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Abstract: Sylow's theorems are fundamental theorems in classical group theory that are of paramount 

importance. The extension of these theorems into diverse fuzzy contexts emerges as a compelling area 

of exploration. This study introduces the novel concept of the conjunctive complex fuzzy conjugate 

element within the conjunctive complex fuzzy subgroup of a group, elucidating numerous crucial 

properties of this concept. Additionally, it propounds the notion of the conjunctive complex fuzzy 𝑝-

subgroup within the conjunctive complex fuzzy subgroup (CCFSG) and delineates various 

indispensable characteristics associated with this construct. Additionally, the paper formulates the 

conjunctive complex fuzzy version of the Cauchy theorem for finite groups. Lastly, it defines the 

concept of the conjunctive complex fuzzy Sylow 𝑝 -subgroup for a finite group and conducts a 

generalization of Sylow's theorems within a conjunctive complex fuzzy environment. 
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1. Introduction

Sylow’s theorems are a crucial component of crisp group theory, particularly in the context of 

categorizing finite simple groups. Finite groups have a significant role within the field of group theory. 

In the realm of finite group theory, these findings hold significant value as they serve as a noteworthy 

point of reference in relation to Lagrange's theorem, a widely recognized principle. By providing a 

means of examination, they facilitate the identification of subgroups with certain ordering. The 

fundamental concepts and methodologies of group theory, encompassing the pivotal Sylow theorems, 
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have profound implications across several domains of scientific inquiry and technological 

advancements. The historical origins of these widely recognized views can be traced back to the 

sources cited in references [1,2]. 

In modern times, the fields of science and technology frequently encounter complex processes and 

phenomena that remain beyond comprehensive and accurate insight. Hence, it is crucial to integrate 

precise mathematical models into systems that demonstrate a significant degree of uncertainty. The 

motivation for the development of fuzzy set theory emerged from the necessity to expand traditional set 

theory in order to effectively address a certain objective. The framework presented herein offers a 

systematic approach for the development and evaluation of diverse models that effectively capture and 

tackle the inherent uncertainties within a given context. This theory is essential to the development of 

these models. Moreover, it facilitates our capacity to explore and adjust to the complex and unpredictable 

characteristics of systems within diverse scientific and technical fields. 

Moreover, the applicability of fuzzy set theory has been proven across a diverse range of scientific 

disciplines and physical phenomena. Fuzzy sets (FS) have proven to be a flexible approach for 

effectively dealing with complex and uncertain situations across several areas. Nevertheless, it is 

possible that they may not consistently possess the capability to effectively communicate the intricate 

nature of the matter under consideration. FS predominantly focuses on membership functions that 

operate in a single dimension, hence posing challenges in representing intricate relationships and 

variables over many dimensions. Ordinary FS serves as a powerful mathematical tool in such situations. 

Fuzzy logic systems serve as a logical progression from the notion of FS, enabling the resolution of 

issues that are not amenable to traditional fuzzy sets. Complex fuzzy sets (CFS) have the ability to 

exhibit uncertainty in a more intricate way by integrating many dimensions or membership 

characteristics. This facilitates the thorough and effective examination of situations with intricate 

physical attributes and enhances an individual's ability to make knowledgeable judgments in difficult 

and confusing settings. 

In contemporary society, the advancement of computer technology, the accessibility of high-

speed processors, and the extensive utilization of programming languages have presented researchers 

with new prospects to explore and create algorithms that specifically address intricate physical 

phenomena in diverse scientific domains. The field of general operator theory provides a theoretical 

framework for comprehending the mathematical principles that form the foundation of several 

technical approaches utilized across different areas. The complex fuzzy environment demonstrates 

mathematical structures that may be readily elucidated within the context of general operator theory. 

By adopting this expansion, it becomes possible to create software programs that possess the potential 

to address a wide array of difficulties and make substantial contributions to advancements in several 

fields of study. 

1.1. Literature review 

Zadeh [3] laid the foundation for the notion of an FS, presenting it as a formidable tool to grapple 

with the intricacies inherent in navigating uncertainty within pragmatic contexts. Rosenfeld [4] initiated 

the seminal description of fuzzy subgroups (FSGs) and their algebraic properties. Subsequently, the 

introduction of the concept of level subgroups within the framework of FSG was accomplished [5]. 

The references [6–10] offer comprehensive information regarding the fundamental principles that 

underlie FSG. The topic of complex fuzzy numbers was introduced by Buckley in 1989 [11]. Based 

on this concept, the author [12] proposed the utilization of complex fuzzy numbers as a foundation for 

constructing a unique framework for differentiation. Furthermore, the previously mentioned author [13] 



40 

 

 

AIMS Mathematics  Volume 9, Issue 1, 38–54. 

elucidated several key characteristics of fuzzy contour integrals within the complex plane. Zhang [14] 

established some significant attributes pertaining to complex fuzzy numbers in 2012. In 2013, 

Ascia et al. [15] proposed a fuzzy processor designed to effectively handle intricate fuzzy inference 

systems. The concept of CFS was presented by Ramote et al. [16] in 2002 and demonstrated a comprehensive 

analysis of two novel operations: reflection and rotation. Furthermore, over a complex fuzzy space, the 

authors have recently devised the theories of complex fuzzy normal subgroups (CFNSG) [17], complex 

fuzzy hyperstructure [18] and CFSG [19]. Alsarahead and Ahmad [20] used the concept of CFS to 

develop the notion of CFSG in 2017. The concept of complex intuitionistic fuzzy sets was initially 

introduced in the publication [21]. Furthermore, [22, 23] have demonstrated the practical applications of 

this novel concept in decision-making scenarios. In 2018, a parallelity-preserving approximation was 

introduced in the realm of complex fuzzy operators [24], along with an exploration of multiple complex 

fuzzy geometric aggregation operators [25]. Two entropy metrics for CFS, investigating their 

rotational invariance were introduced in [26]. Dai et al. [27] presented distance measures between the 

interval-valued complex fuzzy sets. Abd Ulzeez et al. [28] defined a bipolar complex fuzzy distance 

measure in 2020, while [29] presented the CFS phenomenon based on the linear conjunctive operator. 

Current uses of CFS are evident in works cited in references [30–35]. 

1.2. Research gap in the existing literature, baseline information and innovative aspects of the study 

Examining the previous publications, we determine that some advances have been made in the 

fields of classical and complex fuzzy group theory. Moreover, some results have been proven for 

CCFSG, but there are still many unanswered questions, such as: 

1) Conjugacy relation in classical group theory is fundamental for understanding group structure, 

defining normal subgroups, characterizing elements into classes, and is pivotal in Sylow 

theory and various algebraic applications. This concept has been defined in the framework of 

FSG. However, in the CCFSG perspective, this notion has yet to be defined. 

2) In classical group theory, it is well-known that the conjugacy relation is an equivalence relation. 

Furthermore, any two conjugate elements have the same order. In the existing literature, these 

results have been examined in classical fuzzy environments. The natural questions that come 

to mind are: 

a) Is the CCF conjugacy relation an equivalence relation? 

b) Do two CCF conjugate elements of a group 𝐺 have the same CCF order? 

3) Cauchy's theorem is essential in the process of classifying finite abelian groups. The existing 

body of knowledge lacks the CCF version of this important mathematical result. 

4) Sylow's theorems are a set of three fundamental theorems in classical group theory that are of 

paramount importance in the study of finite groups, group actions and many other areas of 

algebra. In the literature, classical fuzzy variants of these theorems are available. However, 

within the framework of the CCFSG environment, the Sylow theorems have not yet been 

studied. 

The primary aim of this study is to address the aforementioned unsolved problems and fill the 

existing knowledge gap within the field. Therefore, the findings presented in this study provide 

innovative insights into the examination of CCFSG. 

Following an introductory discourse tracing the evolution of CCFSG, the subsequent trajectory 

of this paper unfolds as follows: Section 2 delves into a comprehensive exploration of the fundamental 

tenets underpinning CCFS and CCFSG, which constitute pivotal prerequisites for grasping the ensuing 

content of this paper. In Section 3, we expound upon the intricate constructs of the CCF conjugate 
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element within the context of CCFSG, ascribed to a finite group 𝐺. The subsequent discourse, housed 

within Section 4, is dedicated to an intricate examination of the CCF 𝑝-subgroup of CCFSG. Within 

this purview, a compendium of algebraic properties intrinsic to this conceptual framework is 

meticulously expounded upon. This examination serves as a springboard for establishing the CCF 

variant of Cauchy's theorem, thereby demonstrating the utility of these concepts in extending classical 

results. In Section 5, we embark upon a scholarly exploration, introducing the domain of CCF conjugate 

subgroups (CCFCSG) and CCF Sylow 𝑝-subgroups. This endeavor is complemented by an intricate 

explication of the progressive concretization of the three renowned Sylow theorems within the 

overarching context of conjunctive complex fuzzification. 

2. Basic definitions 

This section provides essential prerequisite knowledge regarding the complex fuzzy environment 

in order to comprehend the novelty of the work described in this paper. 

