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Abstract: Internet of Things (IoT) edge devices are becoming extremely popular because of their 

ability to process data locally, conserve bandwidth, and reduce latency. However, with the developing 

count of IoT devices, threat detection, and security are becoming major concerns. IoT edge devices 

must avoid cyber threats and protect user data. These devices frequently take limited resources and can 

run on lightweight operating systems, which makes them vulnerable to security attacks. Intrusion 

detection systems (IDS) can be run on edge devices to recognize suspicious actions and possible risks. 

These systems monitor traffic patterns, and behavior, and identify attack signatures to detect and report 

on possible attacks. This study presents a design for an inverse chi square-based flamingo search 

optimization algorithm with machine learning (ICSFSO-ML) as a security solution for Internet of 

Things edge devices. The goal of the ICSFSO-ML technique is to apply ML and metaheuristics for 

threat recognition in IoT edge devices. To reduce the high dimensionality problem, the ICSFSO-ML 

technique uses the ICSFSO algorithm for feature selection purposes. Further, the ICSFSO-ML 

technique exploits the stacked bidirectional long short-term memory (SBiLSTM) model for the threat 

detection process. To enhance the efficacy of the SBiLSTM model, an arithmetic optimization 

algorithm (AOA) is applied for the hyperparameter selection process. The simulation performance of 

the ICSFSO-ML technique can be tested on a benchmark threat database. The performance analysis 

showed the benefits of the ICSFSO-ML methodology compared to existing methodologies with a 
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maximum accuracy of 98.22%. 
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security 
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1. Introduction 

Recently, the Internet of Things (IoT) has experienced enormous growth in specific domain 

applications like smart transportation systems, industry, the medical field, and smart agriculture for 

increasing socio-economic development [1]. These IoT systems are formed by several interconnected 

actuators, various network-enabled devices, and sensors, which share several types of data through 

both private networks and internet platforms [2]. The Cisco investigation group forecast an average 

value of 75.3 billion effectively interconnected IoT devices by 2025. The absence of human 

intervention in data exchange among IoT systems makes it distinctive from standard internet 

technology [3]. The development of IoT devices has also improved the data network bandwidth 

requirements. However, many IoT devices have resource limitations, making it difficult to implement 

conventional security techniques for protecting systems against cyberattacks [4]. Major problems can 

occur with IoT devices that process sensitive data. Therefore, it is crucial to introduce mobile edge 

computing (MEC), which allows computation that is implemented at the network end to overcome 

resource-limit issues in IoT systems [5]. MEC permits IoT devices to offload more computationally 

intensive tasks to the proximal edge server. As the IoT develops as an industrial revolution, and systems 

collect live data, cybersecurity has become essential [6]. As a result, it is imperative to have a network 

intrusion detection system (NIDS), which could identify existing and forthcoming attacks to protect 

the IoT network and systems made on it. 

Given the dependency of IoT methods on various edge devices and the part of the IoT in 

producing and collecting huge amounts of core data, accurate and effective techniques for identifying 

anomalous behavior in IoT edge devices are required [7]. Machine learning (ML) has been employed 

from the centralized cloud. However, a structure that requires a lot of resources can be placed so that 

it can consistently have as much processing power, storage space, and power as it requires to process 

data. However, there might be further waiting time because of network delays from the device to the 

cloud and back, as well as the quantity of data in applications with higher traffic. This increases 

expenses concerning delay and financial expenditure. The basic changes are required in AI approaches 

and cloud-to-device intention to provide effectual, maintainable, and acceptable solutions for the 

predicted potential demands [8]. Hence, it is essential to manage the increasing processing needs and 

traffic, and minimize delays [9]. The major problem preventing edge devices from performing at their 

maximum potential is the lack of resources among these limited resources, and edge devices are needed 

by AI applications. Generally, edge devices are very small in their physical sizes, with low power 

capacity and processing ability [10]. Security solutions for IoT edge devices have several applications 

to safeguard a connected ecosystem. These solutions can be applied in various fields such as healthcare, 

critical infrastructure, and maintaining public safety; in industrial settings, to safeguard manufacturing 

