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1. Introduction

Sharp Moser-Trudinger inequality and its high-order form (which is called Adams inequality) have
received a lot of attention due to their wide applications to problems in geometric analysis, partial
differential equations, spectral theory and stability of matter [2, 3, 5, 8–12, 24–27]. This paper is
concerned with the problem of finding optimal Adams type inequalities in Lorentz-Sobolev space.

The Trudinger inequality, which can be seen as the critical case of the Sobolev imbedding, was first
obtained by Trudinger [30]. More precisely, Trudinger employed the power series expansion to prove
that there exists β > 0, such that

sup
∥∇u∥nn≤1,u∈W1,n

0 (Ω)

∫
Ω

exp(β|u|
n

n−1 )dx < ∞, (1.1)

where Ω ⊂ Rn is a bounded smooth domain and W1,p
0 (Ω) denotes the usual Sobolev space on Ω, i.e.,

the completion of C∞0 (Ω)(the space of all functions being infinity-times continuously differential in Ω
with compact support) with the norm

∥u∥W1,p
0 (Ω) =

∫
Ω

(|∇u(x)|p + |u(x)|p) dx.
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Let Ω ⊂ Rn be an open domain with finite measure. It is well known that for a positive integer k < n
and 1 ≤ p < n

k , the Sobolev space Wk,p
0 (Ω) embeds continuously into L

np
n−kp (Ω), but in the borderline

case p = n
k , Wk, n

k
0 (Ω) ⊊ L∞ (Ω), unless k = n. For the case k = 1, Yudovich [31] and Trudinger [30]

have shown that

W1,n
0 (Ω) ⊂ {u ∈ L1 (Ω) : Eβ :=

∫
Ω

eβ|u|
n

n−1 dx < ∞}, f or any β < ∞

and the function Eβ is continuous on W1,n
0 (Ω). In 1971, Moser sharped the Trudinger inequality and

gave the sharp constant β = nw
1

n−1
n−1 of (1.1) by using the technique of the symmetry and rearrangement

in [20].
Theorem A. [20] Let Ω ⊂ Rn be an open domain with finite measure. Then, there exists a sharp

constant βn = n
(

nπ
n
2

Γ( n
2 )+1

) 1
n−1

, such that

1
|Ω|

∫
Ω

exp(β| f |
n

n−1 )dx ≤ C0 < ∞

for any β ≤ βn and any f ∈ C∞0 (Ω) with
∫
Ω
| ▽ f |ndx ≤ 1. The constant βn is sharp in the sense that the

above inequality can no longer hold with some C0 independent of f if β > βn.
Theorem A has been extended in many directions, one of which states that

sup
u∈W1,n

0 (Ω), ∥∇u∥n≤1

1
|Ω|

∫
Ω

exp(β |u|
n

n−1 )dx < ∞

for any β ≤ βn = nω
1

n−1
n−1, plays an important role in analysis, where ωn−1 is the surface measure of the

unit ball in Rn. In fact, the constant βn is sharp in the sense that if β > βn, the supremum is infinity.
Since the Polyá-Szegö inequality, on which the technique of the symmetry and rearrangement

depends, is not valid on the high-order Sobolev space, many challenges arise in the research of
high-order Trudinger-Moser inequalities. In 1988, Adams [1] utilized the method of representative
formulas and potential theory to establish the sharp Adams inequalities on bounded domains.
Theorem B. [1] Let Ω be an open and bounded set in Rn. If m is a positive integer less than n, then
there exists a constant C0 = C(n,m) > 0 such that for any u ∈ Wm, n

m
0 (Ω) with ∥∇mu∥L n

m (Ω) ≤ 1,

1
|Ω|

∫
Ω

exp(β|u(x)|
n

n−m )dx ≤ C0 f or all β ≤ β(n,m), (1.2)

where

β(n,m) =


n

ωn−1

[π n
2 2mΓ( m+1

2 )
Γ( n−m+1

2 )

] n
n−m , m is odd,

n
ωn−1

[π n
2 2mΓ( m

2 )
Γ( n−m

2 )

] n
n−m , m is even.

