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Abstract: In this paper, we introduced s-index weakly positive tensors and discussed the calculation
of the spectral radius of this kind of nonnegative tensors. Using the diagonal similarity transformation
of tensor and Perron-Frobenius theory of nonnegative tensor, the calculation method of the maximum
H-eigenvalue of s-index weakly positive tensors was given. A variable parameter was introduced in
each iteration of the algorithm, which is equivalent to a translation transformation of the tensor in
each iteration to improve the calculation speed. At the same time, it was proved that the algorithm is
linearly convergent for the calculation of the spectral radius of s-index weakly positive tensors. The
final numerical example shows the effectiveness of the algorithm.
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1. Introduction

Consider an m-order n-dimensional square tensorA consisting of nm entries in the real field R:

A = (ai1i2···im), ai1i2···im ∈ R, 1 ≤ i1, i2, · · · , im ≤ n.

If ai1i2···im ≥ 0, 1 ≤ i1, i2, · · · , im ≤ n, then A is called an m-order n-dimensional nonnegative tensor.
Denote the set of all m-order n-dimensional nonnegative tensors as R[m,n]

+ . Rn, Rn
+, R

n
++ represents the

set of all n-dimensional vectors, the set of all n-dimensional nonnegative vectors and the set of all
n-dimensional positive vectors, respectively. Tensors play an important role in physics, engineering
and mathematics. There are many application domains of tensors such as data analysis and mining,
information science, image processing and computational biology [1–4].

In 2005, Qi [2] introduced the notion of eigenvalues of higher-order tensors and studied the
existence of both complex and real eigenvalues and eigenvectors. Independently, in the same year,
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Lim [3] also defined eigenvalues and eigenvectors but restricted them to be real.
Qi [2] proposed the definition of H-eigenvalue. If a real number λ and a nonzero real vector x ∈ Rn

satisfy the following homogeneous polynomial equation:

Axm−1 = λx[m−1],

where

Axm−1 =

 n∑
i2,··· ,im=1

aii2···im xi2 · · · xim


1≤i≤n

is an n-dimensional vector and

(x[m−1])i = xm−1
i ,

then λ is an H-eigenalue of A and x is an H-eigenector of A associated with λ. Define the set of
H-eigenvalues of A ∈ R[m,n]

+ as σH(A) and ρ(A) = max
λ∈σH(A)

|λ| as the H-spectral radius of tensor A.

Let σ(A) be the set of eigenvalues of a tensorA.
LetA = (ai1i2···im) ∈ R[m,n]

+ . Ng et al. [5] proposed the NQZ algorithm for the largest H-eigenalue of
a nonnegative irreducible tensor.

Algorithm 1 ( [5]) NQZ algorithm
Step 0. Choose x(0) > 0, x(0) ∈ Rn. Let y(0) = A(x(0))m−1 and set k := 0.
Step 1. Compute

x(k+1) =
(y(k))[

1
m−1 ]

∥(y(k))[
1

m−1 ]∥
,

y(k+1) = A(x(k+1))m−1,

λk+1 = min
(x(k+1))i>0

(y(k+1))i

(x(k+1))m−1
i

,

λk+1 = max
(x(k+1))i>0

(y(k+1))i

(x(k+1))m−1
i

.

Step 2. If λk+1 = λk+1, stop. Otherwise, replace k by k + 1 and go to Step 1.

Subsequently, the NQZ algorithm was proved to be convergent for primitive tensors in [6] and for
weakly primitive tensors in [4], and the NQZ algorithm was shown to have an explicit linear
convergence rate for essentially positive tensors in [7]. However, some examples [5] showed that it
did not converge for some irreducible nonnegative tensors.

In 2010, Liu et al. [8] modified the NQZ algorithm and proposed the LZI algorithm. Let E =
(δi1i2···im) be the m-order n-dimensional unit tensor whose entries are

δi1i2···im =

1, i f i1 = i2 = · · · = im,

0, otherwise.
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Algorithm 2 ( [8]) LZI algorithm
Step 0. Choose x(0) > 0, x(0) ∈ Rn. Let B = A + ρE, where ρ > 0, and set k := 0.
Step 1. Compute

y(k) = B(x(k))m−1,

λk = min
(x(k))i>0

(y(k))i

(x(k))m−1
i

,

λk = max
(x(k))i>0

(y(k))i

(x(k))m−1
i

.