processes and prevent unauthorized access to machinery; and in home automation, where they protect 

personal information and ensure the security of smart appliances and devices. 
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This study presents a design for an inverse chi square-based flamingo search optimization 

algorithm with machine learning (ICSFSO-ML) as a security solution for Internet of Things edge 

devices. The goal of the ICSFSO-ML technique is to apply ML and metaheuristics for threat 

recognition in IoT edge devices. To reduce the high dimensionality problem, the ICSFSO-ML 

technique uses the ICSFSO algorithm for feature selection. Further, the ICSFSO-ML technique 

exploits the stacked bidirectional long short-term memory (SBiLSTM) model for the threat detection 

process. To enhance the efficacy of the SBiLSTM model, an arithmetic optimization algorithm (AOA) 

is applied for the hyperparameter selection process. The simulation performance of the ICSFSO-ML 

technique is tested using a benchmark threat database. 

2. Related works 

Mishra et al. [11] aimed to detect potential attacks on various types of networks. The IoT anomalies 

are identified by inspiring message queuing telemetry transport (MQTT) across a virtual network. Dey 

et al. [12] developed a metaheuristic-based intelligent structure for cyberattack identification 

employing ensemble FS and a classification model. Initially, a metaheuristic-based ensemble FS 

method was developed utilizing binary grey wolf optimization (BGWO) and binary gravitational 

search algorithm (BGSA). Then, RF and AdaBoost can be utilized for detecting and classifying 

cyberattacks. In [13], the authors studied effective attack identification approaches for these software-

defined IoT (SD-IoT) networks. Then, the impacts of RF and ML techniques in different feature groups 

(for example IPs and ports) could be analyzed for the identification accuracy of various attacks. 

Aldaej et al. [14] examined current security and privacy issues affecting a network of drones 

(NoD). A hybrid ML approach of LR and RF was employed with the aim of classification of data 

samples for maximum efficiency. By integrating complex AI-inspired methods into the architecture, 

the presented approach alleviated cybersecurity vulnerabilities while creating a protected and secured 

NoD. In [15], the authors suggested a collaborative cyberattack intelligence-sharing method for 

allowing several organizations to combine forces in the framework, estimation, and training of a robust 

ML-based network IDS. This technique employs two main features for its application: the accessibility 

of network data traffic in a standard design and implementation of a federated learning method to 

prevent the need to share sensitive user data among organizations. Haddad Pajouh et al. [16] 

recommended a protected design for the IoT edge layer structure named AI4SAFE-IoT. The modules 

developed in the research included cyberattack allocation, intelligent web application firewall, 

cyberattack hunting, and cyberattack intelligence. 

Mozo et al. [17] introduced an analysis of the incorporation of ML modules in a distributed 

scenario. A real-time developing attack vector (crypto-mining malware attack) was employed as a 

demonstration. The overall potential of recent green AI methods was integrated for optimizing the size 

and complexity of ML approaches to decrease their energy consumption while retaining their 

capability for accurately detecting possible cyberattacks. Gasu [18] presented an attentive literature 

study of ML and data mining (DM) techniques for cyber analytics in aid of cyberattack identification 

and intrusion detection. 

3. The proposed model 

This manuscript provides an automated ICSFSO-ML-based security solution for IoT edge devices. 
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The major aim of the ICSFSO-ML technique is to apply ML and metaheuristics for threat recognition 

in IoT edge devices. In the proposed ICSFSO-ML algorithm, three main phases are contained: ICS-

FSO-based feature selection, SBiLSTM-based detection, and AOA-based parameter tuning. Figure 1 

depicts the entire flow of the ICSFSO-ML methodology. 

 

Figure 1. The overall flow of the ICSFSO-ML algorithm. 

3.1. Feature selection using ICS-FSO algorithm 

Primarily, the ICSFSO-ML technique uses the ICSFSO algorithm for feature selection purposes. 

