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an optimal control solution existed, its characteristics were stated. After that, we demonstrated how to
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1. Introduction

In structural mechanics, particularly in the field of elasticity, there are equations that describe
the behavior of thin plates under loads. These equations are often partial differential equations that
govern the displacement of a thin plate. The plate equation depends on factors like material properties,
geometry, and boundary conditions. In the context of geophysics, “plate equation” could refer to the
equations that describe the movement and interaction of tectonic plates on the Earth’s surface. Plate
tectonics is a theory that explains the movement of the Earth’s lithosphere (the rigid outer layer of
the Earth) on the more fluid asthenosphere beneath it. In mathematics, specifically in the field of
differential equations, the term “plate equation” might be used to refer to certain types of equations.
For instance, in polar coordinates, Laplace’s equation takes a specific form that is sometimes informally
referred to as the “plate equation”. Plate equation models are hyperbolic systems that arise in several
areas in real-life problems, (see, for instance, Kizilova et al. [1], Lasiecka et al. [2] and Huang et al. [3]).
The theory of plates is the mathematical formulation of the mechanics of flat plates. It is defined as flat
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structural components with a low thickness compared to plane dimensions. The advantage of the theory
of plates comes from the disparity of the length scale to reduce the problem of the mechanics of three-
dimensional solids to a two-dimensional problem. The purpose of this theory is to compute the stresses
and deformation in a loaded plate. The equation of plates results from the composition of different
subsets of plates: The equilibrium equations, constitutive, kinematic, and force resultant, [4–6].

Following this, there are a wide number of works devoted to the analysis and control of the
academic model of hyperbolic systems, the so-called plate equations, For example, the exact and
the approximate controllability of thermoelastic plates given by Eller et al. [7] and Lagnese and
Lions in [8] treated the control of thin plates and Lasiecka in [9] considered the controllability of
the Kirchoff plate. Zuazua [10] treated the exact controllability for semi-linear wave equations.
Recently many problems involving a plate equations were considered by researchers. Let us cite
as examples the stabilization of the damped plate equation under general boundary conditions by
Rousseau an Zongo [11]; the null controllability for a structurally damped stochastic plate equation
studied by Zhao [12], Huang et al. [13] considerrd a thermal equation of state for zoisite: Implications
for the transportation of water into the upper mantle and the high-velocity anomaly in the Farallon
plate. Kaplunov et al. [14] discussed the asymptotic derivation of 2D dynamic equations of motion
for transversely inhomogeneous elastic plates. Hyperbolic systems have recently continued to be of
interest to researchers and many results have been obtained. We mention here the work of Fu et al. [15]
which discusses a class of mixed hyperbolic systems using iterative learning control. Otherwise, for
a class of one-dimension linear wave equations, Hamidaoui et al. stated in [16] an iterative learning
control. Without forgetting that for a class of second-order nonlinear systems Tao et al. proposed an
adaptive control based on an disturbance observer in [17] to improve the tracking performance and
compensation. In addition to these works, the optimal control of the Kirchoff plate using bilinear
control was considered by Bradly and Lenhart in [18], and Bradly et al. in [19]. In fact, in this work
we will talk about a bilinear plate equation and we must cite the paper of Zine [20] which considers a
bilinear hyperbolic system using the Riccati equation. Zine and Ould Sidi [21, 22] that introduced the
notion of partial optimal control of bilinear hyperbolic systems. Li et al. [23] give an iterative method
for a class of bilinear systems. Liu, et al. [24] extended a gradient-based iterative algorithm for bilinear
state-space systems with moving average noises by using the filtering technique. Furthermore, flow
analysis of hyperbolic systems refers to the problems dealing with the analysis of the flow state on
the system domain. We can refer to the work of Benhadid et al. on the flow observability of linear
and semilinear systems [25], Bourray et al. on treating the controllability flow of linear hyperbolic
systems [26] and the flow optimal control of bilinear parabolic systems are considered by Ould Sidi
and Ould Beinane on [27, 28].

For the motivation the results proposed in this paper open a wide range of applications. We cite the
problem of iterative identification methods for plate bilinear systems [23], as well as the problem of
the extended flow-based iterative algorithm for a plate systems [24].

