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1. Introduction

Sharp Moser-Trudinger inequality and its high-order form (which is called Adams inequality) have
received a lot of attention due to their wide applications to problems in geometric analysis, partial
differential equations, spectral theory and stability of matter [2, 3, 5, 8—12,24-27]. This paper is
concerned with the problem of finding optimal Adams type inequalities in Lorentz-Sobolev space.

The Trudinger inequality, which can be seen as the critical case of the Sobolev imbedding, was first
obtained by Trudinger [30]. More precisely, Trudinger employed the power series expansion to prove
that there exists S > 0, such that

sup fexp(ﬁlulnfl)dx < 0o, (1.1)
Q

IVl <1,ueWy" (Q)
where Q c R” is a bounded smooth domain and Wé’p (Q) denotes the usual Sobolev space on €, i.e.,

the completion of C°(€2)(the space of all functions being infinity-times continuously differential in Q
with compact support) with the norm

iy = [ ATUCOP + Ol
Q
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Let QQ c R” be an open domain with finite measure. It is well known that for a positive integer k < n
and 1 < p < 7, the Sobolev space W(])"p (Q2) embeds continuously into Lt (), but in the borderline
case p = 7, Wé’z (Q) ¢ L* (), unless k = n. For the case k = 1, Yudovich [31] and Trudinger [30]
have shown that

W, (Q) c{ue L' (Q): Eg:= feﬂl”'"n_ldx < oo}, for any 8 <
Q

and the function Ez is continuous on Wé’" (Q). In 1971, Moser sharped the Trudinger inequality and

1
gave the sharp constant 8 = nw”~} of (1.1) by using the technique of the symmetry and rearrangement
in [20].
Theorem A. [20] Let Q c R” be an open domain with finite measure. Then, there exists a sharp
1

n

_ nmr?2 n-1
constant 8, = n (F(%)H) , such that

1 n
—fexp(ﬁlfl'“)dx <Cp<
19 Jo
for any 8 < B, and any f € C7(2) with fg | v fI"dx < 1. The constant 3, is sharp in the sense that the
above inequality can no longer hold with some C independent of f if 8 > 3,.

Theorem A has been extended in many directions, one of which states that

1 n
sup —fexp(ﬁlulnl)dx<oo
1€ Ja

ueWy"(Q), [IVull,<1

forany 8 < 3, = na)f_‘l, plays an important role in analysis, where w,_; is the surface measure of the
unit ball in R". In fact, the constant S, is sharp in the sense that if 8 > (3,,, the supremum is infinity.
Since the Polya-Szeg6 inequality, on which the technique of the symmetry and rearrangement
depends, is not valid on the high-order Sobolev space, many challenges arise in the research of
high-order Trudinger-Moser inequalities. In 1988, Adams [1] utilized the method of representative
formulas and potential theory to establish the sharp Adams inequalities on bounded domains.
Theorem B. [/] Let Q be an open and bounded set in R”. If m is a positive integer less than n, then

there exists a constant Cy = C(n, m) > 0 such that for any u € ng%(Q) with IIV’”MIIL%(Q) <1,

1 n
@ f exp(Blu(x)|=")dx < Cy for all B < B(n,m), (1.2)
Q
where .
Fompemtly  n
L[%]n—m’ m is odd,
B(n m) — Wp-1 {(T)
’ n [A22PT(%) L .
[ |, miseven.

Wp—1

()
Furthermore, the constant S(n, m) is best possible in the sense that for any 8 > B(n,m), the integral
can be made as large as possible. In the case of Sobolev space with homogeneous Navier boundary
conditions W;\’;’% (Q), the Adams inequality was extended by Cassani and Tarsi in [6]. It is easy to check
that W;v"’%(Q) contains W(')"’%(Q) as a closed subspace.
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Adimurthi and Sandeep proved a singular Moser-Trudinger inequality with the sharp constant
in [2]. Since then, Moser’s results for the first order derivatives and Adams’ result for the high order
derivatives were extended to the unbounded domain case. Earlier research of the Moser-Trudinger
inequalities on the whole space goes back to Cao’s work in [7]. Later, Li and Ruf [19, 23] improved
Cao’s result and established the following result

