data and considering the thresholds as parameters for 

direct estimation. We propose an empirical distribution function-based parameter estimation method 

to estimate the parameters in the composite model. The correctness of the parameter estimation method 

is tested by generating simulated data. Finally, the model and parameter estimation method is used to 

analyze the seismic data of the fracture zone with the composite model. 
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2. Proposed composite models 

Consider that 1 2, , , nX X X  are independent and identically distributed observations and u  is 

the threshold over which these observations are exceedances.  

Then, ( | ) ~ ( , , )i iX X u G u  , where 
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Observations below the threshold obey the H  distribution, which can be estimated.  

Assume that ( | )H x 1θ  is any distribution such as a Weibull, Gamma or Lognormal distribution. The 

distribution function of the composite distribution is as follows: 
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Composite model one Gamma-GPD composite model: 

In formula (3), if 1 1
0
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is the probability density function of the Gamma distribution. The distribution function of the 

composite model is 

1
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Composite model two Weibull-GPD composite model: 

In formula (3), if 1 2 1 2
0
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is the probability density function of the Weibull distribution. The distribution function of the 

composite model is 



610 
 

AIMS Mathematics  Volume 9, Issue 1, 607–624. 

2

2 2

( | , ),                                                  
F( | , , , , )

( | , ) [1 ( | , )] ( | , , ),

H x k x u
x k u

H u k H u k G x u x u


  

   


 

  
.    (7) 

Composite model three Lognormal-GPD composite model: 

In formula (3), if 3 3
0
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is the probability density function of the Weibull distribution. The distribution function of the 

composite model is 
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3. Parameter estimation of composite models 

3.1. Parameter estimations based on the empirical distribution functions 

Definition 1. A statistical estimation of ( )F x   based on a random sample 1 2, , , nX X X   is the 

empirical distribution function defined by  

1

1
( ) ( ),
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where ( )I   denotes the indicator function of the event in the brackets. 

From the Glivenko-Cantelli theorem [21], it follows 

sup | ( ) ( ) | 0 1lim n
xn

P F x F x
 

 
   

 
.       (11) 

Therefore, when the sample size n  is sufficiently large, ( )nF x approximates well the distribution 

function ( | )F x θ , where θ  is the parameter of the distribution. Based on the above conclusions, we 

devise the following method for estimating the unknown parameters of the distribution. Define the 

loss function as 

( , ) | ( ) ( , ) |nLoss x F x F x θ θ , 

where ( )nF x is the empirical distribution function.  

Find that θ̂  satisfies ˆ( , ) min ( , )Loss x Loss xθ θ and θ̂  is an estimate of the parameter θ . 

This method allows for the numerical estimation of complex distributions that contain several parameters. 

For the composite model in this paper, which contains several parameters and cannot be solved 

analytically, we use the above empirical distribution function-based method to estimate the parameters. 

To illustrate the feasibility of the method, we compare the traditional maximum likelihood 

estimation with the estimation based on the empirical distribution function. 
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3.2. Maximum likelihood estimation of parameters 

The likelihood function of the composite model is 
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is the probability density function of GPD. Find that θ̂  satisfies ˆ( , ) max ( , )L x L xθ θ  and θ̂  

is the maximum likelihood estimate of the parameter θ . Since there is no analytical solution to the 

maximum likelihood estimate, the numerical solution is solved here using the optimization algorithm.  

3.3. Numerical simulation 

The numerical simulation process of parameter estimations based on the empirical distribution 

functions is as follows and the flowchart is shown in Figure 1. 

(1) For the given parameters, define the distribution function of the composite model ( | )F x θ  and 

generate random numbers of [0,1]. The distribution functions of the three composite models are given in 

section two. Apply the inverse transformation method to obtain samples obeying the composite models. 

(2) Calculate the empirical distribution function ( )nF x of the samples. Define the loss function as 

( , ) | ( ) ( , ) |nLoss x F x F x θ θ . 

(3) Apply the Nelder-Mead simplex algorithm in Matlab to find the minimum of the loss function and 

get the parameter estimations. 

(4) The number of samples generated is n=100, n=200, n=300, n=500 and n=1000 and the mean of the 

estimates obtained by repeating m=100 times, respectively, is the parameter estimate. 

