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Abstract: The objective of this research is to establish new results for set-valued dominated 
mappings that meet the criteria of advanced locally contractions in a complete extended 𝑏-metric 
space. Additionally, we intend to establish new fixed point outcomes for a couple of dominated 
multi-functions on a closed ball that satisfy generalized local contractions. In this study, we present 
novel findings for dominated maps in an ordered complete extended 𝑏-metric space. Additionally, 
we introduce a new concept of multi-graph dominated mappings on a closed ball within these spaces 
and demonstrate some original results for graphic contractions equipped with a graphic structure. To 
demonstrate the uniqueness of our new discoveries, we verify their applicability in obtaining a joint 
solution of integral and functional equations. Our findings have also led to modifications of 
numerous classical and contemporary results in existing research literature. 
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1. Introduction and basic preliminaries 

Fixed point theory is a branch of functional, analysis that focuses on studying mathematical 
mappings or operators that have at least one point that remains unchanged under their action. It is a 
popular area of research due to large applications in both applied and pure mathematics, such as 
contemporary optimization, control theory, numerical analysis, geometry in topology, dynamical 
systems and modeling. A fixed point theory is a fascinating area of mathematics that is fundamentally 
important. It serves as an important investigative and detecting tool in many fields. In addition to 
nonlinear and functional analysis, fixed point (abbreviated as FP) theory aims to advance economics, 
finance, computer science, and other disciplines in solving difficulties for matrix, integral, and 
fractional differential equations. This led to the development of the theory of FP as an analytical 
theory. The Banach FP theorem, the first well-known result in FP theory, was created by well-known 
mathematician Banach [11]. It is programmed to resolve differential, integral, and functional equations 
that are both linear and nonlinear in a number of different generalized spaces. The Banach’s theorem 
can be applied in many different ways, each involving a distinct distance space and a separate set of 
contractive-type conditions that must be satisfied. Bakhtin [12], Czerwik [15,16], Demma et al. [18] 
and Elhamed et al. [19] investigated various extensions of the Banach's result in a metric and a 𝑏-MS. 
In addition to some new FP conclusions, Wardowski [42] offered a new generalization of Banach's 
contraction called 𝐹-contractions. Moreover, Agarwal et al. [2], Ahmed et al. [3], Alsulami et al. [6], 
Ameer et al. [9], Aydi et al. [10], Karapinar et al. [24] and Radcharoen et al. [34] showed different 
extensions of Wardowski’s result [42] in different settings of metric spaces. 

Nadler [28] developed the concept of set-valued contractive maps and shared his well-known 
finding that expanded the Banach FP result [11] for multi-valued mappings. Afterward, Acer et al. [1], 
Ali et al. [5], Altun et al. [8], Feng et al. [20], Jleli et al. [22], Miank et al. [27], Rasham et al. [35], 
Sgroi et al. [36] and Secelean et al. [40] discussed significant FP results concerning with multivalued 
mappings. 

An extended 𝑏-metric space was initially proposed by Kamran et al. [23] who also showed 
certain FP theorems for self-mappings defined on these spaces. Additionally, Rasham et al. [36] 
proved FP theorems in a complete𝑏-metric-like space by utilizing set-valued dominated locally 
𝐹-contractions by employing the first condition of Wardowski's result. Results of FP on a closed ball 
for 𝐹 -contractions and related applications regarding the systems of integral equations were 
established by various authors in [9,36,38].  

We ensure the existence of various new generalized FP outcomes satisfying a local contraction on 
a closed ball defined in a complete extended 𝑏-metric space. Also, some new definitions and examples 
are introduced. Furthermore, we obtained new common FP results for 𝛼∗-dominated mappings in a 
complete extended 𝑏-metric space. Illustrative examples are given to validate our new acquired 
outcomes in which contractive conditions hold only on a closed-ball, but do not exist on the whole 
space. Moreover, applications for nonlinear systems of integral equations, functional equations and on 
graph theory are given to show the originality of our obtained outcomes. 
Definition 1.1. [22] Let 𝒜 be a non-empty set and 𝑠 ≥ 1. The function 𝑑: 𝒜 × 𝒜 → [0, ∞)  is said 
a 𝑏-metric with coefficient 𝑠 if the following conditions hold for all 𝑔, 𝑥, 𝑒 ∈ 𝒜; 
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(i) 𝑑(𝑔, 𝑔) = 0; 
(ii) 𝑑(𝑔, 𝑒) = 0 ⇒ 𝑔 = 𝑒; 
(iii) 𝑑(𝑔, 𝑒) = 𝑑(𝑒, 𝑔, ); 
(iv) 𝑑(𝑔, 𝑒) ≤ 𝑠[𝑑(𝑔, 𝑥) + 𝑑(𝑥, 𝑒)]. 

Then, the pair (𝒜, 𝑑) is called a 𝑏-metric space, shortly as 𝑏-MS. 
Example 1.2. [22] Suppose 𝒜 = [0,1]. The function 𝑑: 𝒜 × 𝒜 → ℝ defined by 𝑑(ℎ, 𝑡) = |ℎ − 𝑡|  
for all ℎ, 𝑡 ∈ 𝒜  is a 𝑏-metric with 𝑠 = 2. 
Definition 1.3. [22] Let (𝒜, 𝑑) be a 𝑏-MS. 

(i) The sequence {𝑔 }  in 𝒜 is convergent to 𝑔 if for all 𝜀 > 0, there exists 𝑆 = 𝑆(𝜀)  ∈  ℕ such 
that 𝑑(𝑔 , 𝑔) < 𝜀, ∀  𝑛 ≥ 𝑆. 

(ii) A sequence {𝑔 } in 𝒜 is called a Cauchy if for all 𝜀 > 0 there exist𝑠 𝑆 = 𝑆(𝜀)  ∈  ℕ such 
that 𝑑(𝑔 , 𝑔 )< 𝜀, for all  𝑛, 𝑚 ≥ 𝑆. 

(iii) A 𝑏-metric space is complete if for every Cauchy sequence in 𝒜 is convergent to some point 
in 𝒜. 

Definition 1.4. [23] Let 𝒜 be a non-empty set and 𝜃: 𝒜 × 𝒜 → [1, ∞) be a function. A mapping 
 𝑑 : 𝒜 × 𝒜 →[0,∞) is said an extended 𝑏-metric if the following assumptions hold for all  𝑥, 𝑦, 𝑧 ∈ 𝒜; 

(i)  𝑑 (𝑥, 𝑦) = 0  iff 𝑥 = 𝑦;  
(ii)  𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥); 
(iii) (𝑥, 𝑧) ≤ 𝜃(𝑥, 𝑧)[ 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧)]. 

The pair (𝒜, 𝑑 ) is called an extended 𝑏-metric space, shortly as, 𝐸𝑏𝑀𝑆. Let ℎ ∈ 𝒜 and 𝓇 > 0, 

𝐵 (𝑔 , 𝑟) = {q ∈ 𝒜: 𝒹(𝑞, ℎ) ≤ 𝓇} is called a closed ball in the 𝐸𝑏𝑀𝑆. 

Example 1.5. [26] Let 𝒜 = [0, ∞).  Define 𝑑 : 𝒜 × 𝒜 →[0,∞) by 

𝑑 (ℎ, 𝑒) =

0,                                if ℎ = 𝑒;
3,   if ℎ or 𝑒 ∈ {1,2}, ℎ ≠ 𝑒;

5,               if ℎ ≠ 𝑒 ∈ {1,2};
1,                           otherwise

. 

Then, (𝒜, 𝑑 ) is an 𝐸𝑏𝑀𝑆 where 𝜃: 𝒜 × 𝒜 → [1, ∞) is defined b 

𝜃(ℎ, 𝑒) = ℎ + 𝑒 + 1, for all ℎ, 𝑒 ∈ 𝒜. 