Step 2. If λk = λk, then let λ = λk and stop. Otherwise, compute

x(k+1) =
(y(k))[

1
m−1 ]

∥(y(k))[
1

m−1 ]∥
,

replace k by k + 1 and go to Step 1.

Liu et al. [8] proved that the LZI algorithm is convergent for irreducible nonnegative tensors.
In 2012, Zhang et al. [9] proved the linear convergence of the LZI algorithm for weakly positive
tensors. Since then, there have been many studies on the calculation of the maximum eigenvalue of
nonnegative tensors. For example, Yang and Ni [10] gave a nonlinear algorithm for calculating the
maximum eigenvalue of symmetric tensors; another example, Zhang and Bu [11] gave a diagonal
similar iterative algorithm for calculating the maximum H-eigenvalue of a class of generalized
weakly positive tensors.

2. Preliminaries

In this section, we mainly introduce some related concepts and important properties of tensors and
matrices. For a positive integer n, let ⟨n⟩ = {1, 2, . . . , n}.

Definition 2.1. [12] An m-order n-dimensional tensorA is called reducible if there exists a nonempty
proper index subset I ⊂ ⟨n⟩ such that

ai1i2···im = 0, ∀i1 ∈ I, ∀i2, . . . , im < I.

IfA is not reducible, thenA is irreducible.

Definition 2.2. [13] A nonnegative matrix Å is called the majorization associated to nonnegative
tensorA if the (i, j)-th element of Å is defined to be ai j··· j for any i, j = 1, · · · , n.

Definition 2.3. [13] A nonnegative m-order n-dimensional tensorA is essentially positive ifAxm−1 ∈

Rn
++ for any nonzero x ∈ Rn

+.

Definition 2.4. [9] LetA be a nonnegative tensor of order m and dimension n. A is weakly positive if

ai j··· j > 0 f or i , j and i, j ∈ {1, 2, · · · , n}.

AIMS Mathematics Volume 9, Issue 1, 205–217.



208

Definition 2.5. [11] Let A = (ai1i2···im) ∈ R[m,n]
+ , then A is generalized weakly positive if there exists

i0 ∈ ⟨n⟩, such that ai0 j··· j > 0, a ji0···i0 > 0 for all j ∈ ⟨n⟩\{i0}.

Definition 2.6. [14] LetA = (ai1i2···im) ∈ R[m,n]
+ .

(1) We call a nonnegative matrix G(A) the representation associated to nonnegative tensor A if
the (i, j)-th element of G(A) is defined to be the summation of a{ii2···im} with indices {i2 · · · im} ∋ j.
(2) We call A weakly reducible if its representation G(A) is a reducible matrix and weakly primitive
if G(A) is a primitive matrix. IfA is not weakly reducible, then it is called weakly irreducible.

Definition 2.7. Let A = (ai1i2···im) ∈ R[m,n]
+ and πs−1(i, j) be an arrangement of s − 1 letters i and m − s

letters j. If there exists s ∈ ⟨m − 1⟩ and i0 ∈ ⟨n⟩ for any j ∈ ⟨n⟩, j , i0, such that ai0πs−1(i0, j) , 0 and
a jπs−1( j,i0) , 0 hold, thenA is called an s-index weakly positive tensor.

For example, A = (ai jk) ∈ R
[3,3]
+ , where a113 = 1, a223 = 4, a331 = 2, a332 = 5 and ai1i2i3 ≥ 0(1 ≤

i1, i2, i3 ≤ 3) elsewhere, thenA is a two-index weakly positive tensor.

Remark 2.1. The essentially positive tensors, the weakly positive tensors and the generalized weakly
positive tensors are all one-index weakly positive tensors, which are special tensor classes of s-index
weakly positive tensors..

Theorem 2.1. [15] For any nonnegative tensor A = (ai1i2···im) ∈ R[m,n]
+ , ρ(A) is an eigenvalue with a

nonnegative eigenvector x ∈ Rn
+ corresponding to it.