This paper studies the optimal control problem governed by an infinite dimensional bilinear plate
equation. The objective is to command the flow state of the bilinear plate equation to the desired flow
using different types of bounded feedback. We show how one can transfer the flow of a plate equation
close to the desired profile using optimization techniques and adjoint problems. As an application, we
solve the partial flow control problem governed by a plate equation. The results open a wide way of
applications in fractional systems. We began in section two by the well-posedness of our problem. In
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section three, we prove the existence of an optimal control solution of (2.3). In section four, we state
the characterization of the optimal control. In section five we debate the case of time bilinear optimal
control. Section six, proposes a method for solving the flow partial optimal control problem governed
by a plate equation.

2. Well-posedness of the problem

Consider Θ an open bounded domain of IR2 with C2 boundary, for a time m, and Γ = ∂Θ × (0,m).
The control space time set is such that

Q ∈ Up = {Q ∈ L∞([0,m]; L∞(Θ)) such that − p ≤ Q(t) ≤ p}, (2.1)

with p as a positive constant. Let the plate bilinear equation be described by the following system

∂2u

∂t2 + ∆2u = Q(t)ut, (0,m) × Θ,

u(x, 0) = u0(x),
∂u
∂t

(x, 0) = u1(x), Θ,

u =
∂u
∂ν

= 0, Γ,

(2.2)

where ut =
∂u
∂t

is the velocity. The state space is H2
0(Θ) × L2(Θ), (see Lions and Magenes [29] and

Brezis [30]). We deduce the existence and uniqueness of the solution for (2.2) using the classical
results of Pazy [31]. For λ > 0, we define ∇u as the flow control problem governed by the bilinear
plate equation (2.2) as the following:

min
Q ∈Up

Cλ(Q), (2.3)

where Cλ, is the flow penalizing cost defined by

Cλ(Q) =
1
2

∥∥∥∥∇u − ud
∥∥∥∥2

(L2(0,m;L2(Θ)))n
+
λ

2

∫ m

0

∫
Θ

Q2(x, t)dxdt

=
1
2

n∑
i=1

∥∥∥∥ ∂u
∂xi
− ud

i

∥∥∥∥2

L2(0,m;L2(Θ))
+
λ

2

∫ m

0

∫
Θ

Q2(x, t)dxdt,
(2.4)

where ud = (ud
1, ....u

d
n) is the flow target in L2(0,m; L2(Θ)). One of the important motivations when

considering the problem (2.3) is the isolation problems, where the control is maintained to reduce the
flow temperature on the surface of a thin plate (see El Jai et al. [32]).

3. Existence of solution

Lemma 3.1. If (u0, u1) ∈ H2
0(Θ) × L2(Θ) and Q ∈ Up, then the solution (u, ut) of (2.2) satisfies the

following estimate: ∥∥∥∥(u, ut)
∥∥∥∥
C(0,m;H2

0 (Θ)×L2(Θ))
≤ T (1 + ηm)eηKm,

where T =
∥∥∥∥(u0, u1)

∥∥∥∥
H2

0 (Θ)×L2(Θ)
and K is a positive constant [18, 19].
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Using the above Lemma 3.1 , we prove the existence of an optimal control solution of (2.3).

Theorem 3.1. (u∗,Q∗) ∈ C([0,m]; H2
0(Θ)×Up), is the solution of (2.3), where u∗ is the output of (2.2)

and Q∗ is the optimal control function.

Proof. Consider the minimizing sequence (Qn)n in Up verifying

C∗ = lim
n→+∞

Cλ(Qn) = inf
Q∈L∞(0,m;L∞(Θ))

Cλ(Q).

We choose ūn = (un,
∂un

∂t
) to be the corresponding state of Eq (2.2). Using Lemma 3.1, we deduce∥∥∥∥un(x, t)
∥∥∥∥2

H2
0 (Θ)

+
∥∥∥∥un

t (x, t)
∥∥∥∥2

L2(Θ)
≤ T1eηKm for 0 ≤ t ≤ m and T1 ∈ IR+. (3.1)

Furthermore, system (2.2) gives∥∥∥∥un
tt(x, t)

∥∥∥∥2

H−2(Θ)
≤ T2

∥∥∥∥un
t (x, t)

∥∥∥∥2

L2(Θ)
with T2 ∈ IR+.