Definition 1.6. [23] Let (𝒜, 𝑑 ) be an 𝐸𝑏𝑀𝑆. 
(i)  A sequence {𝑔 } in 𝒜 converges to a limit point g if for each 𝜀 > 0 there exists  𝑆 =

𝑆(𝜀)  ∈  ℕ such that 𝑑 (𝑔 , 𝑔) < 𝜀 for all  𝑛 ≥ 𝑆. 
(ii)  A sequence {𝑔 } in 𝒜 is said Cauchy if for all 𝜀 > 0 there exist𝑠 𝑆 = 𝑆(𝜀)  ∈  ℕ such that 

𝑑 (𝑔, 𝑔 ) < 𝜀 for all  𝑛, 𝑚 ≥ 𝑆. 
(iii) If every Cauchy sequence in 𝒜 converges to some point 𝑔 ∈ 𝒜 then (𝒜, 𝑑 ) is said to be 

complete. 
Remark 1.7. [26] Every 𝑏 -MS is an 𝐸𝑏𝑀𝑆  with a constant function 𝜃(𝑥, 𝑧) = 𝑠  for 𝑠 ≥  1 . 
However, it should be noted that the opposite statement is not always true in a general sense. 
Definition 1.8. [36] Let 𝑄 be a non-empty subset  of 𝒜 and there exist an element 𝑙 in 𝒜. Then, 𝑞 ∈  𝑄 
is called a best approximation in 𝑄 if  

𝑑 (𝑙, 𝑄) = 𝑑 (𝑙, 𝑞), where  𝑑 (𝑙, 𝑄) = inf
∈

𝑑 (𝑙, 𝑞). 
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Here, 𝑃(𝒜) represents the collection of all subsets of 𝒜 that are compact. 
Let 𝝍 represent the collection of all non decreasing functions 𝝍:[0,+∞) → [0, +∞) for which 

∑ 𝝍 (ℎ) < +∞ and 𝝍(h) < ℎ, where 𝝍  denotes the 𝑘  iterative term of 𝝍. 

Definition 1.9. [37] Suppose 𝐻 : 𝒫(𝒜) × 𝒫(𝒜) → ℝ  is a function, defined by 

𝐻 (𝑀, 𝑁) = max sup
∈

(𝑒, 𝑁) , sup
∈

(𝑀, 𝑓)    for all 𝑀, 𝑁 ∈ 𝒫(𝒜)  . 

Then, 𝐻 is called a Pompeiu-Hausdorff  𝐸𝑏𝑀 on 𝒫(𝒜). 

Definition 1.10. [37] Let 𝒜 be a non-empty set  𝐾 ⊆ 𝒜  and 𝛼: 𝒜 × 𝒜 → [0, +∞). A mapping 
𝑆 ∶ 𝒜 → 𝒫(𝒜) satisfying 

𝛼∗(𝑆𝑔, 𝑆ℎ) = inf{𝛼(𝑡, 𝑧): 𝑡𝜖𝑆𝑔, 𝑧𝜖𝑆ℎ} ≥ 1, whenever 𝛼(𝑡, 𝑧) ≥ 1, for all  𝑡, 𝑧 ∈ 𝒜 

is called 𝛼∗-admissible. The mapping  𝑆: 𝒜 ⟶ 𝒫(𝒜) satisfying 𝛼∗(𝑎, Sa) = inf{α(a, h): h ϵ Sa} ≥ 1  is 
said to be 𝛼∗-dominated on 𝐾. 
Definition 1.11. [42] Let (𝒜, 𝑑)  be a metric space. A function  𝐿: 𝒜 → 𝒜  is known as an 
 ℱ -contraction if there exists 𝜏 > 0  such that for each 𝛾, 𝑥 ∈ 𝒜  with 𝑑(𝐿(𝛾), 𝐿(𝑥)) >  0,  the 
following inequality holds: 

 𝜏 + ℱ 𝑑(𝐿(𝛾), 𝐿(𝑥)) ≤ ℱ 𝑑(𝛾, 𝑥) . 

Here, the function ℱ: ℝ → ℝ satisfies the following assumptions: 
(ℱ1) ℱ is a strictly-increasing function; 

(ℱ2) lim
→

𝛿 = 0 if and only if lim
→

ℱ(𝛿 ) = −∞ , for every positive sequence {𝛿 } ;  

(ℱ3) For each 𝒽 ∈ (0,1), lim
→

𝛿𝓀𝐹 𝛿 = 0. 

Example 1.12. [37] Let 𝒜 be a non-empty set and the function 𝛼: 𝒜 × 𝒜 → [0, ∞) be given by  

𝛼(𝑐, 𝑞) =

1   if  𝑐 > 𝑞,
1

4
  if  𝑐 ≤ 𝑞.

 

Consider the mappings 𝐺, 𝑅: 𝒜 → 𝒫(𝒜)defined as 𝐺𝑟 = [−4 + 𝑟, −3 + 𝑟] and 𝑅𝑡 = [−2 + 𝑡, −1 +

𝑡], respectively. Then 𝐺 and 𝑅 are 𝛼∗-dominated, but they are not 𝛼∗-admissible. 

Lemma 1.13. Let (𝒜, 𝑑 ) be an  𝐸𝑏𝑀𝑆  and (𝒫(𝒜), 𝐻 )  be an extended Hausdorff 𝑏 -MS on 

𝒫(𝒜). Then, for all  𝑈, 𝑊 ∈ 𝒫(𝒜)  and for each 𝑢 ∈ 𝑈  such that 𝑑 (𝑢, 𝑊) = 𝑑 (𝑢, ℎ )  where 
ℎ ∈ 𝑊, the following holds: 

 𝐻 (𝑈, 𝑊) ≥ 𝑑 (𝑢, ℎ ). 

Proof. If 𝐻 (𝑈, 𝑊) = sup
∈

𝑑 (𝑢, 𝑊),  then 𝐻 (𝑈, 𝑊) ≥ 𝑑 (𝑢, ℎ ) for all 𝑢 ∈ 𝑈.  Since  𝑊  is a 
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proximinal set, for any  𝑢 ∈ 𝒜  there exists at least one element   ℎ in 𝑊 that provides the best 

approximation to 𝑢  and satisfies 𝑑 (𝑢, 𝑊) = 𝑑 (𝑢, ℎ ). Now, we have 𝐻 (𝑈, 𝑊) ≥ 𝑑 (𝑢, ℎ ). 

One writes 

𝐻 (𝑈, 𝑊) = sup
∈

𝑑 (𝑈, ℎ) ≥ sup
∈

𝑑 (𝑢, 𝑊) ≥ 𝑑 (𝑢, ℎ ). 

Hence, it is proved. 
We will now present the key findings of research. 

2. Main results 

Let (𝒜,𝑑 ) be an 𝐸𝑏𝑀𝑆 with a function 𝜃: 𝒜 × 𝒜 → [1, ∞). Let 𝑆 and 𝑇 be two multi-maps 
from 𝒜 to 𝒫(𝒜). Let 𝑔 ∈ 𝑆(𝑔 ) so that  𝑑 (𝑔 , 𝑆(𝑔 )) =  𝑑 (𝑔 , 𝑔 ). Let 𝑔 ∈ 𝑇(𝑔 ) be such 
that 𝑑 (𝑔 , 𝑇(𝑔 )) = 𝑑 (𝑔 , 𝑔 ). By following this process, we obtain a sequence of sets {𝑇𝑆(𝑔 )} 
in  𝒜  where 𝑔 ∈ 𝑆(𝑔 )  such that 𝑔 ∈ 𝑇(𝑔 ) for all 𝑛 ∈ ℕ ∪ {0} . 
Also,  𝑑 (𝑔 , 𝑆(𝑔 )) = 𝑑 (𝑔 , 𝑔 )  and  𝑑 (𝑔 , 𝑇(𝑔 )) = 𝑑 (𝑔 , 𝑔 ) , then 
{𝑇𝑆(𝑔 )} is a sequence in 𝒜 produced by 𝑔 . We mean by 𝑥, 𝑦 ∈ {𝑢} that 𝑥 = 𝑢 and 𝑦 = 𝑢, 
define 𝐷 (𝑥, 𝑦) by 

𝐷 (𝑥, 𝑦)  =   max 𝑑 (𝑥, 𝑦) , 𝑑 𝑥, S(𝑥) , 𝑑 𝑦, T(𝑦) ,
, ( ) , ( )

( , )
. 