sup f OB,|ul7T)dx < Cy, (1.3)
R}l

[

where proof relies on the rearrangement argument and the Poly4-Szego inequality. For more on the
rearrangement argument, see [21,29]. In 2013, Lam and Lu [17] used a symmetrization-free approach
to give a simple proof for the sharp Moser-Trudinger inequalities in W'*(R"). It should be pointed out
that this approach is surprisingly simple and can be easily applied to other settings where
symmetrization argument does not work. Furthermore, they also developed a new tool to establish the
Moser-Trudinger inequalities on the Heisenberg group and the Fractional Adams inequalities
in WeS(R") (0 < s < n) ( [16]). For more applications of the symmetrization-free method, see
also [18,32]. The Adams type inequality on Wg1 ’%(Q) when Q has infinite volume and m is an even
integer was studied recently by Ruf and Sani in [22].

In [22], Ruf and Sani used the norm |lull,,,, = ||(~2 + D%u
Sobolev norm

.» Which is equivalent to the standard
m
m
n Y -
s = Clally + > [ 27
m n 1 m
J:

In particular, if u € W(’)" ’%(Q) or u € W™u(R"), then leellyymz < llutll,, - Since Ruf and Sani only
considered the case when m is even, it leaves an open question if Ruf and Sani's result is still right
when m is odd. Recently, the authors of [17] solved the problem and proved the results of Adams type
inequalities on unbounded domains when m is odd.

We notice that when Q has infinite volume, the usual Moser-Truding inequality become
meaningless. In the case |Q2] = +c0, a modified Moser-Truding type inequality was established in [13].
Theorem C. [13] Assume n > 2,8 > 0,—c0 < s < a < nand u € L"(R"; |x|"*dx) n W'*(R"), there
esists a positive constant C = C(n, s, @, ) such that the inequality

n
ul =1 n(n—a)
f ¢(B |ul )dxs Clll
R”

| xl" MR xS dx)
Furthermore, for all 8 < (1 — %)ﬁn, there holds

n
P s
L” de < C”M”erl(]fgn;m—sdx)’

where ¢(1) = €' — "2 and L"(R"; |x|"*dx) denotes the weighted Lebesgue space endowed with the

j=0 !
norm 1
n
el a5y := (f Iu(x)I”IxI_de) .
Rﬂ

Moreover the constant (1 — 2)B, is sharp in the sense that if 8 > (1 — 2)B,, the supremum is infinity.
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When @ = 0, Ruf in [23] and Li-Ruf in [19] proved the above modified Moser-Truding type
inequality in R?. Such type of inequality on unbounded domains in the subcritical
case (8 < B,, @ = 0) was first established by Cao in [7] for n = 2 and Adachi Tanaka in [4] for n > 3
in high dimension.

In this paper, we will consider some sharp Adams type inequalities in Lorentz-Sobolev
space W;”q(Q C R") with g # n (If ¢ = n, the Lorentz norm becomes the L"(R") domain norm).
Let1 < 1'; < +ooand I < g < +oo. Then we recall the Lorentz space L, ,(R") as: ¢ € L, ,(R") if

o % qdt é oo, 1 < 00,
||w||;;,q:{(f° WO It < a< (1.4)

SUpo U (IF <00, g =00,

It is well known that || - II;q 1s not a norm, and

+o0 L dr\i
Wl = ( f [w**a)zp]ql)
0 t

is a norm for any p and g. However, they are equivalent in the sense that
Wl < 11, < Cp, DIl g-

The Sobolev-Lorentz space ( [15])
Wi (R := (I = )73 L (R")

equipped with the norm
llellwe, =11 —A)zullz 4

m

for0 < @ <n,m < n,1 < g < oco. For simplicity of notation, we write

<1

for any Q2 C R". Then we can formulate our main results as follows.