Theorem 2.2. [16] LetA = (ai1i2···im) ∈ R[m,n]
+ . ρ(A) is the spectral radius ofA, then

min
i∈⟨n⟩

n∑
i2,··· ,im=1

aii2···im ≤ ρ(A) ≤ max
i∈⟨n⟩

n∑
i2,··· ,im=1

aii2···im .

Theorem 2.3. [12] If A is an irreducible nonnegative tensor of order m and dimension n, then there
exists λ0 > 0 and x0 > 0, x0 ∈ R

n such that Axm−1
0 = λ0x[m−1]

0 . Moreover, if λ is an eigenvalue with a
nonnegative eigenvector, then λ = λ0. If λ is an eigenvalue ofA, then |λ| ≤ λ0.

Definition 2.8. [17] Let A = (ai1i2···im) ∈ R[m,n]
+ , B = (bi1i2···im) ∈ R[m,n]

+ . The tensors A and B are said
to be diagonal similar if there exists some invertible diagonal matrix D = diag(d1, d2, · · · , dn) of order
n such that B = A×1 D−(m−1) ×2 D ×3 · · · ×m D, where bi1i2···im = ai1i2···imd−(m−1)

i1
di2 · · · dim .

Theorem 2.4. [17] If the two m-order n-dimensional tensors A and B are diagonal similar,
then σ(A) = σ(B).

3. An algorithm and its convergence analysis

In 1981, Bunse [18] gave a diagonal similar iterative algorithm for calculating the maximum
eigenvalue of irreducible nonnegative matrices. In 2008, Lv [19] further studied the diagonal
similarity iterative algorithm for calculating the maximum eigenvalue of irreducible nonnegative
matrices. In 2021, Zhang and Bu [11] gave a diagonal similar iterative algorithm for calculating the
maximum H-eigenvalue of nonnegative tensors. In this paper, according to the construction idea of
the algorithm in [19], a numerical algorithm for calculating the maximum H-eigenvalue and
corresponding eigenvector of s-index weakly positive tensors is given.
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LetA = A(0) = (a(0)
i1i2···im

) ∈ R[m,n]
+ , ri(A(0)) =

n∑
i2,··· ,im=1

a(0)
ii2···im

(i ∈ ⟨n⟩) and r(A(0)) = max
i∈⟨n⟩

ri(A(0)). ε is a

sufficiently small positive number. αk ∈ R(k = 0, 1, 2, · · · ) satisfies ε −min
i∈⟨n⟩

aii···i < αk ≤ r(A(0)).

Algorithm 3
Step 0. GivenA(0) = A = (ai1i2···im), ε −min

i∈⟨n⟩
aii···i < αk ≤ r(A(0)), ε > 0. Set k := 0.

Step 1. Compute

ri(A(k)) =
n∑

i2,··· ,im=1

a(k)
ii2···im
, i ∈ ⟨n⟩,

r(A(k)) = max
i∈⟨n⟩

ri(A(k)), r(A(k)) = min
i∈⟨n⟩

ri(A(k)).

Step 2. If r(A(k)) − r(A(k)) < ε, then ρ(A) = 1
2 (r(A(k)) + r(A(k))) and stop.

Step 3. Set

D(k) =

(
diag(r1(A(k)), r2(A(k)), · · · , rn(A(k))) + αkI

r(A(k)) + αk

) 1
m−1

,

A(k+1) = A(k) ×1 (D(k))−(m−1) ×2 D(k) ×3 · · · ×m D(k),

and replace k by k + 1, go to Step 1.

In the following, we will give the convergence condition of Algorithm 3.
DefineA(k) + αkE = A

(k)(αk) =: (ai1i2···im(αk))n
i1,i2,··· ,im=1.

Lemma 3.1. Let A = (ai1i2···im) ∈ R[m,n]
+ . For tensor sequence A(l)(l = 0, 1, 2, · · · ), we have

r(A(l))(l = 0, 1, 2, · · · ) as monotonically decreasing with lower bound, and r(A(l))(l = 0, 1, 2, · · · ) as
monotonically increasing with upper bound.

