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Abstract: A connected acyclic graph in which the degree of every vertex is at most four is called a
molecular tree. A number associated with a molecular tree that can help to approximate the physical
or chemical properties of the corresponding molecule is called a topological index. It is of great
importance to investigate the relation between the structure and the thermodynamic properties of those
molecules. In this paper, we investigated the extreme value of the first reformulated Zagreb index
with a given order and degree of a graph. Further, we investigated the molecular trees that attain the
maximum and minimum values. As an application, we presented the regression models to predict
the acentric factor and entropy of octane isomers. Our extremal graphs give the minimum and the
maximum acentric factor and entropy, which satisfied the experimental values.
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1. Introduction

A graph is defined as J = (Vα,Eα), where Vα is the graph’s vertex set and Eα is its edge set,
respectively. Structures of chemical compounds are represented by chemical bonds. One type of these
bonds is a covalent bond in which the sharing of electrons takes place, and this sharing is indicated
by lines called edges in chemical graphs and atoms as vertices. An edge between two vertices uα and
vα is denoted by uαvα. The vertex degree denoted by ρJ(uα) of a vertex uα is measured by the total
count of links connected with uα. The maximum degree in a graph is denoted as 4(J), or simply 4. A
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single-component graph having no cycle with 4 = 4 is known as a molecular tree. The structures of
acyclic molecules can be modeled by using molecular trees.

For a molecular graph, a topological descriptor is a numeral linked with this graph. This value can
help to analyze some physical or chemical properties of the corresponding molecular structure. The
family of Zagreb indices is an important family of topological indices, which contains various versions
of the Zagreb indices. In 1972, the first and the second Zagreb indices were introduced [1, 2].

The above two indices for J are defined as:

M1 (J) =
∑

uα∈V(J)

ρ(uα)2,

M2 (J) =
∑

uαvα∈E(G)

ρ(uα)ρ(vα).

Miličević et al. [3] formulated the first and second Zagreb indices based on the edge degree. For the
edge e = uαvα, the degree of e is ρ(e) = ρ(uα) + ρ(vα) − 2 and the reformulated Zagreb descriptor is
formulated by:

EM1(J) =
∑

e∈E(J)

ρ(e)2 =
∑

uαvα∈E(J)

(ρ(uα) + ρ(vα) − 2)2 ,

EM2(J) =
∑
e1∼e2

ρ(e1)ρ(e2).

Extreme values of first and lower bounds for second reformulated Zagreb indices are calculated in [4].
A relation between a graph and its line graph is used to determine a relationship among original and
reformulated Zagreb indices in [5]. In article [6], the authors discussed the maximum and minimum
values of trees for EM1(J) and EM2(J). In [7, 8], authors investigated the first, second, and third
maximum Randić indices of molecular trees.

Ji et al. [9] investigated the extermal trees, unicyclic and bicyclic graphs with given order for the first
reformulated Zagreb indices. Some important results for dendrimers, related to the above two indices
are presented in [10]. In [11], authors found the extremal tricyclic graphs for the index. In [12, 13],
the extremal values of molecular trees are calculated for Sombor indices. Bounds on EM1(J) were
observed by Milovanović et al. in [14], in terms of some graph parameters. The dependency of
energy on cube of degree of vertices is shown in [15]. Neighborhood of Zagreb index on product of
graphs is discussed in [16]. Su et al. [17] studied with given connectivity and determined the extremal
graphs for the same index. The exact expressions for the same index as the first reformulated Zagreb
index are presented in [18] for some familiar graph operations. For the general Randić index, the
extremal molecular trees with the given number of pendant vertices are discussed in [19–21]. Liu and
Li explored further properties of the molecular trees for the harmonic index in [22], and they also gave
the extremal values of the harmonic descriptor of trees with 4 = 4. Husin et al. [23] extended the results
and determined the fourth maximum Randić index for the same class. Hundreds of topological indices
have been introduced up to the date for history and latest results on this topic, we suggest [24–29].

