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Abstract: This study investigates solutions for the time-fractional coupled system of the shallow-
water equations. The shallow-water equations are employed for the purpose of elucidating the
dynamics of water motion in oceanic or sea environments. Also, the aforementioned system
characterizes a thin fluid layer that maintains a hydrostatic equilibrium while exhibiting uniform
density. Shallow water flows have a vertical dimension that is considerably smaller in magnitude
than the typical horizontal dimension. In the current work, we employ an innovative and effective
technique, known as the natural transform decomposition method, to obtain the solutions for these
fractional systems. The present methodology entails the utilization of both singular and non-singular
kernels for the purpose of handling fractional derivatives. The Banach fixed point theorem is employed
to demonstrate the uniqueness and convergence of the obtained solution. The outcomes obtained from
the application of the suggested methodology are compared to the exact solution and the results of
other numerical methods found in the literature, including the modified homotopy analysis transform
method, the residual power series method and the new iterative method. The results obtained from the
proposed methodology are presented through the use of tabular and graphical simulations. The current
framework effectively captures the behavior exhibited by different fractional orders. The findings
illustrate the efficacy of the proposed method.
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1. Introduction

Fractional calculus (FC) has been increasingly garnering the interest of many mathematicians and
physicians specialties in recent decades. Numerous applications of FC can be found in engineering [1],

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024029


543

natural science [2] and many other areas. The fractional differential equations have also been effectively
used to model a variety of biological issues, such as hepatitis B [3], methanol detoxification in the
body [4] and the human liver [5], as well as other differential physics and thermodynamic models like
the dynamical systems [6] and diffusion-wave system [7]. For further details, we will suggest some of
the books on FC and its applications ,as written by Podlubny [8], Samko et al. [9] and Kilbas et al. [10].
There have been various fractional derivative definitions demonstrated over the past few years. There
are numerous benefits and significant implications associated with the utilization of fractional order
mathematical modelling. Fractional derivatives describe a key aspect of paradigm generalization and
memory consequences. Second, fractional order modelling accurately calculates details between any
two points. The integer order models only cover the integer case, but fractional orders can be used
at any stage. Compared to integer-order models, fractional-order models better describe memory and
hereditary properties of phenomena. The Riemann-Liouville (R-L), Atangana-Baleanu-Caputo (ABC),
Caputo (C), Caputo-Fabrizio (CF), Grunwald-Letnikov and Riesz derivatives are the most well-known
fractional derivative definitions. The R-L and C fractional derivatives are singular kernels. The index
law and other classical requirements were met by this class of fractional differential operators. This
singularity prevents full physical structure memory description. Due to this constraint, Caputo and
Fabrizio proposed a fractional order centered on the exponential kernel, which has a non-singular
kernel [9, 11]. Atangana Baleanu developed a non-localized derivative by using the Mittag-Leffler
kernel. The CF and ABC derivative offers an alternative approach for describing FC, and it has
applications in various fields. It can be used to model systems with memory and hereditary properties,
and it provides a way to analyze and describe complex behaviors that cannot be fully captured by
integer-order derivatives.

Researchers have started to develop various innovative ways of approximating the solution of
nonlinear differential equations (NDEs) due to the difficulty of obtaining a solution to NDEs.
They could be iterative approaches, perturbation methods or numerical methods. Recent years
have seen several researchers working on this issue with a focus on studying fractional nonlinear
partial differential equation (PDE) solutions by using a variety of techniques, including the reduced
differential transform method [12], variational iteration method [13], finite difference method [14],
iterative Laplace transform method [15, 16] homotopy perturbation method [17], q-homotopy analysis
transform method [18], finite element method [11], residual power series transform method [19],
the extended sinh-Gordon equation expansion method [20], auxiliary equation mapping method [21],
homotopy analysis Sumudu transform method [22], (G′

G )-expansion method [23], two-variable (G′
G ,

1
G )-

expansion method [24], extended direct algebraic method [25], Hirota bilinear technique [26], modified
Kudryashov method [27], symmetry group analysis [28, 29] and so on.

The emergence of shallow-water equations (SWEs), which hold significant importance in the
fields of applied mathematics and physics, can be traced back to the latter part of the 18th century.
Shallow-water waves can be characterized as the observable displacements of water bodies such
as the sea or ocean when subjected to physical examination. Simultaneously, numerous physical
phenomena exhibiting similarities to the movements of shallow water waves are observed within
the realm of various scientific disciplines, including nuclear physics, plasma physics, fluid dynamics
and other related fields. Hence, the investigation of nonlinear PDEs or systems has garnered the
interest of applied mathematicians in the modeling of this particular physical phenomenon. The
most well-known models for shallow-water waves, according to scientific research, are based on the

AIMS Mathematics Volume 9, Issue 1, 542–564.



544

Klein-Gordon equation, Korteweg-de Vries equation, Benjamin-Bona-Mahony equation, Boussinesq
equation, Kadomtsev-Petviashvili equation and shallow-water wave systems. The fluid must be
homogeneous and incompressible, the flow must be continuous and the pressure distribution must be
hydrostatic for shallow-water flows to exist. The vertical dimension must also be considerably less than
the ordinary horizontal dimension. Variations of the SWEs are used to mimic a variety of geophysical
flows. We consider one types of the SWEs, namely, the Benney equations [30], which are obtained by
considering the two-dimensional and time-dependent movement of an inviscid homogeneous fluid in
the presence of a gravitational field. These equations assume that the depth of the fluid is significantly
smaller than the horizontal wavelengths under consideration. The equations can be expressed as
follows:

∂U(ζ, ξ, τ)
∂τ

+ U(ζ, ξ, τ)
∂U(ζ, ξ, τ)

∂τ
−
∂U(ζ, ξ, τ)

∂ξ

∫ ξ

0

∂U(ζ, t, τ)
∂ξ

dt +
∂W(ζ, τ)
∂ζ

= 0,

∂W(ζ, τ)
∂τ

+
∂

∂ζ

∫ W

0

∂U(ζ, t, τ)
∂ξ

dt = 0,
(1.1)

where ξ represents the stiff bottom and U(ζ, ξ, τ) and W(ζ, τ) denote the horizontal velocity component
and the free surface respectively. In this context, the rigid bottom is represented by the equation
ξ = 0, while the free surface is denoted by ξ = W(ζ, τ). In this scenario, when the horizontal
velocity component U remains unaffected by changes in height W, Eq (1.1) simplifies to the
system found in classical water theory, specifically in the context of irrotational motion. The wave
motion that corresponds to this phenomenon is governed by the time-fractional coupled system of
SWEs (TFCSSWE). It represents the analogous wave motion and describes a thin fluid layer in the
hydrostatic equilibrium with a constant density. We consider the TFCSSWE [31] to be of the form

Dµ
τU = −WUζ − UWζ ,

Dµ
τW = −WWζ − Uζ ,

(1.2)

with the initial conditions
U(ζ, 0) =

1
9

(ζ2 − 2ζ + 1),

W(ζ, 0) =
2(1 − ζ)

3
.