Proof. Notice that

ri(A(l+1)) =
n∑

i2,··· ,im=1

a(l+1)
ii2···im

=

n∑
i2,··· ,im=1

a(l)
ii2···im

m∏
j=2

(
ri j(A

(l)) + αl

) 1
m−1

ri(A(l)) + αl

=

n∑
i2,··· ,im=1

aii2···im(αl)

m∏
j=2

(
ri j(A

(l)) + αl

) 1
m−1

ri(A(l)) + αl
− αl

≤

n∑
i2,··· ,im=1

aii2···im(αl)
r(A(l)) + αl

ri(A(l)) + αl
− αl

= r(A(l)),

then r(A(l+1)) ≤ r(A(l)), l = 0, 1, 2, · · · . Therefore, r(A(l)) is monotonically decreasing. Similarly,
it can be proved that r(A(l+1)) ≥ r(A(l)), l = 0, 1, 2, · · · , so r(A(l)) is monotonically increasing. By
r(A(l)) ≤ r(A(l)) we can obtain that r(A(l))(l = 0, 1, 2, · · · ) is monotonically decreasing with lower
bound r(A(0)), and r(A(l))(l = 0, 1, 2, · · · ) is monotonically increasing with upper bound r(A(0)).
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Lemma 3.2. Let A = (ai1i2···im) ∈ R[m,n]
+ be an s-index weakly positive tensor, then it is an irreducible

tensor.

Proof. Because A is an s-index weakly positive tensor, by Definition 2.7, there are s ∈ ⟨m − 1⟩ and
i0 ∈ ⟨n⟩ such that ai0πs−1(i0, j) , 0, a jπs−1( j,i0) , 0, j ∈ ⟨n⟩, j , i0. That is, for any j ∈ I ⊂ ⟨n⟩, there
is i0 ∈ ⟨n⟩\I such that a jπs−1( j,i0) , 0. By Definition 2.1,A is an irreducible tensor.

Lemma 3.3. Let A = (ai1i2···im) ∈ R[m,n]
+ be an s-index weakly positive tensor. That is, there are

s ∈ ⟨m − 1⟩ and i0 ∈ ⟨n⟩ for any j ∈ ⟨n⟩, j , i0, such that ai0πs−1(i0, j) , 0 and a jπs−1( j,i0) , 0 hold, then for
any k ∈ N,

a(k)
jπs−1( j,i0)(αk) ≥ min{

ã2

r(A(0))
, ε}, where ã = min

j∈⟨n⟩\{i0}
{ai0πs−1(i0, j), a jπs−1( j,i0)}.

Proof. If a jπs−1( j,i0) , 0, then a(k)
jπs−1( j,i0) , 0, a(k)

i0i0···i0
= ai0i0···i0 , k = 0, 1, 2, · · · . In the case of j , i0, it can

be obtained from Lemma 3.1 that

r(A(0)) ≥ r(A(k)) ≥ a(k)
jπs−1( j,i0) = a(k−1)

jπs−1( j,i0) ·
(ri0 (A(k−1))+αk−1)m−s

(r j(A(k−1))+αk−1)m−s = · · ·

= a(0)
jπs−1( j,i0) ·

k−1∏
t=0

(ri0 (A(t))+αt)m−s

k−1∏
t=0

(r j(A(t))+αt)m−s
≥ ã ·

k−1∏
t=0

(ri0 (A(t))+αt)m−s

k−1∏
t=0

(r j(A(t))+αt)m−s
,

(3.1)

where ã = min
j∈⟨n⟩\{i0}

{ai0πs−1(i0, j), a jπs−1( j,i0)}, then

k−1∏
t=0

(ri0(A
(t)) + αt)m−s

k−1∏
t=0

(r j(A(t)) + αt)m−s

≤
r(A(0))

ã
.

Then, by

k−1∏
t=0

(ri0(A
(t)) + αt)m−s

k−1∏
t=0

(r j(A(t)) + αt)m−s

·

k−1∏
t=0

(r j(A(t)) + αt)m−s

k−1∏
t=0

(ri0(A(t)) + αt)m−s

= 1,

we have

k−1∏
t=0

(ri0(A
(t)) + αt)m−s

k−1∏
t=0

(r j(A(t)) + αt)m−s

≥
ã

r(A(0))
,

then a(k)
i0πs−1(i0, j)