(5) Apply nonparametric bootstrap methods to obtain confidence intervals for parameters. 

The numerical simulation process of parameter estimations based on the maximum likelihood 

method is similar to the empirical distribution function based method. 

In the composite model 1 2( , , , )nx x xx  for the given parameters θ , the numerical simulation 

results are given in Tables 1–3 as follows. The histograms of the parameters of each model are shown 

in Figures 2–4. 
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Figure 1. Numerical simulation flowchart. 

Table 1. Summary of the parameter estimations of composite model one. 

Means of 

Parameter 

estimations 

Number of 

random 

numbers 

Composite model one ( , , , , )u   θ  

5, 2, 3, 0.3, 1.5u          

Empirical 

distribution 

functions-based 

estimation  

100 ˆ ˆˆ ˆ ˆ4.6242, 1.8387, 2.6312, 0.1217, 1.1875u          

200 ˆ ˆˆ ˆ ˆ4.8517, 1.9235, 2.4942, 0.1310, 1.2402u          

300 ˆ ˆˆ ˆ ˆ4.7897, 1.8964, 2.6707, 0.1347, 1.2642u          

500 ˆ ˆˆ ˆ ˆ4.7226, 1.8623, 2.4255, 0.1690, 1.2757u          

1000 ˆ ˆˆ ˆ ˆ4.9295, 1.9630, 2.5380, 0.2087, 1.4185u          

Maximum 

likelihood 

estimation 

100 ˆ ˆˆ ˆ ˆ4.8392, 1.9280, 3.0209, 0.2249, 1.3420u          

200 ˆ ˆˆ ˆ ˆ4.5448, 1.8052, 2.1849, 0.2161, 1.1923u          

300 ˆ ˆˆ ˆ ˆ4.6571, 1.8489, 2.1895, 0.1903, 1.1988u          

500 ˆ ˆˆ ˆ ˆ4.7507, 1.8935, 2.2595, 0.2175, 1.2391u          

1000 ˆ ˆˆ ˆ ˆ4.9420, 1.9709, 2.4197, 0.2438, 1.4156u          
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Table 2. Summary of the parameter estimations of composite model two. 

Means of 

Parameter 

estimations 

Number of 

random 

numbers 

Composite model two ( , , , , )k u  θ  

5, 2, 3, 0.3, 1.5k u          

Empirical 

distribution 

functions-based 

estimation  

100 ˆˆ ˆˆ ˆ4.2335, 1.8201, 3.0727, 0.2960, 1.4363k u         

200 ˆˆ ˆˆ ˆ4.1684, 1.6556, 3.0153, 0.2976, 1.4851k u         

300 ˆˆ ˆˆ ˆ4.0384, 1.5171, 3.0160, 0.2868, 1.4703k u         

500 ˆˆ ˆˆ ˆ4.8354, 1.4530, 3.0156, 0.2983, 1.4978k u         

1000 ˆˆ ˆˆ ˆ4.9770, 2.0320, 3.0093, 0.2927, 1.4844k u         

Maximum 

likelihood 

estimation 

100 ˆˆ ˆˆ ˆ4.3512, 1.7322, 2.9528, 0.3853, 1.4463k u         

200 ˆˆ ˆˆ ˆ4.7620, 1.9973, 2.9354, 0.3948, 1.4745k u         

300 ˆˆ ˆˆ ˆ4.6439, 1.9146, 2.9607, 0.3828, 1.4298k u         

500 ˆˆ ˆˆ ˆ4.7451, 1.9671, 2.9772, 0.3837, 1.4175k u         

1000 ˆˆ ˆˆ ˆ4.5761, 2.2758, 2.7070, 0.4154, 1.3960k u         

Table 3. Summary of the parameter estimations of composite model three. 

