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Abstract: Synchronization is a key topic of research in neuroscience, medicine, and artificial neural
networks; however, understanding its principle is difficult, both scientifically and mathematically.
Specifically, the synchronization of the FitzHugh-Nagumo network with a hierarchical architecture
has previously been studied; however, a mathematical analysis has not been conducted, owing to
the network complexity. Therefore, in this paper, we saught to understand synchronization through
mathematical analyses. In particular, we consider the most common types of hierarchical architecture
and present a condition of the hierarchical architecture to induce synchronization. First, we provide
mathematical analyses of a Lyapunov function for each layer, from which we obtain sufficient
conditions guaranteeing synchronization and show that the Lyapunov function decreases exponentially.
Moreover, we show that the internal connectivity critically affects synchronization in the first
layer; however, in the second and subsequent layers, the internal connectivity is not important for
synchronization, and the connectivity up to the first layer critically affects synchronization. We expect
that the results and mathematical methodology can be applied to study other similar neural models
with hierarchical architectures.

Keywords: neural networks; synchronization; nonlinear systems; FitzHugh-Nagumo; hierarchy
Mathematics Subject Classification: 92C20, 92C42, 34B45, 34D06

1. Introduction

The phenomenon in which different oscillators (objects that show repetitive behavior over time)
have rules in repetitive behavior is called synchronization. Similar to groups of fireflies that blink
simultaneously or a number of pendulum clocks that sway in the same direction at the same time, the
synchronization of various oscillators has been found in nature, in our daily lives [6], and in various
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fields such as neuroscience [16], biology [13, 20], sociology [10], physics [1, 33], chemistry [21, 24],
and computer science [36, 42].

Because biological neural network synchronization plays an important role in the brain and central
nervous system activity, there is extensive and ongoing research among a diverse group of fields,
especially in neuroscience and medicine [2, 7–9, 11, 17, 19, 22, 26, 35, 41–43].

Studies have shown that rapid synchronization can cause functional disturbances in the nervous
system and cause pathological patterns such as epilepsy and Parkinson’s disease; however, it can
also improve the function and performance of the central nervous system. Therefore, research on the
mechanisms of synchronization/asynchronization is a key topic in the field of neuroscience. This topic
is a core topic not only in the fields of neuroscience and medicine, but also in the field of artificial neural
networks. Research on this subject is very interesting, but it is difficult to understand the principle
scientifically and mathematically. Therefore, it is important to study synchronization and asynchronous
mechanisms in controllable situations through mathematical modeling and analysis.

As previously explained, synchronization is not a phenomenon caused by a single object, but
rather a phenomenon caused by interactions between multiple objects. Therefore, the study of the
synchronization phenomenon should also consider the interactions between objects. To understand and
illustrate the relationship between objects, we formed a network topology using a graph that expresses
objects as nodes and the interactions between objects as either links or arrows. The main difficulty in
studying network systems is that the more objects and the more complex the relationships, the more
complex the network. In particular, it is important to understand the synchronization phenomenon in
a network structure because synchronization can occur differently depending on the network structure
(i.e, connection relationship).

The brain and central nervous system are among the most complex networks. It is well-known
that neurons are embedded in assemblies and networks that influence each other through excitatory
and inhibitory synaptic connections. Therefore, they are activated and inhibited rhythmically. We
note that this rhythmicity is reflected in oscillations of the extracellular field potential that can be
measured through recordings of local field potentials and through electroencephalography (EEG) (for
more details, see [14] and references therein). There are approximately 86 billion neurons in the
human nervous system, which are connected by approximately 1014 synapses. To study the complex
interactions of these large-scale neural networks, the neural network is divided into several neural
groups, each of which can be represented as a form of the interactions between the neurons within it.

One of the most simplified models to represent the features of interacting neurons is the
FitzHugh–Nagumo (FHN) network [15, 27], which is described as the following system:

ϵu̇ = u −
u3

3
− v, (1.1)

v̇ = u − bv + a, (1.2)

where u and v represent the state variables of a neuron, that is, the membrane potential (activator) and
the recovery variable (inhibitor), respectively, and ϵ, a, and b are positive constants. The FHN network
is a reduced form of the Hodgkin-Huxley equation. Both equations are models that suggest how neural
stimuli are transmitted. Each nerve cell stays still and is excited/ignited by external stimuli; thereafter,
it quickly returns to its original state, which has some recovery periods and cannot be ignited for
some time. The FHN network models only the important characteristics of the neuron properties. After
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introducing the FHN network, this work was extended in various directions, such as FHN networks
coupled with either gap-junctions or spaced clamped [19, 38, 40], mean field models for the FHN
network [4, 7, 32], an FHN type coupled reaction-diffusion network on a continuous domain [3], a
photosensitive memristive FHN network [28], and concentration phenomena in FHN network [5] (for
more topics, see [18, 29, 33] and therein). There is also a lot of research on synchronizing other types
of models for heterogeneous neural networks such as the synchronization under Dirichlet boundary
conditions [23], and the event-triggered synchronization [25,44]. In addition, we can find many results
for delay-type models such as adaptive control [39], pinning control [34], and intermittent control [37].

Among these studies, those of interest to us are [30] and [31]. In [31], Plotnikov et al. considered
heterogeneous FHN networks with diffusive coupling and a greater number of neurons (nodes) as
follows:

ϵu̇i = ui −
u3

i

3
− vi +

n∑
j=1

ci j

(
u j − ui

)
(1.3)

v̇i = ui − bvi + ai, (1.4)

where ci j is the coupling strength between the ith and jth neuron for i, j = 1, . . . , n. They presented
analytic conditions of synchronization with precision levels (quasi-synchronization) for (1.3)-(1.4).
They showed the importance of the coupling strengths for synchronization and presented two precision
levels for ui and vi, which depend on the parameter ai, which is referred to as the natural frequency in
this paper.

In [30], Plotnikov et al. studied synchronization in heterogeneous FHN networks with hierarchical
architecture for the case where b = 0. According to [30], diffusion tensor magnetic resonance imaging
(DT-MRI) studies have revealed the complexity of neuronal interconnections in human and mammalian
brains. In particular, from analyzing DT-MRI, it has been shown that the connectivity of the neuron
axon network is represented by a hierarchical architecture with fractal dimensions varying between 2.3
and 2.8, which is essential for the fast and optimal handling of information in the brain (for more details,
see [30] and references therein). To study the synchronization of an FHN network with hierarchical
architecture, they considered a leader system, in which all but one node are in complete synchrony (i.e.
ui ≡ u j), and derived a sufficient condition for synchronization.

The purpose of this study is to prove the synchronization phenomenon of a heterogeneous FHN
network with a hierarchical architecture through a mathematical analysis of Lyapunov functions and
to prove that the Lyapunov function decreases exponentially until synchronization. We also propose
conditions for a hierarchical architecture to induce synchronization. In particular, it is noteworthy
that the neurons of the first layer (i.e., leaders) are (i.e., not in a synchronized state). Therefore, the
results of this study provide a more accurate analysis of how synchronization between neurons spreads.
Moreover, we show that the structural connectivity of neurons in the first layer is very important for
synchronization, and that in the other layers is not significant.