Then easily from (3.1), we have∥∥∥∥un
tt(x, t)

∥∥∥∥2

H−2(Θ)
≤ T3eηKm for 0 ≤ t ≤ m and T3 ∈ IR+. (3.2)

Using (3.1) and (3.2), we have the following weak convergence:

Qn ⇀ Q∗, L2(0,m; L2(Θ)),
un ⇀ u∗, L∞(0,m; H2

0(Θ)),
un

t ⇀ u∗t , L∞(0,m; L2(Θ)),
un

tt ⇀ u∗tt, L∞(0,m; H−2(Θ)),

(3.3)

From the first convergence property of (3.3) with a control sequence Qn ∈ Up, easily one can deduce
that Q∗ ∈ Up [30].

In addition, the mild solution of (2.2) verifies∫ m

0
un

tt f (t)dt +

∫ m

0

∫
Θ

∆un∆ f (t)dxdt =

∫ m

0
Q∗un

t f (t)dt,∀ f ∈ H2
0(Θ). (3.4)

Using (3.3) and (3.4), we deduce that∫ m

0
u∗tt f (t)dt +

∫ m

0

∫
Θ

∆u∗∆ f (t)dxdt =

∫ m

0
Q∗u∗t f (t)dt,∀ f ∈ H2

0(Θ), (3.5)

which implies that u∗ = u(Q∗) is the output of (2.2) with command function Q∗.
Fatou’s lemma and the lower semi-continuous property of the cost Cλ show that

Cλ(Q∗) ≤
1
2

lim
k→+∞

∥∥∥∥∇uk − ud
∥∥∥∥2

(L2(0,m;L2(Θ)))n
+
λ

2
lim

k→+∞

∫ m

0

∫
Θ

Q2
k(x, t)dxdt

≤ lim inf
k→+∞

Cλ(Qn)

= inf
Q∈Up

Cλ(Q),

(3.6)

which allows us to conclude that Q∗ is the solution of problem (2.3). �
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4. Characterization of solution

We devote this section to establish a characterization of solutions to the flow optimal control
problem (2.3).

Let the system 
∂2v
∂t2 = −∆2v(x, t) + Q(x, t)vt + d(x, t)vt, (0,m) × Θ,

v(x, 0) = vt(x, 0) = v0(x) = 0, Θ,

v =
∂v
∂ν

= 0, Γ,

(4.1)

with d ∈ L∞(0,m; L∞(Θ)) verify Q + δd ∈ Up, ∀δ > 0 is a small constant. The functional defined by
Q ∈ Up 7→ ū(Q) = (u, ut) ∈ C(0,m; H2

0(Θ)× L2(Θ)) is differentiable and its differential v = (v, vt) is the
solution of (4.1) [21].

The next lemma characterizes the differential of our flow cost functional Cλ(Q) with respect to the
control function Q.

Lemma 4.1. Let Q ∈ Up and the differential of Cλ(Q) can be written as the following:

lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

=

n∑
i=1

∫
Θ

∫ m

0

∂v(x, t)
∂xi

(
∂u
∂xi
− ud

i )dtdx + ε

∫
Θ

∫ m

0
dQdtdx. (4.2)

Proof. Consider the cost Cλ(Q) defined by (2.4), which is

Cλ(Q) =
1
2

n∑
i=1

∫
Θ

∫ m

0
(
∂u
∂xi
− ud

i )2dtdx +
λ

2

∫
Θ

∫ m

0
Q2(t)dtdx. (4.3)

Put uk = z(Q + kd), u = u(Q), and using (4.3), we have

lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

= lim
β−→0

n∑
i=1

1
2

∫
Θ

∫ m

0

(
∂uk

∂xi
− ud

i )2 − (
∂u
∂xi
− ud

i )2

k
dtdx

+ lim
k−→0

λ

2

∫
Θ

∫ m

0

(Q + kd)2 − Q2

k
(t)dtdx.