(1.3)

The equations under consideration in this context serve as physical models for a variety of
phenomena [32], including tidal events, tsunamis and the hydrodynamics of lakes. Several scholars
have recently explored the TFCSSWE by using various techniques, such as modified homotopy
analysis transform method (MHATM), and the residual power series method (RPSM) [31], the
homotopy perturbation method [33] and new iterative method (NIM) [34].

To the best of the authors’ knowledge, this study represents the first endeavor to investigate the
solutions of the TFCSSWE by utilizing the natural transform decomposition method (NTDM) while
incorporating the fractional derivatives with in both singular and non-singular kernels. For a class of
nonlinear PDEs, Rawashdeh and Maitama [35] proposed the NTDM. The Adomian decomposition
method and the natural transform (NT) were two efficient techniques employed in the development of
the NTDM. The proposed method handles fractional nonlinear equations without the requirement of a
Lagrange multiplier, as is the case with the variational iteration method and Adomian polynomials, as
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well as with the Adomian decomposition method. The method under consideration does not necessitate
any preconceived assumptions, linearization, perturbation or discretization, thereby mitigating the
occurrence of rounding errors. As a result, the technique is ready to be applied to a wide range
of nonlinear time-fractional PDEs. It is believed that this novel approach can be used to quickly
and easily solve a certain class of coupled nonlinear PDEs. To acquire more insight into the impact
of fractional-order derivatives, the findings were analyzed from the perspective of an infinite series.
Recently, a variety of physical problems, including fractional-order concerns like the Zakharov-
Kuznetsov equation [36], Klein-Gordon equation [37], coupled Kawahara and modified Kawahara
equations [38] and Swift-Hohenberg equation [39], have been studied by using the proposed method.

The article’s main content is presented in the following order; The primary definitions and some
additional findings that are helpful in the investigation of fractional differential equations are included
in Section 2. We outline the fundamental methodology for the NTDM in Section 3. The uniqueness
and convergence of the solutions are examined in Section 4. The suggested strategy is put into practice
in Section 5 to determine the precise solution to the TFCSSWE. The numerical results and discussion
are presented in Section 6. Finally, we give our conclusions in Section 7.

2. Basic definitions

In this section, we give some of the well-known fractional derivative definitions mentioned below.

Definition 2.1. [40] The C derivative of fractional order µ of function U(τ) ∈ Cq
ν for ν ≥ −1 is

defined as

Dµ
τU(τ) =

 dqU(τ)
dτq , µ = q ∈ N,
1

Γ(q−µ)

∫ τ
0

(τ − ζ)q−µ−1Uq(ζ)dζ, q − 1 < µ < q, q ∈ N.
(2.1)

Definition 2.2. [41] The CF fractional derivative of the function U(τ) ∈ H1(0,T ) is defined by

CF Dµ
τU(τ) =

1
1 − µ

∫ τ

0
U′(ζ) exp

(−µ(τ − ζ)
1 − µ

)
dζ, τ ≥ 0, 0 < µ ≤ 1. (2.2)

Definition 2.3. [42] The ABC derivative of fractional order µ of function U(τ) ∈ H1(0,T ) is defined as

ABCDµ
τU(τ) =

M[µ]
1 − µ

∫ τ

0
U′(ζ)Eµ

(−µ(τ − ζ)µ

1 − µ

)
dζ, 0 < µ ≤ 1. (2.3)

Definition 2.4. [43] The definition of the NT is given as

N+[U(τ)] =
∫ ∞

0
e−sτU(vτ)dτ, v, s > 0. (2.4)

Definition 2.5. [44] The definition of the NT of the C derivative is given as

N+[C
0 Dµ

τU(τ)] =
( s
v

)µ(
N+[U(τ)] −

1
s

U(0)
)
. (2.5)

Definition 2.6. [45] The definition of the NT of the CF derivative is given as

N+[CF
0 Dµ

τU(τ)] =
1

φ(µ, v, s)
(
N+[U(τ)] −

1
s

U(0)
)
, (2.6)

where φ(µ, v, s) = 1 − µ + µ( v
s ).
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Definition 2.7. [46] The definition of the NT of the ABC derivative is given by

N+[ABC
0 Dµ

τU(τ)] =
1

ψ(µ, v, s)
(
N+[U(τ)] −

1
s

U(0)
)
, (2.7)

where ψ(µ, v, s) = 1−µ+µ( v
s )µ

M[µ] .

3. Procedure of NTDM

In this section, the NTDM is applied to solve the TFCSSWE by considering the three
aforementioned fractional derivatives.
NTDMC: By taking the NT of Eq (1.2) in the C sense, with the initial condition given by Eq (1.3),
we obtain ( s

v

)µ[
N+(U(ζ, τ)) −

1
9 (ζ2 − 2ζ + 1)

s

]
=N+[−WUζ − UWζ],( s

v

)µ[
N+(W(ζ, τ)) −

2(1−ζ)
3

s

]
=N+[−Uζ −WWζ].

(3.1)

From Eq (3.1), we can apply the inverse NT on both sides:

U(ζ, τ) =N−1
[ 1

9 (ζ2 − 2ζ + 1)
s

+
(v

s

)µ
N+
[
−WUζ − UWζ

]]
,

W(ζ, τ) =N−1
[ 2(1−ζ)

3

s
+
(v

s

)µ
N+
[
− Uζ −WWζ

]]
.

(3.2)

The nonlinear terms can be represented as

WUζ =

∞∑
k=0

Ak, UWζ =

∞∑
k=0

Bk, WWζ =

∞∑
k=0

Ck, (3.3)

where Ak, Bk and Ck are the Adomian polynomials.
U(ζ, τ) and W(ζ, τ) are the unknown functions, which have infinite series of the following

respective forms:

U(ζ, τ) =
∞∑

k=0

Uk(ζ, τ), W(ζ, τ) =
∞∑

k=0

Wk(ζ, τ). (3.4)

Making substitutions of Eqs (3.3) and (3.4) into Eq (3.2), we obtain

∞∑
k=0

Uk(ζ, τ) =N−1
[ 1

9 (ζ2 − 2ζ + 1)
s

]
+ N−1

[(v
s

)µ
N+
[ ∞∑

k=0

k∑
j=0

W j(Uk− j)ζ +
∞∑

k=0

k∑
j=0

U j(Wk− j)ζ
]]
,

∞∑
k=0

Wk(ζ, τ) =N−1
[ 2(1−ζ)

3

s

]
+ N−1

[(v
s

)µ
N+
[ ∞∑

k=0

(Uk)ζ +
∞∑

k=0

k∑
j=0

W j(Wk− j)ζ
]]
.