The rest of this paper is organized as follows. In Section 2, we recall some definitions and
properties of graph theory and present our main system, which is a heterogeneous FHN network with
a hierarchical architecture that considers multiple leaders. In Section 3, we discuss the synchronization
for the first layer. Section 4 presents results concerning the synchronization for the second layer, and
Section 5 proves the main result of this paper. In Section 6, we provide a numerical experiment for the
main results of this study. Finally, we discuss the conclusions in Section 7.
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2. Preliminaries

2.1. Preliminaries from the graph theory

We recall some definitions and properties of graph theory used throughout this paper.
An (undirected) graph G = G(V, E) consists of a set V = {pi}

N
i=1 of vertices and a collection E of

unordered pairs {pi, p j} of vertices, called an edge. For notational convenience, we denote pi ∈ V by
i ∈ V (or i ∈ G) and {pi, p j} ∈ E by {i, j} ∈ E or i ∼ j. A simple graph is a graph without multiple edges
and loops. A complete graph is a simple graph G = G(V, E) satisfying pi ∼ p j for all i, j = 1, · · · ,N,
(i , j). A graph H = H(V ′, E′) is said to be a subgraph of G = G(V, E) if V ′ and E′ are subsets of V
and E, respectively. A (vertex) induced subgraph consists of some of the vertices of the original graph
and all the edges that connect them in the original graph.

A digraph (or directed graph) is a graph in which the edges have orientations. In this case, we
call the oriented edges a directed edge (or arc). For an induced subgraph H = H(V ′, E′) of a graph
G = G(V, E), the boundary ∂H of H is the set of all vertices satisfying q ∈ V \ V ′, and there exists
p ∈ V ′ such that p ∼ q; that is,

∂H :=
{
q ∈ V \ V ′|q ∼ p for some p ∈ V ′

}
.

Hence an induced subgraph H of a graph G with a boundary can be expressed as a directed graph
whose vertex set is H ∪ ∂H, and the edge set E satisfies {p, q} < E for all p ∈ H; q ∈ ∂H. H, denotes an
induced subgraph of G, whose vertices and edges are in H and vertices in ∂H.

A path P = {p0, p1, · · · , pn} between two vertices, p0 and pn, is a sequence of distinct vertices
satisfying p0 ∼ p1 ∼ p2 ∼ · · · ∼ pn. A cycle is a path between a vertex and itself. A path between two
vertices may or may not exist, according to the given graph. Hence, if there exists a path for all pairs
of vertices, then we consider the graph G = G(V, E) to be connected. In particular, a component of an
undirected graph is an induced subgraph in which any two nodes are connected to each other by paths,
and it is connected to no additional vertices in the rest of the graph.

A weighted graph G = G(V, E, ω) is a graph associated with a (coupling) weight function ω :
V × V → [0,∞) satisfying

(i) ωi j := ω(pi, p j) > 0 if i ∼ j, and i , j,

(ii) ωi j = 0 if not.

In particular, if a weight function ω satisfies ωi j = 1 for i , j = 1, . . . ,N, then we call it the standard
weight. We note that ifωi j = ω ji for all i, j, then the weighted graph is an undirected graph with weight;
otherwise, the weighted graph is a directed graph with weight.

Throughout this paper, all the subgraphs are assumed to be vertex-induced and connected subgraphs
of a weighted graph.

For a weighted subgraph H of a weighted graph G, the graph Laplacian L of functions ui : R→ R,
i ∈ H is defined by

Lui :=
∑
j∈H

ωi j(u j − ui), i ∈ H.
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It is well-known that there exists a real value λ and a non-zero vector ϕ := (ϕ1, . . . , ϕ|H|) satisfying the
eigenvalue problem for H, that is,

−Lϕi = λϕi, i ∈ H, ϕi = 0, i ∈ ∂H, and
∑
i∈H

ϕ2
i = 1,

where |A| is the cardinal number of a set A. In the case where ∂H = ∅, we call λ and ϕ an eigenvalue
and eigenvector corresponding to λ, respectively. If ∂H , ∅, we call these the Dirichlet eigenvalues
and Dirichlet eigenvector. Because ωi j is symmetric, if |H| = N, then there are N eigenvalues λi ∈ R,
i = 1, . . . ,N such that 0 ≤ λ1 ≤ λ2 ≤ . . . λN . Moreover, for a vertex-induced subgraph H, if ∂H = ∅,
then 0 = λ1 < λ2 ≤ . . . ≤ λN , and if ∂H , ∅, then 0 < λ1 ≤ λ2 ≤ . . . λN . In particular, it is well known
that the first (Dirichlet) eigenvalue can be represented as the following Rayleigh quotient forms:

λ2 = inf
ϕ.0∑

i∈H ϕi=0

∑
i, j∈H ωi j(ϕ j − ϕi)2∑

i∈H ϕ
2
i

, if ∂H = ∅, (2.1)

and

λ1 = inf
ϕ.0
ϕ|∂H≡0

∑
i, j∈H ωi j(ϕ j − ϕi)2∑

i∈H ϕ
2
i

, if ∂H , ∅. (2.2)

In general, λ2 is called the first eigenvalue, and λ1 is called the first Dirichlet eigenvalue. In this paper,
for the sake of consistency, we denote the first (Dirichlet) eigenvalue for a subgraph H as λHω,1 without
boundary (with boundary). For more details, see [12].

2.2. Fitzhugh-Nagumo model with hierarchical architecture

In this subsection, we introduce the concept of an FHN network with a hierarchical architecture.
A hierarchical architecture comprises multiple layers of components that reflect the relationships

of neurons within each layer and the relationships between the layers. In this paper, we assume the
following:

(H1) two neurons inside each layer either interact with the same intensity (coupling strength) or do
not interact at all, and

(H2) the relationship between the layers is unilaterally influenced by the upper layer to the lower layer.

This assumption reflects the hierarchical property of neurons. This hierarchical architecture can be
expressed by an undirected graph. First, neurons and their interactions in the k-th layer are represented
by nodes and edges. In particular, according to hypothesis (H1), each layer is represented by an
undirected graph that may or may not be complete. It follows from hypothesis (H2) that the upper
layer has no incoming directed edge from the lower layer, whereas the lower layer must have an
incoming directed edge from the upper layer. Two examples of this structure are given in Figure 1.
Figure 1 (a) is a simple hierarchical architecture in which we assume that the undirected graph for
each layer is connected, and the k-th layer only affects the (k + 1)-th layer. Figure 1 (b) shows a
typical hierarchical architecture. An important difference between these two examples is the presence
or absence of connectivity within each layer, except for the first layer, and the influence from the upper
layer to the lower layer is not sequential.
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Figure 1. Examples of heterogeneous FHN networks with hierarchical architecture. Green
circles, red nodes, lines, and arrows indicate connected components in each layer, neurons,
undirected edges, and directed edges, respectively. (a) heterogeneous FHN networks with
a simple hierarchical architecture and (b) heterogeneous FHN networks with a general
hierarchical architecture.

In this paper, the hierarchical architecture that we deal with is a general hierarchical architecture as
shown in Figure 1 (b). First, we study a simple type, as shown in Figure 1 (a). Based on the results, we
discuss the general type in Figure 1 (b).

For the simple type, we consider a total of m layers for neurons. In this case, because the first layer
is not affected by any other layer, the FHN network for the first layer is described as follows:

ϵu̇i = ui − f (ui) − vi + c
∑
j∈H1

ωi j

(
u j − ui

)
(2.3)

v̇i = ui − bvi + ai, (2.4)

for i ∈ H1, where H1 is an undirected graph for the first layer, and f is a real-valued function on R
satisfying f ′ ≥ α for some α ≥ 0. We note that H1 is connected, and thus the first eigenvalue λH1

ω,1 > 0.
In fact, this model is a simple generalization of the term u3

i /3 in a typical FHN network (1.3)-(1.4) to
the nonlinear term f (ui), and we will discuss the synchronization of this model in the next section.