Definition 2.1. [29] Let 𝑈 be a universe. A complex fuzzy set 𝐴 is described as follows: 

𝐴 = {(𝑚, 𝜇𝐴(𝑚)):𝑚 ∈ 𝑈}, 

where 𝜇𝐴 is a complex valued function that maps each element 𝑚 ∈ 𝑈 to a unit circle. 

Definition 2.2. [29] Given a CFS 𝐴 over the universe 𝑈 and an element 𝜉 ∈ 𝐶∗ expressed as: 𝜉 = 𝛼𝑒𝛿 , 

where 𝛼 ∈ [0, 1] and 𝛿 ∈ [0, 2𝜋], the CCF set denoted as 𝐴𝜉 with respect to CFS 𝐴 is characterized 

by the following structure: 

𝜇𝐴𝜉(𝑚) = 𝑚𝑖𝑛(𝑟𝐴(𝑚)𝑒
𝑖𝜔𝐴(𝑚), 𝛼𝑒𝑖𝛽) = 𝑚𝑖𝑛{𝑟𝐴(𝑚), 𝛼}𝑒

𝑖𝑚𝑖𝑛(𝜔𝐴(𝑚),𝛽) = 𝑟𝐴𝜉(𝑚)𝑒
𝑖𝜔

𝐴𝜉
(𝑚), ∀𝑚 ∈ 𝑈. 

Here, the 𝑟𝐴𝜉 is a real valued function that maps each element 𝑚 ∈ 𝑈 to a unit interval. Furthermore, the 

term 𝑒𝑖𝜔𝐴𝜉  embodies a periodic function featuring a periodicity of  2𝜋 and 0 < 𝑎𝑟𝑔𝐴𝜉 ≤ 2𝜋. Note that, 

𝐹𝜉(𝑈) stands for the CCFS family of 𝑈. 
Definition 2.3. [29] For any 𝐴𝜉 ∈ 𝐹𝜉(𝑈) , 𝛼 ∈ [0,1]  and 𝛿 ∈ [0.2π],  the (𝛼, 𝛿) -cut set of 𝐴𝜉  is 

described as 𝐴(𝛼,𝛿)
𝜉

= {𝑚 ∈ 𝑈: 𝑟𝐴𝜉(𝑚) ≥ 𝛼,𝜔𝐴𝜉(𝑚) ≥ 𝛿}. 

Definition 2.4. [29] The level set Ω𝐴𝜉  of 𝐴𝜉  can be described as Ω𝐴𝜉 = {𝑚 ∈ 𝑈: 𝑟𝐴𝜉(𝑚) =

𝛼,𝜔𝐴𝜉(𝑚) = 𝛿}, where 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛿 ≤ 2𝜋. 

Definition 2.5. [29] Let 𝐴𝜉 ∈ 𝐹𝜉(𝑈), 0 ≤ 𝛼 ≤ 1 and 0 ≤ 𝛿 ≤ 2𝜋 . Then the subgroup 𝐴(𝛼,𝛿)
𝜉

 with 

𝑟𝐴𝜉(𝑒) > 𝛼 and 𝜔𝐴𝜉(𝑒) > 𝛿 is called the level subgroup of CCFSG of 𝐴𝜉 and is denoted by ℓ(𝛼,𝛿)(𝐴
𝜉). 

Definition 2.6. [35] For any 𝐴𝜉 ∈ 𝐹𝜉(𝑈), the support of 𝐴𝜉  is defined as 𝐴∗
𝜉
= {𝑚 ∈ 𝑈: 𝑟𝐴𝜉(𝑚) >

0,𝜔𝐴𝜉(𝑚) > 0}. 

Definition 2.7. [29] Consider 𝐴𝜉 , 𝐵𝜉 ∈ 𝐹𝜉(𝑈). We establish the following definitions: 

1) 𝐴𝜉  is categorized as a homogeneous CCFS if 𝑟𝐴𝜉(𝑚) ≤ 𝑟𝐴𝜉(𝑛)  implies 𝜔𝐴𝜉(𝑚) ≤ 𝜔𝐴𝜉(𝑛) , 

∀𝑚, 𝑛 ∈ 𝑈. 

2) 𝐴𝜉  is designated as a homogeneous CCFS with 𝐵𝜉  if 𝑟𝐴𝜉(𝑚) ≤ 𝑟𝐵𝜉(𝑛)  implies 𝜔𝐴𝜉(𝑚) ≤

𝜔𝐵𝜉(𝑛), ∀𝑚, 𝑛 ∈ 𝑈. 

Definition 2.8. [29] For CCFS 𝐴𝜉  of a group G, we say that 𝐴𝜉  is a CCFSG if 𝐴𝜉  admits the 

subsequent conditions for all elements 𝑚, 𝑛 ∈ 𝐺: 

1) 𝜇𝐴𝜉(𝑚𝑛) ≥ 𝑚𝑖𝑛 {𝜇𝐴𝜉(𝑚), 𝜇𝐴𝜉(𝑛)}. 

2) 𝜇𝐴𝜉(𝑚
−1) ≥ 𝜇𝐴𝜉(𝑚). 

Note that, the collection of CCFSG of 𝐺 is denoted by 𝐹𝜉(𝐺). 
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Definition 2.9. [35] Consider 𝐴𝜉 ∈ 𝐹𝜉(𝐺)  and an element 𝑚 of a finite group 𝐺. The least positive 

integer 𝑛 is called CCF order of 𝑚 (denoted by 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚)) if 𝜇𝐴𝜉(𝑚
𝑛) = 𝜇𝐴𝜉(𝑒). 

Definition 2.10. [35] Let 𝐴𝜉 be a CCFSG of 𝐺. The CCF order of 𝐴𝜉 (written as 𝜉 − 𝐶𝐹𝑂(𝐴𝜉)) is the 

smallest common multiple of CCF order of all elements of 𝐺. 

Theorem 2.1. [35] If 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑎, then 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚
𝑏) =

𝜉−𝐶𝐹𝑂
𝐴𝜉
(𝑚)

(𝑎,𝑏)
, for some integer 𝑏. 

3. Properties of conjugacy classes of conjunctive complex fuzzy subgroup of a group 

In this segment, we introduce the notion of the CCF conjugate elements within the context of the CCFSG 

associated with a group G. We delve into a fundamental characteristic of this concept, and further explore the 

class equation pertaining to the CCFSG of a finite group. 

Definition 3.1. Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺)  and 𝑚, 𝑛  be any elements of a finite group 𝐺 . Then 𝑚  is CCF 

conjugate to 𝑛 (written as 𝑚~𝐴𝜉𝑛) if there exists 𝑒 ≠ 𝑥 ∈ 𝐺 such that 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑥
−1𝑛𝑥). 

Example 3.1. The CFSG 𝐴 of 𝑆3 =< 𝛼, 𝛽: 𝛼3 = 𝛽2 = 1, 𝛼𝛽 = 𝛼2𝛽 > is given by 

𝜇𝐴(𝑚) = {

0.9𝑒𝑖1.9𝜋,                     𝑚 ∈ {𝑒},

0.7𝑒𝑖1.2𝜋,               𝑚 ∈ {𝛼, 𝛼2},

0.5𝑒𝑖𝜋, 𝑚 ∈ {𝛽, 𝛼𝛽, 𝛼2𝛽}.

 

The CCFSG 𝐴𝜉 of 𝑆3 corresponding to the value 𝜉 = 0.74𝑒𝑖1.5𝜋 is given as 

𝜇𝐴𝜉(𝑚) = {

0.9𝑒𝑖1.9𝜋,                    𝑚 ∈ {𝑒},

0.7𝑒𝑖1.2𝜋,            𝑚 ∈ {𝛼, 𝛼2},

0.5𝑒𝑖𝜋,      𝑚 ∈ {𝛽, 𝛼𝛽, 𝛼2𝛽}.

 

In view of Definition 3.1, we obtain 𝑒~𝐴𝜉𝑒, 𝛼~𝐴𝜉𝛼
2, 𝛽~𝐴𝜉𝛼𝛽 and 𝛼2𝛽. 

The subsequent outcome delineates crucial algebraic characteristics of any two conjugate elements. 

Theorem 3.1. Any two CCF conjugate elements of a group 𝐺 have the same CCF order. 

Proof. By applying the mentioned condition for any two conjugate elements 𝑚, 𝑛 ∈ 𝐺, we have 

𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑥
−1𝑛𝑥), 𝑥 ∈ 𝐺. 

Consider 

𝜇𝐴𝜉(𝑚
2) = 𝜇𝐴𝜉(𝑥

−1𝑛𝑥. 𝑥−1𝑛𝑥) = 𝜇𝐴𝜉(𝑥
−1𝑛2𝑥). 

Applying the concept of mathematical induction to the equation above yields 

𝜇𝐴𝜉(𝑚
𝑘) = 𝜇𝐴𝜉(𝑥

−1𝑛𝑘𝑥). 

Moreover, suppose 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑎 and 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) = 𝑏. 