≥ ã2

r(A(0)) ( j , i0) can be obtained by (3.1).
In the case of j = i0, it holds that a(k)

i0i0···i0
(αk) = a(k)

i0i0···i0
+ αk ≥ min

i∈⟨n⟩
aii···i − min

i∈⟨n⟩
aii···i + ε = ε, then

a(k)
jπs−1( j,i0)(αk) ≥ min{ ã2

r(A(0)) , ε}.
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Theorem 3.1. Let A = (ai1i2···im) ∈ R[m,n]
+ be an s-index weakly positive tensor. That is, there are

s ∈ ⟨m − 1⟩ and i0 ∈ ⟨n⟩ for any j ∈ ⟨n⟩, j , i0, such that ai0πs−1(i0, j) , 0 and a jπs−1( j,i0) , 0 hold, then for
Algorithm 3,

r(A(k+1)) − r(A(k+1)) ≤ α(r(A(k)) − r(A(k))),

where α = 1 − â2

2r(A(0)) , r(A(0)) = max
i∈⟨n⟩

ri(A), â = min
j∈⟨n⟩\{i0}

{ ã2

r(A(0)) , ε}, then we can get

lim
k→∞

r(A(k)) = lim
k→∞

r(A(k)) = ρ(A).

Proof. Let A[0] = (a[0]
i j )n×n, ai0 j = ai0πs−1(i0, j), a ji0 = a jπs−1( j,i0), j ∈ ⟨n⟩ and zero elsewhere, then A[0] is an

irreducible matrix. Let r(A(k+1)) = r(k+1)
p , r(A(k+1)) = r(k+1)

q , then

r(A(k+1)) − r(A(k+1)) = r(k+1)
p − r(k+1)

q

=

n∑
i2,··· ,im=1

 a(k)
pi2···im

r(k)
p + αk

−
a(k)

qi2···im

r(k)
q + αk

 m∏
j=2

(ri j(A
(k)) + αk)

1
m−1 .

Denote I = {i2 · · · im|i2, · · · , im ∈ ⟨n⟩} and

I(k) =

i2 · · · im|
a(k)

pi2···im

r(k)
p + αk

≥
a(k)

qi2···im

r(k)
q + αk

 ,
then

r(A(k+1)) − r(A(k+1)) = r(k+1)
p − r(k+1)

q

=
∑

i2,··· ,im∈I(k)

 a(k)
pi2···im

r(k)
p + αk

−
a(k)

qi2···im

r(k)
q + αk

 m∏
j=2

(ri j(A
(k)) + αk)

1
m−1

+
∑

i2,··· ,im∈I\I(k)

 a(k)
pi2···im

r(k)
p + αk

−
a(k)

qi2···im

r(k)
q + αk

 m∏
j=2

(ri j(A
(k)) + αk)

1
m−1

≤ (r(A(k)) + αk)
∑

i2,··· ,im∈I(k)

 a(k)
pi2···im

r(k)
p + αk

−
a(k)

qi2···im

r(k)
q + αk


+ (r(A(k)) + αk)

∑
i2,··· ,im∈I\I(k)

 a(k)
pi2···im

r(k)
p + αk

−
a(k)

qi2···im

r(k)
q + αk
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= (r(A(k)) + αk)
∑

i2,··· ,im∈I(k)

 a(k)
pi2···im

r(k)
p + αk

−
a(k)

qi2···im

r(k)
q + αk


− (r(A(k)) + αk)

∑
i2,··· ,im∈I(k)

 a(k)
pi2···im

r(k)
p + αk

−
a(k)

qi2···im

r(k)
q + αk


= (r(A(k)) − r(A(k)))

·

1 −
 ∑

i2,··· ,im∈I\I(k)

a(k)
pi2···im

r(k)
p + αk

+
∑

i2,··· ,im∈I(k)

a(k)
qi2···im

r(k)
q + αk




≤ (r(A(k)) − r(A(k)))

1 −
∑

i2,··· ,im∈I\I(k)
a(k)

pi2···im
+

∑
i2,··· ,im∈I(k)

a(k)
qi2···im

2r(A(0))

 .
Therefore, either

∑
i2,··· ,im∈I\I(k)

a(k)
pi2···im

includes a(k)
pπs−1(p,i0) or

∑
i2,··· ,im∈I(k)

a(k)
qi2···im

includes a(k)
qπs−1(q,i0), then

∑
i2,··· ,im∈I\I(k)

a(k)
pi2···im

+
∑

i2,··· ,im∈I(k)

a(k)
qi2···im

≥ min{a(k)
i0···i0

(αk), a
(k)
pπs−1(p,i0)(αk), a

(k)
qπs−1(q,i0)(αk)}

≥ min{
ã2

r(A(0))
, ε} =: â.