(3.5)
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From Eq (3.5), we have

CU0(ζ, τ) = N−1
[ 1

9 (ζ2 − 2ζ + 1)
s

]
,

CW0(ζ, τ) = N−1
[ 2(1−ζ)

3

s

]
,

CU1(ζ, τ) = N−1
[(v

s

)µ
N+
[
U0ζW0 + U0W0ζ

]]
,

CW1(ζ, τ) = N−1
[(v

s

)µ
N+
[
(U0)ζ +W0W0ζ

]]
,

CU2(ζ, τ) = N−1
[(v

s

)µ
N+
[
U1ζW0 + U0ζW1 + U1W0ζ + U0W1ζ

]]
,

CW2(ζ, τ) = N−1
[(v

s

)µ
N+
[
(U1)ζ +W1W0ζ +W0W1ζ

]]
,

...

CUk+1(ζ, τ) = N−1
[(v

s

)µ
N+
[ k∑

j=0

W j(Uk− j)ζ +
k∑

j=0

U j(Wk− j)ζ
]
, k ≥ 0,

CWk+1(ζ, τ) = N−1
[(v

s

)µ
N+
[
(Uk)ζ +

k∑
j=0

W j(Wk− j)ζ
]]
, k ≥ 0.

(3.6)

Making substitutions of Eq (3.6) into Eq (3.4), we obtain the series solution as
CU(ζ, τ) =CU0(ζ, τ) + CU1(ζ, τ) + CU2(ζ, τ) + . . . ,
CW(ζ, τ) =CW0(ζ, τ) + CW1(ζ, τ) + CW2(ζ, τ) + . . . .

(3.7)

NTDMCF: By taking the NT of Eq (1.2) in the CF sense, with the initial condition given by Eq (1.3),
we obtain

1
φ(µ, v, s)

(
N+[U(ζ, τ)] −

1
9 (ζ2 − 2ζ + 1)

s

)
=N+[−WUζ − UWζ],

1
φ(µ, v, s)

(
N+[W(ζ, τ)] −

2(1−ζ)
3

s

)
=N+[−Uζ −WWζ].

(3.8)

From Eq (3.8), we can apply the inverse NT on both sides:

U(ζ, τ) =N−1
[ 1

9 (ζ2 − 2ζ + 1)
s

+ φ(µ, v, s)N+
[
−WUζ − UWζ

]]
,

W(ζ, τ) =N−1
[ 2(1−ζ)

3

s
+ φ(µ, v, s)N+

[
− Uζ −WWζ

]]
.

(3.9)

Now, making substitutions of Eqs (3.3) and (3.4) into Eq (3.9), we have
∞∑

k=0

Uk(ζ, τ) =N−1
[ 1

9 (ζ2 − 2ζ + 1)
s

]
+ N−1

[
φ(µ, v, s)N+

[ ∞∑
k=0

k∑
j=0

W j(Uk− j)ζ +
∞∑

k=0

k∑
j=0

U j(Wk− j)ζ
]]
,

∞∑
k=0

Wk(ζ, τ) =N−1
[ 2(1−ζ)

3

s

]
+ N−1

[
φ(µ, v, s)N+

[ ∞∑
k=0

(Uk)ζ +
∞∑

k=0

k∑
j=0

W j(Wk− j)ζ
]]
.

(3.10)
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From Eq (3.10), we have

CFU0(ζ, τ) = N−1
[ 1

9 (ζ2 − 2ζ + 1)
s

]
,

CFW0(ζ, τ) = N−1
[ 2(1−ζ)

3

s

]
,

CFU1(ζ, τ) = N−1
[
φ(µ, v, s)N+

[
U0ζW0 + U0W0ζ

]]
,

CFW1(ζ, τ) = N−1
[
φ(µ, v, s)N+

[
(U0)ζ +W0W0ζ

]]
,

CFU2(ζ, τ) = N−1
[
φ(µ, v, s)N+

[
U1ζW0 + U0ζW1 + U1W0ζ + U0W1ζ

]]
,

CFW2(ζ, τ) = N−1
[
φ(µ, v, s)N+

[
(U1)ζ +W1W0ζ +W0W1ζ

]]
,

...

CFUk+1(ζ, τ) = N−1
[
φ(µ, v, s)N+

[ k∑
j=0

W j(Uk− j)ζ +
k∑

j=0

U j(Wk− j)ζ
]]
, k ≥ 0,

CFWk+1(ζ, τ) = N−1
[
φ(µ, v, s)N+

[
(Uk)ζ +

k∑
j=0

W j(Wk− j)ζ
]]
, k ≥ 0.

(3.11)

By substituting Eq (3.11) into Eq (3.4), we obtain the series solution as
CFU(ζ, τ) =CFU0(ζ, τ) + CFU1(ζ, τ) + CFU2(ζ, τ) + . . . ,
CFW(ζ, τ) =CFW0(ζ, τ) + CFW1(ζ, τ) + CFW2(ζ, τ) + . . . .

(3.12)

NTDMABC: By taking the NT of Eq (1.2), using the ABC derivative along with the initial condition
given by Eq (1.3), we obtain

1
ψ(µ, v, s)

(
N+[U(ζ, τ)] −

1
9 (ζ2 − 2ζ + 1)

s

)
=N+[−WUζ − UWζ],

1
ψ(µ, v, s)

(
N+[W(ζ, τ)] −

2(1−ζ)
3

s

)
=N+[−Uζ −WWζ].

(3.13)

From Eq (3.13), we can apply the inverse NT on both sides:

U(ζ, τ) =N−1
[ 1

9 (ζ2 − 2ζ + 1)
s

+ ψ(µ, v, s)N+
[
−WUζ − UWζ

]]
,

W(ζ, τ) =N−1
[ 2(1−ζ)

3

s
+ ψ(µ, v, s)N+

[
− Uζ −WWζ

]]
.

(3.14)

Now, making substitutions of Eqs (3.3) and (3.4) into Eq (3.14), we have

∞∑
k=0

Uk(ζ, τ) =N−1
[ (ζ − 1)2

9s

]
+ N−1

[
ψ(µ, v, s)N+

[ ∞∑
k=0

k∑
j=0

W j(Uk− j)ζ +
∞∑

k=0

k∑
j=0

U j(Wk− j)ζ
]]
,

∞∑
k=0

Wk(ζ, τ) =N−1
[ 2(1−ζ)

3

s

]
+ N−1

[
ψ(µ, v, s)N+

[ ∞∑
k=0

(Uk)ζ +
∞∑

k=0

k∑
j=0

W j(Wk− j)ζ
]]
.