This implies that 𝜇𝐴𝜉(𝑛
𝑎) = 𝜇𝐴𝜉(𝑥

−1𝑚𝑎𝑥) = 𝜇𝐴𝜉(𝑒) and 𝜇𝐴𝜉(𝑚
𝑏) = 𝜇𝐴𝜉(𝑥

−1𝑛𝑏𝑥) = 𝜇𝐴𝜉(𝑒). 

By applying the Theorem 2.1 in the above equation, we get 𝑎|𝑏 and 𝑏|𝑎. 

Definition 3.2. The conjugacy class of an element 𝑚 ∈ 𝐺  of a CCFSG 𝐴𝜉  of a finite group 𝐺  is 

denoted by 𝐶𝑙𝐴𝜉(𝑚) and is defined as 𝐶𝑙𝐴𝜉(𝑚) = {𝑛 ∈ 𝐺:𝑚~𝐴𝜉𝑛}. 

Example 3.2. In view of Example 3.1, we have 

𝐶𝑙𝐴𝜉(1) = {1}, 𝐶𝑙𝐴𝜉(𝛼) = {𝛼, 𝛼
2}, 𝐶𝑙𝐴𝜉(𝛽) = {𝛽, 𝛼𝛽, 𝛼

2𝛽}. 

Proposition 3.1. Show that the relation of CCF conjugacy between elements of CCFSG of 𝐺 is an 

equivalence relation. 
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Proof. Reflexivity: Let 𝑚 ∈ 𝐺 , then 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒
−1𝑚𝑒), where 𝑒 is the identity element of 𝐺. 

Hence 𝑚~𝑚 for all 𝑚 ∈ 𝐺. 

Symmetry: Consider 𝑚~𝐴𝜉𝑛 so that there is an element 𝑥 ∈ 𝐺, then we have 

𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑥
−1𝑛𝑥) and 𝜇𝐴𝜉(𝑥𝑚𝑥

−1) = 𝜇𝐴𝜉(𝑥𝑥
−1𝑛𝑥𝑥−1). 

This further implies that 𝜇𝐴𝜉(𝑥
−1𝑚𝑥) = 𝜇𝐴𝜉(𝑛). This shows that 𝑛~𝐴𝜉𝑚. 

Transitivity: For any 𝑚, 𝑛, 𝑝 ∈ 𝐺 , consider 𝑚~𝐴𝜉𝑛  and 𝑛~𝐴𝜉𝑝 , there exist two elements 𝑥, 𝑦 ∈

𝐺 such that 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑥
−1𝑛𝑥) and 𝜇𝐴𝜉(𝑛) = 𝜇𝐴𝜉(𝑦

−1𝑝𝑦). 

Now 𝜇𝐴𝜉(𝑥
−1𝑛𝑥) = 𝜇𝐴𝜉(𝑥

−1𝑦−1𝑝𝑦𝑥). This implies that 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑥
−1𝑦−1𝑝𝑦𝑥). 

This shows that 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉((𝑦𝑥)
−1𝑝(𝑦𝑥)). This means that 𝑚~𝐴𝜉𝑝. 

Remark 3.1. Let 𝐺  be a commutative abelian group. Then CCF conjugacy class of 𝑚 ∈ 𝐺  is a 

singleton set. 

The subsequent finding delineates the conditions whereby the conjugacy class of two elements of 

CCFSG of a group 𝐺 are equal. 

Theorem 3.2. 𝐶𝑙𝐴𝜉(𝑚) = 𝐶𝑙𝐴𝜉(𝑛) if and only if 𝑚 ∼𝐴𝜉 𝑛. 

Proof. Suppose that 𝑚 ∼𝐴𝜉 𝑛. Consider 𝑥 ∈ 𝐶𝑙𝐴𝜉(𝑚), then by using Definition 3.2, we have 𝑥 ∼𝐴𝜉 𝑚. 

Since 𝑥 ∼𝐴𝜉 𝑚 and 𝑚 ∼𝐴𝜉 𝑛, then by the transitive property, we have 𝑥 ∼𝐴𝜉 𝑛. Thus 𝑥 ∈ 𝐶𝑙𝐴𝜉(𝑛). 

This shows that  𝐶𝑙𝐴𝜉(𝑚) ⊆ 𝐶𝑙𝐴𝜉(𝑛) . Similarly, we obtain 𝐶𝑙𝐴𝜉(𝑛) ⊆ 𝐶𝑙𝐴𝜉(𝑚).  Consequently, 

𝐶𝑙𝐴𝜉(𝑚) = 𝐶𝑙𝐴𝜉(𝑛). 

Conversely, let  𝐶𝑙𝐴𝜉(𝑚) = 𝐶𝑙𝐴𝜉(𝑛) . This implies that 𝑥 ∼𝐴𝜉 𝑚  and 𝑥 ∼𝐴𝜉 𝑛 , 𝑥 ∈ 𝐺 . 

Consequently, 𝑚 ∼𝐴𝜉 𝑛. 

Definition 3.3. Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺), then the centralizer of 𝐴𝜉 (written as ℂ(𝐴𝜉)) is described as ℂ(𝐴𝜉) =

{𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐴𝜉(𝑛𝑚), ∀𝑛 ∈ 𝐺}. 

Lemma 3.1. For any elements 𝑚 and 𝑛 in 𝐺, 𝜇𝐴𝜉(𝑚𝑛
−1) = 𝜇𝐴𝜉(𝑒) ⟺ 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑛). 

Proof. Assume that 𝜇𝐴𝜉(𝑚𝑛
−1) = 𝜇𝐴𝜉(𝑒) . Consider 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑚𝑛

−1𝑛) = 𝜇𝐴𝜉((𝑚𝑛
−1)𝑛) ≥

min{𝜇𝐴𝜉(𝑚𝑛
−1), 𝜇𝐴𝜉(𝑛)} = min{𝜇𝐴𝜉(𝑒), 𝜇𝐴𝜉(𝑛)} . We get the following relation by applying the 

given facts in the above equation: 

𝜇𝐴𝜉(𝑚) ≥ 𝜇𝐴𝜉(𝑛) .        (3.1) 

Similarly, 

𝜇𝐴𝜉(𝑚) ≤ 𝜇𝐴𝜉(𝑛) .        (3.2) 

The application of (3.1) and (3.2) yield that 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑛). 

Conversely, suppose that 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑛). This implies that 𝜇𝐴𝜉(𝑚𝑛
−1) = 𝜇𝐴𝜉(𝑛𝑛

−1) = 𝜇𝐴𝜉(𝑒). 

Lemma 3.2. If 𝐴𝜉 ∈ 𝐹𝜉(𝐺) and 𝑇 = {𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑚𝑛𝑚
−1𝑛−1) = 𝜇𝐴𝜉(𝑒), ∀𝑛 ∈ 𝐺}, then 𝑇 = ℂ(𝐴𝜉). 

Proof. Let 𝑚 ∈ 𝑇, then for all 𝑛 ∈ 𝐺, we get 𝜇𝐴𝜉(𝑚𝑛(𝑛𝑚)
−1) = 𝜇𝐴𝜉(𝑚𝑛𝑚

−1𝑛−1) = 𝜇𝐴𝜉(𝑒). 

We get the following relation by applying the Lemma 3.1 in the above equation: 𝜇𝐴𝜉(𝑚𝑛) =

𝜇𝐴𝜉(𝑛𝑚), ∀𝑛 ∈ 𝐺. This implies that 𝑚 ∈ ℂ(𝐴𝜉). Thus, 

𝑇 ⊆ ℂ(𝐴𝜉).         (3.3) 

Furthermore, if 𝑚 ∈ ℂ(𝐴𝜉), then 𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐴𝜉(𝑛𝑚). 

We get the following relation by applying the Lemma 3.1 in the above equation: 

𝜇𝐴𝜉(𝑚𝑛(𝑛𝑚)
−1) = 𝜇𝐴𝜉(𝑒), ∀𝑚, 𝑛 ∈ 𝐺. 

It follows that 𝜇𝐴𝜉(𝑚𝑛𝑚
−1𝑛−1) = 𝜇𝐴𝜉(𝑒). This shows that 𝑚 ∈ 𝑇. 
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Thus, 

ℂ(𝐴𝜉) ⊆ 𝑇.         (3.4) 

By comparing (3.3) and (3.4), we have  𝑇 = ℂ(𝐴𝜉). 

Remark 3.2. It may be noted that the centralizer of an element of 𝐴𝜉  is written as ℂ𝐴𝜉(𝑚) and is 

defined as: ℂ𝐴𝜉(𝑚) = {𝑛 ∈ 𝐺: 𝜇𝐴𝜉(𝑚𝑛𝑚
−1𝑛−1) = 𝜇𝐴𝜉(𝑒)}. 

Example 3.3. In view of Example 3.1, Definition 3.3 and Remark 3.2, we have 

ℂ(𝐴𝜉) = {1}, ℂ𝐴𝜉(1) = {1}, ℂ𝐴𝜉(𝛽) = {1, 𝛽}, ℂ𝐴𝜉(𝛼) = {1, 𝛼, 𝛼
2}. 