The ICS-FSO model controls the global searching space in the foraging range of flamingos to maintain 

a balance between the exploration and exploitation stages [19]. Moreover, the current chi‐square test 

in FSO becomes locked for the independent variable, which leads to a high error rate. To overcome 

these challenges, the working mechanism of ICS is paired with FSO. The proposed model takes fitness 

value as a better feature score and flamingo as the feature. The following steps provide a detailed 

description of ICS‐FSO: 

Step 1: At first, the population of the flamingos was initialized in an attempt to generate the optimal 

performance dependent upon the data available, and then the search region was chosen, while the food 

accessibility was rich. Consider the Flamingo (Γj) having an abundance of food in the jth parameter. 

Consider Γij to be the coordinates of the ith and jth flamingo population parameters; in this case, 

the flamingos’ inhabitants must contend with the problems of sporadic access to food and inaccurate 

data transmission. This error can be estimated by the maximum distance of the flamingo’s beak scan 

from the foraging behavior, as shown below: 

|ℑ1 × Γj
b + ℑ2 × Γij

t|                                                                      (1) 

In Eq (1), ℘2 denotes a randomly generated value within [−1,1], and  ℑ1 refers to a figure that 

was unintentional to exploit the uniform distribution. In beak behavior, the range of scanning can be 

maintained in the range as, 
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ℑ2 × |ℑ1 × Γj
b + ℘2 × Γij

t|.                                                   (2) 

Considering Γj
b  as food for a large population, the flamingo distances are modified, and the 

traveling is calculated by ℘1 × Γj
b, where ℘1 refers to a random integer within [−1,1]. Lastly, the 

foraging movement of the flamingo from the tth step can be estimated by the flamingo beak scan 

range, and the distance among the moving feet is shown as follows: 

dij
t = ℘1 × Γj

bi + ℑ2 × |ℑ1 × Γj
bi + ℑ2 × Γij

t|.                                       (3) 

The location of flamingo’s foraging is represented as, 

Γij
t+1 =

(Γij
t + ℘1 × Γj

bt + ℘2 × |℘1 × Γj
bt + ℘2 × Γij

t|)

K
.                            (4) 

In Eq (4), Γij
t shows the location of the ith flamingo at the jth variable in the 𝑖𝑡ℎ iteration of 

the flamingo's population,  Γj
bt  indicates the jth  flamingo size with the better fitness from the 

population at t  iteration,  Γij
t+1  denotes the location of the ith  flamingo at the jth  population 

parameter from the (t + 1)th iteration, 

K (
1

Γ
, η) = [

2−η/2

γ(η/2)
Γ−η/2−1e−

1
2Γ].                                               (5) 

In Eq (5), K ( η) denotes the diffusion factor that follows in the inverse chi‐square distribution 

of η degrees of freedom, and γ represents the gamma function. The foraging range dimension has 

been improved, and the simulation can be done for the individual chosen, it boosted the capacity for 

meritocracy all over the globe. ℑ1 = N(O, 1) and ℑ2 = N(0,1) a random integer generated using a 

uniform distribution, ℘1 and ℘2 are altered in [-1,1]. 

Step 2: The flamingos have migrated to the following region because of the food scarcity from the 

existing region. Given the fact that the region in question exhibits a significant level of dietary 

consumption jth variable is Abj, the migration of the flamingo population can be given below: 

Γij
t+1 = Γij

t + ω × (Γj
bt − Γij

t).                                                   (6) 

In Eq (6), ω = N(O, n) indicates the randomly generated value based on the uniform distribution 

with n degrees of freedom, which increases the searching space and arbitrariness behavior of the 

specific flamingo with a particular migration method employed for inspiration. At last, the maximal 

iteration attained gives an optimum performance and value that can be replaced from the main function 

and arranged to evaluate the essential feature, and the relevant features can be framed inside the data 

frame employing ICS-FSO: 

Ω1 = A[Γ1
d, Γ2

d, Γ3
d, Γ4

d, Γ5
d, Γ6

d, Γ7
d … Γn

d].                                       (7) 

3.2. Detection using SBiLSTM model 

At this stage, the SBiLSTM model is used for the threat detection process. LSTM is distinct from 
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the RNN technique, which is generally deployed to process time sequence data [20]. It can be 

established to resolve the issue of RNNs’ effort in long‐term learning and dependencies. The main idea 

of LSTM exists from its memory cell with a gated function. Its gated method contains 3 gates: forget 

(𝑓𝑡), input (𝑖𝑡) and output gates (𝑜𝑡). An input gate (𝑖𝑡) controls the input of present data. Once the 

input data comes into the unit, an input gate carries out a computation to determine whether to input 

the present data. The memory gate (𝑓𝑡) controls the maintenance of past data. Once the past data 

comes into the unit, the memory gate executes a computation to determine how to maintain the data. 