(4.4)

Consequently

lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

= lim
k−→0

n∑
i=1

1
2

∫
Θ

∫ m

0

(
∂uk

∂xi
−
∂u
∂xi

)

k
(
∂uk

∂xi
+
∂u
∂xi
− 2ud

i )dtdx

+ lim
k−→0

∫
Θ

∫ m

0
(λdQ + kλd2)dtdx

=

n∑
i=1

∫
Θ

∫ m

0

∂v(x, t)
∂xi

(
∂u(x, t)
∂xi

− ud
i )dtdx +

∫
Θ

∫ m

0
λdQdtdx.

(4.5)

�
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We define the following family of adjoint equations for system (4.1)
∂2wi

∂t2 + ∆2wi = Q∗(x, t)(wi)t + (
∂u
∂xi
− ud

i ), (0,m) × Θ,

wi(x,m) = (wi)t(x,m) = 0, Θ,

wi =
∂wi

∂ν
= 0, Γ.

(4.6)

Such systems allow us to characterize the optimal control solution of (2.3).

Theorem 4.1. Consider Q ∈ Up, and u = u(Q) its corresponding state space solution of (2.2), then the
control solution of (2.3) is

Q(x, t) = max(−p,min(
−1
λ

(ut)(
n∑

i=1

∂wi

∂xi
), p)), (4.7)

where w = (w1....wn) with wi ∈ C([0,T ]; H2
0(Θ)) is the unique solution of (4.6).

Proof. Choose d ∈ Up such that Q + kd ∈ Up with k > 0. The minimum of Cλ is realized when the
control Q, verifies the following condition:

0 ≤ lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

. (4.8)

Consequently, Lemma 4.1 gives

0 ≤ lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

=

n∑
i=1

∫
Θ

∫ m

0

∂v(x, t)
∂xi

(
∂u(x, t)
∂xi

− ud
i )dtdx +

∫
Θ

∫ m

0
λdQdtdx. (4.9)

Substitute by equation (4.6) and we find

0 ≤

n∑
i=1

∫
Θ

∫ m

0

∂v(x, t)
∂xi

(
∂2wi(x, t)

∂t2 + ∆2wi(x, t) − Q(x, t)(wi)t(x, t))dtdx +

∫
Θ

∫ m

0
λdQdtdx

=

n∑
i=1

∫
Θ

∫ m

0

∂

∂xi
(
∂2v
∂t2 + ∆2v − Q(x, t)vt)wi(x, t)dtdx +

∫
Θ

∫ m

0
λdQdtdx

=

n∑
i=1

∫
Θ

∫ m

0

∂

∂xi
(d(x, t)ut)widtdx +

∫
Θ

∫ m

0
λdQdtdx

=

∫
Θ

∫ m

0
d(x, t)[ut(

n∑
i=1

∂wi(x, t)
∂xi

) + λQdtdx].

(4.10)
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It is known that if d = d(t) in a chosen function with Q + kd ∈ Up, using Bang-Bang control properties,
one can conclude that

Q(x, t) = max(−p,min(
−ut

λ
(

n∑
i=1

∂wi

∂xi
), p)) = max(−p,min(

−ut

λ
Div(w), p)), (4.11)

with Div(w) =

n∑
i=1

∂wi

∂xi
. �

5. Flow time bilinear control problem

Now, we are able to discuss the case of bilinear time control of the type Q = Q(t). We want to reach
a flow spatial state target prescribed on the whole domain Θ at a fixed time m.

In such case, the set of controls (2.1) becomes

Q ∈ Up = {Q ∈ L∞([0,m]) such that − p ≤ Q(t) ≤ p for t ∈ (0,m)}, (5.1)

with p as a positive constant.
The cost to minimize is

Cλ(Q) =
1
2

∥∥∥∥∇u(x,m) − ud
∥∥∥∥2

(L2(Θ))n
+
λ

2

∫ m

0
Q2(t)dt

=
1
2

n∑
i=1

∥∥∥∥ ∂u
∂xi

(x,m) − ud
i

∥∥∥∥2

L2(Θ)
+
λ

2

∫ m

0
Q2(t)dt,

(5.2)

where ud = (ud
1, ....u

d
n) is the flow spatial target in L2(Θ). The flow control problem is

min
Q ∈Up

Cλ(Q), (5.3)

where Cλ is the flow penalizing cost defined by (5.2), and Up is defined by (5.1).