Lemma 3.3. Let  𝐴𝜉 ∈ 𝐹𝜉(𝐺) . If 𝑚 ∈ ℂ(𝐴𝜉),  then 𝜇𝐴𝜉(𝑚𝑛1𝑛2…𝑛𝑘) = 𝜇𝐴𝜉(𝑛1𝑚𝑛2…𝑛𝑘) = ⋯ =

𝜇𝐴𝜉(𝑛1𝑛2…𝑛𝑘𝑚), ∀𝑛1, 𝑛2, … , 𝑛𝑘 ∈ 𝐺. 

Proof. We prove the result by induction on  𝑘 . Suppose 𝑚 ∈ ℂ(𝐴𝜉).  Then, 𝜇𝐴𝜉(𝑚𝑛1𝑛2) =

𝜇𝐴𝜉(𝑛1𝑛2𝑚), ∀𝑛1, 𝑛2 ∈ 𝐺. 

Assume that 𝜇𝐴𝜉(𝑚𝑛1𝑛2…𝑛𝑘) = 𝜇𝐴𝜉(𝑛1𝑚𝑛2…𝑛𝑘)=… = 𝜇𝐴𝜉(𝑛1𝑛2…𝑛𝑘𝑚), ∀𝑛1, 𝑛2, … , 𝑛𝑘 ∈ 𝐺. 

Consider 

(𝑚𝑛1𝑛2… . (𝑛𝑘𝑛𝑘+1)) = 𝜇𝐴𝜉(𝑛1𝑚𝑛2… . (𝑛𝑘𝑛𝑘+1)) 

⋮ 
= 𝜇𝐴𝜉(𝑛1𝑛2… .𝑚(𝑛𝑘𝑛𝑘+1)) 

= 𝜇𝐴𝜉(𝑛1𝑛2… . (𝑛𝑘𝑛𝑘+1)𝑚), 

and 

𝜇𝐴𝜉(𝑚(𝑛1𝑛2)… . 𝑛𝑘𝑛𝑘+1) = 𝜇𝐴𝜉((𝑛1𝑛2)𝑚… . 𝑛𝑘𝑛𝑘+1) 

⋮ 
= 𝜇𝐴𝜉((𝑛1𝑛2)… . 𝑛𝑘𝑚𝑛𝑘+1) 

= 𝜇𝐴𝜉((𝑛1𝑛2)… . 𝑛𝑘𝑛𝑘+1𝑚), ∀𝑛1, 𝑛2, … 𝑛𝑘 ∈ 𝐺. 

This completes the proof. 

Theorem 3.3. If 𝐴𝜉 ∈ 𝐹𝜉(𝐺), then ℂ(𝐴𝜉) is a subgroup of 𝐺. 

Proof. For any element 𝑚 in ℂ(𝐴𝜉), we get 𝜇𝐴𝜉(𝑚𝑥𝑚
−1𝑥−1) = 𝜇𝐴𝜉(𝑒), ∀𝑥 ∈ 𝐺. Consider  

𝜇𝐴𝜉((𝑚𝑛)𝑥(𝑚𝑛)
−1𝑥−1) = 𝜇𝐴𝜉(𝑚𝑛𝑥𝑛

−1𝑚−1𝑥−1) 

= 𝜇𝐴𝜉(𝑚𝑛𝑛
−1𝑥𝑚−1𝑥−1) 

= 𝜇𝐴𝜉(𝑚𝑥𝑚
−1𝑥−1) 

= 𝜇𝐴𝜉(𝑒). 

This shows that 𝑚𝑛 ∈ ℂ(𝐴𝜉). 

Furthermore, consider 

𝜇𝐴𝜉(𝑚
−1𝑥(𝑚−1)−1𝑥−1) = 𝜇𝐴𝜉(𝑚

−1𝑥𝑚𝑥−1) 

= 𝜇𝐴𝜉(𝑚
−1𝑚𝑥𝑥−1) 

= 𝜇𝐴𝜉(𝑒). 

Thus, 𝑚−1 ∈ ℂ(𝐴𝜉). Consequently, ℂ(𝐴𝜉) is a subgroup of 𝐺. 

Remark 3.3. Assume that 𝐴𝜉 ∈ 𝐹𝜉(𝐺), then: 

1) If 𝐴𝜉 is a conjunctive complex fuzzy normal subgroup CCFNSG of a group 𝐺, then ℂ(𝐴𝜉) ⊴ 𝐺. 

2) If 𝐴𝜉 is a CCFSG of an abelian group 𝐺, then ℂ(𝐴𝜉) = 𝐺. 

Theorem 3.4. Let 𝐺 be a finite group and 𝐴𝜉 ∈ 𝐹𝜉(𝐺), then |𝐶𝑙𝐴𝜉(𝑚)| =
|𝐺|

|ℂ
𝐴𝜉
(𝑚)|

, 𝑚 ∈ 𝐺. 
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Proof. Let 𝐻 = {𝑥1ℂ𝐴𝜉(𝑚), 𝑥2ℂ𝐴𝜉(𝑚), 𝑥3ℂ𝐴𝜉(𝑚),… , 𝑥𝑛ℂ𝐴𝜉(𝑚): 𝑥𝑖 ∈ 𝐺, 𝑖 = 1,2, … 𝑛}  be the 

collection of all disjoint cosets of ℂ𝐴𝜉(𝑚) in 𝐺. The left decomposition of 𝐺 as a disjoint union of 

cosets of ℂ𝐴𝜉(𝑚)  in 𝐺  is given by 𝐺 = ⋃ 𝑥𝑖ℂ𝐴𝜉(𝑚), 𝑥𝑖 ∈ 𝐺.
𝑛
𝑖=1  This implies that  𝑂(𝐺) =

𝑛. 𝑂 (ℂ𝐴𝜉(𝑚)). Define a mapping 𝜙:𝐻 → 𝐶𝑙𝐴𝜉(𝑚) by 

𝜙 (𝑥ℂ𝐴𝜉(𝑚)) = 𝜇𝐴𝜉(𝑥
−1𝑚𝑥). 

Note that 𝜙 is well-defined, since for 𝑥, 𝑦 ∈ 𝐺, we have 

𝑥ℂ𝐴𝜉(𝑚) = 𝑦ℂ𝐴𝜉(𝑚). 

This implies that 𝑥−1𝑦 ∈ ℂ𝐴𝜉(𝑚). By using Definition 3.3, we have 

𝜇𝐴𝜉(𝑚(𝑥
−1𝑦)𝑚−1(𝑥−1𝑦)−1) = 𝜇𝐴𝜉(𝑒). 

This shows that 𝜇𝐴𝜉(𝑥
−1𝑚𝑥) = 𝜇𝐴𝜉(𝑦

−1𝑚𝑦).  Consequently, 𝜙 (𝑥ℂ𝐴𝜉(𝑚)) = 𝜙 (𝑦ℂ𝐴𝜉(𝑚)) . 

Let 𝑥, 𝑦 ∈ 𝐺 , then 𝜙 (𝑥ℂ𝐴𝜉(𝑚)) = 𝜙 (𝑦ℂ𝐴𝜉(𝑚)) . This implies that 𝜇𝐴𝜉(𝑥
−1𝑚𝑥) = 𝜇𝐴𝜉(𝑦

−1𝑚𝑦) . 

This further implies that 𝜇𝐴𝜉(𝑚(𝑥
−1𝑦)𝑚−1(𝑥−1𝑦)−1) = 𝜇𝐴𝜉(𝑒). This means that 𝑥−1𝑦 ∈ ℂ𝐴𝜉(𝑚), 

implying that 𝑥ℂ𝐴𝜉(𝑚) = 𝑦ℂ𝐴𝜉(𝑚). Thus, 𝜑 is injective. 

Furthermore, it is easy to show that 𝜙 is onto. Therefore, there exists a bijective mapping between 𝐻 

and 𝐶𝑙𝐴𝜉(𝑚). Hence 𝑂(𝐻) = 𝑂 (𝐶𝑙𝐴𝜉(𝑚)). Consequently, |𝐶𝑙𝐴𝜉(𝑚)| =
|𝐺|

|ℂ
𝐴𝜉
(𝑚)|

. 

Corollary 3.1. The cardinality of the conjugacy class of an element of CCFSG 𝐴𝜉 divides the order of 𝐺. 

Proof. The required outcome is a consequence of the well-known result that the centralizer is a 

subgroup of a finite group 𝐺 and in view of Langrange’s theorem its index divides the order of the 

finite group 𝐺. It may be noted that the index of 𝐶𝑙𝐴𝜉(𝑚) is infact the number of disjoint left cosets of 

ℂ𝐴𝜉(𝑚) in 𝐺. 

Definition 3.4. Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺), then the normalizer 𝐴𝜉 (written as ℕ(𝐴𝜉)) is described as follows: 

ℕ(𝐴𝜉) = {𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑛
−1𝑚𝑛), ∀𝑛 ∈ 𝐺}. 

Example 3.4. In the light of Example 3.1 and Definition 3.4, we have ℕ(𝐴𝜉) = {1, 𝛼, 𝛼2}. 