In this paper we extended the work on the molecular trees for the first reformulated Zagreb index
and determined the molecular trees, which give the extremal values of the index.
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2. Main results

In this section, we presented some auxiliary lemmas and our main results. In the following for
1 ≤ i, j ≤ 4, the count of atoms having degree i is represented by ni, while the count of bonds with one
end atom having degree i and the other end atom containing degree j is represented by ζi j.

For a molecular tree T we have the following information:

n1 + n2 + n3 + n4 =n, (2.1)
ζ12 + ζ13 + ζ14 =n1, (2.2)

ζ21 + 2ζ22 + ζ23 + ζ24 =2n2, (2.3)
ζ31 + ζ32 + 2ζ33 + ζ34 =3n3, (2.4)
ζ41 + ζ42 + ζ43 + 2ζ44 =4n4, (2.5)
n1 + 2n2 + 3n3 + 4n4 =2(n − 1). (2.6)

Applying the definition of EM1(T ),

EM1 (T ) =
∑

uαvα∈E(T )

(ρ(uα) + ρ(vα) − 2)2

=ζ12 + 4ζ13 + 9ζ14 + 4ζ22 + 9ζ23 + 16ζ24 + 16ζ33 + 25ζ34 + 36ζ44. (2.7)

From Eqs (2.1) and (2.6), we have

3n1 + 2n2 + n3 =2(1 + n). (2.8)

Using Eqs (2.2)–(2.4) in (2.8), we get

ζ14 =
2n + 2

3
−

4
3
ζ12 −

10
9
ζ13 −

2
3
ζ22 −

4
9
ζ23 −

1
3
ζ24 −

2
9
ζ33 −

1
9
ζ34.

Solving Eqs (2.1) and (2.6), we have

n2 + 2n3 + 3n4 = n − 2. (2.9)

Using Eqs (2.3)–(2.5) in (2.9), we get

1
2

(ζ21 + 2ζ22 + ζ23 + ζ24) +
2
3

(ζ31 + ζ32 + 2ζ33 + ζ34) +
3
4

(ζ41 + ζ42 + ζ43 + 2ζ44) = (n − 2)

ζ44 =
n − 5

3
+

1
3
ζ21 −

1
3
ζ22 −

5
9
ζ23 −

2
3
ζ24 +

1
9
ζ13 −

7
9
ζ33 −

8
9
ζ34.

Substituting the values of ζ14 and ζ44 in Eq (2.7), we have

EM1 (T ) = ζ12 − 2ζ13 − 14ζ22 − 15ζ23 − 11ζ24 − 14ζ33 − 8ζ34 + 18n − 54. (2.10)

The following result provides information about the maximum value of EM1 (T ) for the molecular
trees and the proof is given after some auxiliary lemmas.
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Theorem 2.1. Let T be a molecular tree of order n ≥ 5, then the maximum value of the first
reformulated Zagreb index is

EM1 (T ) ≤


18n − 64, n ≡ 0(mod 3),
18n − 72, n ≡ 1(mod 3),
18n − 54, n ≡ 2(mod 3),

and the maximum first reformulated Zagreb index is achieved if, and only if, one of the following
conditions is satisfied:

• T has exactly one edge of degree one and one edge of degree sixteen,
• two edges are of degree four and degree of one edge is twenty five,
• degree of all the edges are either nine or thirty six.

Now we present some lemmas.

Lemma 2.2. Let a molecular tree T has at least two vertices of degree three, then T cannot attain the
maximal first reformulated Zagreb Index.

Proof. Suppose we have a molecular tree T with at least two vertices of degree three, and uα and vα are
three degree vertices, i.e., ρ (uα) = ρ (vα) = 3. Based on adjacency of uα and vα, we have the following
two cases.
Case I. When uαvα < E(T ).
Suppose uα1 , uα2 , uα3 are the neighbors of uα in T and ei = uαuαi for 1 ≤ i ≤ 3, and vα1 , vα2 , vα3 are the
neighbors of vα in T and fi = vαvαi for 1 ≤ i ≤ 3.

Further, suppose that ρ(uα1) + ρ(uα2) + ρ(uα3) ≤ ρ(vα1) + ρ(vα2) + ρ(vα3).
Now, we construct a new graph T ′ = T − uαuα2 + vαuα2 , and in T ′ we have dT ′(uα) = 2 and dT ′(vα) = 4.