Theorem 2.1. Let (𝒜 ,𝑑 )be a complete 𝐸𝑏𝑀𝑆  with function 𝜃: 𝒜 × 𝒜 → [1, ∞). Let 𝑟 > 0, 

ℊ  𝜖𝐵 (𝑔 , 𝑟) ⊆ 𝒜 , 𝛼 ∶ 𝒜 × 𝒜 → [0, ∞) and  𝑆, 𝑇: 𝒜 → 𝒫(𝒜) be semi 𝛼∗-dominated multivalued 

mappings on 𝐵 (𝑔 , 𝑟). Suppose there are  𝜓  ∈  𝝍, a constant 𝜏 > 0, and ℱ a strictly increasing 

function, such that the following conditions hold: 

i) 𝜏 + ℱ(𝐻 (𝑆(𝑥), 𝑇(𝑦))) ≤  ℱ(𝜓 (𝐷 (𝑥, 𝑦))),           (2.1)

 where 𝑥, 𝑦 ∈ 𝐵 (𝑔 , 𝑟) ⋂{𝑇𝑆(𝑔 )}, 𝛼 (𝑥, 𝑦) > 1 and 𝐻 𝑆(𝑥), 𝑇(𝑦) > 0; 

ii) ∑ 𝜓 (𝑑 𝑔 , S(𝑔 ) ) ∏ 𝜃((𝑔 , 𝑔 ) ≤ 𝑟.          (2.2) 

where {𝑇𝑆(𝑔 )} is a sequence in 𝐵 (𝑔 , 𝑟) , 𝛼(𝑔 , 𝑔 )  ≥  1 , for all  𝑛 ∈ ℕ⋃{0}  and 

{𝑇𝑆(𝑔 )} → 𝑢 ∈ 𝐵 (𝑔 , 𝑟).  

iii) (2.1) holds for  𝑥, 𝑦 ∈  {𝑢}, either 𝛼(𝑔 , 𝑢) ≥ 1 or (𝑢, 𝑔 ) ≥ 1, for all naturals. 

Then, 𝑆, 𝑇 have a mutual FP 𝑢 in 𝐵 (𝑔 , 𝑟). 

Proof. Let  {𝑇𝑆(𝑔 )} be a sequence. From (2.2), we obtain 
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𝑑 (𝑔 , 𝑔 ) ≤ 𝜓 (𝑑 𝑔 , S(𝑔 ) ) 𝜃((𝑔 , 𝑔 ) ≤ 𝑟. 

This implies that  𝑔 𝜖 𝐵 (𝑔 , 𝑟) . Let  𝑔 , … , 𝑔 ∈  𝐵 (𝑔 , 𝑟)  for some 𝑗 ∈  ℕ . If 𝑗  is odd, 

then  𝑗 =  2𝑖 +  1  for some 𝑖 ∈  ℕ.  As 𝑆, 𝑇: 𝐴 →  𝑃(𝐴)  are semi 𝛼∗ -dominated maps 

on  𝐵 (𝑔 , 𝑟), thus 𝛼∗(𝑔 , S𝑔 ) ≥ 1. In addition, 𝛼∗(𝑔 , T𝑔 ) ≥ 1. As 𝛼∗(𝑔 , 𝑆𝑔 ) ≥ 1, this 

implies that inf{𝛼(𝑔 , 𝑙): 𝑙 ∈  𝑆𝑔 } ≥  1 and 𝑔 ∈ 𝑆𝑔 , with 𝛼(𝑔 , 𝑔  )  ≥ 1 . Now, by 
using Lemma 1.13, we have 

𝜏 + ℱ 𝑑 (𝑔 , 𝑔 ) ≤  𝜏 + ℱ(𝐻 (𝑆𝑔 , 𝑇𝑔 )) ≤ ℱ(𝜓 (𝐷 (𝑔 , 𝑔 ))), 

𝜏 + ℱ 𝑑 (𝑔 , 𝑔 )  ≤ ℱ 𝜓 max
𝑑 (𝑔 , 𝑔 ), 𝑑 (𝑔 , 𝑆𝑔 ),

𝑑 (𝑔 , 𝑇𝑔 ),
( , ) (  , )

( , )

, 

≤  ℱ 𝜓 max
𝑑 (𝑔 , 𝑔 ), 𝑑 (𝑔 , 𝑔 ),

𝑑 (𝑔 , 𝑔 ),
(  , ) (  , )

( , )

, 

≤  ℱ[𝜓 (max{𝑑 (𝑔 , 𝑔 ), 𝑑 (𝑔 , 𝑔 )})]. 

If max{𝑑 (𝑔 , 𝑔 ), 𝑑 (𝑔 , 𝑔 )} = 𝑑 (𝑔 , 𝑔 ), then  

𝜏 + ℱ 𝑑 (𝑔 , 𝑔 ) ≤ ℱ 𝜓 𝑑 (𝑔 , 𝑔 ) . 

Since ℱ is strictly increasing, we have 

𝑑 (𝑔 , 𝑔 ) < 𝜓 𝑑 (𝑔 , 𝑔 ) . 

This not true due to the fact 𝜓 (𝑢) < 𝑢. So 

max{𝑑 (𝑔 , 𝑔 ), 𝑑 (𝑔 , 𝑔 )} = 𝑑 (𝑔 , 𝑔 ). 

Hence, we have  

𝑑 (𝑔 , 𝑔 ) < 𝜓 𝑑 (𝑔 , 𝑔 ) .      (2.3) 

As 𝑎∗(𝑔 , S𝑔 ) ≥ 1 and 𝑔 ∈ 𝑆𝑔 , 𝛼(𝑔 , 𝑆𝑔 ) ≥ 1. Now, by applying Lemma 1.13, 
we get 

𝜏 + ℱ 𝑑 (𝑔 , 𝑔 ) ≤  𝜏 + ℱ 𝐻 (𝑆𝑔 , 𝑇𝑔 ) ≤ ℱ 𝜓 𝐷 (𝑔 , 𝑔 ) , 
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𝜏 + ℱ 𝑑 (𝑔 , 𝑔 ) ≤  ℱ 𝜓 𝑚𝑎𝑥
𝑑 (𝑔 , 𝑔 )𝑑 (𝑔 , 𝑆𝑔 ),

𝑑 (𝑔 , 𝑇𝑔 ),
( , ). (  , )

( , )

, 

≤  ℱ 𝜓 max
𝑑 (𝑔 , 𝑔 ), 𝑑 (𝑔 , 𝑔 ),

 𝑑 (𝑔 , 𝑔 ),
( , ). (  , )

( , )

, 

≤  ℱ[𝜓 (max{𝑑 (𝑔 , 𝑔 ), 𝑑 (𝑔 , 𝑔 )})]. 

If max{𝑑 (𝑔 , 𝑔 ), 𝑑 (𝑔 , 𝑔 )} = 𝑑 (𝑔 , 𝑔 ), then 

𝜏 + ℱ 𝑑 (𝑔 , 𝑔 ) ≤ ℱ 𝜓 𝑑 (𝑔 , 𝑔 ) . 

Since ℱ is strictly increasing, we have 

𝑑 (𝑔 , 𝑔 ) < 𝜓 𝑑 (𝑔 , 𝑔 ) . 

This is a contradiction due to the fact 𝜓 (𝑢) < 𝑢. Hence, we get 

𝑑 (𝑔 , 𝑔 ) < 𝜓 𝑑 (𝑔 , 𝑔 ) .       (2.4) 

As 𝜓  is non-decreasing, 

𝜓 (𝑑 (𝑔 , 𝑔 )) < 𝜓 ( 𝜓 𝑑 (𝑔 , 𝑔 ) ). 

By using above inequality in (2.3), we deduce that 

𝑑 (𝑔 , 𝑔 ) < 𝜓 𝑑 (𝑔 , 𝑔 ) . 