In the case of the second layer— because the second layer is affected by the first layer, while the
layers after the 3rd layer do not affect the second layer— the model (2.3)-(2.4) for the first layer
becomes the Robin-type boundary condition for the second layer. Hence, the FHN network for the
second layer is modeled by the following:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈H1∪H2

ωi j

(
u j − ui

)
(2.5)

v̇i = ui − bvi + ai, (2.6)

for i ∈ H2 subject to (2.3)-(2.4) as the Robin-type boundary condition. Using a similar argument, we
model the dynamics of the third layer as follows:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈H2∪H3

ωi j

(
u j − ui

)
AIMS Mathematics Volume 8, Issue 9, 22385–22410.
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v̇i = ui − bvi + ai,

for i ∈ H3 subject to (2.5)-(2.6) as the Robin-type boundary condition. In the first equation, the range
of the summation is H2 ∪H3 (i.e., H1 is not included). Moreover, although the third layer appears to be
independent of the first layer, it can be seen that the first layer indirectly affects the third layer, as the
second layer is actually affected by the first layer.

After the third layer, the dynamics of each layer are expressed by the same type of system as the
third layer, as follows:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈Hk−1∪Hk

ωi j

(
u j − ui

)
v̇i = ui − bvi + ai,

for i ∈ Hk, subject to the Robin-type boundary condition:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈Hk−2∪Hk−1

ωi j

(
u j − ui

)
v̇i = ui − bvi + ai,

for i ∈ Hk−1, k = 4, 5, . . . ,m.
We now discuss the model for the general type of hierarchical architecture. Let Hk,l be the l-th

component in the k-th layer and ∂Hk,l be the boundary of Hk,l. Since the 1st layer is connected and
has no boundary, the number of components in the 1st layer is one (simply denoted by H1,1 = H1),
and ∂H1 = ∅. For k ≥ 2, the boundary ∂Hk,l can consist of several components (∂Hk,l)m, which are not
empty. Since a component (∂Hk,l)m is the largest induced subgraph in the i-th layer for some i < k, if the
component (∂Hk,l)m satisfies ∂((∂Hk,l)m) = ∅, then (∂Hk,l)m = H1; otherwise, k ≥ 3, and the component
(∂Hk,l)m is a component in the i-th layer, 1 < i < k. Therefore, the heterogeneous FHN network with a
general hierarchical architecture is described as follows:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈Hk,l∪∂Hk,l

ωi j

(
u j − ui

)
v̇i = ui − bvi + ai,

for i ∈ Hk,l, subject to the Robin-type boundary condition:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈∂Hk,l∪∂(∂Hk,l)

ωi j

(
u j − ui

)
v̇i = ui − bvi + ai,

for i ∈ ∂Hk,l, where ∂(∂Hk,l) is the boundary of ∂Hk,l. In particular, for the above system, we additionally
assume that ∂H1 = ∅, ∂(∂H1) = ∅, ∂H2,l = H1, and ∂(∂H2,l) = ∅ for l ≥ 1, and ∂Hk,l , ∅ for k ≥ 3,
and l ≥ 1. Then, the above system expresses the dynamics of each component Hk,l for all k ≥ 1 and
l ≥ 1. We note that in the case where k ≥ 3, it is possible that the boundary ∂Hk,l of Hk,l can consist of
several components. Thus, ∂Hk,l is generally not connected. Moreover, the boundary between the two
different boundaries of Hk,l may include the same component. In particular, because the first layer H1
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is connected, the first eigenvalue λH1
ω,1 is strictly positive, and because Hk,l is connected, and ∂Hk,l , ∅

for k ≥ 2, l ≥ 1, the first Dirichlet eigenvalue λHk,l
ω,1 is also strictly positive.

Finally, because of the natural frequency ai (i.e., heterogeneities), the complete synchronization
for the system is not possible except when ai ≡ 0. Therefore, in this study, we will discuss the
synchronization with precision levels (quasi-synchronization), which is defined as follows.

Definition 2.1 ( [31, Definition 2]). Let us consider the following n coupled nonlinear systems :

ẋi = Fi(x1, x2, · · · , xn, t)

where xi = (xi1, . . . , xid) ∈ Rd and Fi are vector-valued functions, i = 1, 2, · · · , n. Then, the n coupled
nonlinear systems are synchronized with the precision levels ∆1,∆2, · · · ,∆n if there exists t∗ > 0 such
that

∣∣∣xi j(t) − x̄ j(t)
∣∣∣ ≤ ∆ j, i = 1, 2, · · · , n, j = 1, 2, · · · , d, t ≥ t∗, where x̄ j := 1/n

∑n
i=1 xi j(t) for j =

1, 2, · · · , d.

3. Synchronization of Fitzhugh-Nagumo network without boundary

We begin this section with the heterogeneous FHN network without a boundary (i.e., the model for
the first layer H1):

ϵu̇i = ui − f (ui) − vi + c
∑
j∈H1

ωi j

(
u j − ui

)
(3.1)

v̇i = ui − bvi + ai (3.2)

where c > 0, and i ∈ H1. For the system (3.1)-(3.2), we show the synchronization with precision levels
and present the precision levels.

Theorem 3.1. Suppose that there exist σ > 0 and α ≥ 0 such that
∣∣∣ai − a j

∣∣∣ ≤ σ for i, j = 1, 2, · · · , n and
f ′(s) ≥ α for all s ∈ R. If c is sufficiently large to cλH1

ω,1 + α − 1 > 0, then the FHN network (3.1)-(3.2)
synchronizes with precision levels. Moreover, the Lyapunov function E(t) := 1

2

∑
i∈H1

(
ϵû2

i (t) + v̂2
i (t)

)
,

t ≥ 0, satisfies

E(t) ≤
[
E(0) −

Aη
2bη

]
exp (−2bηt) +

Aη
2bη

for t ≥ 0, where η is a constant in (0, 1) satisfying η ≤ 1
bϵ

(
cλω,1 + α − 1

)
, and Aη := |H1|σ

2/
(
4b

(
1 − η

))
.

Proof. First, we consider the fluctuations ûi, v̂i, and âi defined by ûi = ui− ū, v̂i = vi− v̄, and âi = ai− ā,
where ū, v̄, and ā are the averages of ui, vi, and ai, respectively. (i.e., ū := 1

n

∑n
i=1 ui, v̄ := 1

n

∑n
i=1 vi, and

ā := 1
n

∑n
i=1 ai). Subsequently, upon differentiating ûi and v̂i with respect to t, we find that

ϵ ˙̂ui = ûi −

 f (ui) −
1
n

∑
j∈H1

f (u j)

 − v̂i + c
∑
j∈H1

ωi j

(
û j − ûi

)
˙̂vi = ûi − bv̂i + âi,

AIMS Mathematics Volume 8, Issue 9, 22385–22410.
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for i = 1, . . . , n. The Lyapunov function for the above systems is given by

E(t) =
1
2

∑
i∈H1

(
ϵû2

i (t) + v̂2
i (t)

)
, t ≥ 0. (3.3)

Differentiating with respect to t, we deduce

Ė =
∑
i∈H1

û2
i + c

∑
i, j∈H1

ωi j

(
û j − ûi

)
ûi −

1
n

∑
i, j∈H1

(
f (ui) − f (u j)

)
ûi −

∑
i∈H1

bv̂2
i +

∑
i∈H1

âiv̂i (3.4)

Since
∑

i ûi = 0, by ωi j = ω ji and (2.1), we have

c
∑

i, j∈H1

ωi j

(
û j − ûi

)
= −

c
2

∑
i, j∈H1

ωi j

(
û j − ûi

)2
≤ −cλH1

ω,1

∑
i∈H1

û2
i

Note that since we assume that H1 is a connected and undirected graph without a boundary, the first
eigenvalue λH1

ω,1 is strictly positive. Now, we discuss an estimate of the third term in (3.4). Applying the
mean-value theorem, for i, j = 1, . . . , n, there exists ξi j such that

−
1
n

∑
i, j∈H1

(
f (ui) − f (u j)

)
ûi = −

1
2n

∑
i, j∈H1

(
f (ui) − f (u j)

) (
ûi − û j

)
= −

1
2n

∑
i, j∈H1

f ′(ξi j)
(
ûi − û j

)2
.