Remark 3.4. Suppose that 𝐴𝜉 ∈ 𝐹𝜉(𝐺), then: 

1) If 𝐴𝜉 is a CCFNSG of a group 𝐺, then ℕ(𝐴𝜉) = 𝐺. 

2)  ℂ(𝐴𝜉) ⊴ ℕ(𝐴𝜉). 

Definition 3.5. The class equation of CCFSG 𝐴𝜉 of a finite group 𝐺 is defined as 

|𝐺| = ∑ |𝐶𝑙𝐴𝜉(𝑚)|𝑚∈𝐺 . 

Example 3.5. In light of Example 3.2, the class equation of CCFSG 𝑆3 is given as 

|𝐺| = |𝐶𝑙𝐴𝜉(1)| + |𝐶𝑙𝐴𝜉(𝛼)| + |𝐶𝑙𝐴𝜉(𝛽)| = 1 + 2 + 3 = 6. 

4. Algebraic characteristics of conjunctive complex fuzzy 𝒑-subgroups 

This section introduces the idea of CCF 𝑝-subgroup of CCFSG and explores the several algebraic 

aspects associated with this phenomenon. In addition, we demonstrate the CCF variant of the Cauchy theorem. 

Definition 4.1. A CCFSG 𝐴𝜉 of a group 𝐺 is a CCF 𝑝-subgroup if 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) is a power of prime 

𝑝, ∀𝑚 ∈ 𝐺. 
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Theorem 4.1. Let 𝐴𝜉 be a CCFNSG of a finite group 𝐺, then the set 𝐺𝜉 = {𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒)} 

is normal in 𝐺. 

We establish a condition under which a CCFSG is a CCF 𝑝-subgroup in the following result: 

Theorem 4.2. Consider a CCFSG 𝐴𝜉 of a finite group 𝐺 such that 𝐺𝜉 = {𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒)} 

is normal in 𝐺, then 𝐴𝜉 is a CCF 𝑝-subgroup if and only if 𝐺 𝐺𝜉⁄ is a 𝑝-group. 

Proof. In light of Definition 4.1 and for any element 𝑚 ∈ 𝐺, we have 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑝
𝑞 for some 

non-negative integer 𝑞 and so 𝑚𝑝𝑘 ∈ 𝐺𝜉. Thus 𝐺 𝐺𝜉⁄  is a 𝑝-group. Conversely, let 𝐺 𝐺𝜉⁄  be a 𝑝-group. 

If 𝑚 ∈ 𝐺, then 𝑚𝑝𝑘 ∈ 𝐺𝜉 for some nonnegative integer 𝑞 and so 𝜇𝐴𝜉 (𝑚
𝑝𝑘) = 𝜇𝐴𝜉(𝑒). Consequently, 

𝐴𝜉 is a CCF 𝑝-subgroup. 

Theorem 4.3. If 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑎𝑏 for some coprime positive integers 𝑎 and 𝑏, then there exist 

𝑚1, 𝑚2 ∈ 𝐺 such that 𝑚 = 𝑚1𝑚2 = 𝑚2𝑚1, 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚1) = 𝑎 and 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚2) = 𝑏. 

Proof. Assume that 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑎𝑏 . Since (𝑎, 𝑏) = 1, then there exist integers 𝑥  and 𝑦 such 

that  𝑎𝑥 + 𝑏𝑦 = 1 . Here,  (𝑎, 𝑦) = (𝑏, 𝑥) = 1 . Let 𝑚1 = 𝑚
𝑎𝑦  and 𝑚2 = 𝑚

𝑏𝑥,  then 𝑚 = 𝑚1𝑚2 =
𝑚2𝑚1 . By using Theorem 2.1, we have 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚1) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚

𝑎𝑦 ) = 𝑏  and  𝜉 −

𝐶𝐹𝑂𝐴𝜉(𝑚2) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚
𝑏𝑥) = 𝑎. 

Theorem 4.4. (Conjunctive complex fuzzification of Cauchy theorem) Let 𝐺 be a finite group and 

𝐴𝜉 ∈ 𝐹𝜉(𝐺) and 𝜉 − 𝐶𝐹𝑂(𝐴𝜉) = 𝑝𝑟𝑞, where 𝑝 is prime and (𝑝, 𝑞) = 1, then there is an element 𝑚 ∈ 𝐺 

such that 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑝
𝑠, for each nonnegative integer 𝑠 ≤ 𝑟. 

Proof. Since 𝜉 − 𝐶𝐹𝑂(𝐴𝜉) is the greatest common divisor of 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚), where 𝑚 ∈ 𝐺 there is 

an element 𝑚 in 𝐺 such that 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑝
𝑠. Applying the induction approach to 𝑠 and utilizing 

the Cauchy theorem in classical group theory, we can establish the existence of 𝑚 in 𝐺 such that 𝜉 −
𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑝

𝑠. 

Corollary 4.1. If 𝐴𝜉 is a CCFSG of an abelian group 𝐺 and 𝜉 − 𝐶𝐹𝑂(𝐴𝜉) = 𝑎𝑏 for some 𝑎, 𝑏 ∈ 𝑍, 

then there is an element 𝑚 in 𝐺 such that 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑎. 

Remark 4.1. Let 𝐴𝜉  be a CCFSG of a group 𝐺  and 𝑝 be a prime. Then 𝐻𝑃 = {𝑚 ∈ 𝐺: 𝜉 −
𝐶𝐹𝑂𝐴𝜉(𝑚, 𝑝) = 1} and 𝐿𝑃 = {𝑚 ∈ 𝐺: 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚 is a power of the prime 𝑝)} are subgroups of 𝐺. 

Theorem 4.5. Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺) such that the CCF index of 𝐴𝜉  is 𝑝, where 𝑝 is the smallest prime 

divisor of the order of 𝐺, then 𝐴𝜉 is a CCFNSG of 𝐺. 

Proof. Consider the subgroup H of G having index 𝑝 as follows: 𝐻 = {𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒)}. 

Then, the group 𝐺  acts on the set of all left cosets of 𝐺  by 𝐻  denoted by 𝐺 𝐻⁄ =
{𝑚1𝐻,𝑚2𝐻,𝑚3𝐻,…𝑚𝑝𝐻} by the left multiplication. The corresponding permutation representation 

of the action of 𝐺 on the set 𝐺 𝐻⁄  is interpreted as follows: 𝜑: 𝐺 → 𝑠𝑦𝑚(𝐺 𝐻⁄ ) with 𝑘𝑒𝑟𝜑 = 𝑐𝑜𝑟𝑒(𝐻). 

In view of the first fundamental isomorphism theorem of the classical groups, we have the quotient 

group 𝐺 𝐶𝑜𝑟𝑒(𝐻)⁄  is isomorphic to a subgroup of 𝑠𝑦𝑚(𝐺 𝐻⁄ ). Thus, by means of Lagrange’s theorem, 

we have 𝑂(𝐺 𝐶𝑜𝑟𝑒(𝐻)⁄ )  divides  𝑝! . Since 𝑂(𝐺 𝐻⁄ ) = 𝑝 , it follows that 𝑂(𝐺 𝐶𝑜𝑟𝑒(𝐻)⁄ )  divides 

(𝑝 − 1)! . But as the 𝑂(𝐻)  divides the 𝑂(𝐺),  we obtain the following relation  𝐻 = 𝐶𝑜𝑟𝑒(𝐻) . 

Otherwise, we have a contradiction against the minimality of the prime  𝑝 . Note that, 𝐻 ⊲ 𝐺  as 

𝐶𝑜𝑟𝑒(𝐻) is normal in 𝐺. Moreover, 𝐺 𝐻⁄  is abelian. Then, 𝑚𝐻 = 𝑛𝐻 = 𝑛𝐻𝑚𝐻. This implies that 

𝑚𝑛𝐻 = 𝑛𝑚𝐻 . Thus, 𝑚𝑛 = 𝑛𝑚 . Hence, 𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐴𝜉(𝑛𝑚), ∀𝑚, 𝑛 ∈ 𝐺 . Consequently, 𝐴𝜉  is a 

CCFNSG of 𝐺. 

Corollary 4.2. If the CCF index of 𝐴𝜉 is 2, then 𝐴𝜉 is CCFNSG of 𝐺. 

Definition 4.2. Let 𝐴𝜉 be any CCFSG of a finite group 𝐺 and 𝐻 = {𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒)}. Then, 

𝐴𝜉 is CCF abelian if 𝐻 is an abelian subgroup of 𝐺. 

Theorem 4.6. A CCFSG 𝐴𝜉 is CCF abelian if 𝜉 − 𝐶𝐹𝑂(𝐴𝜉) = 𝑝2, where 𝑝 is a prime. 
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Proof. The proof is derived from the straightforward implementation of Definition 4.1. 

5. Conjunctive complex fuzzification of Sylow’s theorems 

In this section, we present the notion of CCF conjugate subgroup (CCFCSG) and the CCF Sylow 

𝑝-subgroup in the context of finite group 𝐺. In addition, we demonstrate the conjunctive complex 

fuzzification of all three Sylow's theorems. 