(3.15)
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From Eq (3.15), we obtain

ABCU0(ζ, τ) = N−1
[ 1

9 (ζ2 − 2ζ + 1)
s

]
,

ABCW0(ζ, τ) = N−1
[ 2(1−ζ)

3

s

]
,

ABCU1(ζ, τ) = N−1
[
ψ(µ, v, s)N+

[
U0ζW0 + U0W0ζ

]]
,

ABCW1(ζ, τ) = N−1
[
ψ(µ, v, s)N+

[
(U0)ζ +W0W0ζ

]]
,

ABCU2(ζ, τ) = N−1
[
ψ(µ, v, s)N+

[
U1ζW0 + U0ζW1 + U1W0ζ + U0W1ζ

]]
,

ABCW2(ζ, τ) = N−1
[
ψ(µ, v, s)N+

[
(U1)ζ +W1W0ζ +W0W1ζ

]]
,

...

ABCUk+1(ζ, τ) = N−1
[
ψ(µ, v, s)N+

[ k∑
j=0

W j(Uk− j)ζ +
k∑

j=0

U j(Wk− j)ζ
]]
, k ≥ 0,

ABCWk+1(ζ, τ) = N−1
[
ψ(µ, v, s)N+

[
(Uk)ζ +

k∑
j=0

W j(Wk− j)ζ
]]
, k ≥ 0.

(3.16)

By substituting Eq (3.16) into Eq (3.4), we obtain the series solution as

ABCU(ζ, τ) = ABCU0(ζ, τ) + ABCU1(ζ, τ) + ABCU2(ζ, τ) + . . . ,
ABCW(ζ, τ) = ABCW0(ζ, τ) + ABCW1(ζ, τ) + ABCW2(ζ, τ) + . . . .

(3.17)

4. Convergence analysis

The subsequent analysis will establish that the given set of sufficient conditions guarantees the
existence of a unique solution. Furthermore, convergence analysis is also presented. The existence
of solutions in the case of the NTDM and convergence of the solutions is established for three
derivatives [44].

Theorem 4.1. For 0 < (δ1 + δ2) τµ

Γ(1+µ) < 1 and 0 < (δ3 + δ4) τµ

Γ(1+µ) < 1, the NT DMC solution is unique.

Proof. Let H = (C[J], ∥.∥) be the Banach space with ∥ϕ(τ)∥ = max
τ∈J
| ϕ(τ) | ∀ continuous functions on J.

Let L : H → H be a nonlinear mapping, where

UC
k+1(ζ, τ) = UC

0 + N−1
[(v

s

)µ
N+[R1(Uk(ζ, τ))]

]
+ N−1

[(v
s

)µ
N+[F1(Uk(ζ, τ))]

]
, k ≥ 0,

WC
k+1(ζ, τ) = WC

0 + N−1
[(v

s

)µ
N+[R2(Wk(ζ, τ))]

]
+ N−1

[(v
s

)µ
N+[F2(Wk(ζ, τ))]

]
, k ≥ 0.

Let us suppose that | R1(U) − R1(U∗) |< δ1 | U − U∗ |, | F1(U) − F1(U∗) |< δ2 | U − U∗ | and
| R2(W) − R2(W∗) |< δ3 | W − W∗ |, | F2(W) − F2(W∗) |< δ4 | W − W∗ |, where δ1, δ2 and δ3, δ4

are Lipschitz constants and U := U(ζ, τ), U∗ := U∗(ζ, τ), W := W(ζ, τ) and W∗ := W∗(ζ, τ) are four
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different function values. Here, F1 represents WUζ + UWζ , R2 denotes Uζ and F2 denotes WWζ .

∥L1(U) − L1(U∗)∥ = max
τ∈J

∣∣∣∣N−1
[(v

s

)µ
N+[R1(U) + F1(U)]

]
− N−1

[(v
s

)µ
N+[R1(U∗) + F1(U∗)]

]∣∣∣∣
≤ max

τ∈J

∣∣∣∣N−1
[(v

s

)µ
N+[R1(U) − R1(U∗)] +

(v
s

)µ
N+[F1(U) − F1(U∗)]

]∣∣∣∣
≤ max

τ∈J

[
δ1N−1

[(v
s

)µ
N+|U − U∗|

]
+ δ2N−1

[(v
s

)µ
N+|U − U∗|

]]
≤ max

τ∈J
(δ1 + δ2)

[
N−1
(v

s

)µ[
N+|U − U∗|

]]
≤ (δ1 + δ2)

[
N−1
[(v

s

)µ
N+ ∥U − U∗∥

]]
= (δ1 + δ2)

τµ

Γ(µ + 1)
∥U − U∗∥ .

Similarly, ∥L2(W) − L2(W∗)∥ = (δ3 + δ4) τµ

Γ(µ+1) ∥W −W∗∥.
L is a contraction, as 0 < (δ1 + δ2) τµ

Γ(1+µ) < 1 and 0 < (δ3 + δ4) τµ

Γ(1+µ) < 1. From the perspective of the
Banach fixed-point theorem, the solution is unique. □

Using procedure similar to Theorem 4.1, we state the following.

Theorem 4.2. The NT DMCF solution is unique when 0 < (δ1 + δ2)(1 − µ + µτ) < 1 and 0 < (δ3 +

δ4)(1 − µ + µτ) < 1.

Theorem 4.3. The NT DMABC solution is unique when 0 < (δ1 + δ2)(1 − µ + µ τµ

Γ(µ+1) ) < 1 and 0 <

(δ3 + δ4)(1 − µ + µ τµ

Γ(µ+1) ) < 1.

Theorem 4.4. The NT DMC solution is convergent.

Proof. Let Um =
m∑

k=0
Uk(ζ, τ) and Wm =

m∑
k=0

Wk(ζ, τ). To prove that Um and Wm are Cauchy sequences

in H, consider the following:

∥Um − Un∥ = max
τ∈J
|Um − Un|

= max
τ∈J

∣∣∣∣ m∑
r=n+1

Ur

∣∣∣∣, n = 1, 2, 3, . . . ,

≤ max
τ∈J

∣∣∣∣N−1
[(v

s

)µ
N+
[ m∑

r=n+1

(R1(Ur−1) + F1(Ur−1))
]]∣∣∣∣

= max
τ∈J

∣∣∣∣N−1
[(v

s

)µ
N+
[ m−1∑

r=n

R1(Ur) + F1(Ur)
]]∣∣∣∣

≤ max
τ∈J

∣∣∣∣N−1
[(v

s

)µ
N+[R1(Um−1) − R1(Un−1)]

]∣∣∣∣ +max
τ∈J

∣∣∣∣N−1
[(v

s

)µ
N+[F1(Um−1) − F1(Un−1)]

]∣∣∣∣
≤ δ1 max

τ∈J

∣∣∣∣N−1
(v

s

)µ[
N+[R1(Um−1) − R1(Un−1)]

]∣∣∣∣
+ δ2 max

τ∈J

∣∣∣∣N−1
(v

s

)µ[
N+[F1(Um−1) − F1(Un−1)]

]∣∣∣∣
= (δ1 + δ2)

τµ

Γ(µ + 1)
∥Um−1 − Un−1∥ .
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Similarly, ∥Wm −Wn∥ = (δ3 + δ4) τµ

Γ(µ+1) ∥Wm−1 −Wn−1∥.
Let m = n + 1 ; then,

∥Un+1 − Un∥ ≤ δ ∥Un − Un−1∥ ≤ δ
2 ∥Un−1 − Un−2∥ ≤ · · · ≤ δ

n ∥U1 − U0∥ .