Means of 

Parameter 

estimations 

Number of 

random 

numbers 

Composite model three ( , , , , )L u   θ  

5, 2, 3, 0.3, 1.5L u          

Empirical 

distribution 

functions-based 

estimation  

100 ˆˆ ˆ ˆ ˆ3.8481, 1.5243, 3.0643, 0.2516, 1.3874L u          

200 ˆˆ ˆ ˆ ˆ4.0775, 1.6193, 3.0249, 0.2922, 1.4906L u          

300 ˆˆ ˆ ˆ ˆ3.9829, 1.5393, 3.0123, 0.3026, 1.5040L u          

500 ˆˆ ˆ ˆ ˆ3.9249, 1.5245, 3.0226, 0.2833, 1.4555L u          

1000 ˆˆ ˆ ˆ ˆ3.9233, 1.4751, 3.0072, 0.2967, 1.4962L u          

Maximum 

likelihood 

estimation 

100 ˆˆ ˆ ˆ ˆ4.5894, 1.9642, 2.8494, 0.3467, 1.3204L u          

200 ˆˆ ˆ ˆ ˆ4.6049, 1.9401, 2.9521, 0.3623, 1.4088L u          

300 ˆˆ ˆ ˆ ˆ4.6161, 1.8971, 2.9614, 0.3830, 1.4167L u          

500 ˆˆ ˆ ˆ ˆ4.6565, 1.9063, 2.9623, 0.3684, 1.3782L u          

1000 ˆˆ ˆ ˆ ˆ4.8945, 1.8788, 2.9927, 0.3627, 1.3885L u          
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Figure 2. Histogram of parameter estimates for composite model one. 

 

 

Figure 3. Histogram of parameter estimates for composite model two. 
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Figure 4. Histogram of parameter estimates for composite model three. 

From Tables 1–3, it can be seen that for all three composite models, the proposed method based 

on empirical distribution functions is similar to the maximum likelihood estimation and is a feasible 

parameter estimation method. Both parameter estimation methods are relatively robust. Except for the 

parameter  , the deviation of each parameter estimate from the true value is small. The standard 

deviation and 95% confidence intervals for the parameters are shown in Tables 4–8. 

Table 4. 95% confidence interval for parameter  ,  and  in the three composite models. 

Model Meannnn  Standard deviation Confidence interval 

Composite model one 4.9295 0.3486 [4.3261, 5.5389] 

Composite model two 4.9770 0.2573 [4.5044, 5.4832] 

Composite model three 3.9233 0.9264 [2.8943, 5.9720] 
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Table 5. 95% confidence interval for parameter  , k  and L
in the three composite models. 

Model Meannnn  Standard deviation Confidence interval 

Composite model one 1.9630 0.1616 [1.6596, 2.2588] 

Composite model two 2.0320 0.1400 [1.7210, 2.2723] 

Composite model three 1.4751 0.4708 [1.0014, 2.6472] 

Table 6. 95% confidence interval for parameter u  in the three composite models. 

Model Mean of u   Standard of u  Confidence interval of u  

Composite model one 2.5380 0.0682 [2.0057, 3.3380] 

Composite model two 3.0093 0.0394 [2.9299, 3.0811] 

Composite model three 3.0072 0.0186 [2.9709, 3.0495] 

Table 7. 95% confidence interval for parameter   in the three composite models. 

Model Mean of    Standard of   Confidence interval of   

Composite model one −0.2087 0.1258 [−0.4928, −0.0943] 

Composite model two −0.2927 0.0722 [−0.4489, −0.1643] 

Composite model three −0.2967 0.0594 [−0.4843, −0.1864] 

Table 8. 95% confidence interval for parameter   in the three composite models. 

Model Mean of    Standard of   Confidence interval of   

Composite model one 1.4185 0.1563 [1.0188, 1.6509] 

Composite model two 1.4844 0.1044 [1.2182, 1.6936] 

Composite model three 1.4962 0.0785 [1.3475, 1.6431] 

The standard deviations of the parameters   are smaller in model 2, which is consistent with 

Figure 3. The standard deviation of the parameters   is greater in model one. The method appears 

to have a variability with   but is robust for the other parameters. 

A comparison of the empirical distribution functions with the distribution function of the three 

composite models is shown in Figures 5–7. The two curves are very close to each other in each figure. 

The confidence interval for the empirical distribution function is also shown in each figure. The 

distribution function falls between the upper and lower confidence levels of the empirical 

distribution function. 
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Figure 5. Confidence intervals for empirical distribution function and distribution 

functions of model one. 