Furthermore, the constant β(n,m) is best possible in the sense that for any β > β(n,m), the integral
can be made as large as possible. In the case of Sobolev space with homogeneous Navier boundary
conditions Wm, n

m
N (Ω), the Adams inequality was extended by Cassani and Tarsi in [6]. It is easy to check

that Wm, n
m

N (Ω) contains Wm, n
m

0 (Ω) as a closed subspace.
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Adimurthi and Sandeep proved a singular Moser-Trudinger inequality with the sharp constant
in [2]. Since then, Moser’s results for the first order derivatives and Adams’ result for the high order
derivatives were extended to the unbounded domain case. Earlier research of the Moser-Trudinger
inequalities on the whole space goes back to Cao’s work in [7]. Later, Li and Ruf [19, 23] improved
Cao’s result and established the following result

sup
∥u∥W1,n(Rn)≤1

∫
Rn
Φ(βn|u|

n
n−1 )dx ≤ Cn, (1.3)

where proof relies on the rearrangement argument and the Polyá-Szegö inequality. For more on the
rearrangement argument, see [21,29]. In 2013, Lam and Lu [17] used a symmetrization-free approach
to give a simple proof for the sharp Moser-Trudinger inequalities in W1,n(Rn). It should be pointed out
that this approach is surprisingly simple and can be easily applied to other settings where
symmetrization argument does not work. Furthermore, they also developed a new tool to establish the
Moser-Trudinger inequalities on the Heisenberg group and the Fractional Adams inequalities
in W s, n

s (Rn) (0 < s < n) ( [16]). For more applications of the symmetrization-free method, see
also [18, 32]. The Adams type inequality on Wm, n

m
0 (Ω) when Ω has infinite volume and m is an even

integer was studied recently by Ruf and Sani in [22].
In [22], Ruf and Sani used the norm ∥u∥m,n =

∥∥∥(−△ + I)
m
2 u

∥∥∥ n
m

, which is equivalent to the standard
Sobolev norm

∥u∥Wm, n
m = (∥u∥

n
m
n
m
+

m∑
j=1

∥∥∥∇ ju
∥∥∥ n

m
n
m

)
m
n .

In particular, if u ∈ Wm, n
m

0 (Ω) or u ∈ Wm, n
m (Rn), then ∥u∥Wm, n

m ≤ ∥u∥m,n . Since Ruf and Sani only
considered the case when m is even, it leaves an open question if Ruf and Sani,s result is still right
when m is odd. Recently, the authors of [17] solved the problem and proved the results of Adams type
inequalities on unbounded domains when m is odd.

We notice that when Ω has infinite volume, the usual Moser-Truding inequality become
meaningless. In the case |Ω| = +∞, a modified Moser-Truding type inequality was established in [13].
Theorem C. [13] Assume n ≥ 2, β > 0,−∞ < s ≤ α < n and u ∈ Ln(Rn; |x|−sdx) ∩ W1,n(Rn), there
esists a positive constant C = C(n, s, α, β) such that the inequality∫

Rn

ϕ(β |u|
n

n−1 )
|x|α

dx ≤ C∥u∥
n(n−α)

n−s
Ln(Rn;|x|−sdx).

Furthermore, for all β ≤ (1 − α
n )βn, there holds∫

Rn

ϕ(β |u|
n

n−1 )
|x|α

dx ≤ C∥u∥
n(n−α)

n−s
Ln(Rn;|x|−sdx),

where ϕ(t) = et −
∑n−2

j=0
t j

j! and Ln(Rn; |x|−sdx) denotes the weighted Lebesgue space endowed with the
norm

∥u∥Ln(Rn;|x|−sdx) :=
(∫

Rn
|u(x)|n|x|−sdx

) 1
n

.

Moreover the constant (1 − α
n )βn is sharp in the sense that if β > (1 − α

n )βn, the supremum is infinity.
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When α = 0, Ruf in [23] and Li-Ruf in [19] proved the above modified Moser-Truding type
inequality in R2. Such type of inequality on unbounded domains in the subcritical
case (β < βn, α = 0) was first established by Cao in [7] for n = 2 and Adachi Tanaka in [4] for n ≥ 3
in high dimension.

In this paper, we will consider some sharp Adams type inequalities in Lorentz-Sobolev
space Wα

n
m ,q

(Ω ⊆ Rn) with q , n (If q = n, the Lorentz norm becomes the Ln(Rn) domain norm).
Let 1 < p < +∞ and 1 ≤ q < +∞. Then we recall the Lorentz space Lp,q(Rn) as: ψ ∈ Lp,q(Rn) if

∥ψ∥∗p,q =

(
∫ +∞

0
[ψ∗(t)t

1
p ]q dt

t )
1
q < ∞, 1 ≤ q < ∞,

supt>0 ψ
∗(t)t

1
p < ∞, q = ∞.