(I—A)>u

Wi (Q) = {u € Wi (), |

Theorem 1. Let m < n be an integer, 0 < a@ < n, 1 < g < +o00 and A be a positive real number. Then
for any bounded domain Q C R" with |Q| > A > 0, we have
a4
(1) sup 2 [ exXp(Bumg l1ul7)dx < Coppg.

ueW’ Q)
m4

.. 5 g . e
Additionally, the constant B, 4 = (L) K.l is sharp in the sense that the supremum is infinity

Wy
. I( n—zm) !
lfﬁ > ﬂn,m,q, where Km,n =

x3mr(2)’

_q_
exp[ﬁn,m,q(l_g)lul g-1]
(2) sup Jg‘! X : < Cm,n,q,a-
ueWy @
m4

Additionally, the constant B, ., is sharp in the sense that the supremum is infinity if B > B n.q-

For the unbounded domain, we take R” for example to have the following inequalities.
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Theorem 2. Let m, g, a be the same as in Theorem 1. Then we have

4
sup f DBy 14l7T)dx < Cpngs
Rﬂ

ueW” (R")
754

and ,
D n,m, (1 - Q)luqul] ~
R ||

ueWw’y (R")
ni4

a

where ®(x) = ¢ — Yk = ko = [%%] and B, 4 is sharp in the sense that the supremum is infinity

. j=0 1
#ﬁ > B n,m,q-
2. Proofs of the main results

We begin this section with some preparations which are necessary for the proofs of our main results.
Let f : R” — R such that

|{xeR”:|f(x)|>t}|:f dx < +o0

{xeR:|f(I>1)
for every ¢ > 0. Its distribution function d,(7) and its decreasing rearrangement f* are defined by
dy(®) = [{x : |f(0 > 1},

and
f7(s) = sup{t > 0, us(t) > s},

respectively. Now, define f* : R” — R by
FH@) = fr@alal,

where v, is the volume of the unit ball in R". Then for every continuous increasing function ¥ :
[0, +00) — [0, +0), it follows from [14] that

f Y(f)dx = f Y(Hdx.
R? R?

Since f™ is nonincreasing, the maximal function of f*, which is defined by

1 S
f= —f frdtfors >0
s Jo
is also nonincreasing and f* < f**. For more properties of the rearrangement, we refer the reader
to [14,28].

Lemma 2.1. Let 0 < o < 1,1 < p < oo and a(s,t) be a non-negative measurable function on
(=00, 00) X [0, o] such that
a(s,t) < 1,when 0 < s<t,
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1/p

0 00
sup (f a(s,n)f ds + f a(s, 1)’ ds) =b < 0.
>0 —o0 t

Then there is a constant ¢y = co(p, b, @) such that if

fw d(s)Pds < 1, for ¢ >0,

then

’

oo 00 P
f e FeOdt < ¢y, where Fo(t) = at — a (f a(s, t)¢>(s)ds) . 2.1
0 _

(o9

Proof. The integral in (2.1) can be written as

f |E, |le *dA = f e POy,
—00 0

where F,(t) < dand E,; = fQ e g,

We first show that there is a constant C = C(p, b,a) > 0 such that F,(¢) > —C for all + > 0. To
do so, we claim that if E£,; # (), then A > —C, and furthermore that if r € E,,, then there are A; > 0
and B; > 0 such that

/ of (7 z 1
b +1)r (f gb(s)”ds) <A+ By||7.
t

In fact, if E,, # 0, and t € E,,, then

’

o0 p
t— d <t- Fo(0) < (f a(s, t)¢>(s)ds) .

a a o

Hence the desired result can be obtained by repeating the argument as in the proof of [1, Lemma 1].

The second is to prove that |E,,| < A|1| + B for constants A and B depending only on p, b and «,
which is straightforward via modifying the argument of [1, Lemma 1]. Thus, we complete the proof of
Lemma 2.1.

Lemma 2.2. [15] There exists a constant K, ,,, depending only on m and n such that

7 g (R

m!

l 1 m
u' (1) < Ky, min {(log(e + ;))‘7, f"}”””W“

forallu e W¢§ q(R") and 1 < g < +oco.

m>

Having disposed of the above lemmas, we can now turn to the proofs of Theorems 1 and 2.