Since f ′(s) ≥ α and
∑

i ûi = 0, we obtain

−
1

2n

∑
i, j∈H1

f ′(ξi j)
(
ûi − û j

)2
≤ −

1
2n

∑
i, j∈H1

α
(
ûi − û j

)2
= −α

∑
i∈H1

û2
i .

Hence, the Lyapunov function E satisfies

Ė ≤ −
(
cλH1
ω,1 + α − 1

)∑
i∈H1

û2
i − b

∑
i∈H1

v̂2
i +

∑
i∈H1

v̂iâi

≤ −
(
cλH1
ω,1 + α − 1

)∑
i∈H1

û2
i − b

∑
i∈H1

v̂2
i + b

(
1 − η

)∑
i∈H1

v̂2
i +

1
4b

(
1 − η

) ∑
i∈H1

â2
i

≤ −min
{

1
ϵ

(
cλH1
ω,1 + α − 1

)
, bη

}∑
i∈H1

(
ϵû2

i + v̂2
i

)
+

1
4b

(
1 − η

) ∑
i∈H1

â2
i

≤ −min
{

1
ϵ

(
cλH1
ω,1 + α − 1

)
, bη

}∑
i∈H1

(
ϵû2

i + v̂2
i

)
+
|H1|σ

2

4b
(
1 − η

)
=: −ληE + Aη (3.5)

where λη = 2 min
{

1
ϵ

(
cλH1
ω,1 + α − 1

)
, bη

}
. Aη = |H1|σ

2/
(
4b

(
1 − η

))
, and we employed Cauchy’s

inequality with η ∈ (0, 1). Since η is arbitrarily chosen in (0, 1), and cλω,1 + α − 1 > 0, taking η
satisfying η ≤ 1

bϵ

(
cλω,1 + α − 1

)
, we have λη = bη. Thus, by the Grönwall inequality, we obtain

E(t) ≤
[
E(0) −

Aη
2bη

]
exp (−2bηt) +

Aη
2bη

(3.6)

for t ≥ 0. Therefore, there exist t∗ > 0 and ∆ > 0 such that E(t) ≤ ∆ for t > t∗. This implies that
|ui − ū| ≤ ∆ and |vi − v̄| ≤ ∆ for i = 1, 2, · · · , n. Hence, we have the desired result. □
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Remark 3.2. (i) From (3.6), we can see that the synchronization proceeds exponentially. In particular,
in the case where ai ≡ 0, complete synchronization occurs exponentially, (i.e., ui−u j → 0 and vi−v j →

0 as t → ∞ for all i and j).
(ii) Since exp (−2bηt)→ 0 as t → ∞, and |ai − a j| ≤ σ, the precision level ∆ is asymptotically equal to
Aη
2bη and satisfies

∆ ≈

 1
8b2η(1 − η)

∑
i∈H1

â2
i


1
2

≤

 nσ2

8b2η(1 − η)

 1
2

= O(σ).

(iii) Since η ∈ (0, 1) is an arbitrary real value satisfying η ≤ 1
bϵ

(
cλH1
ω,1 + α − 1

)
, we obtain the minimum

of Aη
2bη as setting η = min{ 1

bϵ

(
cλH1
ω,1 + α − 1

)
, 1

2 } > 0. Hence, it is clear that the connectivity of the
first layer is the crucial condition that induces synchronization. If the first layer is not connected, then
it is trivial that no synchronization is induced. Hence, the connectivity is an equivalent condition for
synchronization.
(iv) In [31], the authors discussed the case where f (s) = s3/3 and presented two precision levels

|ui − ū| ≤ ∆1 =

3nσ2

b

 1
4

= O(σ1/2), and |vi − v̄| ≤ ∆2 =
σ

2

√n
b
+

1
b

 = O(σ),

as t → ∞. Therefore, from the precision level in (ii), the decay rate of ∆ is better than that of ∆1.

4. Synchronization of Fitzhugh-Nagumo network with the Robin-type boundary

In this section, for the simple type of hierarchical architecture introduced in Section 2.2, we consider
two kinds of boundary value problems. The first is a case where synchronization has already occurred
at the boundary, and the second is a case where synchronization has not occurred. The first case can be
represented by a heterogeneous FHN network with Robin-type boundary conditions:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈H1∪H2

ωi j

(
u j − ui

)
, (4.1)

v̇i = ui − bvi + ai, (4.2)

for i ∈ H2, which is an index of interior vertices and

ϵu̇i = ui − f (ui) − vi, (4.3)
v̇i = ui − bvi + ai, (4.4)

for i ∈ H1, which is an index of boundary vertices.
We note that this system represents a situation where u j and v j, j ∈ H1, are neurons in the first layer,

and ui and vi, i ∈ H2, are neurons in the second layer and are affected by the neurons in the first layer.
In particular, we do not consider the Laplacian graph on the boundary because the neurons in the first
layer are already synchronized with either a zero precision level or the number of neurons is 1, (i.e.,
|H1| = 1). Therefore, we assume that the fluctuations of u j and v j on the boundary are bounded, that is,
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there exists σB > 0 such that |u j − ūB| < σB and |v j − v̄B| < σB, j ∈ H1, where ūB := 1
|H1 |

∑
i∈H1

ui and
v̄B := 1

|H1 |

∑
i∈H1

vi. Henceforth, we consider m := |H1| and n := |H2|.
In fact, the case where b = 0 and all but one node are in synchrony has already been discussed

in [30], and Plotnikov et al. proved that the system synchronizes with a precision level ∆ and showed
that ∆ = O(σ) when c > 1/dmin, where dmin is the minimal degree of the network.

As the main takeaway from this section, we introduce the Lyapunov function, which is slightly
different from [30], and present the precision level through mathematical analysis. In particular, we
prove the following lemma, which is very useful for dealing with the Lyapunov function:

Lemma 4.1. For a real-valued function ui : [0,∞)→ R, i ∈ H1 ∪ H2, we have∑
i∈H2

∑
j∈H1∪H2

ωi j

(
u j − ui

)
ui ≤ −λ

B
ω,1

∑
i∈H2

u2
i +

∑
i∈H2

∑
j∈H1

ωi ju2
j +

1
4

∑
i, j∈H1

ωi j

(
u j − ui

)2
.

where λB
ω,1 is the first Dirichlet eigenvalue.

Proof. First, we have∑
i∈H2

∑
j∈H1∪H2

ωi j

(
u j − ui

)
ui =

∑
i, j∈H1∪H2

ωi j

(
u j − ui

)
ui −

∑
i∈H1

∑
j∈H1∪H2

ωi j

(
u j − ui

)
ui. (4.5)

The first term on the right-hand side of (4.5) satisfies

c
∑

i, j∈H1∪H2

ωi j

(
u j − ui

)
ui = −

c
2

∑
i, j∈H1∪H2

ωi j

(
u j − ui

)2
≤ −

c
2

∑
i, j∈H2

ωi j

(
u j − ui

)2
= c

∑
i, j∈H2

ωi j

(
u j − ui

)
ui.