Corollary 5.1. The solution of the flow time control problem (5.3) is

Q(t) = max(−p,min(
∫

Θ

−ut

λ
(

n∑
i=1

∂wi

∂xi
)dx, p)) (5.4)

with u as the solution of (2.2) perturbed by Q(t) and wi as the solution of

∂2wi

∂t2 + ∆2wi = Q(t)(wi)t, (0,m) × Θ,

wi(x,m) = (
∂u
∂xi

(x,m) − ud
i ), Θ,

(wi)t(x,m) = 0, Θ,

wi =
∂wi

∂ν
= 0, Γ.

(5.5)
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Proof. Similar to the approach used in the proof of Theorem 4.1, we deduce that

0 ≤
∫ m

0
d(t)[

∫
Θ

ut(
n∑

i=1

∂wi(x, t)
∂xi

)dx + λQ]dt, (5.6)

where d(t) ∈ L∞(0,m), a control function such that Q + kd ∈ Up with a small positive constant k. �

Remark 5.1. (1) In the case of spatiotemporal target, we remark that the error (
∂u
∂xi

(x, t) − ud
i )

between the state and the desired one becomes a the change of velocity induced by the known
forces acting on system (4.6).

(2) In the case of a prescribed time m targets, we remark that the error (
∂u
∂xi

(x,m) − ud
i ) between the

state and the desired one becomes a Dirichlet boundary condition in the adjoint equation (5.5).

6. Partial flow optimal control problem

This section establishes the flow partial optimal control problem governed by the plate
equation (2.2). Afterward we characterize the solution. Let θ ⊂ Θ be an open subregion of Θ and
we define

P̃θ : (L2(Θ)) −→ (L2(θ))
u −→ P̃θu = u|θ,

and
Pθ : (L2(Θ))n −→ (L2(θ))n

u −→ Pθu = u|θ.

We define the adjoint of Pθ by

P∗θu =

{
u in Θ,

0 ∈ Θ \ θ.

Definition 6.1. The plate equation (2.2) is said to flow weakly partially controllable on θ ⊂ Θ, if for
∀ β > 0, one can find an optimal control Q ∈ L2(0,m) such that

|Pθ∇uQ(m) − ud||(L2(θ))n ≤ β,

where ud = (zd
1, ...., u

d
n) is the desired flow in (L2(θ))n.

For Up defined by (5.1), we take the partial flow optimal control problem

min
Q∈Up

Cλ(Q), (6.1)

and the partial flow cost Cλ is

Cλ(Q) =
1
2

∥∥∥∥Pθ∇u(m) − ud
∥∥∥∥2

(L2(θ))n
+
λ

2

∫ m

0
Q2(t)dt

=
1
2

n∑
i=1

∥∥∥∥P̃θ

∂u(T )
∂xi

− ud
i

∥∥∥∥2

(L2(θ))
+
λ

2

∫ m

0
Q2(t)dt.

(6.2)
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Next, we consider the family of optimality systems

∂2wi

∂t2 = ∆2wi + Q(t)(wi)t, (0,m) × Θ,

wi(x,m) = (
∂u(m)
∂xi

− P̃∗θu
d
i ), Θ,

(wi)t(x,m) = 0, Θ,

wi(x, t) =
∂wi(x, t)
∂ν

= 0, Γ.

(6.3)

Lemma 6.1. Let the cost Cλ(Q) defined by (6.2) and the control Q(t) ∈ Up be the solution of (6.1). We
can write

lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

=

n∑
i=1

∫
θ

P̃∗θP̃θ

[∫ m

0

∂2wi

∂t2

∂v(x, t)
∂xi

dt +

∫ m

0
wi

∂

∂xi
(
∂2v
∂t2 )dt

]
dx

+

∫ m

0
λdQdt,

(6.4)

where the solution of (4.1) is v, and the solution of (6.3) is wi.