Thus,

r(A(k+1)) − r(A(k+1)) ≤ α(r(A(k)) − r(A(k))),

where α = 1 − â
2r(A(0)) . Therefore,

r(A(k)) − r(A(k)) ≤ α(r(A(k−1)) − r(A(k−1))) ≤ · · · ≤ αk(r(A(0)) − r(A(0))).

Note that 0 < α = 1 − â
2r(A(0)) < 1, and we can obtain lim

k→∞
(r(A(k)) − r(A(k))) = 0. From Lemma 3.1,

lim
k→∞

r(A(k)) = lim
k→∞

r(A(k)) = ρ(A).

Corollary 3.1. Let A = (ai1i2···im) ∈ R[m,n]
+ , ε > 0. If A is an s-index weakly positive tensor, then by

Algorithm 3 there must be

K =

 log( ε
r(A(0))−r(A(0)) )

log(α)

 + 1

that satisfies r(A(K)) − r(A(K)) < ε, where α is defined in Theorem 3.1.

From Definitions 2.3–2.5, we can see that the essentially positive tensors, the weakly positive
tensors and the generalized weakly positive tensors are all s-index weakly positive tensors, so we have
the following corollary.

AIMS Mathematics Volume 9, Issue 1, 205–217.



213

Corollary 3.2. If A = (ai1i2···im) ∈ R[m,n]
+ is an essentially positive tensor or a weakly positive tensor,

then

r(A(k+1)) − r(A(k+1)) ≤ α(r(A(k)) − r(A(k))),

where α = 1 − â
2r(A(0)) , r(A(0)) = max

i∈⟨n⟩
ri(A), â = min{ ã2

r(A(0)) , ε}, ã = min
j,i
{ai j··· j} and, thus,

lim
k→∞

r(A(k)) = lim
k→∞

r(A(k)) = ρ(A).

Corollary 3.2 further confirms the linear convergence of the LZI algorithm for weakly essentially
positive tensors in Theorem 4.1 in [9].

From above, the inclusion relationship is shown among irreducible tensor, primitive tensor, s-index
weakly positive tensor, generalized weakly positive tensor, weakly positive tensor and essentially
positive tensor sets in Figure 1.

Figure 1. Relations among six classes of nonnegative tensors.

Theorem 3.2. LetA = (ai1i2···im) ∈ R[m,n]
+ be an s-index weakly positive tensor. For the positive diagonal

matrix Di(i = 0, 1, 2, · · · ) in the construction process of Algorithm 3, define D(t) =
t∏

i=0
Di, then lim

k→∞
D(t)

exists and denote it as D̂. Then, x = D̂e ∈ Rn
++ satisfiesAxm−1 = ρ(A)x[m−1], where e = (1, 1, · · · , 1)T ∈

Rn
++.

Proof. From the construction of Algorithm 3, it is known that the sequence of diagonal
elements (D(t)) j j( j = 1, 2, · · · , n) of the positive diagonal matrix D(t)( j = 1, 2, · · · , n) monotonically
decreases with a lower bound, so lim

k→∞
D(t) exists. According to Lemma 3.1, the sequence of each

element corresponding to tensor sequence {A(k)}∞k=0 is nonnegative and has an upper bound, so there is
a convergent tensor subsequence of {A(k)}∞k=0 marked as {A(kl)}∞l=0, and denote lim

k→∞
A(kl) = Â. Take the

limit on both sides ofA(kl+1) = A×1 (D(kl))m−1 ×2 D(kl) ×3 · · · ×m D(kl) to get

lim
k→∞
A(kl+1) = lim

k→∞
(A×1 (D(kl))m−1 ×2 D(kl) ×3 · · · ×m D(kl))

= A×1 ( lim
k→∞

D(kl))m−1 ×2 lim
k→∞

D(kl) ×3 · · · ×m lim
k→∞

D(kl);
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that is,

Â = A×1 (D̂)m−1 ×2 D̂ ×3 · · · ×m D̂.