(4.6)

Hence, (4.5) and (4.6) imply∑
i∈H2

∑
j∈H1

ωi j

(
u j − ui

)
ui ≤ −

∑
i∈H1

∑
j∈H1∪H2

ωi j

(
u j − ui

)
ui. (4.7)

Since ∑
i∈H2

∑
j∈H1∪H2

ωi j

(
u j − ui

)
ui =

∑
i, j∈H2

ωi j

(
u j − ui

)
ui +

∑
i∈H2

∑
j∈H1

ωi j

(
u j − ui

)
ui, (4.8)

applying (4.7) to (4.8), we find∑
i∈H2

∑
j∈H1∪H2

ωi j

(
u j − ui

)
ui ≤ −

1
2

∑
i, j∈H2

ωi j

(
u j − ui

)2
+

1
2

∑
i∈H2

∑
j∈H1

ωi j

(
u j − ui

)
ui

−
1
2

∑
i∈H1

∑
j∈H2

ωi j

(
u j − ui

)
ui −

1
2

∑
i, j∈H1

ωi j

(
u j − ui

)
ui.

Let us swap the indices i and j in the third term on the right-hand side of the inequality above and
apply the same method used in deriving the first equality in (4.6). Then,

−
1
2

∑
i∈H1

∑
j∈H2

ωi j

(
u j − ui

)
ui −

1
2

∑
i, j∈H1

ωi j

(
u j − ui

)
ui =

1
2

∑
i∈H2

∑
j∈H1

ωi j

(
u j − ui

)
u j +

1
4

∑
i, j∈H1

ωi j

(
u j − ui

)2
.
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After some elementary calculations, we obtain∑
i∈H2

∑
j∈H1∪H2

ωi j

(
u j − ui

)
ui ≤ −

1
2

∑
i, j∈H2

ωi j

(
u j − ui

)2
−

1
2

∑
i∈H2

∑
j∈H1

ωi j (0 − ui)2
−

1
2

∑
i∈H2

∑
j∈H1

ωi j

(
u j − 0

)2

+
∑
i∈H2

∑
j∈H1

ωi ju2
j +

1
4

∑
i, j∈H1

ωi j

(
u j − ui

)2
.

Therefore, if we define a function u0
i as

u0
i (t) :=

 ui, for i ∈ H2,

0, for i ∈ H1,

then ∑
i∈H2

∑
j∈H1∪H2

ωi j

(
u j − ui

)
ui ≤ −

1
2

∑
i, j∈H1∪H2

ωi j

(
u0

j − u0
i

)2
+

∑
i∈H2

∑
j∈H1

ωi ju2
j +

1
4

∑
i, j∈H1

ωi j

(
u j − ui

)2
.

Finally, using the Rayleigh quotient (2.2) of the first Dirichlet eigenvalue λB
ω,1, we have the desired

result that ∑
i∈H2

∑
j∈H1∪H2

ωi j

(
u j − ui

)
ui ≤ −λ

B
ω,1

∑
i∈H2

u2
i +

∑
i∈H2

∑
j∈H1

ωi ju2
j +

1
4

∑
i, j∈H1

ωi j

(
u j − ui

)2
.

□

We now show that the system (4.1)–(4.4) synchronizes with precision levels.

Theorem 4.2. Suppose that there exists σ > 0 and α ≥ 0 such that
∣∣∣ai − a j

∣∣∣ ≤ σ for i, j ∈ H1 ∪ H2

and f ′(s) ≥ α for all s ∈ R. If c > 0 and δ > 0 satisfy cλH2
ω,1 + α − 1 − δ > 0, where λH2

ω,1 is the first
Dirichlet eigenvalue, then the FHN network with Robin-type boundary synchronizes with precision
levels. Moreover, there exist KB > 0 and σB > 0 such that the functional E(t) := 1

2

∑
i∈H2

(
ϵû2

i (t) + v̂2
i (t)

)
,

t ≥ 0, satisfies

E(t) ≤

E(0) −
AB
η

2bη

 exp (−2bηt) +
AB
η

2bη

for t ≥ 0, where η is a constant in (0, 1) satisfying η ≤ 1
bϵ

(
cλH2
ω,1 + α − 1 − δ

)
, and AB

η := |H2 |σ
2

4b(1−η) +
nmKB

4δ σ
2
B.

Proof. Let us define fluctuations ûi = ui − ūB, v̂i = vi − v̄B, and âi = ai − āB for i ∈ H1 ∪ H2, where ūB,
v̄B, and āB are the averages of ui, vi, and ai on the boundary, respectively; that is,

ūB :=
1
m

∑
i∈H1

ui, v̄B :=
1
m

∑
i∈H1

vi, āB :=
1
m

∑
i∈H1

ai.
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Then, by calculations similar to those used to establish (4.1)-(4.2), we establish that

ϵ ˙̂ui = ûi −

 f (ui) −
1
n

∑
j∈H1

f (u j)

 − v̂i + c
∑

j∈H1∪H2

ωi j

(
û j − ûi

)
, (4.9)

and

˙̂vi = ûi − bv̂i + âi,

for i ∈ H2. The FHN network with a Robin-type boundary admits the following Lyapunov functional
E, which can be viewed as energy functionals:

E(t) =
1
2

∑
i∈H2

(
ϵû2

i (t) + v̂2
i (t)

)
, t ≥ 0.

Differentiating it with respect to t, we deduce that

Ė =
∑
i∈H2

û2
i + c

∑
i∈H2

∑
j∈H1∪H2

ωi j

(
û j − ûi

)
ûi −

∑
i∈H2

 f (ui) −
1
m

∑
j∈H1

f (u j)

 ûi −
∑
i∈H2

bv̂2
i +

∑
i∈H2

âiv̂i. (4.10)

Since û j is bounded for j ∈ H1, there exists σB > 0 such that |û j| ≤ σB for j ∈ H1. Then, a direct
calculation (the details of which we omit) shows that∑

i∈H2

∑
j∈H1

ωi jû2
j +

1
4

∑
i, j∈H1

ωi j

(
û j − ûi

)2
≤ Cωσ2

B, (4.11)

where Cω :=
(
m max j∈H1(

∑
i∈H2
ωi j) + m2

2 max i∈H2
j∈H1
ωi j

)
. Hence, for the second term in (4.10), Lemma 4.1

and (4.11) imply that

c
∑
i∈H2

∑
j∈H1∪H2

ωi j

(
û j − ûi

)
ûi ≤ −cλH2

ω,1

∑
i∈H2

û2
i + cCωσ2

B (4.12)

For the third term, by the mean-value theorem and the assumption f ′ ≥ α, there exists ξB
i , i ∈ H2, and

ζB
j , j ∈ H1 such that

−
∑
i∈H2

 f (ui) −
1
m

∑
j∈H1

f (u j)

 ûi = −
∑
i∈H2

 f (ui) − f (ūB) + f (ūB) −
1
m

∑
j∈H1

f (u j)

 ûi

= −
∑
i∈H2

f ′(ξB
i )

(
ui − ūB

)2
−

1
m

∑
i∈H2

∑
j∈H1

f ′(ζB
j )

(
ūB − u j

)
ûi

≤ −α
∑
i∈H2

û2
i −

1
m

∑
i∈H2

∑
j∈H1

f ′(ζB
j )

(
ūB − u j

)
ûi.
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We note that because ζB
j is between ūB and u j for j ∈ H1, it is clear that |ζB

j | ≤ |ū
B| + |u j| ≤ 2σB for

j ∈ H1. Since f is differentiable, there exists KB ≥ 0 such that f ′(ζB
j ) ≤ KB. Therefore, by applying

Cauchy’s inequality with δ, we obtain

−α
∑
i∈H2

û2
i −

1
m

∑
i∈H2

∑
j∈H1

f ′(ζB
j )

(
ūB − u j

)
ûi ≤ −α

∑
i∈H2

û2
i +

nmKB

4δ

∑
j∈H1

|u j − ūB|


2

+ δ
∑
i∈H2

û2
i

≤ (δ − α)
∑
i∈H2

û2
i +

nmKB

4δ
σ2

B.