The output gate (𝑂𝑡) manages the outcome of the present data. It is defined as outputting the present 

data by carrying out a computation. Furthermore, 𝐶𝑡 signifies the long‐term memory unit, whereas 

ℎ𝑡 signifies the short‐term memory unit.  

ft = σ(wf ⋅ [ht−1, xt] + bf).                                                       (8) 

it = σ(wi ⋅ [ht−1, xt] + bi).                                                       (9) 

Ct
′ = tanh(wc ⋅ [ht−1, xt] + bc).                                                (10) 

Ot = σ(wo ⋅ [ht−1, xt] + b0).                                                  (11) 

Ct = ft ⋅ Ct−1 + it ⋅ Ct
′.                                                          (12) 

ht = Ot. tanh(Ct).                                                           (13) 

In the above equations, σ denotes the sigmoid activation function. The variables w and b in 

the equations represent the weighted and intercepted, correspondingly. BILSTM is a distinct LSTM 

that integrates a further layer of reverse computation with the base LSTM. The original series is (A0, 

A1, A2, … ,  Ai), but the reversed series is defined as (A0
′ , A1

′ , A2
′ , … ,  Ai). The last resultant value is 

defined by the forward as well as reverse sequences: 

yi = v1 ⋅ Ai + v2 ⋅ Ai
′ .                                                        (14) 

In this equation, v1 and v2 represent the equivalent weights linked with 2 sequences. 

An SBiLSTM has an NN structure that contains stacking multi-layers of BiLSTMs on top of one 

another. Figure 2 depicts the framework of stacked BiLSTM. The outcome of the 1st BiLSTM layer 

serves as the input to the 2nd BiLSTM layer, etc. All the subsequent layers capture a high-level 

representation of input data, potentially contributing to a more expressive and greater model for 

sequence processing tasks. 

 

Figure 2. The architecture of Stacked BiLTSM. 
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3.3. AOA-based hyperparameter tuning 

The hyperparameters related to the SBiLSTM approach are elected by the AOA. AOA is based 

on the searching process for the potential region from the candidate solution based on subtraction, 

division, multiplication and addition operators [21]. The efficiency of the optimization approach is 

measured with two search processes called exploitation and exploration. The process conducts the 

local search in the exploitation phase, concentrating on promising regions to search for a better solution. 

During the exploration phase, the process performs a global search to prevent local solutions. In this 

work, division (÷) and multiplication (×) take the larger steps from the searching space and are 

thereby employed for exploratory search. Addition (+)  and subtraction (−)  operators can find 

capable areas by taking smaller steps from the searching space, which provides the best exploitation 

search. The AOA begins with an arbitrary candidate solution (X). A better solution should be found 

through exploration and exploitation. Among the Xn  candidate solutions. MOA is used to define 

whether to implement an exploitation or exploration search as follows: 

MOA(tCURRENT) = MOA𝔪in + tCURRENT × (
MOAmax − MOAmin

tMAX
).               (15) 

In Eq (15), tCURRENT indicates the existing iteration ranges from 1 to rMAX (maximal iteration), 

and MOAmax,  and MOAmin  determine the minimal and maximal values of MOA. The AOA 

algorithm utilizes the 3 randomly generated values (rand1,  rand2  and rand3)  between zero and 

one. Once an arbitrary number rand1 is bigger than MAO, AOA enters the exploration stage. Now, 

if rand2 > 0.5, the place of the sth solution can be upgraded by the division operators. Else, if rand2 

is lesser than 0.5, then the AOA model exploits the multiplication operator for updating the position of 

the sth outcome.  