Similarly, ∥Wn+1 −Wn∥ ≤ ρ
n ∥W1 −W0∥, where δ = (δ1 + δ2) τµ

Γ(µ+1) and ρ = (δ3 + δ4) τµ

Γ(µ+1) . Moreover,
we have

∥Um − Un∥ ≤ ∥Un+1 − Un∥ + ∥Un+2 − Un+1∥ + · · · + ∥Um − Um−1∥

≤ (δn + δn+1 + · · · + δm−1) ∥U1 − U0∥

≤ δn
(1 − δm−n

1 − δ

)
∥U1∥ .

Similarly, ∥Wm −Wn∥ ≤ ρ
n
(

1−ρm−n

1−ρ

)
∥W1∥.

Because 0 < δ < 1 and 0 < ρ < 1, we get that 1 − δm−n < 1 and 1 − ρm−n < 1.
Therefore, ∥Um − Un∥ ≤

δn

1−δ max
τ∈J
∥U1∥ and ∥Wm −Wn∥ ≤

ρn

1−ρ max
τ∈J
∥W1∥.

Since ∥U1∥ < ∞ and ∥W1∥ < ∞ results in n→ ∞, ∥Um − Un∥ → 0 and ∥Wm −Wn∥ → 0. As a result,
Um and Wm are Cauchy sequences in H; thus, the series Um and Wm are convergent. □

Using a procedure similar to Theorem 4.4, we state the following:

Theorem 4.5. The NT DMCF solution is convergent.

Theorem 4.6. The NT DMABC solution is convergent.

5. Numerical example of TFCSSWE

In this section, the approximate solutions of the TFCSSWE , as obtained by applying three fractional
derivatives namely, the C, CF and ABC derivatives, are presented.

Consider the TFCSSWE given by Eq (1.2), along with the initial conditions given by Eq (1.3), and
when µ = 1, the exact solution [31] is given by

U(ζ, τ) =
(ζ − 1)2

9(τ − 1)2 , W(ζ, τ) =
2(ζ − 1)
3(τ − 1)

. (5.1)

NTDMC: We get the NTDMC solutions as follows:

CU0(ζ, τ) =
1
9

(ζ2 − 2ζ + 1),

CW0(ζ, τ) =
2(1 − ζ)

3
,

CU1(ζ, τ) =
2 τµ (−1 + ζ)2

9Γ (1 + µ)
,

CW1(ζ, τ) = −
2 τµ (−1 + ζ)
3Γ (1 + µ)

,

CU2(ζ, τ) =
2 τ2 µ (−1 + ζ)2

3Γ (1 + 2 µ)
,
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CW2(ζ, τ) = −
4 τ2 µ (−1 + τ)
3Γ (1 + 2 µ)

.

Similar expressions for CUk(ζ, τ) and CWk(ζ, τ) for k ≥ 4 can also be obtained by using Eq (3.6). We
get the series solution from Eq (3.7) as follows:

CU(ζ, τ) =
1
9

(ζ2 − 2ζ + 1) +
2 τµ (−1 + ζ)2

9Γ (1 + µ)
+

2 τ2 µ (−1 + ζ)2

3Γ (1 + 2 µ)
+ . . . ,

CW(ζ, τ) =
2(1 − ζ)

3
+ −

2 τµ (−1 + ζ)
3Γ (1 + µ)

+ −
4 τ2 µ (−1 + τ)
3Γ (1 + 2 µ)

+ . . . .

NTDMCF: We get the NTDMCF solutions as follows:

CFU0(ζ, τ) =
1
9

(ζ2 − 2ζ + 1),

CFW0(ζ, τ) =
2(1 − ζ)

3
,

CFU1(ζ, τ) =
2 (−1 + ζ)2 (1 − µ + µ τ)

9
,

CFW1(ζ, τ) = −
2 (−1 + ζ) (1 − µ + µ τ)

3
,

CFU2(ζ, τ) =
(−1 + ζ)2

3

[
2(−1 + µ)2 + µ2τ2 − 4µτ(−1 + µ)

]
,

CFW2(ζ, τ) =
2(−1 + ζ)

3

[
4µτ(−1 + µ) − µ2τ2 − 2(−1 + µ)2

]
.

Similar expressions for CFUk(ζ, τ) and CFWk(ζ, τ) for k ≥ 4 can also be obtained by using Eq (3.11).
We get the series solution from Eq (3.12) as follows:

CFU(ζ, τ) =
1
9

(ζ2 − 2ζ + 1) +
2 (−1 + ζ)2 (1 − µ + µ τ)

9

+
(−1 + ζ)2

3

[
2(−1 + µ)2 + µ2τ2 − 4µτ(−1 + µ)

]
+ . . . ,

CFW(ζ, τ) =
2(1 − ζ)

3
−

2 (−1 + ζ) (1 − µ + µ τ)
3

+
2(−1 + ζ)

3

[
4µτ(−1 + µ) − µ2τ2 − 2(−1 + µ)2

]
+ . . . .

NTDMABC: We get the NTDMABC solutions as follows:

ABCU0(ζ, τ) =
1
9

(ζ2 − 2ζ + 1),

ABCW0(ζ, τ) =
2(1 − ζ)

3
,

ABCU1(ζ, τ) =
2(−1 + ζ)2

9

[
1 − µ + µ

τµ

Γ(1 + µ)

]
,

ABCW1(ζ, τ) =
2(−1 + ζ)2

3

[
− 1 + µ − µ

τµ

Γ(1 + µ)

]
,
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ABCU2(ζ, τ) =
2(−1 + ζ)2

3

[
(1 − µ)2 + 2µ(1 − µ)

τµ

Γ(1 + µ)
+ µ2 τ2µ

Γ(1 + 2µ)

]
,

ABCW2(ζ, τ) = −
4(−1 + ζ)

3

[
(1 − µ)2 + 2µ(1 − µ)

τµ

Γ(1 + µ)
+ µ2 τ2µ

Γ(1 + 2µ)

]
.