Proof. The functional Cλ(Q) given by (6.2), is of the form:

Cλ(Q) =
1
2

n∑
i=1

∫
θ

(P̃θ

∂u
∂xi
− ud

i )2dx +
λ

2

∫ m

0
Q2(t)dt. (6.5)

Choose uk = u(Q + kd) and u = u(Q). By (6.5), we deduce

lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

= lim
k−→0

n∑
i=1

1
2

∫
θ

(P̃θ

∂uk

∂xi
− ud

i )2 − (P̃θ

∂u
∂xi
− ud

i )2

k
dx

+ lim
k−→0

λ

2

∫ m

0

(Q + kd)2 − Q2

k
dt.

(6.6)

Furthermore,

lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

= lim
k−→0

n∑
i=1

1
2

∫
θ

P̃θ

(
∂uk

∂xi
−
∂u
∂xi

)

k
(P̃θ

∂uk

∂xi
+ P̃θ

∂u
∂xi
− 2ud

i )dx

+ lim
k−→0

1
2

∫ m

0
(2λdQ + kλd2)dt

=

n∑
i=1

∫
θ

P̃θ

∂v(x,m)
∂xi

P̃θ(
∂u(x,m)
∂xi

− P̃∗θu
d
i )dx +

∫ m

0
λdQdt

=

n∑
i=1

∫
θ

P̃θ

∂v(x,m)
∂xi

P̃θwi(x,m)dx + λ

∫ m

0
dQdt.

(6.7)
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Using (6.3) to (6.7), we conclude

lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

=

n∑
i=1

∫
θ

P̃∗θP̃θ

[∫ m

0

∂2wi

∂t2

∂v(x, t)
∂xi

dt +

∫ m

0
wi

∂

∂xi
(
∂2v
∂t2 )dt

]
dx

+

∫ m

0
λdQdt.

(6.8)

�

Theorem 6.1. Consider the set Up, of partial admissible control defined as (5.1) and u = u(Q) is its
associate solution of (2.2), then the solution of (6.1) is

Qε(t) = max(−p,min(
−1
λ

P̃θ(ut)(P̃θDiv(w)), p)), (6.9)

where Div(w) =

n∑
i=1

∂wi

∂xi
.

Proof. Let d ∈ Up and Q + kd ∈ Up for k > 0. The cost Cλ at its minimum Q, verifies

0 ≤ lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

. (6.10)

From Lemma 6.1, substituting
∂2v
∂t2 , by its value in system (4.1), we deduce that

0 ≤ lim
k−→0

Cλ(Q + kd) −Cλ(Q)
k

=

n∑
i=1

∫
θ

P̃∗θP̃θ

[∫ m

0

∂v
∂xi

∂2wi

∂t2 dt +

∫ m

0
(−∆2 ∂v

∂xi
+ Q(t)

∂

∂xi
(vt) + d(t)

∂

∂xi
(ut))widt

]
dx

+

∫ m

0
λdQdt,

(6.11)

and system (6.3) gives

0 ≤

n∑
i=1

∫
θ

P̃∗θP̃θ

[∫ m

0

∂v
∂xi

(
∂2wi

∂t2 − ∆2wi − Q(t)(wi)t)dt + d(t)
∂

∂xi
(ut)widt

]
dx +

∫ m

0
λdQdt.

=

n∑
i=1

∫
θ

P̃∗θP̃θ

∫ m

0
(h(t)ut)

∂wi

∂xi
dt +

∫ m

0
λdQdt.

=

∫ m

0
h(t)

∫
θ

utP̃∗θP̃θ

n∑
i=1

∂wi

∂xi
+ λQ

 dxdt,

(6.12)
which gives the optimal control

Qε(t) = max(−p,min(
−1
λ

P̃θ(ut)(P̃θDiv(w)), p)). (6.13)

�
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7. Conclusions

This paper studied the optimal control problem governed by an infinite dimensional bilinear plate
equation. The objective was to command the flow state of the bilinear plate equation to the desired
flow using different types of bounded feedback. The problem flow optimal control governed by a
bilinear plate equation was considered and solved in two cases using the adjoint method. The first case
considered a spatiotemporal control function and looked to reach a flow target on the whole domain.
The second case considered a time control function and looks to reach a prescribed target at a fixed
final time. As an application, the partial flow control problem was established and solved using the
proposed method. More applications can be examined, for example. the case of fractional hyperbolic
systems.
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