Ongoing this process, we get, 

𝑑 (𝑔 , 𝑔 ) < 𝜓 𝑑 (𝑔 , 𝑔 ) .      (2.5) 

Instead if 𝑗 = 2𝑘, where 𝑘 = 1,2,3, … , , by following the same procedure and using (2.4), we get 

the given inequality as 

𝑑 (𝑔 , 𝑔 ) < 𝜓 𝑑 (𝑔 , 𝑔 ) .       (2.6) 

Now, (2.5) and (2.6) collectively expressed as 

𝑑 𝑔 , 𝑔 < 𝜓 𝑑 (𝑔 , 𝑔 )  for all 𝑗 ∈ ℕ.     (2.7) 

Now, by using triangular inequality of 𝐸𝑏𝑀𝑆 also using (2.7), we have 
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𝑑 𝑔 , 𝑔 ≤ 𝜃(𝑔 , 𝑔 )𝑑 (𝑔 , 𝑔 ) + 𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 )𝑑 (𝑔 , 𝑔 ) 

+ ⋯ + 𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 )𝜃 𝑔 , 𝑔 … 𝜃 𝑔 , 𝑔 𝜃 𝑔 , 𝑔 𝑑 𝑔 , 𝑔 , 

𝑑 𝑔 , 𝑔 ≤ 𝑑 (𝑔 , 𝑔 )[𝜃 𝑔 , 𝑔 …  𝜃 𝑔 , 𝑔 𝜃 𝑔 , 𝑔  

+𝜃 𝑔 , 𝑔 𝜃 𝑔 , 𝑔 …  𝜃 𝑔 , 𝑔 𝜃 𝑔 , 𝑔 𝜓 + ⋯ + 

+𝜃 𝑔 , 𝑔 𝜃 𝑔 , 𝑔 …  𝜃 𝑔 , 𝑔 𝜃 𝑔 , 𝑔 𝜓 ] 

𝑑 𝑔 , 𝑔 ≤ 𝜓 (𝑑 𝑔 , S(𝑔 ) ) 𝜃((𝑔 , 𝑔 ) ≤ 𝑟. 

Thus, 𝑔 ∈  𝐵 (𝑔 , 𝑟). Hence, 𝑔 ∈  𝐵 (𝑔 , 𝑟) for all 𝑛 ∈ ℕ. Consequently, the sequence  

{𝑇𝑆(𝑔 )} → 𝑢 ∈ 𝐵 (𝑔 , 𝑟). As 𝑆, 𝑇: 𝐴 →  𝑃(𝐴) are semi 𝛼∗-dominated maps on  𝐵 (𝑔 , 𝑟), 

thus 𝛼∗(𝑔 , S𝑔 ) ≥ 1 and  𝛼∗(𝑔 , T𝑔 ) ≥ 1. This implies that 𝛼 (𝑔 , 𝑔 ) ≥ 1 for all 
𝑛 𝜖 ∈ ℕ⋃{0}. Now, the Inequality (2.7) can be written as 

        𝑑  (𝑔 , 𝑔 ) < 𝜓 (𝑑  (𝑔 , 𝑔 )) for all 𝑛 ∈ ℕ.     (2.8) 

By using the triangular inequality of the 𝐸𝑏𝑀𝑆 and (2.8), for 𝑚 > 𝑛, we deduce that 

𝑑 (𝑔 , 𝑔 ) ≤ 𝜃(𝑔 , 𝑔 )𝜓 (𝑑 (𝑔 , 𝑔 )) + 𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 )𝜓 (𝑑 (𝑔 , 𝑔 )) 

+ ⋯ + 𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 ) … 𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 )𝜓 (𝑑 (𝑔 , 𝑔 )), 

𝑑 (𝑔 , 𝑔 ) ≤ 𝑑 (𝑔 , 𝑔 )[𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 ) …  𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 )𝜓  

+𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 ) …  𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 )𝜓 + ⋯ + 

+𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 ) …  𝜃(𝑔 , 𝑔 )𝜃(𝑔 , 𝑔 )𝜓 ]. 

Since lim
, →

𝜃(𝑔 , 𝑔 )𝜓 < 1, the series ∑ 𝜓 ∏ 𝜃(𝑔 , 𝑔 ) converges for all 𝑚 ∈ ℕ, by 

applying the ratio test, put 

Ω = 𝜓 𝜃(𝑔 , 𝑔 ),   Ω = 𝜓 𝜃(𝑔 , 𝑔 ). 

Therefore for 𝑚 > 𝑛, the inequality mentioned above implies that 

𝑑 (𝑔 , 𝑔 ) ≤ 𝑑 (𝑔 , 𝑔 )[Ω − Ω ]. 
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Letting 𝑛 → ∞, we achieve that the sequence {𝑇𝑆(𝑔 )} is Cauchy in 𝐵 (𝑔 , 𝑟), 𝑑 . As 𝐵 (𝑔 , 𝑟) 

is a subspace of a complete 𝐸𝑏𝑀, ℎence, 𝐵 (𝑔 , 𝑟) is also complete, and so there exists a limit 

point 𝑢 in 𝐵 (𝑔 , 𝑟) such that the sequence {𝑇𝑆(𝑔 )} converges to 𝑢 when 𝑛 → ∞, that is, 

lim
→

𝑑 (𝑔 , 𝑢) = 0 .         (2.9) 

Now, by using Lemma 1.13 and triangular inequality of 𝐸𝑏𝑀𝑆, one writes 

𝑑 (𝑢, 𝑇𝑢)  ≤  𝜃(𝑢, 𝑇𝑢)[𝑑 (𝑢, 𝑔 ) + 𝑑 (𝑔 , 𝑇𝑢)] 

≤  𝜃(𝑢, 𝑇𝑢)𝑑 (𝑢, 𝑔 ) + 𝜃(𝑢, 𝑇𝑢)𝐻 (𝑆𝑔 , 𝑇𝑢). 

By supposition, 𝛼(𝑔 , 𝑢) ≥ 1. Assume that 𝑑 (𝑢, 𝑇𝑢)  > 0, then there exists a positive integer 𝑠 so 
that 𝑑 (𝑔 , 𝑇𝑢)  > 0 for all 𝑛 ≥ 𝑠. For 𝑛 ≥ 𝑠, we have 

𝑑 (𝑢, 𝑇𝑢) < 𝜃(𝑢, 𝑇𝑢) 𝑑 (𝑢, 𝑔 ) + 𝜓 max

𝑑 (𝑔 , 𝑢), 𝑑 (𝑔 , 𝑆𝑔 ), 𝑑 (𝑢, 𝑇𝑢),

𝑑 (𝑔 , 𝑆𝑔 )𝑑 (𝑔 , 𝑇𝑢)

1 + 𝑑 (𝑔 , 𝑢)

. 

Letting 𝑛 → ∞, and applying the Inequality (2.9), we obtain  

𝑑 (𝑢, 𝑇𝑢) <  𝜃(𝑢, 𝑇𝑢)𝜓 𝑑 (𝑢, 𝑇𝑢) < 𝑑 (𝑢, 𝑇𝑢). 

This leads to a contradiction. Consequently, our assumption is false. Therefore, 𝑑 (𝑢, 𝑇𝑢) = 0 and 
so 𝑢 ∈ 𝑇𝑢. Furthermore, using Lemma 1.13 and (2.9) we can prove that 𝑢 ∈ 𝑆𝑢. Hence, 𝑆 and 𝑇 

have a common multi FP 𝑢 in 𝐵 (𝑔 , 𝑟). 

Theorem 2.2. Let (𝒜 , 𝑑 )  be a complete 𝐸𝑏𝑀𝑆  with a function 𝜃: 𝒜 × 𝒜 → [1, ∞)  and 
 𝑆: 𝒜 → 𝒫(𝒜) be a multi-map. Suppose that for some 𝜓  ∈  𝝍 with constant 𝜏 > 0 and ℱ a 
strictly increasing function satisfying the following: 

𝜏 + ℱ(𝐻 (𝑆(𝑥), 𝑆(𝑦))) ≤  ℱ(𝜓 (𝐷 (𝑥, 𝑦))),     (2.10) 

where  𝑥, 𝑦 ∈ {𝑇𝑆(𝑔 )} and 𝐻 (𝑆(𝑥), 𝑇(𝑦)) > 0. Then,  {𝑇𝑆(𝑔 )} → 𝑢 ∈ 𝒜 and 𝑆 has a common 

FP 𝑢 in 𝒜. 
Definition 2.3. Let 𝒜 be a non-empty set, ≼ be a partial order on 𝒜 and 𝐺 ⊆ 𝒜. We assume 
that 𝑦 ≼ 𝐿 for each 𝑥 ∈ 𝐿, we have 𝑦 ≼ 𝑥. Functions 𝑆, 𝑇: 𝒜 → 𝒫(𝒜) are said dominated on 𝐺 
if 𝑦 ≼ 𝑆𝑦 and 𝑇𝑦 for all 𝑦 ∈ 𝐺 ⊆ 𝒜. If 𝐺 = 𝒜, then 𝑆, 𝑇: 𝒜 → 𝒫(𝒜) are totally dominated. 