Suppose A = {e1, e2, e3, f1, f2, f3}. Now, from the definition of T we have:

EM1 (T ) − EM1
(
T ′

)
=

{
1 + ρ(uα1)

}2
+

{
1 + ρ(uα2)

}2
+

{
1 + ρ(uα3)

}2
+

{
1 + ρ(vα1)

}2
+{

1 + ρ(vα2)
}2

+
{
1 + ρ(vα3)

}2
−

{
ρ(uα1)

}2
−

{
ρ(uα3)

}2
−

{
2 + ρ(uα2)

}2
−

{
2 + ρ(vα1)

}2
−{

ρ(vα2) + 2
}2
−

{
ρ(vα3) + 2

}
< 0.

Case II. When uαvα ∈ E(T ).
Here, we suppose that uα1 = uα, vα1 = vα and e1 = uαvα = f1.Without loss of generality, take ρ(uα2)+

ρ(uα3) ≤ ρ(vα2) + ρ(vα3). We construct a new tree T ′ = T − uαuα3 + vαuα3 . Let A = {e2, e3, f2, f3}, then

EM1 (T ) − EM1
(
T ′

)
=

{
1 + ρ(uα2)

}2
+

{
1 + ρ(uα3)

}2
+

{
1 + ρ(vα2)

}2
+

{
1 + ρ(vα3)

}2

−
{
ρ(uα2)

}2
−

{
1 + ρ(vα2)

}2
−

{
2 + ρ(vα3)

}2
−

{
2 + ρ(uα3)

}2 < 0,

which is a contradiction. �

Lemma 2.3. If a molecular tree has at least two vertices of degree two, then it cannot attain the
maximum reformulated Zagreb index.
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Proof. Suppose we have a molecular tree T with at least two vertices of degree two. Let uα and vα
have degree two. There are two possibilities either uαvα < E(T ) or uαvα ∈ E(T ), and we discuss both
the cases separately.
Case I. When uαvα < E(T ).
Since ρ(uα) = 2 = ρ(vα), let e1 = uαuα1 , e2 = uαuα2 , f1 = vαvα1 and f2 = vαvα2 . Without loss of
generality, suppose that ρ(uα1) + ρ(uα2) ≤ ρ(vα1) + ρ(vα2).
We construct a new molecular tree from T as T ′ = T − uαuα2 + vαuα2 , then

EM1 (T ) − EM1
(
T ′

)
= ρ(uα1)

2 + ρ(uα2)
2 + d(vα1)

2 + ρ(vα2)
2 −

{
ρ(uα1) − 1

}2
−

{
1 + ρ(uα2)

}2

−
{
1 + ρ(vα1)

}2
−

{
1 + ρ(vα2)

}2 < 0.

Case II. When uαvα ∈ E(T ).
Since the degree of uα and vα is two, suppose uα2 and vα2 are their other neighbors. The new molecular
graph is constructed from T as T ′ = T − uαuα2 + vαuα2 . In this new graph, the degree of uα is one and
the degree of vα is three.

EM1 (T ) − EM1
(
T ′

)
= ρ(uα2)

2 + ρ(vα2)
2 −

{
1 + ρ(uα2)

}2
−

{
1 + ρ(vα2)

}2 < 0.
EM1 (T ) < EM1

(
T ′

)
.

In both cases we get a contradiction as we supposed T gives the maximum first reformulated
Zagreb index. �

Lemma 2.4. Let T be a molecular tree with at least one vertex of degree two, and at least one vertex
of degree three, then T cannot attain the maximum first reformulated Zagreb index.

Proof. Let T be a molecular tree with a vertex uα of degree two and a vertex vα of degree three.
Case I. Vertices uα and vα are not adjacent.
Since the degrees of uα and vα are two and three, respectively, let e1 = uαuα1 , e2 = uαuα2 , f1 =

vαvα1 , f2 = vαvα2 and f3 = vαvα3 . By deleting edge uαuα2 and adding an edge vαuα2 from T , we get
another molecular graph T ′.