2.1. Proof of Theorem 1

Since u € Wy (R"), there exists a function f € La ,(R") with u = (I — A% f and Iflzg < 1.
Then u = G,, * f, where

1 "
Gon(x) = mfo i
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It follows from O’Neil’s lemma [21] that for all # > 0O,
+00 1 ! ! —+00
u@ <u™@) <tG,/ () f" () + f (NG (rdr = ;f f*(r)drf G, (r)dr + f (NG, (rdr.
t 0 0 t

Since G,, is radial and decreasing, G*(r) = G,,(v;: r%). Therefore, by taking

¢(1) = Q7 e fA(Qle™),
W(t) = Bumg) T Q5 e 1-IG? (1Qle™),

and using the Hardy-Littlewood inequality, we find
L f XP Bl dx < = [ xp By 0)7 | dx
19 Ja o 19 Jo o
1 eroo . 4
<= eXp |Bumglte” (e |QDITT | €7 |Qlds

—+00
= f eXplBmglu’ (€™ |QN)[7T e~ ds
0

+oo s lQle Qe o0
< f exp {ﬁn,m,q[e— f fr(r)dr f G (rdr + f £ (G (Hdr]i e ds
0 0 Jo 0 o
< f mexp{ﬁn,m,qnmes f ) F(Qle e dt f mG;(IQIe_’)e_’dt
0 s s
+1 f F(1QIe™G; (1Rl i Jeds
- f wexp{[es f mqs(t)e(%—l)fdt f mw(t)e_%tdt+ f (/)(t)w(t)dt]q%}e_sds
0 s K —0
Sf exp(—F(s))ds,
0

where

F(s)=s-— [esf " ¢(t)e<’,’,’—1)tdtf ) lﬁ(t)e_%tdt + fs d)(t)w(t)dt]q_] .

Hence,

(o)

+oo +eo m m +oo 1 ds m
f O (n)dr = f (IQfre " f*(1Qle™))dr = f (f()=)— =l = 2)7ulll, < 1.
— —0o0 0 Sm N m’

Set
(1), ift <s,
a(t, S) = m +00 m .
e(rl)’(fs Y(rye n"drye’, if s <t.
Since
x|, if x| < 2,
Gu(x) ~ .
e W, if |x| > 2,
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and |QQ] > A > 0, we get

0 0
f a(t, )7 dt = f W()? dt = f (197 e 170G (1Qle™)) dt

00

— Cn (Sl—%’Gm(v;l/nSl/n))q/_
il §

=C, f m (V) G 0) v, vin(y,) hdt

, n |Q|

SN ,
= Cnfl . ?(tn n Gm(t))q dt

v, " QI

2 +00 nem
n n 4
— n( (tn—mvn m n)q dt + _(l‘n—mv,1 e—l)q dl’)
rom 1 2 1

Vn

< Cn,m,q,A < too,

+ 00 , , +00 ” , —+00 " ,
f a(t, s)? dt—esqf el gy f (e n'dr)?

= Cpmge™? ( f Q' e G (1Qle™dr)!

m

< Comge? D1 = €

and

nm,q < 00,

It’s easy to check that when 0 < s < ¢, a(s,t) < 1. This, along with Lemma 2.1
gives f0+°° exp[—F(s)lds < Cy. Therefore, we have obtained

1 f 4
— | explBumqluleTldx < C.
1€ Ja !
Next, we show the sharpness of S,,,, according to Adams method in [1]. The equivalent form of