Now, we present the result for a hybrid coupled multivalued dominated maps on 𝐵 (𝑔 , 𝑟) in 

a complete 𝐸𝑏𝑀𝑆. 
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Theorem 2.4. Let (𝒜,≼, 𝑑 ) be an ordered complete 𝐸𝑏𝑀𝑆 with a function 𝜃: 𝒜 × 𝒜 → [1, ∞). 

Let 𝑟 > 0, ℊ  𝜖𝐵 (𝑔 , 𝑟) ⊆ 𝒜 and  𝑆, 𝑇: 𝒜 → 𝒫(𝒜) be multi dominated mappings on 𝐵 (𝑔 , 𝑟). 

Suppose that there are 𝜓  ∈  𝝍, a constant 𝜏 > 0, and a strictly increasing function ℱ satisfying the 
following: 

i)  𝜏 + ℱ 𝐻 𝑆(𝑥), 𝑇(𝑦) ≤  ℱ 𝜓 𝐷 (𝑥, 𝑦) ,                     (2.11) 

where 𝑥, 𝑦 ∈ 𝐵 (𝑔 , 𝑟) ⋂{𝑇𝑆(𝑔 )}, 𝑦 ≼ 𝑥 and 𝐻 𝑆(𝑥), 𝑇(𝑦) > 0; 

ii) ∑ 𝜓   (𝑑 𝑔 , S(𝑔 ) ) ∏ 𝜃((𝑔 , 𝑔 ) ≤ 𝑟.                                (2.12) 

where {𝑇𝑆(𝑔 )} is a sequence in 𝐵 (𝑔 , 𝑟)  for all  𝑛 ∈ ℕ⋃{0} and 𝜃 > 1 . Then, 

{𝑇𝑆(𝑔 )} → 𝑢 ∈ 𝐵 (𝑔 , 𝑟). Also, if (2.11) holds for 𝑥, 𝑦 ∈  {𝑢}, either𝑔 ≼ 𝑢 or 𝑢 ≼ 𝑔  for 

all naturals, then, 𝑆, 𝑇 have a mutual FP 𝑢 in  𝐵 (𝑔 , 𝑟). 

Proof. Let  𝛼: 𝒜 × 𝒜 → [0, +∞) be a map defined by 𝛼(𝑥, 𝑦) = 1 for each 𝑥 ∈ 𝐵 (𝑔 , 𝑟), 𝑥 ≼ 𝑦 

and 𝛼(𝑥, 𝑦) = 0 otherwise. 𝑆 and 𝑇 are multi dominated maps on 𝐵 (𝑔 , 𝑟), so 𝑥 ≼ 𝑆(𝑥) and 

𝑦 ≼ 𝑇(𝑦) for every 𝑥 ∈ 𝐵 (𝑔 , 𝑟). This shows that 𝑥 ≼ 𝑧  for each 𝑧 ∈ 𝑆(𝑥) and 𝑥 ≼ 𝑝 for 

each 𝑝 ∈ 𝑇(𝑦). So, 𝛼(𝑥, 𝑧) = 1 for evey 𝑧 ∈ 𝑆(𝑥) and 𝛼(𝑥, 𝑝) = 1 for each 𝑝 ∈ 𝑇(𝑦). This 

signifies that inf{𝛼(𝑥, 𝑦): 𝑦 ∈ 𝑆(𝑥)} = 1  and inf{𝛼(𝑥, 𝑦): 𝑦 ∈ 𝑇(𝑦)} = 1 . So, 𝛼∗ 𝑥, 𝑆(𝑥) = 1 , 

𝛼∗ 𝑥, 𝑇(𝑦) = 1 for every 𝑥 ∈ 𝐵 (𝑔 , 𝑟). So, 𝑆, 𝑇: 𝒜 → 𝒫(𝒜) are  𝛼∗-dominated multi maps 

on 𝐵 (𝑔 , 𝑟). Moreover, (2.12) can be written as 

𝜏 + ℱ(𝐻 (𝑆(𝑥), 𝑇(𝑦))) ≤  ℱ(𝜓 (𝐷 (𝑥, 𝑦))), 

for all 𝑥, 𝑦 ∈ 𝐵 (𝑔 , 𝑟) ⋂{𝑇𝑆(𝑔 )}, 𝛼 (𝑥, 𝑦) ≥ 1 . Also inequality (2.11) holds. Then from 

Theorem 2.1, we have {𝑇𝑆(𝑔 )} is a sequence in 𝐵 (𝑔 , 𝑟) and {𝑇𝑆(𝑔 )} → 𝑢 ∈ 𝐵 (𝑔 , 𝑟). 

Now, 𝑔 , 𝑢 ∈ 𝐵 (𝑔 , 𝑟) and either 𝑔 ≼ 𝑢  or 𝑢 ≼ 𝑔  signifies that either 𝛼(𝑔 , 𝑢) ≥ 1 or 

𝛼(𝑢, 𝑔 ) ≥ 1. Consequently, all conditions of Theorem 2.1 hold. Hence, both the maps 𝑆 and 𝑇 

have a common multi FP 𝑢 in  𝐵 (𝑔 , 𝑟). 

We left with the result without using the condition of closed balls in an ordered complete 
𝐸𝑏𝑀𝑆. In the upcoming result, by using single multi-maps which are only defined on the whole 
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space instead on a closed ball, we present the given result. 
Theorem 2.5. Let (𝒜,≼, 𝑑 ) be an ordered complete 𝐸𝑏𝑀𝑆 with a function 𝜃: 𝒜 × 𝒜 → [1, ∞). 
Let 𝑆, 𝑇: 𝒜 → 𝒫(𝒜) be the multi dominated maps on 𝒜. Suppose that there are 𝜓  ∈  𝝍, a 
constant 𝜏 > 0 and ℱ a strictly increasing function satisfying the following: 

𝜏 + ℱ(𝐻 (𝑆(𝑥), 𝑇(𝑦))) ≤  ℱ(𝜓 (𝐷 (𝑥, 𝑦))),     (2.13) 

where 𝑥, 𝑦 ∈ {𝑇𝑆(𝑔 )}, 𝑦 ≼ 𝑥 Then, for all  𝑛 ∈ ℕ⋃{0}, {𝑇𝑆(𝑔 )} → 𝑢 ∈ 𝒜. If (2.13) sustains 
for 𝑢 and either 𝑔 ≼ 𝑢 or 𝑢 ≼ 𝑔  for all naturals, then, 𝑢 is the mutual FP of 𝑆, 𝑇. 
Example 2.6. Let 𝐴 =  ℝ ∪ {0} and 𝑑 : 𝐴 × 𝐴 → [0, ∞)  be a complete 𝐸𝑏𝑀𝑆 defined as  

  𝑑 (𝑥, 𝑦) = (𝑥 − 𝑦)   for 𝑎𝑙𝑙   𝑥, 𝑦 ∈ 𝐴, 

where 𝜃 ∶  𝐴 × 𝐴 → [1, ∞) is given as  𝜃(𝑥, 𝑦) =  2 > 1. Define 𝑆, 𝑇 ∶  𝐴 × 𝐴 → 𝑃(𝐴)  by  

   𝑆(𝑘) =   
 ,  if 𝑘 ∈ 0, ∩ 𝐴

[𝑘, 𝑘 + 1] if  𝑘 ∈ , ∞ ∩ 𝐴
, 

and 

𝑇(𝑤) =
 ,  if 𝑤 ∈ 0, ∩ 𝐴

[𝑤 + 1, 𝑤 + 3] if  𝑤 ∈ , ∞ ∩ 𝐴
. 