Ss,l(tCURRENT + 1) 

= {
Condition1: best(S, ) ÷ (MOP+∈) × [(UBl − LBl) × μ + LBl], rand2 < 0,

Condition2: best(S, ) × MOP × [(UBl − LBl) × μ + LBl], otherwise,
      (16) 

where Ss,l(tCURRENT + 1) denotes the s‐th solution in the lth location, and bestx1
 shows the best 

performance from the lth place. ε indicates the integer with a smaller value. and μ represents the 

control parameter characterized by predetermined or fixed values of 0.5 for updating the exploration 

search. The upper and lower boundaries are characterized as the UBl and LBl parameters.  

MOP(tCURRENT) = 1 −
tCURRENT

tMax1/α
1/α.                                          (17) 

The coefficients in the context of math optimizer probability (MOP) serve a specific purpose and 

are explicitly defined in the tth iteration. The AOA model enters into the exploitation stage if rand1 <

MOA function. Moreover, the model updates the position of the s‐th solution using subtraction. If 

rand3 > 0.5. Otherwise, the place of the sth solution can be upgraded by addition (+) operator as 

follows: 

Ss,𝔩(fCURRENT + 1) = 

{
Condition1: best(Sl) ÷ (M0P+∈) × [(UBl − LBl) × μ + LBl], rand2 < 0,

Condition2: best(Sl) × M0P × [(UBl − LBl) × μ + LBl], otherwise.
        (18) 
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Algorithm 1: Pseudocode of AOA. 

Initialize the parameters α, μ, Maxiter, MOAmax, 

MOAmin   

Initialize the position of each solution randomly as 

s = 1, … , n 

while (tCURRENT < tMax) do 

Compute the Fitness Function (FF) (FitnessF) to provide a solution 

Define the best solution 

Upgrade the value of MOA based on Eq (15). 

Upgrade the value of MOP based on Eq (17). 

for (s = 1 to Solution) do 

for (l = 1 to Location) do 

Produce an arbitrary value within [0,1](rand1, rand2, and rand3) 

if rand1 > MOA then 

Exploration stage 

if rand2 > 0.5 then 

Apply the Division operator 

Upgrade position l of sth solution based on condition1 in Eq (17) 

else 

Apply the Multiplication operator 

Upgrade position l of sth solution based on condition2 in Eq (16) 

end if 

else 

Exploitation stage 

if rand3 > 0.5 then 

Apply the Subtraction operator. 

Upgrade place l of sth solution based on condition1 in Eq (18) 

else 

Apply the Addition operator 

Upgrade position l of sth solution based on condition2 in Eq (18) 

end if  

end if  

end for  

end for 

tCURRENT = tCURRENT + 1 

end while 

Return the best solution (Sbest). 

Fitness choice is a key feature of the AOA methodology. An encoded outcome was deployed to 

assess better candidate performances. Presently, the accuracy value is the major condition deployed to 

design an FF.  

Fitness =  max (P),                                                          (19) 
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P =
TP

TP + FP
,                                                              (20) 

where FP and TP denote the false and true positive values. 

4. Result and discussion 

The performance of the ICSFSO-ML technique was tested on the anomaly database [22,23]. The 

database has 20000 instances and 2 class labels as represented in Table 1. Among the available 13 

features, the ICSFSO algorithm has chosen 8 features. 

Table 1. Description of the dataset. 

Class No. of Samples 

Normal Status 10000 

Anomalies 10000 

Total Samples 20000 

The anomaly detection results of the ICSFSO-ML technique are depicted in Figure 3. The 

confusion matrices demonstrate the effectual recognition of the normal and anomalous samples under 

all classes [24–26]. 

 

Figure 3. Confusion matrices of (a-b) 80:20 of TR set/TS set and (c-d) 70:30 of TR set/TS set. 