(4.13)

Hence, for η ∈ (0, 1), we obtain

Ė(t) ≤ −min
{

1
ϵ

(
cλH2
ω,1 + α − 1 − δ

)
, ηb

}∑
i∈H2

(
ϵû2

i + v̂2
i

)
+

1
4b

(
1 − η

) ∑
i∈H2

â2
i +

nmKB

4δ
σ2

B

≤ −min
{

1
ϵ

(
cλH2
ω,1 + α − 1 − δ

)
, ηb

}∑
i∈H2

(
ϵû2

i + v̂2
i

)
+
|H2|σ

2

4b
(
1 − η

) + nmKB

4δ
σ2

B

≤ −λB
ηE(t) + AB

η ,

in the same way that we obtained (3.5), where λB
η = 2 min

{
1
ϵ

(
cλH2
ω,1 + α − 1 − δ

)
, ηb

}
, and AB

η =

|H2 |σ
2

4b(1−η) +
nmKB

4δ σ
2
B. Since η is arbitrarily chosen in (0, 1) and cλH2

ω,1 + α − 1 − δ > 0, we obtain the
desired result by the same argument as in the proof of Theorem 3.1. □

Remark 4.3. In [30], Plotnikov et al. addressed the case that b = 0, f (s) = s3/3, and a network
in which all but one node are in synchrony for the model (4.1)-(4.4); they obtained the inequality
c > 1/di as a sufficient condition, where di is the degree of the i-th neuron whose general definition
is di :=

∑
k∈H1∪H2

ωik, i ∈ H1 ∪ H2. We note that since they considered a standard weighted graph,
in this case, di denotes the number of adjacent nodes. Additionally, they showed that the i-th neuron
synchronizes with the other nodes with a precision level equal to 2σ. More precisely, t0 > 0 such that
|ui − ūB| ≤ ∆1 = O(σ), and

∣∣∣vi − v̄B
∣∣∣ ≤ ∆2 = O(σ) holds: for t > t0.

Theorem 4.2 leads to similar results to that obtained in [30]. First, it is clear that the precision level
presented in Theorem 4.2 is given by

|ui − ūB| ≤ ∆ = O(σ) + O(σB), and
∣∣∣vi − v̄B

∣∣∣ ≤ ∆ = O(σ) + O(σB).

Moreover, since all nodes in the first layer synchronize with the precision level by Theorem 3.1, we
also have σB = O(σ). Therefore, in the case where σ = 0, complete synchronization is achieved. In
particular, if all the neurons in H1 are completely synchronized, that is, ûi = 0, i ∈ H1, then σB = 0,
which implies ∆ = O(σ). Thus, in this case, we can see that Theorem 4.2 and the result in [30] present
the same decay rate for the precision level. Second, a similar condition to [30] has been proposed in
Theorem 4.2, which is cλH2

ω,1 + α − 1 − δ > 0. We note that the first Dirichlet eigenvalue λH2
ω,1 is also

related to the degree. By a proof similar to that provided for Lemma 1.9 in [12], it is easy to see that
the first (Dirichlet) eigenvalue satisfies

λH2
ω,1 ≥

mini∼ j ωi j

(D + 1)|H2|
,
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where D is the diameter of H2. In particular, if we assume that each node in H2 is connected to at least
one boundary node in H1, as the generalization of the network condition in [30], then it follows from
the Rayleigh quotient (2.2) that

λH2
ω,1 =

∑
i, j∈H1∪H2

ωi j(ϕ j − ϕi)2∑
i∈H2
ϕ2

i

≥

∑
i∈H2

∑
j∈H1
ωi j(ϕ j − ϕi)2∑n

i=1 ϕ
2
i

≥ |H1| min
i∈H2 , j∈H1

i∼ j

ωi j

where ϕ is the eigenvector corresponding to λH2
ω,1. Hence, we can see that the network structure affects

synchronization. Moreover, by increasing the number of boundary nodes, we can derive that the system
(4.1)–(4.4) synchronizes with precision levels. It is natural that adding more boundary nodes with
the same tendency induces synchronization, even if the attractive force (i.e., the coupling strength c)
between the interior nodes is weak. Theorem 4.2 explains this phenomenon.

We also note that in [30], they did not lead to a mathematical analysis when more than one node
was not synchronized with the rest of the network. By contrast, Theorem 4.2 provides a mathematical
analysis of the occurrence of synchronization in that case.

Now, we consider the second case where the neurons in the first layer are not synchronized and
affect neurons in the second layer. This situation is modeled as a heterogeneous FHN network with the
Robin-type boundary:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈H1∪H2

ωi j

(
u j − ui

)
(4.14)

v̇i = ui − bvi + ai, (4.15)

for i ∈ H2, which is an index of interior vertices and

ϵu̇i = ui − f (ui) − vi + c
∑
j∈H1

ωi j

(
u j − ui

)
(4.16)

v̇i = ui − bvi + ai, (4.17)

for i ∈ H1, which is an index of boundary vertices.
We can show that this system synchronizes with precision levels by the same arguments used in the

proof of Theorem 4.2. More specifically, for the same fluctuations ûi, v̂i, and âi as in Theorem 4.2, we
have

ϵ ˙̂ui =

ui − f (ui) − vi + c
∑

j∈H1∪H2

ωi j

(
u j − ui

) − 1
m

∑
j∈H1

u j − f (u j) − v j + c
∑
k∈H1

ωk j

(
uk − u j

)
and ˙̂vi = ûi − bv̂i + âi. In particular, since

∑
j∈H1

∑
k∈H1
ωk j

(
uk − u j

)
= 0, we obtain

ϵ ˙̂ui =

ui − f (ui) − vi + c
∑

j∈H1∪H2

ωi j

(
u j − ui

) − 1
m

∑
j∈H1

(
u j − f (u j) − v j

)
,

which is the same as (4.11). Hence, by the same arguments with the proof of Theorem 4.2, we obtain
the following result.
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Theorem 4.4. Suppose σ > 0 such that
∣∣∣ai − a j

∣∣∣ ≤ σ for i, j ∈ H1 ∪ H2 and f ′ ≥ α ≥ 0 in R. If c and
δ are sufficiently large to cλH2

ω,1 + α − 1 − δ > 0, where λH2
ω,1 is the first Dirichlet eigenvalue, then the

FHN network (4.14)-(4.15) with the Robin-type boundary condition (4.16)-(4.17) synchronizes with
the precision levels.

5. The heterogeneous FHN network with hierarchical architecture

In this section, we discuss the main problem addressed in this study (i.e., the heterogeneous FHN
network with hierarchical architecture) when applying Theorem 3.1 and Theorem 4.4. First, we address
the simple hierarchical architecture with n layers introduced in Section 2.2. Subsequently, we discuss
the general hierarchical architecture.

Since the first layer is not dependent on the other layers, the heterogeneous FHN network is modeled
by (3.1)-(3.2) in Section 3. Hence, by Theorem 3.1, the system synchronizes with the precision levels.
For the second layer, because the neurons in the second layer are only affected by the neurons in the
first layer, we can consider it as the boundary value system (4.14)-(4.17). Therefore, from Theorem
4.4, we can see that the second layer also synchronizes with the precision levels. In particular, in the
case where ai ≡ 0, since it follows from Theorem 3.1 that ûi → 0 and v̂i → 0 for i ∈ H1, we have
ui → (1/n1)

∑
i∈H1

ui and vi → (1/n1)
∑

i∈H1
vi for i ∈ I2 by Theorem 4.4, where nk := |Hk|, k = 1, 2, 3, . . .,

that is, ui and vi in the second layer converge to the average of ui and vi in the first layer, respectively.
We now discuss the system for the third layer in the case of the simple hierarchical architecture

introduced in Section 2.2:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈H2∪H3

ωi j

(
u j − ui

)
v̇i = ui − bvi + ai

for i ∈ H3, subject to the Robin-type boundary condition

ϵu̇i = ui − f (ui) − vi + c
∑

j∈H1∪H2

ωi j

(
u j − ui

)
v̇i = ui − bvi + ai

for i ∈ H2. Hence, from the results in Section 4, if we assume, without loss of generality, that the
solutions ui and vi on the first and second layers are bounded, then we have the following result for the
third layer.