 

Figure 6. Confidence intervals for empirical distribution function and distribution 

functions of model two. 

 

Figure 7. Confidence intervals for empirical distribution function and distribution 

functions of model three. 
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3.4. Seismic risk based on the composite model 

GPD in the composite model can describe the tail data. The quantile is important for extreme 

value analysis. Scholars [22–24] proved that if the distribution function F belongs to the attraction 

domain of a generalized extreme value distribution (GEV), the limiting distribution of excesses is the 

GDP. The distribution function of the excess is 

( ) ( )
( ) { | } ( , , ),

1 ( )
u

F y u F u
F x P X u x X u Gp x

F u
 

 
     


    (14) 

where,  

1

( , , ) 1 1 , 0,1 0.
x x

Gp x x


   
 



 
      

 
     (15) 
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and 

( ) ( ) ( ).uF u x F x F u 
 

From Eq (15) 

1

ˆ ( ) (1 )u

x
F x 





  , the frequency /uN n above the threshold u is the estimation 

of ( )F u , where uN  is the number of samples above the threshold, then ˆ (u) uN
F

n
 . We can get the 

estimation of ( )F u x  as follows: 

1

ˆˆ ˆ( ) (1 ) ,
ˆ

uN x
F u x

n
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

           (16) 

then we can get the estimation of ( )F x : 

ˆ1/
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       (17) 

From Eq (17), we get the estimation of the p-quantile px : 

ˆ

ˆ
ˆ ˆ (1 ) 1 ,

ˆp

u

n
x u p

N







   
     

   

       (18) 

where ( ) ,0 1pF x p p   . 

If 0   and 1p , the estimation of the upper limit point *x of the support F is 
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* ˆ
ˆ ˆ .

ˆ
x u




            (19) 

{ } 1 ( ) 1/p pP X x F x T    , 1/ ( )pT F x  is the theoretical return period with the return level px

and ( )  (0 1)pF x p p   . The return period estimate can be obtained: 
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If the given return period is T years, bring )365/(11 Tp   into Eq (18), and we can estimate the 

return level 

ˆ ˆ
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1
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ˆ ˆ 365
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    (21) 

In the following part, the earthquake magnitude data is analyzed using the above three composite 

models to study the seismic risk. 

4. Earthquake magnitude analysis of the eastern Bayan Hara Block 

The data in this paper is from the National Seismic Science Data Sharing Center 

(https://data.earthquake.cn/). 19,221 records before December 2019 are the research samples in the 

scope of reference [25]. The annual magnitudes of the earthquake are shown in Figure 8. 

 

Figure 8. Magnitude in the Bayan Hara block from 1920 to 2019. 

The magnitude data is analyzed with the above three composite models. The final results of the 

parameters obtained by the empirical distribution function-based method are summarized in Tables 9–11. 

https://data.earthquake.cn/
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Table 9. Parameter estimation of Composite model one. 

Parameters AIC     u      

Parameter 

estimations 

10.388 5.7666 1.4296 2.9632 −0.1296 0.7051 

Table 10. Parameter estimation of Composite model two. 

Parameters AIC   k  u      

Parameter 

estimations 

311.518 8.8975 0.5459 2.9473 −0.1103 0.7033 

Table 11. Parameter estimation of Composite model three. 

Parameters AIC   
L  u      

Parameter 

estimations 

14.265 2.2692 0.4855 2.0800 −0.1545 0.7182 

Although the distributions describing the central part are different, the parameter estimations of 

the GPD that describe the tail are very close to each other in the three composite models. The values 

of the loss functions are 1.0212, 1.4330, 1.5874 in the three models, respectively, and the residual of 

composite model one is the smallest. From Figure 9 we can see that the Gamma distribution function 

is closer with the first half of the empirical distribution function, which is the same as the loss function 

value. Akaike information criterion (AIC) values are also reported in Tables 9–11 to compare the 

performance of different models. AIC values are 10.388 in composite model one and 14.265 in 

composite model three. The AIC value of 311.5178 for model two is much bigger than that for models 

one and three. Thus, the performance of models one and three are comparable, and model two performs 

the least. The value of the loss function for model one is the smallest; hence, model one is selected as 

the reasonable model. 