Definition 5.1. Suppose that 𝐴𝜉 , 𝐵𝜉 ∈ 𝐹𝜉(𝐺), then 𝐴𝜉  is CCF conjugate (CCFCSG) to 𝐵𝜉  if there 

exists 𝑚 ∈ 𝐺 such that 𝜇𝐴𝜉(𝑛) = 𝜇𝐵𝜉(𝑚
−1𝑛𝑚), ∀𝑛 ∈ 𝐺. 

Theorem 5.1. Let 𝐴𝜉 , 𝐵𝜉 ∈ 𝐹𝜉(𝐺), then 𝐴𝜉 and 𝐵𝜉  are CCFCSG of 𝐺 if and only if 𝐴𝜉 = 𝐵𝜉 . 

Proof. Assume that 𝐴𝜉  and 𝐵𝜉  are CCFCSG of 𝐺 . In light of Definition 5.1, we get 𝜇𝐴𝜉(𝑛) =

𝜇𝐵𝜉(𝑚
−1𝑛𝑚), ∀𝑛 ∈ 𝐺 and 𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐵𝜉(𝑚𝑚

−1𝑛𝑚). This implies that 𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐵𝜉(𝑛𝑚). For 

some 𝑚 = 𝑒 ∈ 𝐺 , we have 𝜇𝐴𝜉(𝑒𝑛) = 𝜇𝐵𝜉(𝑛𝑒) . This further implies that 𝜇𝐴𝜉(𝑛) = 𝜇𝐵𝜉(𝑛) . 

Consequently, 𝐴𝜉 = 𝐵𝜉 . 

Conversely, suppose that 𝐴𝜉 = 𝐵𝜉 , which implies that 𝜇𝐴𝜉(𝑚) = 𝜇𝐵𝜉(𝑚), ∀𝑚 ∈ 𝐺 . This 

implies that 𝜇𝐴𝜉(𝑛) = 𝜇𝐵𝜉(𝑒
−1𝑛𝑒), ∀𝑛, ∈ 𝐺. This concludes that, 𝐴𝜉 and 𝐵𝜉  are CCFCSG of 𝐺. 

Corollary 5.1. If 𝐴𝜉 and 𝐵𝜉  are any two CCFCSG of 𝐺, then 𝜉 − 𝐶𝐹𝑂(𝐴𝜉) = 𝜉 − 𝐶𝐹𝑂(𝐵𝜉). 

Example 5.1. The CFSGs 𝐴 and 𝐵 of 𝐷4 are defined as follows: 

𝜇𝐴(𝑚) = {

0.8𝑒𝑖1.8𝜋,                              𝑖𝑓 𝑚 = 1,

0.72𝑒𝑖1.3𝜋,       𝑖𝑓 𝑚 = {𝛼2, 𝛽, 𝛼2𝛽},

0.4𝑒𝑖0.9𝜋,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

and 

𝜇𝐵(𝑚) = {

0.8𝑒𝑖1.8𝜋,                              𝑖𝑓 𝑚 = 1,

0.72𝑒𝑖1.3𝜋,      𝑖𝑓 𝑚 = {𝛼2, 𝛼𝛽, 𝛼3𝛽}

0.4𝑒𝑖0.9𝜋,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

, 

Then, the CCFSGs 𝐴𝜉 and 𝐵𝜉  of 𝐺 corresponding to the value 𝜉 = 0.75𝑒𝑖1.5𝜋 are given as 

𝜇𝐴𝜉(𝑚) = {

0.75𝑒𝑖1.5𝜋,                              𝑖𝑓 𝑚 = 1,

0.72𝑒𝑖1.3𝜋,         𝑖𝑓 𝑚 = {𝛼2, 𝛽, 𝛼2𝛽},

0.4𝑒𝑖0.9𝜋,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

and 

𝜇𝐵𝜉(𝑚) = {

0.75𝑒𝑖1.5𝜋,                             𝑖𝑓 𝑚 = 1,

0.72𝑒𝑖1.3𝜋,      𝑖𝑓 𝑚 = {𝛼2, 𝛼𝛽, 𝛼3𝛽}

0.4𝑒𝑖0.9𝜋,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

, 

Clearly, 𝜇𝐴𝜉(𝛼
2) = 𝜇𝐵𝜉((𝛼

3𝛽)𝛼2(𝛼3𝛽)). 

Definition 5.2. Let 𝑚 ∈ 𝐺 and  𝐴𝜉 ∈ 𝐹𝜉(𝐺). Then, the set 𝐶ℓ(𝐴𝜉) = {𝑚−1𝐴(𝛼,𝛿)
𝜉

𝑚:𝑚 ∈ 𝐺} is called 

the class of CCFCSG to 𝐴𝜉. 

Example 5.2. Consider the CFSG 𝐴 of 𝐷5 as follows: 

𝜇𝐴(𝑚) = {

0.8𝑒𝑖1.8𝜋,                                                               𝑖𝑓 𝑚 = 1,

0.72𝑒𝑖1.3𝜋,                                                      𝑖𝑓 𝑚 = {𝛼𝛽},

0.4𝑒𝑖0.9𝜋,      𝑖𝑓 𝑚 ∈ {𝛼, 𝛼2, 𝛼3, 𝛼4, 𝛽, 𝛼2𝛽, 𝛼3𝛽, 𝛼4𝛽}.
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Then, the CCFSG 𝐴𝜉 of 𝐺 corresponding to the value 𝜉 = 0.75𝑒𝑖1.5𝜋 is given as 

𝜇𝐴𝜉(𝑚) = {

0.75𝑒𝑖1.5𝜋,                                                         𝑖𝑓 𝑚 = 1,

0.72𝑒𝑖1.3𝜋,                                                  𝑖𝑓 𝑚 = {𝛼𝛽}

0.5𝑒𝑖𝜋,      𝑖𝑓 𝑚 ∈ {𝛼, 𝛼2, 𝛼3, 𝛼4, 𝛽, 𝛼2𝛽, 𝛼3𝛽, 𝛼4𝛽}.

, 

In view of Definition 2.3, we have 𝐴(𝛼,𝛿)
𝜉

= {1, 𝛼𝛽}. 

The required class of CCFCSG of 𝐴𝜉  is obtained as 𝐶ℓ(𝐴𝜉) = {𝐶1, 𝐶2,𝐶3, 𝐶4, 𝐶5}, where 𝐶1 =

{1, 𝛼𝛽}, 𝐶2 = {1, 𝛽}, 𝐶3 = {1, 𝛼
2𝛽}, 𝐶4 = {1, 𝛼

3𝛽}, 𝐶5 = {1, 𝛼
4𝛽}. 

Remark 5.1. For any 𝐴𝜉 ∈ 𝐹𝜉(𝐺), we have 𝑂[𝐶ℓ(𝐴𝜉)] =
𝑂(𝐺)

𝑂[ℕ(𝐴𝜉)]
, where ℕ(𝐴𝜉) is the normalizer 

of 𝐴𝜉 in 𝐺. 

The subsequent example demonstrates the algebraic concepts mentioned in the aforementioned finding. 

Example 5.3. The application of Definition 3.4 and Corollary 5.1 gives that 𝑂[𝐶ℓ(𝐴𝜉)] =
10

2
= 5. 

Definition 5.3. A CCFSG 𝐴𝜉  of a finite group 𝐺  is called a CCF Sylow 𝑝-subgroup (written as 

CCF𝒮𝑝SG) if the support set 𝐴𝜉
∗
 is a Sylow 𝑝-subgroup of 𝐺. 

The following remark gives an alternative definition of CCF Sylow 𝑝-subgroup of a finite group 𝐺. 

Remark 5.2. Let 𝐴𝜉 be a CCFSG of a finite group 𝐺, then 𝐴𝜉 is called CCF𝒮𝑝SG, if one of the level 

subgroups of 𝐴𝜉 is Sylow 𝑝-subgroup of 𝐺. 

Example 5.4. Consider the CFSG 𝐴  of the group 𝐺 × 𝐻 = {(𝛼, 𝛽): 𝛼 ∈ 𝐺, 𝛽 ∈ 𝐻} , where 𝐺 =<

𝛼: 𝛼5 = 1 > and 𝐻 =< 𝛽: 𝛽2 = 1 > is defined as 

𝜇𝐴(𝑚) = {

0.93𝑒𝑖1.8𝜋,                               𝑖𝑓 𝑚 ∈ {(1,1)},

0.7𝑒𝑖1.1𝜋,         𝑖𝑓 𝑚 ∈< (𝛼, 1) > −{(1,1)},

0.4𝑒𝑖0.7𝜋,               𝑖𝑓 𝑚 ∈ 𝐺 × 𝐻−< (𝛼, 1).

 

Then, the CCFSG 𝐴𝜉 of 𝐺 × 𝐻 for the value 𝜉 = 0.8𝑒𝑖1.4𝜋 is defined as follows: 

𝜇𝐴𝜉(𝑚) = {

0.8𝑒𝑖1.4𝜋,                                𝑖𝑓 𝑚 ∈ {(1,1)},

0.7𝑒𝑖1.1𝜋,         𝑖𝑓 𝑚 ∈< (𝛼, 1) > −{(1,1)},

0.4𝑒𝑖0.7𝜋,              𝑖𝑓 𝑚 ∈ 𝐺 × 𝐻−< (𝛼, 1).