Theorem 1(1) is
7,
— | ex
1 Jo ®

s (n—m)
n

G )|

)dx < Cno.
111 4 ‘

is the best one for @ = B (the unit ball centered at the origin).
Choose f > 0 such that Gm >|< f=1forxe B, :={xeR:|x| <r}with0 < r < 1. The equivalent form
gives
B, allfIl ™
|B;| 5 MG B <C
|B|

and hence
|B|
|B,|

a < ||f||'g’q (log +logC),

thereby finding
1 /
a=n hn(} log —[CameL%,q(B,, B)]q s
r— r
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with Cap, 2.4(B,, B) = inf||f ||’Z,ﬂﬁq(B). Here the infimum is taken over all f > 0 vanishing on the
complement of B, and G,, * f(x) > 1 on E. It follows from the proof of [1, Theorem 2] that for
any € > 0, one can find 0 < r < 1 small enough such that

Gnxf(y)=21, on B,

with
wn—lil_s)(log %)_llyl_m’ r< |y| < 1,
0, otherwise,

5= {

and

™, r<pl<l,
h =
”) {0, otherwise.

Then the domain of /*(¢) is (r”%, 00), where

m

m_N=4 1 Wn-1 Wn-1
h*(t):{(wnl) AL

0, otherwise.
Consequently,
m_1
”fr”L%vq(B) = ||t” qfr (t)”L‘l(O,IBI)
1
1 N m o wwa] )
<—— |log- f (- y i | dr
wn—l(l - 8) r r”% Wp-1
1 m 1
nﬁ (a)l’l—l )H l 1 4
= og—| .
w1(1=e)\ n gr
This gives
1 s 1 I=g
. _ na Wy—1\" q
Capynyn(Bii B) < Il = ——ri— (227 (log;) |

Finally, a simple computation yields

1 n% w 1 1= ! n \4
aSnlimlog—[ ( ”“)’f(log—)f) :( ) ,
-

r—0 rlw,_1(1—-g&) n

which complete the proof of (1).
The statement (2) can be proved similarly as that of (1), we only pay attention to the difference
arguments as follows. The Hardy-Littlewood inequality shows that

1 f expl(1 — OB, mqlul 7]
—z ~ dx
Q' Ja | x|

1 2 o RS
< |Q|1_% L eXp [(1 - ;)ﬁn,m,q(u (1)« )] (_n) dt
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S\
e’ ') e|Qds

1 —+00
= |Q|1—% L exXp

+00
—vi f exp[(1 = D)l (e IQDI | 01
0 n

o +00 a e |Qle™* |Qle™*
<V f expl(1 = D)Bumgl f Frdr f G, (r)dr
0 n (9]} 0 0

+00
+ | P0G drEe s

es

(1- %)ﬁn,m,qlu*<e-“|ﬂ|>|q"l](

n

+00 +00 +00
Vi f xpl(1 = £ lICN f £l e " de f G (Qle™ e dt
0 s s

" lQlf Q™G (Qle™ e dt] T Ye™ " ds

A {(1‘%) [es [ swesvan [ wweta [ ¢(t)lﬁ(t)dt]q_]}><
0 S ) _oo

where

a4
1

Fio(s)=(1- %)s —(- %) [es f ey f " e tdr+ f S ¢(r)z//(t)dt] "

Let
w(0), ift <s,
a(t, s) = 1y, [+ m .
e'n (fs Y(rye "drye’, ifs<t.
Then
0
f a(t, )7 dt = f w(t)? dt
=C, f (Q' 7 e G (1Qle™))? dt
(Sl—; m(vgl/nsl/n))qlé
1
< Cumyg < +00,
and

+00 —+00 —+00
f a(t, )7 dt = esq'f e(r:_l)tq,dl(f Y(De 'dhg < Cumg < 00

Since a(s,t) < 1 for 0 < s < ¢, we have fo exp[—F,_ p(s) ]ds by Lemma 2.1. Hence

expl(1 = B molul T
|Q|1 f PLCL = 7)Bmqlu ]dst.

x|
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What is left is to show the sharpness of (1 — 2)B, ,,,, which also inspired by [1]. Since the equivalent
form of (2) is

avg| i@
xp [( BT @ n

|
f dx < C,, Q""" B< ( ) , (2.2)
Q ||

n—1

/ n—m
n

is the best one for Q = B. Similarly analysis as that of (1), we
choose f > 0 such that G, * f > 1 for x € B, with 0 < r < 1, it follows from (1) that