The anomaly identification results of the ICSFSO-ML technique are tested with 80:20 of TR set/TS 

set as shown in Table 2 and Figure 4. The outcome showed that the ICSFSO-ML system recognized the 

normal and anomaly classes. On 80% of the TR set, the ICSFSO-ML algorithm offers average accuracy, 

precn , recall , F − score  and Gmeasure  of 97.68%, 97.71%, 97.68%, 97.67% and 97.68%, 

respectively. Also, on 20% of the TS set, the ICSFSO-ML method achieves average accuracy, precn, 

recall, 𝐹 − 𝑠𝑐𝑜𝑟𝑒, and Gmeasure of 98.22%, 98.25%, 98.22%, 98.22% and 98.23%, correspondingly. 



31 

AIMS Mathematics  Volume 9, Issue 1, 22–37. 

Table 2. Anomaly identification outcome of ICSFSO-ML technique on 80:20 of TR set/TS. 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑮𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

TR set (80%) 

Normal Status 99.02 96.42 99.02 97.70 97.71 

Anomalies 96.33 99.00 96.33 97.65 97.65 

Average 97.68 97.71 97.68 97.67 97.68 

TS set (20%) 

Normal Status 99.30 97.22 99.30 98.25 98.26 

Anomalies 97.14 99.28 97.14 98.20 98.21 

Average 98.22 98.25 98.22 98.22 98.23 

 

Figure 4. Average outcome of ICSFSO-ML technique on 80:20 of TR set/TS set. 

The anomaly identification outcome of the ICSFSO-ML methodology was tested with 70:30 of 

the TR set/TS setting as portrayed in Table 3 and Figure 5. The simulation values depicted that the 

ICSFSO-ML algorithm recognized the normal and anomaly classes. On 70% of the TR set, the 

ICSFSO-ML system had average accu_y, prec_n, reca_l, F_score, and G_measure of 96.97%, 96.98%, 

96.97%, 96.96% and 96.97% correspondingly. Then, on 20% of the TS set, the ICSFSO-ML 

methodology achieved average accu_y, prec_n, reca_l, F_score, and G_measure of 97.03%, 97.06%, 

97.03%, 97.03% and 97.04%, respectively. 

Table 3. Anomalies identification outcome of ICSFSO-ML technique on 70:30 of TR set/TS. 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑮𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

TR set (70%) 

Normal Status 96.14 97.77 96.14 96.94 96.95 

Anomalies 97.80 96.19 97.80 96.98 96.99 

Average 96.97 96.98 96.97 96.96 96.97 

TS set (30%) 

Normal Status 96.02 97.98 96.02 96.99 97.00 

Anomalies 98.04 96.13 98.04 97.07 97.08 

Average 97.03 97.06 97.03 97.03 97.04 
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Figure 5. The average outcome of the ICSFSO-ML technique on 70:30 of the TR set/TS set. 

Figure 6 illustrates the training accuracy TR_accu_y and VL_accu_y of the ICSFSO-ML 

methodology on 80:20 of the TR set/TS set. The TL_accu_y was determined by the evaluation of the 

ICSFSO-ML method on the TR dataset, whereas the VL_accu_y was computed by evaluating the 

performance on a separate testing dataset. The outcome exhibits that TR_accu_y and VL_accu_y 

upsurge with a rise in epochs. Therefore, the performance of the ICSFSO-ML method increased on the 

TR and TS datasets with an upsurge in several epochs. 

 

Figure 6. Accu_y curve of ICSFSO-ML technique on 80:20 of TR set/TS set. 

In Figure 7, the TR_loss and VR_loss results of the ICSFSO-ML approach on 80:20 of the TR 

set/TS set are shown. The TR_loss defines the error among the predictive outcome and original values 

on the TR data. The VR_loss signifies the measure of the performance of the ICSFSO-ML technique 

on individual validation data. The outcomes point out that the TR_loss and VR_loss tend to reduce 

with rising epochs, portraying the higher performance of the ICSFSO-ML system and its ability to 

produce an accurate classification. The lesser values of TR_loss and VR_loss establish the improved 

performance of the ICSFSO-ML methodology in capturing patterns and relationships. 
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Figure 7. Loss curve of ICSFSO-ML technique on 80:20 of TR set/TS set. 