Similar expressions for ABCUk(ζ, τ) and ABCWk(ζ, τ) for k ≥ 4 can also be obtained by using Eq (3.16).
We get the series solution from Eq (3.17) as follows:

ABCU(ζ, τ) =
1
9

(ζ2 − 2ζ + 1) +
2(−1 + ζ)2

9

[
1 − µ + µ

τµ

Γ(1 + µ)

]
+

2(−1 + ζ)2

3

[
(1 − µ)2 + 2µ(1 − µ)

τµ

Γ(1 + µ)
+ µ2 τ2µ

Γ(1 + 2µ)

]
+ . . . ,

ABCW(ζ, τ) =
2(1 − ζ)

3
+

2(−1 + ζ)2

3

[
− 1 + µ − µ

τµ

Γ(1 + µ)

]
−

4(−1 + ζ)
3

[
(1 − µ)2 + 2µ(1 − µ)

τµ

Γ(1 + µ)
+ µ2 τ2µ

Γ(1 + 2µ)

]
+ . . . .

6. Numerical results and discussion

In this section, we present the numerical and graphical simulations of the TFCSSWE by using
the NTDM. The solutions were computed by using distinct spatial and temporal variables for
different fractional-order values, as shown in Tables 1–6. Figures 1–4 present the results of
numerical simulations that exploit the animations of the solutions, showcasing their dynamic behavior.
Tables 1–4 present the absolute error of the TFCSSWE for different values of ζ and τ, with µ

set to 1. Tables 1 and 2 present a comparative analysis of the absolute errors associated with the
horizontal velocity U(ζ, τ) and free surface W(ζ, τ), as conducted by employing MHATM and RPSM
methodologies [31]. Tables 3 and 4 present a comparative analysis of the absolute errors of U and W,
as based on the NIM [34].

Table 1. Absolute error of U(ζ, τ) with various values of ζ, τ at µ=1.

ζ τ NTDMC NTDMCF NTDMABC MHATM [31] RPSM [31]
0.1 0.1 7.11111E-07 7.11111E-07 7.11111E-07 7.11111E-07 8.27052E-05

0.2 5.22000E-05 5.22000E-05 5.22000E-05 5.22000E-05 9.40010E-04
0.3 6.96269E-04 6.96269E-04 6.96269E-04 6.96269E-04 4.66383E-03

0.2 0.1 5.61866E-07 5.61866E-07 5.61866E-07 5.61866E-07 6.53415E-05
0.2 4.12444E-05 4.12444E-05 4.12444E-05 4.12444E-05 7.42537E-04
0.3 5.50139E-04 5.50139E-04 5.50139E-04 5.50139E-04 3.68358E-03

0.3 0.1 4.30178E-07 4.30178E-07 4.30178E-07 4.30178E-07 5.00213E-05
0.2 3.15778E-05 3.15778E-05 3.15778E-05 3.15778E-05 5.68320E-04
0.3 4.21200E-04 4.21200E-04 4.21200E-04 4.21200E-04 2.88188E-03
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Table 2. Absolute error of W(ζ, τ) with various values of ζ, τ at µ=1.

ζ τ NTDMC NTDMCF NTDMABC MHATM [31] RPSM [31]
0.1 0.1 6.66667E-07 6.66667E-07 6.66667E-07 6.66667E-07 9.15580E-05

0.2 4.80000E-05 4.80000E-05 4.80000E-05 4.80000E-05 1.02467E-04
0.3 6.24857E-04 6.24857E-04 6.24857E-04 6.24857E-04 4.95146E-03

0.2 0.1 5.92593E-07 5.92593E-07 5.92593E-07 5.92593E-07 7.97169E-05
0.2 4.26667E-05 4.26667E-05 4.26667E-05 4.26667E-05 8.83779E-04
0.3 5.55429E-04 5.55429E-04 5.55429E-04 5.55429E-04 4.26263E-03

0.3 0.1 5.18519E-07 5.18519E-07 5.18519E-07 5.18519E-07 6.78757E-05
0.2 3.73333E-05 3.73333E-05 3.73333E-05 3.73333E-05 7.42887E-04
0.3 4.86000E-04 4.86000E-04 4.86000E-04 4.86000E-04 3.57380E-03

Table 3. Absolute error of U(ζ, τ) with various values of ζ, τ at µ=1.

ζ τ NTDMC NTDMCF NTDMABC NIM [34]
2.5 0.025 1.612837E-05 1.612837E-05 1.612837E-05 1.092004E-05

0.05 1.333102E-04 1.333102E-04 1.333102E-04 9.164358E-05
0.075 4.653260E-04 4.653260E-04 4.653260E-04 3.247010E-04
0.1 1.141975E-03 1.141975E-03 1.141975E-03 8.086420E-04

5 0.025 1.146906E-04 1.146906E-04 1.146906E-04 7.765359E-05
0.05 9.479840E-04 9.479840E-04 9.479840E-04 6.516877E-04
0.075 3.308985E-03 3.308985E-03 3.308985E-03 2.308985E-03
0.1 8.120713E-03 8.120713E-03 8.120713E-03 5.750343E-03

7.5 0.025 3.028549E-04 3.028549E-04 3.028549E-04 2.050540E-04
0.05 2.503270E-03 2.503270E-03 2.503270E-03 1.720863E-03
0.075 8.737788E-03 8.737788E-03 8.737788E-03 6.097163E-03
0.1 2.144376E-02 2.144376E-02 2.144376E-02 1.520000E-02

10 0.025 5.806213E-04 5.806213E-04 5.806213E-04 3.931213E-04
0.05 4.799169E-03 4.799169E-03 4.799169E-03 3.299169E-03
0.075 1.675173E-02 1.675173E-02 1.675173E-02 1.168923E-02
0.1 4.111111E-02 4.111111E-02 4.111111E-02 2.911111E-02
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Table 4. Absolute error of W(ζ, τ) with different values of ζ, τ at µ=1.