 

In view of Definition 2.5, we have ℓ(𝛼,𝛿)(𝐴
𝜉) =< (𝛼, 1) >, which is a Sylow 5-subgroup of 

𝐺 × 𝐻. Thus, 𝐴𝜉 is a CCF𝒮5SG of 𝐺 × 𝐻. 

The following theorem establishes the CCF version of Sylow’s first theorem. 

Theorem 5.2. (Conjunctive complex fuzzification of Sylow’s first theorem) Let 𝐴𝜉 be a CCFSG of a 

finite group 𝐺, where 𝑂(𝐺) = 𝑝𝑎𝑏, 𝑝 is a prime and 𝑎, 𝑏 are positive integers with (𝑎, 𝑏) =1. Let 

𝐴𝜉
∗
= 𝐻 be a support of 𝐴𝜉such that 𝑝|𝑜(𝐻). Then, there exists a CCF𝒮𝑝SG 𝐵𝜉  of 𝐺 such that 𝐵𝜉 ⊆

𝐴𝜉 in 𝐻. 

Proof. If 𝐻 = 𝐴𝜉
∗  is a Sylow 𝑝-subgroup, then there is no further proof required. We proceed under the 

assumption that  𝐻 is not a Sylow 𝑝-subgroup of 𝐺. Suppose that 𝛼 = {𝑟𝐴𝜉(𝑚): 𝑟𝐴𝜉(𝑚) > 𝛼,𝑚 ∈ 𝐺} 

and 𝛿 = {𝜔𝐴𝜉(𝑚):𝜔𝐴𝜉(𝑚) > 𝛿,𝑚 ∈ 𝐺} . Clearly, 0 ≤ 𝛼 ≤ 1  and 0 ≤ 𝛿 ≤ 2𝜋 . Since 𝐺  is finite, 

therefore, 𝐴(𝛼,𝛿)
𝜉

= 𝐴𝜉
∗
= 𝐻. Given that 𝑝 divides the order of 𝐻, we can apply Sylow's first theorem 

to assert the existence of a Sylow 𝑝-subgroup 𝐻1 of 𝐻. By our assumptions, 𝑂(𝐻1) = 𝑝
𝑘, where 1 ≤

𝑘 ≤ 𝑎. Additionally, 𝐻1 is contained in a subgroup 𝐻2 of 𝐺. We will now define a CCFS 𝐵𝜉  of 𝐺 as 

follows: 
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𝜇𝐵𝜉(𝑚) =

{
 
 

 
 1𝑒

𝑖2𝜋,                      𝑖𝑓 𝑚 = 𝑒,

𝛼𝑒𝑖𝛿 ,          𝑖𝑓 𝑚 ∈ 𝐻1 − {𝑒},

𝛼′𝑒𝑖𝛿
′
,        𝑖𝑓 𝑚 ∈ 𝐻2 − 𝐻1,

0,               𝑖𝑓 𝑚 ∈ 𝐺 − 𝐻2,

 

where 0 ≤ 𝛼′ ≤ 1  and 0 ≤ 𝛿′ ≤ 2𝜋 . Note that 𝐵𝜉  is a CCFSG of 𝐺  such that 𝐵𝜉 ⊆ 𝐴𝜉  in 𝐻 . 

Therefore, 𝐵𝜉
∗
= 𝐻2 is a Sylow 𝑝-subgroup of 𝐺. Moreover, in view of Definition 5.3, we have 𝐵𝜉  is 

a CCF𝒮𝑝SG of 𝐺. 

Theorem 5.3. A CCFCSG of a CCF𝒮𝑝SG is a CCF𝒮𝑝SG subgroup of a group 𝐺. 

Proof. Let 𝐴𝜉 be a CCF𝒮𝑝SG of a group 𝐺 and 𝐵𝜉  be a CCFCSG to 𝐴𝜉. In the light of Definition 5.1, 

we have 𝜇𝐵𝜉(𝑛) = 𝜇𝐴𝜉(𝑚
−1𝑛𝑚), 𝑚 ∈ 𝐺 . This implies that 𝐵𝜉

∗
= 𝑚−1𝐴𝜉

∗
𝑚. As 𝐴𝜉  is CCF𝒮𝑝SG, 

therefore there is a Sylow 𝑝-subgroup 𝐻 of 𝐺 contained in 𝐴𝜉
∗
. Moreover, in view of Sylow's second 

theorem, 𝑚−1𝐻𝑚  being a conjugate of 𝐻  is itself a Sylow 𝑝-subgroup of 𝐺 . Further, 𝑚−1𝐻𝑚  is 

contained in 𝑚−1𝐴𝜉
∗
𝑚 = 𝐵𝜉

∗
. Consequently, 𝐵𝜉  is a CCF𝒮𝑝SG. 

Remark 5.3. Two distinct CCF𝒮𝑝SG need not be CCF conjugate to each other. 

In the following example, we detail above algebraic feature. 

Example 5.5. Consider the Sylow 2-subgroups 𝐻1 and 𝐻2 of 𝐷6 as follows: 

𝐻1 =< 𝛼
3, 𝛽 > = {1, 𝛼3, 𝛽, 𝛼3𝛽} and 𝐻2 =< 𝛼3, 𝛼𝛽 >= {1, 𝛼3, 𝛼𝛽, 𝛼4𝛽}. 

The CFSG 𝐴 and 𝐵 of 𝐷6 are defined as follows: 

𝜇𝐴(𝑚) = {

0.93𝑒𝑖1.9𝜋,                                𝑖𝑓 𝑚 = 1,

0.77𝑒𝑖1.1𝜋,        𝑖𝑓 𝑚 ∈< 𝛼3, 𝛽 > −{1}

0.5𝑒𝑖0.7𝜋,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

, 

and 

𝜇𝐵(𝑚) = {

0.93𝑒𝑖1.9𝜋,                                    𝑖𝑓 𝑚 = 1,

0.77𝑒𝑖1.1𝜋,        𝑖𝑓 𝑚 ∈< 𝛼3, 𝛼𝛽 > −{1},

0.6𝑒𝑖0.8𝜋,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Then, the CCFSG 𝐴𝜉 and 𝐵𝜉  of 𝐷6 corresponding to the value 𝜉 = 0.81𝑒𝑖1.5𝜋 are given as 

𝜇𝐴𝜉(𝑚) = {

0.81𝑒𝑖1.5𝜋,                                𝑖𝑓 𝑚 = 1,

0.77𝑒𝑖1.1𝜋,        𝑖𝑓 𝑚 ∈< 𝛼3, 𝛽 > −{1}

0.5𝑒𝑖0.7𝜋,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

, 

and 

𝜇𝐵𝜉(𝑚) = {

0.81𝑒𝑖1.5𝜋,                                   𝑖𝑓 𝑚 = 1,

0.77𝑒𝑖1.1𝜋,        𝑖𝑓 𝑚 ∈< 𝛼3, 𝛼𝛽 > −{1}

0.6𝑒𝑖0.8𝜋,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

, 

Clearly, 𝐴𝜉 and 𝐵𝜉  are CCF𝒮2SG of 𝐷6. 

But 𝐴𝜉 is not CCFCSG to 𝐵𝜉  because 𝜇𝐴𝜉(𝛽) ≠ 𝜇𝐵𝜉((𝛼
4𝛽)−1𝛽(𝛼4𝛽)). 

The subsequent result describes the CCF variant of Sylow's second theorem. 

Theorem 5.4. (Conjunctive complex fuzzification of Sylow’s second theorem) For any two CCF𝒮𝑝SG 

𝐴𝜉 and 𝐵𝜉  having the same images such that 𝐵(𝛼,𝛿)
𝜉

= 𝑚−1𝐴(𝛼,𝛿)
𝜉

𝑚, for all 𝑚 ∈ 𝐺. Then 𝐴𝜉 and 𝐵𝜉  are 

CCFCSG to each other. 
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Proof. Let 𝐵(𝛼,𝛿)
𝜉

= 𝑚−1𝐴(𝛼,𝛿)
𝜉

𝑚, for all 𝑚 ∈ 𝐺, then, 

{𝑛 ∈ 𝐺: 𝑟𝐵𝜉(𝑛) ≥ 𝛼, 𝜔𝐵𝜉(𝑛) ≥ 𝛿, 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛿 ≤ 2𝜋} 

= 𝑚−1{𝑛 ∈ 𝐺: 𝑟𝐴𝜉(𝑛) ≥ 𝛼,𝜔𝐴𝜉(𝑛) ≥ 𝛿, 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛿 ≤ 2𝜋}𝑚 

= {𝑚−1𝑛𝑚 ∈ 𝐺: 𝑟𝐵𝜉(𝑛) ≥ 𝛼, 𝜔𝐵𝜉(𝑛) ≥ 𝛿, 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛿 ≤ 2𝜋}. 