In Figure 8, a comprehensive precision-recall (PR) investigation of the ICSFSO-ML approach is 

shown for 80:20 of the TR set/TS set in Figure 8. The simulation values demonstrated that the ICSFSO-

ML system led to enhanced PR outcomes. Further, it was obvious that the ICSFSO-ML method has 

greater PR outcomes in the 2 classes. 

 

Figure 8. PR curve of ICSFSO-ML technique on 80:20 of TR set/TS set. 

In Figure 9, an ROC analysis of the ICSFSO-ML system is demonstrated on 80:20 of the TR 

set/TS set. The simulation results show that the ICSFSO-ML approach led to greater values of ROC. 

Also, it was apparent that the ICSFSO-ML methodology achieved better ROC outcomes in the 2 

classes. 

 

Figure 9. PR curve of ICSFSO-ML technique on 80:20 of TR set/TS set. 
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Table 4 and Figure 10 illustrate the comparison outcomes of the ICSFSO-ML approach with other 

models in terms of different metrics [27–29]. The table values portrayed the ineffectual performance 

of the AE model, whereas the SVM and Anomaly-IDS models have shown somewhat better results 

over the AE model. Along with that, the DEA and LR approaches have exhibited close results. However, 

the DT and RF systems have accomplished considerable results, the ICSFSO-ML technique ensured 

better performance with maximum 𝑝𝑟𝑒𝑐𝑛, 𝑎𝑐𝑐𝑢𝑦, 𝐹𝑠𝑐𝑜𝑟𝑒 and 𝑟𝑒𝑐𝑎𝑙 of 98.25%, 98.22%, 98.22% 

and 98.22%, respectively. These outcomes show the better performance of the ICSFSO-ML algorithm. 

Table 4. Comparative outcome of ICSFSO-ML technique with other approaches. 

Model 𝑷𝒓𝒆𝒄𝒏 𝑨𝒄𝒄𝒖𝒚 𝑭𝑺𝒄𝒐𝒓𝒆 𝑹𝒆𝒄𝒂𝒍 

ICSFSO-ML 98.25 98.22 98.22 98.22 

DT Model 95.40 96.70 92.10 93.30 

LR Model 93.10 94.50 91.70 92.50 

SVM Model 92.60 95.30 90.00 91.00 

RF Model 95.50 97.20 93.20 94.40 

Deep Autoencoder  93.79 94.71 92.71 93.46 

Autoencoders 89.81 84.86 90.85 91.90 

Anomaly-IDS 92.65 91.65 93.16 92.24 

 

Figure 10. Comparative outcome of ICSFSO-ML technique with other approaches. 

5. Conclusions 

This manuscript has provided an automated ICSFSO-ML-based security solution for IoT edge 

devices. The major aim of the ICSFSO-ML technique is to apply ML and metaheuristics for threat 

recognition in IoT edge devices. In the proposed ICSFSO-ML algorithm, three major phases are 

contained: ICS-FSO-based feature selection, SBiLSTM-based detection and AOA-based parameter 

tuning. Primarily, the ICSFSO-ML approach uses the ICSFSO algorithm for feature selection purposes, 

which reduces the computation complexity and boosts the classification results. In addition, the 

ICSFSO-ML technique makes use of the SBiLSTM model for the threat detection process. To enhance 

the efficacy of the SBiLSTM model, AOA is applied for the hyperparameter selection process. The 

simulation value of the ICSFSO-ML technique is made on the benchmark threat database. The 

performance showed the benefits of the ICSFSO-ML approach compared to existing methods with a 
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maximum accuracy of 98.25%. In the future, the ICSFSO-ML technique holds significant potential for 

further advancements and applications in the field of IoT security. Additional research could focus on 

refining and optimizing the technique to address emerging IoT security threats and vulnerabilities. This 

might involve extending the methodology to accommodate a broader range of IoT devices and 

communication protocols. Furthermore, integrating real-time monitoring and response capabilities, as 

well as considering the scalability of the solution for large-scale IoT deployments, could be valuable 

avenues of exploration. 
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