It can be seen from Theorem 2.4 that ri(Â) = ρ(A), i ∈ ⟨n⟩; therefore

ρ(A)(D̂e)m−1 = A(D̂e)[m−1],

where e = (1, 1, · · · , 1)T ∈ Rn
++. Denote x = D̂e, then x = D̂e ∈ Rn

++, andAxm−1 = ρ(A)x[m−1].

4. Numerical examples

In this section, to show the effectiveness of Algorithm 3, we compare it with the LZI algorithm. For
the parameter αk in the algorithm, we selected different values and compared the corresponding results.

Example 4.1. Let A = (ai1i2i3i4i5) ∈ R
[m,n]
+ (m = 5), where a111 j j = 1, a j j j11 = 1 for all j ∈ ⟨n⟩\{1} and

zero elsewhere.

In the experiment, αk = (r(A(k)) − r(A(k)))/mn in Algorithm 3, and x(0) = e = (1, 1, · · · , 1)T ∈ Rn
++,

ρ = 1 in the LZI algorithm. We terminated the iteration when one of the conditions below was met:
(1) r(A(k)) − r(A(k)) < 10−8.
(2) The number of iteration exceeds 104.
Some numerical results are given in Table 1, where ρ(A) denotes the H-spectral radius of A, Iter

denotes the iteration of the algorithms and Time(s) denotes the CPU time (in seconds) used when the
conditions (1) are met.

Table 1 shows a comparison between Algorithm 3 and the LZI algorithm given in [8], with the same
error and the number of iterations and calculation time significantly reduced, which further verifies that
our proposed algorithm is more efficient.

Table 1. The comparison of the Algorithm 3 and LZI algorithm.

n Algorithm Iter Time(s) ρ(A)
5 Algorithm 3 3 0.0996 2
5 LZI 18 0.2412 2
10 Algorithm 3 3 2.3991 3
10 LZI 15 5.6626 3
15 Algorithm 3 3 17.5646 3.7414
15 LZI 14 40.6961 3.7414
20 Algorithm 3 3 73.7770 4.3589
20 LZI 13 157.9810 4.3589
25 Algorithm 3 3 224.9131 4.8990
25 LZI 13 489.2777 4.8990
30 Algorithm 3 3 598.0174 5.3852
30 LZI 12 1148.8 5.3852
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Example 4.2. Consider a random tensorA ∈ R[m,n]
+ (m = 3), whose all entries of random values drawn

from the standard uniform distribution on (0, 1).

Obviously, this is an s-index weakly positive tensor (s = 1 or 2). Choose ε = 10−8 and the
termination conditions are the same as in Example 4.1. Take different values for αk in Algorithm 3,
and the corresponding results are shown in Table 2, where r − r = r(A(k)) − r(A(k)).

Table 2. The comparison of different values of αk in Algorithm 3.

αk = (r − r)/mn αk = r − r αk = n(r − r) αk = mn(r − r)
n iter Time(s) iter Time(s) iter Time(s) iter Time(s)
5 7 0.0142 7 0.0006 9 0.0255 15 0.0333
10 6 0.0010 6 0.0009 10 0.0014 14 0.0056
20 6 0.0044 6 0.0124 9 0.0091 13 0.0179
40 5 0.0225 6 0.0516 10 0.0513 14 0.0725
60 5 0.0670 5 0.0621 10 0.1305 15 0.1917
80 5 0.1702 5 0.1622 10 0.3074 16 0.4595
100 5 0.3940 5 0.3183 10 0.5547 15 0.8285

From the data in Table 2, it can be seen that when the value of αk is different, there are differences
in the number of iteration steps and operation times. The calculation time is almost the same, but
the difference in iteration steps is quite significant, so selecting the appropriate αk will improve the
efficiency of the algorithm.

5. Conclusions

In this paper, a class of s-index weakly positive tensors was defined and a diagonal similar iterative
algorithm for the maximum H-eigenvalue of such tensors was given. In the algorithm, a variable
parameter was introduced in each iteration, which is equivalent to a translation transformation for
each iteration of the tensor. Compared with the LZI algorithm, the number of iterations and time of
calculation have great advantages. It was also proved that the algorithm has linearly convergence for
s-index weakly positive tensors.
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