Suppose that 𝑘 =  and 𝑟 = 16, then 𝐵 (𝑘  , 𝑟)= [0, ] ∩ 𝐴. Now, we define 𝑑 𝑘 , 𝑆(𝑘 ) =

𝑑 , , = 𝑑 , = . By doing so, we derive a sequence {𝑇𝑆(𝑘 )} = ,
 
,

 
, ⋯  in 𝐴 

generated by 𝑘 . Let 𝜓 (𝑡) = 𝑡 and 𝑎 = 1. Define 𝛼: 𝐴 × 𝐴 → [0, ∞) by 

𝛼(𝑘, 𝑤) =
1     if  𝑘 > 𝑤,
1

2
  otherwise.

 

Now if 𝑘, 𝑤 ∈ 𝐵 (𝑘  , 𝑟) ∩ {𝑇𝑆(𝑘 )}  with 𝛼(𝑘, 𝑤) ≥ 1, we have 

𝐻 (𝑆(𝑘), 𝑇(𝑤)) = 𝑚𝑎𝑥 sup
∈ ( )

𝑑 (𝛼, 𝑇(𝑤)), sup
∈ ( )

𝑑 (𝑆(𝑘), 𝑏) , 

=  max sup
∈ ( )

𝑑 𝛼, , , sup
∈ ( )

𝑑 , , 𝑏 , 

= max sup
∈ ( )

𝑑 , , , sup
∈ ( )

𝑑 , , , 
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=max 𝑑 , , 𝑑 , , 

=max − , − , 

 ≤ 𝜓

⎝

⎜
⎛

max

⎩
⎪
⎨

⎪
⎧(𝑘 − 𝑤) ,

2𝑘

3
,

3𝑤

4
𝑘 𝑤

4{1 + (𝑘 − 𝑤) } ⎭
⎪
⎬

⎪
⎫

⎠

⎟
⎞

, 

 ≤ 𝜓 (𝐷 (𝑘, 𝑤)). 

This means that for 𝜏 ∈ (0, ] and for a strictly increasing function  ℱ(𝑠) = ln 𝑠, we have 

𝜏 + ℱ(𝐻 𝑆(𝑘), 𝑇(𝑤) ) ≤ ℱ (𝜓 𝐷 (𝑘, 𝑤) ). 

Note 𝛼(6,5) ≥ 1. But, we get 

𝜏 + ℱ 𝐻 (𝑆(6), 𝑇(5)) > 𝐹 (𝜓 𝐷 (𝑘, 𝑤) ). 

So condition (2.1) is not fulfilled on 𝐴. Furthermore, for all 𝑖 ∈ ℕ⋃{0}, 

𝜓 (𝑑 𝑔 , S(𝑔 ) ) 𝜃((𝑔 , 𝑔 ) =
4

81
× 2

4

5
< 16 ≤ 𝑟. 

Hence, 𝑆 and 𝑇 satisfy all the restrictions of Theorem 2.1 for 𝑘, 𝑤 ∈ 𝐵 (𝑘  , 𝑟) ∩ {𝑇𝑆(𝑘 )} 

with 𝛼(𝑘, 𝑤) ≥ 1. Therefore 𝑆, 𝑇 have a mutual FP. 

3. Results for graph theory 

Existence of FP results for multi graph dominated mappings of Theorem 2.1 will be 
demonstrated in this section. In a metric space with a graph, Jachymski [21] obtained a significant 
conclusion regarding the contraction mappings. FP results for graph contractions were reported by 
Hussain et al. [14], Rasham et al. [37,38]. 
Definition 3.1 Let 𝒜 ≠ {𝜑} and 𝐺 = (ℰ(𝐺), 𝐶(𝐺)) be a graph so that 𝑉(𝐺) = 𝒜 ,𝐵 ⊆ 𝒜. A 
multi-map 𝑆: 𝒜 → 𝑃(𝒜)  is said as a multi graph dominated on 𝐵  if (𝑥, 𝑦) ∈ 𝐶(𝐺) , for 
each 𝑦 ∈ 𝑆(𝑥) and 𝑦 ∈ 𝒜. 
Theorem 3.2 Let (𝐴, 𝑑 ) be a complete 𝐸𝑏𝑀𝑆 with a function 𝜃: 𝐴 × 𝐴 → [1, ∞]. Let 𝑟 > 0, 

𝑓 ∈ 𝐵 (𝑓 , 𝑟) ⊆  𝐴. Suppose the following restrictions are fulfilled: 

(i) 𝑆, 𝑇: 𝐴 → 𝑃(𝐴) are multi- graph dominated maps on   𝐵 (𝑓 , 𝑟)  ∩ {𝑇𝑆(𝑓 )}. 
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(ii) There exist 𝜏 > 0 and a strictly increasing function ℱ satisfying the following: 

𝜏 + ℱ(𝐻  (𝑆(𝑥), 𝑇(𝑦)))  ≤  ℱ(𝜓 (𝐷 (𝑥, 𝑦))),      (3.1) 

where 𝑥, 𝑦 𝜖𝐵 (𝑓 , 𝑟) ⋂{𝑇𝑆(𝑓 )}, (𝑥, 𝑦) ∈ 𝐶(𝐺) and 𝐻 𝑆(𝑥), 𝑇(𝑦) > 0. 

(iii) ∑ 𝜓 (𝑑 𝑔 , S(𝑔 ) ) ∏ 𝜃((𝑔 , 𝑔 ) ≤ 𝑟,      (3.2) 

where {𝑇𝑆(𝑓 )}  is a sequence in 𝐵 (𝑓 , 𝑟), for each  𝑛 ∈ ℕ⋃{0}.  

Then {𝑇𝑆(𝑓 )} → 𝑢 ∈ 𝐵 (𝑓 , 𝑟), where (𝑓 , 𝑓 ) ∈ 𝐶(𝐺) and (𝑓 , 𝑓 ) ∈ {𝑇𝑆(𝑓 )}. Moreover, 

if  (3.1) is fulfilled for 𝑥, 𝑦 ∈ {𝑢} either (𝑓 , 𝑢) ∈ 𝐶(𝐺) or (𝑢, 𝑓 ) ∈ 𝐶(𝐺) for every  𝑛 ∈  ℕ⋃{0}, 

then, 𝑆 and 𝑇 have a mutual FP 𝑢 in 𝐵 (𝑓 , 𝑟). 

Proof. Define 𝛼 ∶ 𝐴 × 𝐴 → [0, ∞) by 

α(x, y) =
1, if   𝑥 ∈ 𝐵 (𝑓 , 𝑟)(𝑥, 𝑦) ∈ 𝐶(𝐺),

0,                                                otherwise.
 

The mappings 𝑆 and 𝑇 are semi graph dominated on 𝐵 (𝑓 , 𝑟), then for 𝑥 ∈ 𝐵 (𝑓 , 𝑟), (𝑥, 𝑦) ∈

𝐶(𝐺)  for every 𝑦 ∈  𝑆(𝑥)  and (𝑥, 𝑦)  ∈ 𝐶(𝐺)  for each 𝑦 ∈ 𝑇(𝑦) . So, 𝛼(𝑥, 𝑦) = 1 for 
every 𝑦 ∈ 𝑆(𝑥)and𝛼(𝑥, 𝑦) = 1for every  𝑦 ∈ 𝑇(𝑦). This means thatinf{ 𝛼(𝑥, 𝑦): 𝑦 ∈ 𝑆(𝑥)} = 1 
and inf{ 𝛼(𝑥, 𝑦):  𝑦 ∈ 𝑇(𝑥) } = 1.Therefore, 𝛼∗(𝑥, 𝑆(𝑥)) = 1  and 𝛼∗(𝑥, 𝑇(𝑥)) = 1  for each 𝑥 ∈

𝐵 (𝑓 , 𝑟) . So, 𝑆, 𝑇: 𝐴 → 𝑃(𝐴)  are 𝛼∗ -dominated maps on   𝐵 (𝑓 , 𝑟) . Now, (3.1)  can be 

expressed as 

𝜏 + ℱ 𝐻 𝑆(𝑥), 𝑇(𝑦) ≤  ℱ 𝜓 max 𝑑 (𝑥, 𝑦), 𝑑 x, 𝑆(𝑥) , 𝑑 y, 𝑇(𝑦) ,
, ( ) , ( )

( , )
, 

whenever , 𝑦 𝜖𝐵 (𝑓 , 𝑟)⋂{𝑇𝑆(𝑓 )}  , 𝛼(𝑥, 𝑦) ≥ 1  and  𝐻 (𝑆(𝑥), 𝑇(𝑦)) ˃0 . Also, (iii) holds. 