This implies that 𝑥 ∈ 𝐵(𝛼,𝛿)
𝜉

 and 𝑚−1𝑛𝑚 ∈ 𝐴(𝛼,𝛿)
𝜉

. 

This further implies that 𝜇𝐵𝜉(𝑛) = 𝜇𝐴𝜉(𝑚
−1𝑛𝑚). 

Hence, 𝐴𝜉 and 𝐵𝜉  are CCFCSG to each other. 

Example 5.6. The CFSG 𝐴 and 𝐵 of 𝐷6 are defined as follows: 

𝜇𝐴 = {

0.99𝑒𝑖1.99𝜋,                           𝑖𝑓 𝑚 = 1,

0.75𝑒𝑖1.2𝜋,         𝑖𝑓 𝑚 = {𝛼3, 𝛽, 𝛼3𝛽}

0.5𝑒𝑖0.7𝜋,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

, 

and 

𝜇𝐵 = {

0.99𝑒𝑖1.99𝜋,                           𝑖𝑓 𝑚 = 1,

0.75𝑒𝑖1.2𝜋,       𝑖𝑓 𝑚 = {𝛼3, 𝛼𝛽, 𝛼4𝛽}

0.5𝑒𝑖0.7𝜋,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

, 

Then, the CCFSG 𝐴𝜉 and 𝐵𝜉  of 𝐷6 corresponding to the value 𝜉 = 0.79𝑒𝑖1.5𝜋 are given as 

𝜇𝐴𝜉 = {

0.79𝑒𝑖1.5𝜋,                           𝑖𝑓 𝑚 = 1,

0.75𝑒𝑖1.2𝜋,        𝑖𝑓 𝑚 = {𝛼3, 𝛽, 𝛼3𝛽},

0.5𝑒𝑖0.7𝜋,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

and 

𝜇𝐵𝜉 = {

0.79𝑒𝑖1.5𝜋,                               𝑖𝑓 𝑚 = 1,

0.75𝑒𝑖1.2𝜋,         𝑖𝑓 𝑚 = {𝛼3, 𝛼𝛽, 𝛼4𝛽}

0.5𝑒𝑖0.7𝜋,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

, 

Clearly, 𝐴(0.75,1.2𝜋)
𝜉

= {1, 𝛼3, 𝛽, 𝛼3𝛽} and 𝐵(0.75,1.2𝜋)
𝜉

= {1, 𝛼3, 𝛼𝛽, 𝛼4𝛽}. 

Now, let 𝑚 = 𝛼2𝛽, then, 

𝐵(0.75,1.2𝜋)
𝜉

= (𝛼2𝛽)−1𝐴(0.75,1.2𝜋)
𝜉

𝛼2𝛽 

= (𝛼2𝛽)−1{1, 𝛼3, 𝛽, 𝛼3𝛽}𝛼2𝛽 

= {1, 𝛼3, 𝛼𝛽, 𝛼4𝛽}. 

Hence, 𝐵(0.75,1.2𝜋)
𝜉

= 𝑚−1𝐴(0.75,1.2𝜋)
𝜉

𝑚. Hence, in view of Theorem 5.4, we have 𝐴𝜉 and 𝐵𝜉  are 

CCFCSG to each other. 

The subsequent result describes the CCF version of Sylow's third theorem. 

Theorem 5.5. (Conjunctive complex fuzzification of Sylow’s third theorem) Let 𝐺 be a finite group 

of order is 𝑝𝑎𝑏,  where 𝑝  represents a prime and 𝑎, 𝑏  are positive integers such that 𝑝  and 𝑏  are 

relatively prime. If 𝐹 is the number of CCF𝒮𝑝SG with respect to 𝐴(𝛼,𝛿)
𝜉

. Then, the total number T of 

CCF𝒮𝑝SG is congruent to 𝐹(𝑚𝑜𝑑𝑝) and T |𝑝𝑎𝑏𝜓. 

Proof. According to Sylow's third theorem, the number 𝑘 of Sylow 𝑝-subgroups 𝐻 of 𝐺 is a divisor of 

the order of 𝐺 and equal to 1 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝. Each such Sylow 𝑝-subgroup with 𝐴𝜉
∗
 will give rise to F 

number of CCF𝒮𝑝SG. Therefore, the total number of CCF𝒮𝑝SG of 𝐺 is F. 𝑘. From this fact and the 
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note preceding the theorem, it is clear that the total number 𝑇 of CCF𝒮𝑝SG is congruent to 𝐹(𝑚𝑜𝑑𝑝) 

and divides 𝑝𝑎𝑏𝐹. 

Example 5.7. Consider the alternating group of degree 5 having order 60=22 × 3.5. By means of 

Sylow’s third theorem, there are 5 Sylow 2-subgroups of 𝐴5, namely 𝑁1, 𝑁2, 𝑁3, 𝑁4 and 𝑁5. One can 

easily see from Figure 1 that 𝑁1 gives 𝐹 = 16 CCF𝒮2SG. Then, T = 16 × 5 = 80 is the total number 

of CCF𝒮2SG of 𝐴5. Moreover, it is quite evident that 80 ≡ 16(𝑚𝑜𝑑2) and 80|22 × 3.5 × 16. 

 

Figure 1. Diagrammatic view of subgroups of 𝐴5. 

For 𝑝 = 3 there are 10 Sylow 3-subgroups of 𝐴5, namely, 𝑀1–𝑀10 . One can easily see from 

Figure 1 that 𝑀1 gives 𝐹 = 8 CCF𝒮3SG. Then, T = 8 × 10 = 80 is the total number of CCF𝒮3SG of 𝐴5. 

It is quite evident that 80 ≡ 8(𝑚𝑜𝑑3) and 80|22 × 3 × 5 × 8. 

Similarly, for 𝑝 = 5 there are 6 Sylow 5-subgroups of 𝐴5, namely, 𝐿1–𝐿6. One can easily see 

from Figure 1 that 𝐿1 gives 𝐹 = 4 CCF𝒮5SG. Thus, T = 4 × 6 = 24. It is quite evident that 24 ≡
4(𝑚𝑜𝑑5) and 24|22 × 3 × 5 × 4. 

H
1

H2 H3 H4 H5 H6 H7 H8
H

9
H10 H11

H12 H13 H14 H15

N1 N
3 N2 N

4 N5

O1 O2 O3 O4 O5

Q1 Q2 Q
3

Q
4 Q5 Q6 Q7

Q8 Q9 Q
10

M1 M2 M3
M4 M5 M6 M7 M8

M9 M10

I0

C1 C
2

C
3

C
4 C

5 C
6

L
1 L2 L

3
L4 L5

L6

Subgroup of oeder 1

Subgroup of order 12

Subgroup of order 3Subgroup of order 2

Subgroup of order 5 Subgroup of order10Subgroup of order 6

Subgroup of order 4

A5



52 

 

 

AIMS Mathematics  Volume 9, Issue 1, 38–54. 

6. Comparative analysis and limitations of the current work 

The paper emphasizes the lack of investigation into CCFSG from a group-theoretic perspective, 

highlighting the need for this specific analysis. The introduction of the CCF conjugate element and the 

exploration of various concepts related to CCFSG, including the Cauchy theorem and Sylow theorems, 

are presented as innovative contributions. FSG is a special case of CCFSG, therefore the results 

presented in this study are valid for FSG. However, we cannot apply these results directly to complex 

q-rung orthopair fuzzy subgroups, complex picture fuzzy subgroups, complex spherical fuzzy 

subgroups and complex fuzzy soft subgroups. Hence, it is essential to conduct specific investigations 

into these generalized structures. This is the main limitation of our research. 

7. Conclusions 

The concept of the CCF conjugate element of a CCFSG of a group has been introduced, and many 

important properties of this idea have been studied in this paper. The idea of the class equation of the 

CCFSG of a finite group has been initiated. The CCF 𝑝-subgroup of the CCFSG has been defined and 

the study of this ideology has been established by proving many elementary structural attributes of this 

concept. Moreover, the conjunctive complex fuzzification of the Cauchy theorem of a finite group has 

been developed in this article. In addition, the phenomena of the CCFCSG and the CCF Sylow 𝑝-

subgroup have been presented. Furthermore, the study of these ideologies has been extended to propose 

the conjunctive complex fuzzification of the three Sylow’s theorems for a finite group. One of our prime 

aims in future work will be to address the limitations of this work in an efficient manner by extending 

this study to more generalized environments of CFS like complex q-rung orthopair fuzzy subgroups, 

complex picture fuzzy subgroups, complex spherical fuzzy subgroups and complex fuzzy soft subgroups. 

Moreover, the aim of forthcoming undertakings will be centered on the advancement of a comprehensive 

decision analysis tool that integrates the linear conjunctive operator. Furthermore, the concept of the 

CCFSG will be utilized to present a suitable method for tackling the difficulties in the areas of 

transportation networks, web graphs, model reduction, randomized algorithms, symmetry exploitation, 

convex optimization, design concept evaluation and the assessment of key engineering characteristics. 
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