ζ τ NTDMC NTDMCF NTDMABC NIM [34]
2.5 0.025 1.602564E-05 1.602564E-05 1.602564E-05 1.255342E-05

0.05 1.315789E-04 1.315789E-04 1.315789E-04 1.038012E-04
0.075 4.560811E-04 4.560811E-04 4.560811E-04 3.623311E-04
0.1 1.111111E-03 1.111111E-03 1.111111E-03 8.888889E-04

5 0.025 4.273504E-05 4.273504E-05 4.273504E-05 3.347578E-05
0.05 3.508772E-04 3.508772E-04 3.508772E-04 2.768031E-04
0.075 1.216216E-03 1.216216E-03 1.216216E-03 9.662162E-04
0.1 2.962963E-03 2.962963E-03 2.962963E-03 2.370370E-03

7.5 0.025 6.944444E-05 6.944444E-05 6.944444E-05 5.439815E-05
0.05 5.701754E-04 5.701754E-04 5.701754E-04 4.498051E-04
0.075 1.976351E-03 1.976351E-03 1.976351E-03 1.570101E-03
0.1 4.814815E-03 4.814815E-03 4.814815E-03 3.851852E-03

10 0.025 9.615385E-05 9.615385E-05 9.615385E-05 7.532051E-05
0.05 7.894737E-04 7.894737E-04 7.894737E-04 6.228070E-04
0.075 2.736486E-03 2.736486E-03 2.736486E-03 2.173986E-03
0.1 6.666667E-03 6.666667E-03 6.666667E-03 5.333333E-03

Based on the data presented in Tables 1–4, it is evident that the suggested method solutions for all
three derivatives exhibit high levels of concordance with the approaches that have been reported in the
literature. The provided test example showcases the efficacy, adaptability and accuracy of the proposed
methodology. This observation illustrates that the proposed numerical method yields more favorable
outcomes when applied to NDEs. After successfully validating the strategy for the integer-order model,
the authors were motivated to apply the recommended method to solve the comparable model, i.e., a
temporal fractional-order model. Table 5 demonstrates that the behavior of the horizontal velocity
derived from both singular and non-singular kernel derivatives exhibits a further significant increase
when the fractional order decreases. Table 6 illustrates the observed behavior of the free surface as
derived from both singular and non-singular kernel derivatives, we can observe substantial decreases
as the fractional order decreases.
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Table 5. Approximate solution of U(ζ, τ) for various values of µ, τ and ζ.

ζ τ µ = 0.50 µ = 0.70
NTDMC NTDMCF NTDMABC NIM [34] NTDMC NTDMCF NTDMABC NIM [34]

2.5 0.025 0.376706 0.900117 1.062787 0.380492 0.298507 0.559729 0.619926 0.298803
0.05 0.451156 0.925468 1.146063 0.461865 0.335802 0.584918 0.676395 0.337071
0.075 0.517009 0.951054 1.212144 0.536682 0.371904 0.610567 0.726692 0.374877
0.1 0.578412 0.976875 1.269325 0.608701 0.407868 0.636675 0.773752 0.413306

5 0.025 2.678800 6.400833 7.557599 2.705720 2.122716 3.980300 4.408366 2.124820
0.05 3.208225 6.581111 8.149783 3.284370 2.387931 4.159422 4.809920 2.396950
0.075 3.676513 6.763056 8.619693 3.816410 2.644653 4.341811 5.167588 2.665790
0.1 4.113150 6.946667 9.026309 4.328540 2.900395 4.527467 5.502241 2.939070

7.5 0.025 7.073705 16.902201 19.956786 7.144800 5.605298 10.510479 11.640843 5.610850
0.05 8.471719 17.378247 21.520521 8.672800 6.305630 10.983474 12.701196 6.329450
0.075 9.708293 17.858694 22.761377 10.077700 6.983537 11.465095 13.645663 7.039350
0.1 10.861229 18.343542 23.835099 11.430000 7.658856 11.955342 14.529354 7.760970

10 0.025 13.561423 32.404219 38.260347 13.697700 10.746251 20.150269 22.317355 10.756900
0.05 16.241639 33.316875 41.258277 16.627100 12.088901 21.057075 24.350221 12.134600
0.075 18.612349 34.237969 43.637197 19.320600 13.388556 21.980419 26.160916 13.495600
0.1 20.822847 35.167500 45.695694 21.913200 14.683250 22.920300 27.855093 14.879000

µ = 0.90 µ = 1

2.5 0.025 0.269964 0.333379 0.343012 0.269985 0.262968 0.262968 0.262968 0.262974
0.05 0.289145 0.352518 0.368803 0.289279 0.276875 0.276875 0.276875 0.276917
0.075 0.308968 0.372417 0.394591 0.309367 0.291718 0.291718 0.291718 0.291859
0.1 0.329629 0.393075 0.420732 0.330496 0.307500 0.307500 0.307500 0.307833

5 0.025 1.919748 2.370700 2.439199 1.919890 1.870000 1.870000 1.870000 1.870040
0.05 2.056145 2.506800 2.622604 2.057090 1.968889 1.968889 1.968889 1.969190
0.075 2.197106 2.648300 2.805981 2.199940 2.074444 2.074444 2.074444 2.075440
0.1 2.344029 2.795200 2.991874 2.350200 2.186667 2.186667 2.186667 2.189040

7.5 0.025 5.069336 6.260129 6.441009 5.069720 4.937969 4.937969 4.937969 4.938070
0.05 5.429507 6.619519 6.925315 5.432010 5.199097 5.199097 5.199097 5.199880
0.075 5.081733 6.993167 7.409545 5.809220 5.477829 5.477829 5.477829 5.480470
0.1 6.189702 7.381075 7.900416 6.205980 5.774167 5.774167 5.774167 5.780430

10 0.025 9.718727 12.001669 12.348444 9.719470 9.466875 9.466875 9.466875 9.467060
0.05 10.409232 12.690675 13.276935 10.414000 9.967500 9.967500 9.967500 9.969000
0.075 11.122849 13.407019 14.205281 11.137200 10.501875 10.501875 10.501875 10.506900
0.1 11.866648 14.150700 15.146359 11.897900 11.070000 11.070000 11.070000 11.082000
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Table 6. Approximate solution of W(ζ, τ) for various values of µ, τ and ζ.

ζ τ µ = 0.50 µ = 0.70
NTDMC NTDMCF NTDMABC NIM [34] NTDMC NTDMCF NTDMABC NIM [34]

2.5 0.025 -1.228412 -2.037656 -2.280119 -1.230940 -1.092412 -1.518806 -1.612651 -1.092610
0.05 -1.352313 -2.075625 -2.403469 -1.359450 -1.159461 -1.558225 -1.700067 -1.160310
0.075 -1.459019 -2.113906 -2.501029 -1.472130 -1.222384 -1.598256 -1.777481 -1.224370
0.1 -1.556825 -2.152500 -2.585237 -1.577020 -1.283687 -1.638900 -1.849574 -1.287310

5 0.025 -3.275766 -5.433750 -6.080316 -3.282500 -2.913099 -4.050150 -4.300402 -2.913620
0.05 -3.606168 -5.535000 -6.409253 -3.625210 -3.091896 -4.155267 -4.533512 -3.094150
0.075 -3.890718 -5.637083 -6.669411 -3.925690 -3.259692 -4.262017 -4.739949 -3.264980
0.1 -4.151532 -5.740000 -6.893966 -4.205380 -3.423165 -4.370400 -4.932197 -3.432830