Now, (𝑓 , 𝑢) ∈ 𝐵 (𝑓 , 𝑟)  and (𝑓 , 𝑢) ∈ 𝐶(𝐺)  or (𝑢, 𝑓 ) ∈ 𝐶(𝐺)  such that   𝛼 (𝑓  ,u) ≥ 1  or 

𝛼(𝑢, 𝑓 ) ≥ 1. So, all the restrictions of Theorem 2.1 are fulfilled. Hence, by means of Theorem 2.1, 

𝑆, 𝑇 have a mutual FP 𝑢 in 𝐵 (𝑓 , 𝑟) and 𝑑 (𝑢, 𝑢)  = 0. 

4. Application to integral equations 

Numerous authors have utilized distinct generalized contractions in various distance spaces 
to establish conditions that are both required and enough for a range of linear and nonlinear 
integrals, including Volterra types within the framework of FP theory. To access more up-to-date 
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FP results that incorporate applications of integral inclusions, please refer to the following 
references [4,7,17,30,31,36]. 
Theorem 4.1. Let (𝒜 , 𝑑 )  be a complete 𝐸𝑏𝑀𝑆  with a function 𝜃: 𝒜 × 𝒜 → [1, ∞) . Let 
𝑆, 𝑇: 𝒜 → 𝒜  be self-mappings. Suppose there are 𝜓  ∈  𝝍 , constant 𝜏 > 0 , and a strictly 
increasing function, such that 

𝜏 + ℱ(𝐻 (𝑆(𝑥), 𝑇(𝑦))) ≤  ℱ(𝜓 (𝐷 (𝑥, 𝑦))),     (4.1) 

where 𝑥, 𝑦 ∈ {𝑇𝑆(𝑔 )} and 𝐻 (𝑆(𝑥), 𝑇(𝑦)) > 0. Then, {𝑇𝑆(𝑔 )} → 𝑢 ∈ 𝒜 for all  𝑛 ∈ ℕ⋃{0}. 

Likewise if (4.1) sustains for 𝑢, then 𝑢 becomes the FP of 𝑆 and 𝑇 in 𝒜. 
Proof. The proof of Theorem 4.1 is equivalent to the proof of Theorem 2.1, stated in different terms.  
In this section, we demonstrate the utilization of Theorem 2.1 by showcasing its application in the 
context of Volterra-type integral equations  

𝑔(𝑘)  =  ∫ 𝐻  (𝑘, ℎ, 𝑔(ℎ))𝑑ℎ,      (4.2) 

𝑝(𝑘) =  ∫ 𝐻  𝑘, ℎ , 𝑝(ℎ) 𝑑ℎ,       (4.3) 

for each 𝑘 ∈ [0,1]. To solve (4.2) and (4.3), let 𝐴 denote the collection of continuous functions 
defined on the closed interval [0,1] to non-negative real numbers, denoted by 𝐶([0,1], ℝ ). We 

describe the norm for  𝑔 ∈  𝐶([0,1] , ℝ ) as ‖𝑔‖ = 𝑠𝑢𝑝 ∈[ , ][|𝑔(𝑘)| ℯ ],  wherever 𝜏 > 0 is 

chosen arbitrary. Define 

  𝑑 (𝑔 , 𝑝) = 𝑠𝑢𝑝 ∈[ , ]{|𝑔(𝑘) − 𝑝(𝑘)|ℯ }  =‖𝑔 − 𝑝‖  

for each  𝑝 ∈  C([0,1] , ℝ ). The space (C([0,1], ℝ ), 𝑑 ) attains the completeness and satisfies the 
conditions of a complete 𝐸𝑏𝑀𝑆.  

Now, we will prove this theorem to derive a solution of integral Eqs (4.2) and (4.3). 
Theorem 4.2. Suppose that the given assumptions hold: 

(i) 𝐻 , 𝐻 : [0,1] × [0,1] × 𝐶[0,1], ℝ ) → ℝ; 

(ii) Define 𝑆, 𝑇: 𝐶[0,1], ℝ ) →  𝐶[0,1], ℝ ) by 

𝑆(𝑘) = 𝐻  𝑘, 𝒽, 𝑔(𝒽) 𝑑𝒽, 

𝑇(𝑘) = 𝐻  𝑘, 𝒽 , 𝑝(𝒽) 𝑑𝒽. 

Assume there exists 𝜏 > 0 such that 
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  |𝐻 (𝑘, 𝒽, 𝑔(𝒽)) − 𝐻 (𝑘, 𝒽, 𝑝(𝒽))| ≤
( , )

[ ‖ ( , )‖ ]
 

for each 𝑘, 𝒽 ∈ [0,1] and 𝑔, 𝑝 ∈ C([0,1],ℝ ), where 

𝑀 𝑔(𝒽), 𝑝(𝒽) = sup 𝜓

[|𝑔(𝒽) − 𝑝(𝒽)|] , [|𝑔(𝒽) − 𝑆(𝒽)|] , [|𝑔(𝒽) − 𝑇(𝒽)|] ,

[|𝑔(𝒽) − 𝑆(𝒽)|] [|𝑔(𝒽) − 𝑇(𝒽)|]

1 + [|𝑔(𝒽) − 𝑝(𝒽)|]

. 

Then (4.2) and (4.3) have a unique solution. 
Proof. By supposition (ii), one writes 

|𝑆(𝑘) − 𝑇(𝑘)| ≤ ∫ |𝐻 (𝑘, 𝒽, 𝑔(𝒽)) − 𝐻 (𝑘, 𝒽, 𝑝(𝒽))| 𝑑𝒽, 

≤ ∫
 ( ( , )ℯ )ℯ 𝒽

[ ‖ ( , )‖ ]
𝑑𝒽, 

≤ ∫
 ( ( , ))ℯ 𝒽

[ ‖ ( , )‖ ]
𝑑𝒽, 

≤ 
 ( ( , ))

[ ‖ ( , )‖ ]
∫ ℯ 𝒽 𝑑𝒽, 

≤
‖ ( , )‖ ℯ

‖ ( , )‖
 . 

That is, 

|𝑆(𝑘) − 𝑇(𝑘)|ℯ ≤  
‖𝑀(𝑔, 𝑝)‖

𝜏 ‖𝑀(𝑔, 𝑝)‖ + 1
, 

‖𝑆(𝑘) − 𝑇(𝑘)‖ ≤
‖𝑀(𝑔, 𝑝)‖

𝜏 ‖𝑀(𝑔, 𝑝)‖ + 1
. 

Taking square root on both sides, 

‖𝑆(𝑘) − 𝑇(𝑘)‖ ≤
‖ ( , )‖

[ ‖ ( , )‖ ]
 , 

‖𝑆(𝑘) − 𝑇(𝑘)‖ ≤
‖ ( , )‖

‖ ( , )‖
, , 

‖ ( , )‖

‖ ( , )‖
≤

‖ ( ) ( )‖
 , 

𝜏 +
‖ ( , )‖

≤  
‖ ( ) ( )‖

 , 

which shows that 
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𝜏 −
‖ ( ) ( )‖

≤ −
‖ ( , )‖

. 

Thus, all assumptions of Theorem 2.1 are met for ℱ(𝑔) =  
√

, 𝑔 > 0 and 𝑑 (𝑔, 𝑝)  = ‖𝑔 − 𝑝‖ . 

Consequently, (4.2) and (4.3) possess only one solution. 