Theorem 5.1. Suppose that there exists σ > 0 and α ≥ 0 such that
∣∣∣ai − a j

∣∣∣ ≤ σ for i, j ∈ H2 ∪ H3

and f ′(s) ≥ α for all s ∈ R. If c and δ satisfy cλH3
ω,1 + α − 1 − δ > 0, then the FHN network with

three-hierarchical architectures synchronizes with the precision level. Moreover, there exist C > 0 and
σB > 0 such that the functional E(t) := 1

2

∑
i∈H2

(
ϵû2

i (t) + v̂2
i (t)

)
, t ≥ 0, satisfies

E(t) ≤

E(0) −
AB
η

2bη

 exp (−2bηt) +
AB
η

2bη

for t ≥ 0, where η is a constant in (0, 1) satisfying η ≤ 1
bϵ

(
cλH2
ω,1 + α − 1 − δ

)
, and AB

η := |H3 |σ
2

4b(1−η) +Cσ2
B.
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Proof. First, we define fluctuations ûi = ui − ūB, v̂i = vi − v̄B, and âi = ai − āB for i = H2 ∪ H3, where

ūB :=
1
n2

∑
i∈H2

ui, v̄B :=
1
n2

∑
i∈H2

vi, āB :=
1
n2

∑
i∈H2

ai.

Then, we have

ϵ ˙̂ui = ûi −

 f (ui) −
1
n2

∑
j∈H2

f (u j)

 − v̂i + c
∑

j∈H2∪H3

ω ji

(
û j − ûi

)
−

c
n2

∑
k∈H2

∑
j∈H1

ω jk

(
u j − uk

)
(5.1)

and

˙̂vi = ûi − bv̂i + âi

for i ∈ H3. Now, we consider the following Lyapunov function:

E(t) =
1
2

∑
i∈H3

(
ϵû2

i + v̂2
i

)
,

and differentiate it with respect to t. Then, it follows from similar arguments used in the proof of
Theorem 4.2 that

Ė ≤ − λH3
ω,1

∑
i∈H3

û2
i +Cωσ2

B +

(
δ

2
− α

)∑
i∈H3

û2
i +

n2n3

2δ
σ2

B +
∑
i∈H3

û2
i − b

∑
i∈H3

v̂2
i

+ b(1 − η)
∑
i∈H3

v̂2
i +

1
4b(1 − η)

∑
i∈H3

â2
i −

c
n2

∑
i∈H3

∑
k∈H2

∑
j∈H1

ω jk

(
u j − uk

)
ûi.

By applying Cauchy’s inequality with δ to the last term on the right-hand side of the inequality above,
the last term satisfies∣∣∣∣∣∣∣∣− c

|H2|

∑
i∈H3

∑
k∈H2

∑
j∈H1

ω jk

(
u j − uk

)
ûi

∣∣∣∣∣∣∣∣ ≤ c2|H3|

2δ|H2|
2

∑
k∈H2

∑
j∈H1

ω jk|u j − uk|


2

+
δ

2

∑
i∈H3

û2
i

≤
2c2|H1||H3|max j∈H1,i∈H2 ωi j

δ|H2|
σ2

B +
δ

2

∑
i∈H3

û2
i .

Therefore, we obtain

Ė(t) ≤ −min
{

1
ϵ

(
cλH3
ω,1 + α − 1 − δ

)
, ηb

}∑
i∈H3

(
ϵû2

i + v̂2
i

)
+

1
4b

(
1 − η

) ∑
i∈H3

â2
i +Cσ2

B

≤ −min
{

1
ϵ

(
cλH3
ω,1 + α − 1 − δ

)
, ηb

}∑
i∈H3

(
ϵû2

i + v̂2
i

)
+
|H3|σ

2

4b
(
1 − η

) +Cσ2
B

for some C > 0. Thus, taking a sufficiently small η, we obtain

Ė(t) ≤ −2ηbE(t) + AB
η .

Finally, the Grönwall inequality leads to the desired result. □

AIMS Mathematics Volume 8, Issue 9, 22385–22410.



22402

Now, repeating the above procedure up to the m-th layer, we obtain the following result.

Theorem 5.2. Suppose that there exists σ > 0 and α ≥ 0 such that
∣∣∣ai − a j

∣∣∣ ≤ σ for i, j ∈ H1 ∪ . . .∪Hm

and f ′(s) ≥ α for all s ∈ R. If c > 0 and δ > 0 satisfy cλHk
ω,1 + α − 1 − δ > 0, for k = 1, 2, . . . ,m, then

the FHN network with m-hierarchical architectures synchronizes with the precision level.

We are now in a position to prove the main result of this paper for heterogeneous FHN networks
with a general hierarchical architecture:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈Hk,l∪∂Hk,l

ωi j

(
u j − ui

)
, (5.2)

v̇i = ui − bvi + ai, (5.3)

for i ∈ Hk,l, subject to the Robin-type boundary condition:

ϵu̇i = ui − f (ui) − vi + c
∑

j∈∂Hk,l∪∂(∂Hk,l)

ωi j

(
u j − ui

)
, (5.4)

v̇i = ui − bvi + ai, (5.5)

for i ∈ ∂Hk,l. The assumptions of Hk,l and ∂Hk,l are described in Section 2.2.
Since the first layer is connected and has no boundary, from Theorem 3.1, it is clear that the system

synchronizes with the precision levels. In the case where a component H2,l, since ∂H2,l = H1 , ∅ for
all l ≥ 1, we have λH2,l

ω,1 > 0 for all l ≥ 1. Thus, by the same proof, as provided for Theorem 4.4, we
obtain synchronization with the precision levels. Now, let us consider the l-th component H3,l in the
third layer, and ûi = ui − ūB, v̂i = vi − v̄B, and âi = ai − āB for i = H3,l ∪ ∂H3,l, where

ūB :=
1

n3,l

∑
i∈∂H3,l

ui, v̄B :=
1

n3,l

∑
i∈∂H3,l

vi, āB :=
1

n3,l

∑
i∈∂H3,l

ai.

Here, n3,l := |∂H3,l|. We note that the boundary ∂H3,l is not an empty set, but it consists of several
disjointed components (∂H3,l)m that are either H1 or a component in the second layer. Hence, we have

ϵ ˙̂ui = ûi −

 f (ui) −
1
n2

∑
j∈∂H3,l

f (u j)

 − v̂i + c
∑

j∈H3,l∪∂H3,l

ω ji

(
û j − ûi

)
−

c
n3,l

∑
m

∑
k∈(∂H3,l)m

j∈∂((∂H3,l)m)

ω jk

(
u j − uk

)
and

˙̂vi = ûi − bv̂i + âi

for i ∈ H3,l. We note that since H3,l is a component in the third layer, there exists m such that (∂H3,l)m is
a component in the second layer, which implies that∑

m

∑
k∈(∂H3,l)m

j∈∂((∂H3,l)m)

ω jk

(
u j − uk

)
, 0.

Moreover, because of the above argument, the solutions ui and vi on the first and second layers are
bounded. By applying the same arguments as the proof of Theorem 5.1, we can prove that for each
k ≥ 3 and l ≥ 1, the system (5.2)–(5.5) synchronizes with precision levels. Hence, by repeating this
process for each component Hm,l, we obtain the main result of this paper.
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Theorem 5.3. Suppose that there existsσ > 0 and α ≥ 0 such that
∣∣∣ai − a j

∣∣∣ ≤ σ for i, j ∈ H1,1∪. . .∪Hm,n

and f ′(s) ≥ α for all s ∈ R. If c and δ satisfy cλHk,l
ω,1 + α − 1 − δ > 0, for k = 1, 2, . . . ,m, and l ≥ 1, then

the FHN network with hierarchical architectures synchronizes with the precision level.