-2
(-2 7
_a —n _a A 5
Br1 n @ 1 ”quﬂ Br1 n 1 e L:}nq
E |Br|”—€ Lsd < E —= o dx
re |Br| " JB, |)C|
(1-2)BGm=/(x)
/
T
Br 1_% 1 f e L%’q d
<|— X
- _a
B |Br|1 " JB, |x|a
(1= %)BGm* £ (x)
i7e
1 e iha
<
< = " dx
|Br| " JB X
<C,

and

B
(- =B <A, ( (1-)log| =
n B

L54(B) ,

+ log(r®|B,| ") + log C)

B
<IIf17, (( - —)10g

Ls4(B)

+log |B|" + log C)

Hence, 5 < nlim,_(log %)[CapWL%,q(Br; B)]?, with Cap,,,(E; B) = inf ||f||Lg$q(B), and E is a compact
subset of B, where the infimum is taken over all f > 0 vanishing on the complement of B, and G,, *
f(x) > 1 on E. Analysis similar as that of (1), for any € > 0, we can choose 0 < r < 1 small enough
such that

Gn*fi(y)21, on B,

with

1 I\N—1[+,]-m _
—a{dog ) yl™, r<yl <1, ™, r<pl<l,
Sy = {w""(l ) & h(y) =

0, otherwise. 0, otherwise.
Consequently, we get

1

m_1 ni Wy s 1 14
Al 2y £ F(E n(log =) .

Wl acm) = | f()”L‘I(OIBI) n_l(l—s)( " )" (log r)

This shows

1 s 1 1q

na Wp-1\" q
C LT g Br;B S fellrz g = ( ) 1 - s

Pt BB < Uyt = (2] (g1
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which gives
1
ni Wp-1

1 1) n \'
B <nlimlog — (—=)"(log | =
r—0 r\w,.1(1—-¢) n r Wy_1

as desired.

2.2. Proof of Theorem 2

For any u € Wy (R") with [/ = A)ullz, < 1, set A(w) = |lull,,  and Q = {x € R" : Jul > Au)).
Then it is clear that A(u) < 1. By the property of the rearrangement, we know that for any 7 € [0, |€Q]),

(1) > ludh, . (2.3)
At the same time, Lemma 2.2 shows
u' (1) < Kot " il . (2.4)

Combining (2.3) with (2.4), we have ¢ < K,,ﬂm for any ¢ € [0, |QQ|). Therefore |Q| < K,,ﬁm Write

f OByl ldx = 1) + I,
Rn

where

I = f DBy glul™T1dx, I, = f DBy gl 7 1dx
Q RM\Q

Choose €’ such that Q ¢ Q' and |QY'| = K,?m Then by Theorem B, we have

f exp(ﬁn,m,qlulq%) < ComglQ' £ Cumgs
Q/
thereby finding
I = fq)(ﬁn,m,qlulqil)dx < Cn,m,q-
Q

For the term I, since R"\ Q C {Ju(x)| < 1} and (ko + l)qq = ([q T+ 1) > +, the Hardy-Littlewood
inequality and Lemma 2.2 shows that

[e) (o)
L < f Z ”’"q|u|fqldx< Z nang D3
{lul<1}

J=ko+1 ! J=ko+1 {lul<T}

+00
< Comg fo [u'(t)]%“)fldt:c,,,m,q( fo [ ()] %V dr + f] [u’(t)](k(’”)«qudt)

1 +00
1
< Cn,m,q(f [In(e + ;)](ko+1)||u||rv7/ﬂth + f koD gy el dt)
O m> 1

n

< Cumg-

This is the first desired result.
The second inequality of Theorem 2 can be proved similarly via Theorem 1 and the above
arguments, we omit its proof here.
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3. Conclusions

We deal mainly with several sharp weighted Adams type inequalities in Lorentz-Sobolev spaces. In
particular, the sharpness of these inequalities were also obtained by constructing a proper test sequence.
Moreover, we discuss the boundedness of partial fractional integral operators.
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