5. Application to functional equations 

In dynamic programming, for the solution of functional equations we present an application in 
this section. Let 𝑃 as well as 𝑄 be two Banach spaces, 𝑙 ⊆ 𝑃, 𝑚 ⊆ 𝑄 and 

𝑑 : 𝑙 × 𝑚 → 𝑙, 

ℎ, 𝑣: 𝑙 × 𝑚 → ℝ, 

𝑆, 𝑇: 𝑙 × 𝑚 × ℝ → ℝ. 

For more results on dynamic programming see [37,39]. Suppose that 𝑙 and 𝑚 appear for decisions 
spaces. The problem related to dynamic programming is to find out a result of the following 
equations: 

𝑓(𝛿) = sup
∈

ℎ(𝛿, 𝜑) + 𝑆 𝛿, 𝜑, 𝑓 𝑑 (𝛿, 𝜑) ,      (5.1) 

𝑔(𝛿) = sup
∈

𝑣(𝜃, 𝜑) + 𝑇 𝛿, 𝜑, 𝑔 𝑑 (𝛿, 𝜑) ,      (5.2) 

for 𝛿 ∈ 𝑙. We want to show that (5.1) and (5.2) have a unique solution. Assume 𝑅(𝑙) symbolizes 
the set of all positive valued functions on 𝑙. Consider, 

𝑑 (𝑥 , 𝑢) = [sup ∈ {|𝑥(𝛿) − 𝑢(𝛿)|}] = ‖𝑥 − 𝑢‖ ,    (5.3) 

for all 𝑥, 𝑢 ∈ 𝑅(𝑙). With this setting, (𝑅(𝑙), 𝑑 ) becomes a complete EbMS with 𝜃(𝑥, 𝑢) = 2. The 
following restrictions are assumed to verify the following: 

(i) 𝑆, 𝑇, ℎ and 𝑣 are bounded. 

(ii) For 𝛿 ∈ 𝑙, 𝑢 ∈ 𝑅(𝑙), let 𝐺, 𝐻: 𝑅(𝑙) → 𝑅(𝑙) be multi-maps, so that 

𝐺𝑥(𝛿) = sup
∈

ℎ(𝛿, 𝜑) + 𝑆 𝛿, 𝜑, 𝑥 𝑑 (𝛿, 𝜑) ,     (5.4) 

𝐻𝑥(𝛿) = sup
∈

𝑣(𝛿, 𝜑) + 𝑇 𝛿, 𝜑, 𝑥 𝑑 (𝛿, 𝜑) .     (5.5) 

Suppose there exists 𝜏 > 0, and for all (𝛿, 𝜑) ∈ 𝑙 × 𝑚,, 𝑢 ∈ 𝑅(𝑙), 𝑡 ∈ 𝑙 such that 

𝑆(𝛿, 𝜑,𝑥(𝑡)) + 𝑇(𝛿, 𝜑,𝑣(𝑡)) ≤  𝑀(𝑢, 𝑣) ℯ ( , ) ( ) ( ) ,   (5.6) 

where 
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𝑀(𝑥, 𝑢) = sup 𝜓
[|𝑥(𝑡) −  𝑢(𝑡)|] , [|𝑥(𝑡) − 𝐺𝑥(𝑡)|] , [|𝑢(𝑡) − 𝐻𝑢(𝑡)|] ,

[| ( ) ( )|] [| ( ) ( )|]

[| ( )  ( )|]

. 

Theorem 5.1. Assume that (𝑖), (𝑖𝑖), and (5.6) hold. Then, (5.1) and (5.2) have a distinctive, mutual 
and bounded solution in 𝑅(𝑙). 
Proof. Take any 𝑐 > 0. From (5.4) and (5.5), there are 𝑢 , 𝑢  ∈ 𝑅(𝑙), and 𝜑 , 𝜑 ∈ 𝑚 such that  

𝐺𝑢 < ℎ(𝛿, 𝜑 ) + 𝑆(𝛿, 𝜑 ,𝑢 (𝑑 (𝛿, 𝜑 ))) + 𝑐,          (5.7) 

𝐻𝑢 < ℎ(𝛿, 𝜑 ) + 𝑇(𝛿, 𝜑 ,𝑢 (𝑑 (𝛿, 𝜑 ))) + 𝑐.          (5.8) 

By the definition of supremum, we obtain  

𝐺𝑢 < ℎ(𝛿, 𝜑 ) + 𝐿(𝛿, 𝜑 , 𝑢 (𝑑 (𝛿, 𝜑 )))      (5.9) 

    𝐻𝑢 < ℎ(𝛿, 𝜑 ) + 𝑀 𝛿, 𝜑 , 𝑢 𝑑 (𝛿, 𝜑 ) .      (5.10) 

Then, from (5.6), (5.7) and (5.10), we have 

|𝐺𝑢 (𝛿) − 𝐻𝑢 (𝛿)| ≤  ℯ
, , ( , ) ( , , ( ( , ))), 

|𝐺𝑢 (𝛿) − 𝐻𝑢 (𝛿)| ≤ 𝑀(𝑥, 𝑢) ℯ ( , ) | ( ) ( )| + 𝑐. 

Since 𝑐 > 0 is arbitrary, we obtain 

|𝐺𝑢 (𝛿) − 𝐻𝑢 (𝛿)| ≤  𝑀(𝑥, 𝑢) ℯ ( , ) | ( ) ( )| , 

| ( ) ( )|

( , )
≤ ℯ ℯ ( , ) | ( ) ( )| . 

That is, 

ℯ .
|𝐺𝑢 (𝛿) − 𝐻𝑢 (𝛿)|

𝑀(𝑥, 𝑢)
≤ ℯ  ( , ). ℯ | ( ) ( )| . 

Taking antilog on both sides, 

ln ℯ .
| ( ) ( )|

( , )
≤ ln ℯ  ( , ). ℯ | ( ) ( )| , 

lnℯ + 𝑙𝑛
| ( ) ( )|

( , )
≤  lnℯ  ( , ) - lnℯ | ( ) ( )| . 

That is, 

𝜏 + ln
| ( ) ( )|

( , )
≤  𝑀(𝑢, 𝑣) − |𝐺𝑢 (𝛿) − 𝐻𝑢 (𝛿)| . 



18 

AIMS Mathematics  Volume 9, Issue 1, 1–21. 

This implies that 

𝜏 + ln(|𝐺𝑢 (𝛿) − 𝐻𝑢 (𝛿)| ) + |𝐺𝑢 (𝛿) − 𝐻𝑢 (𝛿)| ≤ ln 𝑀(𝑥, 𝑢) + 𝑀(𝑥, 𝑢). 

So, all the restrictions of Theorem 2.1 are fulfilled for 𝐹(𝑣) = ln(𝑣 + 𝑣) ; 𝑣 > 0 and 𝑑 (𝑥, 𝑢) =

 ‖𝑥 − 𝑢‖ . Therefore, 𝐺 and 𝐻 have a distinct, mutual and bounded solution of (5.1) and (5.2). 

6. Conclusions 

The aim of this research is to introduce new FP theorems for set-valued dominated mappings 
that satisfy the advanced nonlinear contractions in a complete EbMS. Additionally, we establish 
novel FP results for a pair of dominated multi-functions on a closed ball that meets the conditions of 
generalized local nonlinear contractions. We provide new and unique findings for dominated maps in 
an ordered complete EbMS. We also propose a new concept of multi-graph dominated mappings on 
a closed ball in these spaces and present some new results for graphic contractions endowed with a 
graphic structure. We provide examples to validate our newly acquired outcomes, which demonstrate 
that contractive conditions hold only on a closed-ball and not on the whole space. Furthermore, we 
provide applications for nonlinear systems of integral equations and functional equations to illustrate 
the originality of our obtained outcomes. We have expanded and broadened the scope of various 
findings that have previously been reported in the literature. Our work builds upon and encompasses 
the contributions of several prior studies, including those conducted by Rasham et al. [35–39], 
Wordowski [42], Acar et al. [1], Altun et al. [8], Nashine et al. [30,31] and several established 
classical results [2,5,13,23,25,26,29,32,33,40,41,43]. In summary, our results provide a more 
comprehensive understanding of the topic at hand by incorporating and extending upon previous 
findings. 
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