7.5 0.025 -5.323120 -8.829844 -9.880514 -5.334060 -4.733786 -6.581494 -6.988153 -4.734640
0.05 -5.860024 -8.994375 -10.415036 -5.890960 -5.024332 -6.752308 -7.366957 -5.028000
0.075 -6.322417 -9.160260 -10.837793 -6.379250 -5.296999 -6.925777 -7.702419 -5.305590
0.1 -6.746241 -9.327500 -11.202695 -6.833740 -5.562643 -7.101900 -8.014821 -5.578350

10 0.025 -7.370474 -12.225938 -13.680712 -7.385620 -6.554472 -9.112838 -9.675904 -6.555660
0.05 -8.113879 -12.453750 -14.420819 -8.156710 -6.956767 -9.349350 -10.200401 -6.961840
0.075 -8.754116 -12.683438 -15.006174 -8.832810 -7.334307 -9.589538 -10.664887 -7.346200
0.1 -9.340949 -12.915000 -15.511423 -9.462100 -7.702121 -9.833400 -11.097444 -7.723870

µ = 0.90 µ = 1

2.5 0.025 -1.039149 -1.152006 -1.168627 -1.039160 -1.025625 -1.025625 -1.025625 -1.025630
0.05 -1.075576 -1.185025 -1.212782 -1.075660 -1.052500 -1.052500 -1.052500 -1.052530
0.075 -1.112303 -1.219056 -1.256433 -1.112570 -1.080625 -1.080625 -1.080625 -1.080720
0.1 -1.149805 -1.254100 -1.300245 -1.150380 -1.110000 -1.110000 -1.110000 -1.110220

5 0.025 -2.771066 -3.072017 -3.116338 -2.771100 -2.735000 -2.735000 -2.735000 -2.735010
0.05 -2.868202 -3.160067 -3.234086 -2.868440 -2.806667 -2.806667 -2.806667 -2.806740
0.075 -2.966143 -3.250817 -3.350488 -2.966850 -2.881667 -2.881667 -2.881667 -2.881920
0.1 -3.066145 -3.344267 -3.467321 -3.067690 -2.960000 -2.960000 -2.960000 -2.960590

7.5 0.025 -4.502982 -4.992027 -5.064049 -4.503040 -4.444375 -4.444375 -4.444375 -4.444390
0.05 -4.660829 -5.135108 -5.255389 -4.661210 -4.560833 -4.560833 -4.560833 -4.560950
0.075 -4.819982 -5.282577 -5.444543 -4.821130 -4.682708 -4.682708 -4.682708 -4.683110
0.1 -4.982486 -5.434433 -5.634397 -4.984990 -4.810000 -4.810000 -4.810000 -4.810960

10 0.025 -6.234898 -6.912038 -7.011761 -6.234980 -6.153750 -6.153750 -6.153750 -6.153770
0.05 -6.453455 -7.110150 -7.276693 -6.453990 -6.315000 -6.315000 -6.315000 -6.315170
0.075 -6.673821 -7.314338 -7.538598 -6.675420 -6.483750 -6.483750 -6.483750 -6.484310
0.1 -6.898827 -7.524600 -7.801473 -6.902300 -6.660000 -6.660000 -6.660000 -6.661330
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In Figures 1 and 2, the graphical representations respectively showcase the estimated solutions
U(ζ, τ) and W(ζ, τ) for µ = 0.25, 0.50, 0.75, 1, 0 ≤ ζ ≤ 5 when τ is set to 0.1. As the value of ζ
increases and the fractional order decreases, Figure 1 illustrates that the horizontal velocity component
U(ζ, τ) increases under the condition of a constant τ. According to Figure 2, as the value of ζ increases
and the fractional order decreases, the free surface W(ζ, τ) experiences a drop while keeping τ constant.

Figures 3 and 4 respectively provide surface plots of the horizontal velocity component U(ζ, τ)
and the free surface W(ζ, τ) for µ = 0.25, 0.50, 0.75, 1, −5 ≤ ζ ≤ 5 and 0 ≤ τ ≤ 0.1. Based on
the data shown in the tables and figures, it can be noticed that there is a strong level of concurrence
among all three derivatives. The methodology outlined in this paper elucidates that when the fractional
order approaches the classical scenario, the obtained solution likewise converges toward the analytical
solution. This finding serves to validate the accuracy of the used scheme. Hence, the tangible
manifestation of our findings can potentially serve as a valuable instrument for exploring additional
discoveries pertaining to nonlinear wave phenomena in scientific applications.
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Figure 1. Approximate solution of U(ζ, τ) with τ = 0.1 for different values of µ.
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Figure 2. Approximate solution of W(ζ, τ) with τ = 0.1 for different values of µ.
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(a) NTDMC , µ = 0.25 (b) NTDMCF , µ = 0.25 (c) NTDMABC , µ = 0.25

(d) NTDMC , µ = 0.50 (e) NTDMCF , µ = 0.50 (f) NTDMABC , µ = 0.50

(g) NTDMC , µ = 0.75 (h) NTDMCF , µ = 0.75 (i) NTDMABC , µ = 0.75

(j) NTDMC , µ = 1 (k) NTDMCF , µ = 1 (l) NTDMABC , µ = 1

Figure 3. Surface plots of U(ζ, τ) for different values of µ.
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(a) NTDMC , µ = 0.25 (b) NTDMCF , µ = 0.25 (c) NTDMABC , µ = 0.25

(d) NTDMC , µ = 0.50 (e) NTDMCF , µ = 0.50 (f) NTDMABC , µ = 0.50

(g) NTDMC , µ = 0.75 (h) NTDMCF , µ = 0.75 (i) NTDMABC , µ = 0.75

(j) NTDMC , µ = 1 (k) NTDMCF , µ = 1 (l) NTDMABC , µ = 1

Figure 4. Surface plots of W(ζ, τ) for different values of µ.

7. Conclusions

We applied the NTDM approach to study the horizontal velocity and free surface of a TFCSSWE
arising in ocean engineering. The fractional derivative has been applied from the perspectives of
the C, CF and ABC approaches. The analytical solutions derived by using the NTDM approach,
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according to the results, are relatively close to the precise solutions. According to the tables
and graphs, the approximate solution of the differential equation converges to the exact solution
when µ = 1. The technique presented in this study showcases the validity and efficacy of the
implemented method through a comparative analysis of the obtained results with those reported in
previous studies. Thus, the proposed approach for obtaining numerical and analytical solutions to
nonlinear problems is exceptionally trustworthy and efficient. The subsequent findings illustrate that
the suggested methodology is exceptionally effective. The aforementioned methodology exhibits
reliability, straightforwardness and innovation in its application to the resolution of fractional- order
systems of differential equations. Our findings are expected to make a valuable contribution to
future research on the behavior of SWEs in various fields, including mathematical physics, applied
mathematics, ocean engineering, civil engineering and port and coastal construction. Further, this
method can be used to analyze nonlinear fractional-order mathematical models of infectious diseases
like Ebola, hepatitis, tuberculosis and others.
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