Nowadays, there are non-parametric and semi-parametric approaches for the distribution of the 

non-tail, which make modeling more flexible. Mohd et al. [26] used the semi-parametric for measuring 

income inequality in Malaysia. Based on this, we developed a semi-parametric model for comparison 

with the composite model. 

Assume that p denotes the proportion of top earthquake magnitude data. In the semi-parametric 

model, a generalized Pareto distribution is fitted to 100 %p  of the upper tail data. 

The 100(1 )%p   lower tail data is modeled by an empirical distribution. The empirical 

distribution is given by 

1

1
( ) ( ),

n

n k i

i

F x I X x x
n k





    

 , 

where ( )I  denotes the indicator function of the event in the brackets, and k is the number of 

observations in the upper tail of the earthquake magnitude. 
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Figure 9. Comparison of the three composite models with the empirical distribution functions. 

The full semi-parametric distribution can be written as  

( ),            
( | , , )

( | , , ),    

n kF x x u
F x u

G x u x u
 

 

 
 


, 

where ( , , )G u   is the distribution function of the GPD. 

We used the same empirical-distribution function-based method to calculate parameters. The 

result is in Table 12 below. 

Table 12. Summary of parameter estimation of semi-parametric model. 

Parameter u      

Parameter estiamtion 7.0469 −0.1841 0.0202 

The parameter u  is the threshold of earthquake magnitude; therefore, the estimation value of 7.0469 

is too large and unreasonable. The data above the threshold is only 15. The sample size is reduced and, 

consequently, the variance of the parameter estimates increases. 

Therefore, model one can be chosen to study the distribution of earthquake magnitude. The 

earthquake magnitude data that is smaller than the threshold obeys the Gamma distribution with 

parameters 5.7666, 1.4296   , while the tail data larger than the threshold obeys a GPD. This 

conclusion can be used as a complement to probabilistic seismic hazard analysis (PSHA). 

The estimation of ̂  in Tables 9–11 is less than zero, indicating that the return level of magnitude 

predicted by the model has a theoretical upper limit. The theoretical maximum magnitude is about 

8.4sM   according to Eq (19) in composite model one. 

In the Pareto distribution, the most important part of the tail analysis is the estimation of the 

quantile. The quantile is the return level of the magnitude of earthquake. We obtain the 1 p  quantile 

of the distribution according to Eq (18). Bring the estimates of ,u   and   into Eq (21), and the 

return level for the given return period can be summarized in Table 13.  
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Table 13. Summary of return level for the given return period of the earthquake magnitude. 

 
return period

（year） 
return level(Ms) px  

Composite model two 

3 

5 

10 

30 

50 

100 

6.33 

6.64 

7.05 

7.68 

7.98 

8.24 

The 100-year return level is 8.24sM  , indicating that earthquakes with a magnitude of about 

8.2sM   will occur in the east of Bayan Har every 100 years. This result is consistent with the fact 

that there was an earthquake of 8.0sM   in 2008. It shows that the estimated return levels are all 

within the confidence intervals of the return level in Figure 10. The model is reasonable. 

 

Figure 10. Return plot. 

5. Conclusions  

In response to the difficulty of selecting a threshold when analyzing data using the GPD and the 

fact that the model can only study data above the threshold, this article studied all the data using 

composite models. Composite models were developed by applying the Gamma distribution, the 

Weibull distribution, and the lognormal distribution combined with the GPD separately. A parameter 

estimation method was proposed based on the empirical distribution function. The parameter 

estimation method based on the empirical distribution function is suitable for the loss function, which 

is complex and can not be derived to optimize the function. The method appears robust for most of the 

measurements in the three composite models in this paper. For some parameters, the method appears 

to have some variability. This method is suitable for solving numerical solutions of parameter estimates 

in complex distributions. The composite models and the empirical distribution function-based method 

are applied to earthquake magnitude data to provide a reference for earthquake hazard analysis. The 
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composite model can analyze all the data and the threshold can be directly estimated as a parameter. 

Composite models in seismic magnitude analysis expand the scope of their use and provide new ideas 

for magnitude analysis. Composite models and parameter estimation methods can also be used in other 

industries. 
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