EM1 (T ) − EM1
(
T ′

)
= ρ(uα1)

2 + ρ(uα2)
2 +

{
1 + ρ(vα1)

}2
+

{
1 + ρ(vα2)

}2
+

{
1 + ρ(vα3)

}2

−
{
ρ(uα1) − 1

}2
−

{
2 + ρ(vα1)

}2
−

{
2 + ρ(vα2)

}2
−

{
2 + ρ(vα3)

}2 {
2 + ρ(uα2)

}2 < 0.

Case II. Vertices uα and vα are adjacent.
Let the vertex uα2 be different from vα as adjacent to uα, and vertices vα1 and vα2 different from uα are
adjacent the vertex vα. The new molecular graph T ′ is constructed from T by deleting the edge uαuα2

and adding an edge vαuα2 . When uα and vα are neighbors of each other, then uα1 and vα1 are actually
vertices uα and vα. Graph T ′ is obtained by deleting edge uαuα2 and adding edge vαuα2 .

EM1 (T ) − EM1
(
T ′

)
=

{
ρ(uα2)

}2
+

{
1 + ρ(vα2)

}2
+

{
ρ(vα3) + 1

}2
−

{
ρ(vα2) + 2

}2
−

{
ρ(vα3) + 2

}2
−{

ρ(uα2) + 2
}2 < 0.

�

From the above three Lemmas, we draw following conclusion.
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2.1. Conclusion

If T is a molecular tree with the maximum first reformulated Zagreb index, then T must satisfy one
of the following three conditions.

• all vertices of T have a degree of either one or four,
• exactly one vertex of the graph is of degree two and remaining vertices are of degree one or four,
• exactly one vertex of the graph is of degree three and remaining vertices are of degree one or four.

2.2. Proof of Theorem 2.1

Proof. For any molecular tree T , we have the following formula for the first reformulated Zagreb index
derived in Eq (2.10)

EM1(T ) = 18n − 54 + ζ12 − 2ζ13 − 14ζ22 − 15ζ23 − 11ζ24 − 14ζ33 − 8ζ34.

Let T be a molecular tree with the maximum value of the first reformulated Zagreb index. Based on
the order of T , we have the three cases given as:
Case I. When n ≡ 0 mod (3).
Let n = 3~ and ~ ≥ 2. From Eq (2.9), we get

n2 + 2n3 + 3n4 = 3~ − 2. (2.11)

Since T has the maximal first reformulated Zagreb index, then by Lemmas 2.2–2.4, the solution of the
Eq (2.11) exists if, and only if, n4 = ~ − 1, n3 = 0 and n2 = 1. Putting these values in Eq (2.10),
we have,

EM1(T ) = 18n − 54 + ζ12 − 11ζ24.

Moreover,

EM1 (T ) =

18n − 76, i f ζ12 = 0, ζ24 = 2,
18n − 64, i f ζ12 = 1 = ζ24.

However,
EM1 (T ) ≤ 18n − 64,

gives the maximum value and the equality holds if, and only if, T has exactly one edge of degree one
and one vertex edge of degree sixteen.
Case II. When n ≡ 1 mod (3).
Let n = 3~ + 1, and ~ ≥ 2, then Eq (2.9) becomes

n2 + 2n3 + 3n4 = 3~ − 1. (2.12)

From Lemmas 2.2–2.4, the solution of Eq (2.12) exists if, and only if, n4 = ~ − 1, n2 = 0 and n3 = 1.
In the case of all ζi j = 0 , if any of i = 2 or j = 2, then ζ33=0. Thus Eq (2.10) reduces to,

EM1 (T ) = 18n − 54 − 2ζ13 − 8ζ34.
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Moreover,

EM1 (T ) =

18n − 78, i f ζ34 = 3, ζ13 = 0,
18n − 66, i f ζ13 = 2, ζ34 = 1.