Remark 5.4. In proving Theorem 5.3, it can be seen that the connectivity of the first layer plays a very
important role in inducing synchronization. However, in the second layer, the connectivity of each
layer is not important. We can see that the most important condition for inducing synchronization is
the existence of a path from a node in each layer to a node in the first layer.

6. Simulations

In this section, we present a numerical experience to illustrate the contents of Theorem 5.3. This
simulation was run using MATLAB’S ODE solver “ode15s.” For the heterogeneous FHN network
with hierarchical architecture, we first consider a directed graph with four layers for the hierarchical
architecture, as shown in Figure 2. The first layer marked in red is connected, and the second, third, and
fourth layers, marked in green, blue, and magenta, have four, two, and three components, respectively.
We note that it is a little difficult to distinguish, but the green component in the lower right of
Figure 2 is a total of two overlapping components. The index set of nodes of one component is
{6, 7, 12, 19, 22, 24, 27}, and the index set of the nodes of the other component is {8, 11, 14, 18, 20, 25}.
For i < j, the k-th componentHi,k in i-th layer and the l-th componentH j,l in the j-th layer are connected
by arcs (directed edges) from a node inHi,k to a node inH j,l. The weights on the edges and arcs are given
randomly in the range [0, 1]. For the system (5.2)–(5.5), we set b = 0.5, ϵ = 0.01, and f (s) = s3/3.
The natural frequency ai has a uniform distribution on [0.5, 0.7], and the initial configurations of u
and v are randomly given in [−20, 20] and [−10, 10], respectively. Finally, to determine the coupling
strength c, we must know the first (Dirichlet) eigenvalue for each layer. Because it is not easy to find
the values of the first (Dirichlet) eigenvalues for the components, we propose its lower bound instead
of the first (Dirichlet) eigenvalue. By the proof similar to Lemma 1.9 in [12], it is easy to see that the
first (Dirichlet) eigenvalue satisfies

λ
Hk,l
ω,1 ≥

mini∼ j ωi j

(Dk,l + 1)nk,l
,

where Dk,l is the diameter of Hk,l and nk,l is the number of nodes in Hk,l, k = 1, 2, 3, 4. In this simulation,
maxk,l

(
Dk,lnk,l

)
= 35, and the minimum of all the weights given on the edges is 0.0125. Hence, we

choose δ = 0.5 and c = 4000. Then, all assumptions in Theorem 5.3 are fulfilled. Hence, we can see
that the heterogeneous FHN network with hierarchical architecture synchronizes with precision levels.
as shown in Figure 3.
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Figure 2. Directed graph structure. Red, green, blue, and magenta nodes indicate units
belonging to the 1st, 2nd, 3rd, and 4th layers in that order. Numbers are the index of each
node. Line segments represent (undirected) edges in each layer, and arrows represent arcs
(directed edges) between layers.

From Figure 3 (a) and (b), we can see that u synchronizes very quickly, and the initial behavior of
ui can be confirmed in Figure 3 (c), which are graphs of ui on a log scale versus time. By contrast, the
synchronization of vi is relatively slow.

Finally, in Figure 4 (a), we provide graphs for
∑

i û2
i ,

∑
i v̂2

i , and E. The y-axis is logarithmically
scaled and E is the sum of all Lyapunov functions of the layers. In this figure, since each function
appears to move in an almost straight line in some time interval, each function has an overall
exponential decay on the time interval. We can also see that

∑
i ûi has a large change in a very short

time, as shown in Figures 4 (b). In particular, by Figure 3 (a) and (d), we can easily predict that E
will oscillate periodically. On the other hand, in Figure 4 (c), this phenomena is not very visible, and
it seems as if there is no oscillation. However, as shown in Figure 5, we can see that E is oscillating
periodically with a very small amplitude.

In this simulation, although it is not easy to obtain the first (Dirichlet) eigenvalues, the lower bound
is proposed. If we directly find the first (Dirichlet) eigenvalues, then we can find a smaller c satisfying
the condition cλHk,l

ω,1 + α − 1 − δ > 0.
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Figure 3. Graphs of the functions ui and vi. (a) graphs of ui’s; (b) dynamics of ui’s; (c)
graphs of ui’s on a log scale versus time; (d) graphs of vi’s; (e) dynamics of vi’s; (d) trajectory
for (ui(t), vi(t)) for each i. System parameters are given by n = 53, δ = 0.5, c = 4000,
f (s) = s3/3, and parameters ai are uniform distribution on [0.5, 0.7]. The initial data for ui

and vi are randomly given in [-20 20] and [-10, 10], respectively. The graph (b) and (e) are
heat maps for ui and vi. In (b) and (e), the y-axis is the index of the nodes, and the values of
ui and vi are represented by colors.
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Figure 4. Graphs of energy functions. (a) graphs of
∑

i û2
i ,

∑
i v̂2

i , and E; (b) enlarged graph
of (a); (c) graphs of

∑
i û2

i ,
∑

i v̂2
i , and E. The y-axis of the graph (a) and (b) is on a log scale.

Note that the x-axis in graph (b) is in units of 10−3. The graph (c) is a typical graphs for
∑

i û2
i ,∑

i v̂2
i , and E with no log scale applied.
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Figure 5. Graph of the Lyapunov function E. This is the graph of the Lyapunov function E
in Figure 4 (c) and a zoomed-in portion of it. The oscillations are not visible in the full graph,
but by zooming in on a portion of it, we can see that it oscillates with a very small amplitude
and has a period.

7. Conclusions

We considered a heterogeneous FHN network with a hierarchical architecture—that is, a neuronal
model in which the neuronal axon network is not homogeneous and spans various brain regions,
and we demonstrated that synchronization occurs in this model through mathematical analyses of
the Lyapunov function. It is well known that networks with heterogeneous units are much more
difficult to completely synchronize than networks with identical characteristics. Thus, in this paper,
synchronization means that all units have similar trajectories within a small deviation.

First, we proposed a generalized model for the first layer based on a traditional heterogeneous FHN
network. After the second layer, we constructed a Robin-type boundary value problem by reflecting the
characteristics of the hierarchical structure of the neurons. This is because the preceding layer affects
the next layer, but not vice versa. Moreover, in these models, we can see that one layer either directly
or indirectly affects the next and subsequent layers.

After modeling, we proposed a sufficient condition for synchronization, which is critically
dependent on the coupling strength and connectivity of the network topology. In particular, according
to the final result of this paper, the importance of the connectivity of the network topology is limited to
the first layer and if there exists a path from the first layer to each layer, even if each layer except the
first layer is not connected, all layers are synchronized with precision levels. Moreover, we showed that
small deviations in synchronization depend on the parameter σ, which is the deviation of the natural
frequencies ai. If σ = 0, then we have complete synchronization. Finally, we performed simulations
to validate the theoretical result of this paper. In fact, there is a limitation in this simulation, that the
Dirichlet eigenvalue cannot be directly calculated and its lower bound was used. For this reason, a
larger value of the coupling strength c was required. Therefore, computing the Dirichlet eigenvalues
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is left for future work. In addition, there are different extended models of the present work we are
currently addressing: FHN network with delay, a nonlinear dynamical network of Hindmarsh-Rose
neurons, and FHN network with nonlinear operators instead of graph Laplacian. Additionally, we
expect that the results and mathematical methodology can be applied to study other similar neural
models with hierarchical architectures.
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