Hence,
EM1(T ) ≤ 18n − 66,

and the equality holds if, and only if, the degree of two edges of the molecular tree are four and the
degree of one edge is twenty five.
Case III. When n ≡ 2 mod (3).
Let n = 3~ + 2 for ~ ≥ 2, and from Eq (2.9) we have n2 + 2n3 + 3n4 = 3~. As in previous cases, the
solution of the equation exists if, and only if, n4 = ~, n3 = 0 and n2 = 0, then ζi j = 0, for i = 2, 3 or
j = 2, 3. Hence, the first reformulated Zagreb index is

EM1 (T ) = 18n − 54,

and the above is attained if, and only if, the degree of all the edges are either nine or thirty six, which
completes the proof. �

3. Minimum value of the reformulated Zagreb index

In the following, we will work on the minimal first reformulated Zagreb index of molecular trees
for 2 ≤ ∆ ≤ 4.

Lemma 3.1. Let T be a molecular tree with 4 = 3 and with two vertices of degree three, then T cannot
attain the minimal first reformulated Zagreb index.

Proof. Let T be a molecular tree on n vertices and 4 = 3 with two vertices of degree three, i.e.,
ρ(uα) = ρ(vα) = 3 and with the minimal first reformulated Zagreb index. Suppose that there is a vertex
wα such that ρ(wα) = 1. Let uα1, uα2, uα3 be neighbors of uα and wα1 is the neighbor of wα in T . Let’s
construct a new graph T ′ as, T ′ = T − uαuα1 + wαuα1 . Further we have,

EM1(T ) − EM1(T ′) = 2(ρ(uα1) + ρ(uα2) + ρ(uα3)) − 2ρ(wα1) + 4 > 0.

This result shows that the molecular tree is not minimal for two vertices of degree three. �

Following lemmas can be proved similarly.

Lemma 3.2. Let T be a molecular tree with maximum degree four and two vertices of degree four, then
the first reformulated Zagreb index of T is not minimum.

Lemma 3.3. Let T be a molecular tree of order n having a maximum degree four with one vertex of
degree four and one vertex of degree three, then the first reformulated Zagreb descriptor cannot be
minimum for T .

Proof. Let T be a tree with 4 = 3 and ρ(uα) = 3 and ρ(wα) = 4. Suppose that uα has neighbors
uα1 , uα2 and uα3 and wα has neighbor wα1 . Now, construct T ′ such that T ′ = T − uαuα1 + wαuα1 , then
EM1 (T ) − EM1 (T ′) > 0. �
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Theorem 3.4. Let a molecular tree with n number of vertices such that n ≥ 5 and 2 ≤ ∆ ≤ 4, then the
minimal value of the first reformulated Zagreb index is given as

EM1 (T ) ≥


n − 10 f or4 = 2, equality holds when T is a path,

4n − 2 f or4 = 3, equality holds when T contains two edges of degree four,

4n + 20 f or4 = 4, equality holds when T contains three edges of degree nine.

Proof. • If ∆ = 2, then clearly tree is a path graph and we have EM1(T ) = 4n − 10.

• For ∆ = 3. By Lemma 3.1, we have only two molecular trees:

(1) one edge of degree four, denotes it T1,
(2) two edges of degree four, denotes it by T2.

Further, EM1(T1) = 4n and EM1(T2) = 4n − 2, clearly EM1(T1) > EM1(T2).

• For ∆ = 4. By Lemmas 3.2 and 3.3, we have the following molecular trees:

(1) two edges of degree nine, denotes it T3,
(2) three edges of degree nine, denotes it by T4.

Further, EM1(T3) = 4n + 24 and EM1(T4) = 4n + 20, and clearly EM1(T3) > EM1(T4), which
completes the proof. �

4. Application to octane isomers

In this section, we will present a possible application of our work. The acentric factor is a
measure of the non-centricity of molecules. As the acentric factor increases, the vapor pressure goes
down, resulting in higher boiling points [30, 31]. Entropy is a measure of the unavailability of a
system’s energy to do work. It is a measure of disorder. The greater the disorder in a molecule, the
greater the entropy [32, 33]. Here, 18 octane isomers [34, 35] with their acentric factors and entropy
measure are considered, as well as the first reformulated Zagreb indices of these octane isomers. This
information is provided in Table 1. Several papers have been written on the correlation between
properties and topological indices of molecular graphs, and we refer [12,15] and references therein. A
linear regression through Microsoft Excel is performed on the data in Table 1. We obtain the following
linear equations that can predict the acentric factor and entropy of octane isomers. Further, from Table 1
we can notice that the 2,2,3,3,-tetramethyl butane (18th isomer) has the maximum reformulated Zagreb
index with the minimum acentric factor and entropy. In Theorem 2.1, we can notice that the same
molecular tree attained the maximum value. This implies that the chemical trees with the maximum
reformulated Zagreb index have the minimum acentric factor and entropy measure.

Acentric f actor = −0.0021 × RM1 + 0.4351,
Entropy = −0.258 × RM1 + 117.77,

with the correlation coefficients (R) 0.9841 and 0.9608, respectively. These results are comparable
with the models already discussed in the literature. Figures 1 and 2 show the close relation
between the acentric factor and entropy and the reformulated Zagreb index. These results imply
that the reformulated Zagreb index can be a good predictor of the acentric factor and entropy for
octane isomers.
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Figure 1. The relationship between acentric factor and the reformulated Zagreb index for
18 isomers.

Figure 2. The relationship between entropy and the reformulated Zagreb index for 18
octane isomers.
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Table 1. Acentric factor, entropy and the reformulated Zagreb index values of 18 octane
isomers.

No. Isomer Acent. Fac. Entropy EM1

1 0.397898 111.67 22

2 0.377916 109.84 30

3 0.371002 111.26 32

4 0.371504 109.32 32

5 0.362472 109.43 34

6 0.339426 103.42 52

7 0.348247 108.02 42

8 0.344223 106.98 40

9 0.356830 105.72 38

10 0.322596 104.74 56

11 0.340345 106.59 44

12 0.332433 106.06 44

13 0.306899 101.48 60

14 0.300816 101.31 66

15 0.305370 104.09 60

16 0.293177 102.06 68

17 0.317422 102.39 52

18 0.255294 93.06 90

5. Conclusions

In the field of chemical graph theory, topological indices play an important role. Topological indices
are numerical values that are used to correlate the chemical structure of molecules by a graph with
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chemical properties. Many distance-based and degree-based topological indices have been introduced.
Among all existing topological indices, degree-based indices are very helpful in hydrocarbons, in
the field of pharmacy and the preparation of drugs used against diseases like cancer. In this article,
we discussed the behavior of the first reformulated Zagreb index for molecular trees, which is the
generalized form of of the first Zagreb index. Here, we calculated the first reformulated Zagreb
index for molecular trees of order n and then calculated the results for extremal (maximal, minimal)
values. The results obtained can be useful in extracting data for molecular trees and in discussing
many properties of these molecular tree graphs, like melting point, boiling point, latent heat of fusion,
entropy, enthalpy etc. In the end, we presented an application of the proposed work to calculate the
acentric factor and entropy of octane isomers, then compared the values of the first reformulated Zagreb
index, acentric factor and entropy graphically.
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Zagreb index, Appl. Math. Comput., 273 (2016), 16–20.

15. B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015), 1184–1190.
https://doi.org/10.1007/s10910-015-0480-z

16. S. Mondal, N. De, A. Pal, On neighborhood Zagreb index of product graphs, J. Mol. Struct., 2021.
https://doi.org/10.1016/j.molstruc.2020.129210

17. G. Su, L. Xiong, L. Xu, B. Ma, On the maximum and minimum first reformulated
Zagreb index of graphs with connectivity at most k, Filomat, 25 (2011), 75–83.
https://doi.org/10.2298/FIL1104075S

18. M. K. Jamil, I. Tomescu, First reformulated Zagreb index and some graph operations, Ars
Combinatoria, 138 (2018), 193–209.

19. X. Li, Y. Yang, Best lower and upper bounds for the Randic index R−1 of chemical trees, Match-
Commun. Math. Co., 52 (2004), 147–156.

20. X. Li, Y. Shi, L. Zhong, Minimum general Randić index on chemical trees with given order and
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