(1.4)

It is well known that ∥ · ∥∗p,q is not a norm, and

∥ψ∥p,q =

(∫ +∞

0
[ψ∗∗(t)t

1
p ]q dt

t

) 1
q

is a norm for any p and q. However, they are equivalent in the sense that

∥ψ∥p,q ≤ ∥ψ∥
∗
p,q ≤ C(p, q)∥ψ∥p,q.

The Sobolev-Lorentz space ( [15])

Wα
n
m ,q

(Rn) := (I − ∆)−
α
2 L n

m ,q(Rn)

equipped with the norm
∥u∥Wα

n
m ,q
= ∥(I − ∆)

α
2 u∥ n

m ,q

for 0 < α < n,m < n, 1 < q < ∞. For simplicity of notation, we write

Wm
n
m ,q

(Ω) =
{
u ∈ Wm

n
m ,q

(Ω),
∥∥∥(I − △)

m
2 u

∥∥∥ n
m ,q
≤ 1

}
for any Ω ⊆ Rn. Then we can formulate our main results as follows.

Theorem 1. Let m ≤ n be an integer, 0 ≤ α < n, 1 < q < +∞ and A be a positive real number. Then
for any bounded domain Ω ⊂ Rn with |Ω| ≥ A > 0, we have

(1) sup
u∈Wm

n
m ,q

(Ω)

1
|Ω|

∫
Ω

exp(βn,m,q |u|
q

q−1 )dx ≤ Cm,n,q.

Additionally, the constant βn,m,q =
(

n
ωn−1

)q′ n−m
n K−q′

m,n is sharp in the sense that the supremum is infinity

if β > βn,m,q, where Km,n =
Γ( n−m

2 )

π
n
2 2mΓ( m

2 )
.

(2) sup
u∈Wm

n
m ,q

(Ω)

∫
Ω

exp[βn,m,q(1− αn )|u|
q

q−1 ]
|x|α ≤ Cm,n,q,α.

Additionally, the constant βn,m,q is sharp in the sense that the supremum is infinity if β > βn,m,q.

For the unbounded domain, we take Rn for example to have the following inequalities.

AIMS Mathematics Volume 8, Issue 9, 22192–22206.



22196

Theorem 2. Let m, q, α be the same as in Theorem 1. Then we have

sup
u∈Wm

n
m ,q

(Rn)

∫
Rn
Φ(βn,m,q |u|

q
q−1 )dx ≤ Cm,n,q,

and

sup
u∈Wm

n
m ,q

(Rn)

∫
Rn

Φ[βn,m,q(1 − α
n )|u|

q
q−1 ]

|x|α
dx ≤ C̃m,n,q,α,

where Φ(x) = ex −
∑k0

j=0
x j

j! , k0 = [ q−1
q

n
m ] and βn,m,q is sharp in the sense that the supremum is infinity

if β > βn,m,q.

2. Proofs of the main results

We begin this section with some preparations which are necessary for the proofs of our main results.
Let f : Rn → R such that

|{x ∈ Rn : | f (x)| > t}| =
∫
{x∈Rn:| f (x)|>t}

dx < +∞

for every t > 0. Its distribution function d f (t) and its decreasing rearrangement f ∗ are defined by

d f (t) = |{x : | f (x)| > t}|,

and
f ∗(s) = sup{t > 0, µ f (t) > s},

respectively. Now, define f ♯ : Rn → R by

f ♯(x) = f ∗(vn|x|n),

where vn is the volume of the unit ball in Rn. Then for every continuous increasing function Ψ :
[0,+∞)→ [0,+∞), it follows from [14] that∫

Rn
Ψ( f )dx =

∫
Rn
Ψ( f ♯)dx.

Since f ∗ is nonincreasing, the maximal function of f ∗, which is defined by

f ∗∗ :=
1
s

∫ s

0
f ∗dt for s ≥ 0

is also nonincreasing and f ∗ ≤ f ∗∗. For more properties of the rearrangement, we refer the reader
to [14, 28].

Lemma 2.1. Let 0 < α ≤ 1, 1 < p < ∞ and a(s, t) be a non-negative measurable function on
(−∞,∞) × [0,∞] such that

a(s, t) ≤ 1,when 0 < s < t,

AIMS Mathematics Volume 8, Issue 9, 22192–22206.
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sup
t>0

(∫ 0

−∞

a(s, t)p
′

ds +
∫ ∞

t
a(s, t)p

′

ds
)1/p

′

= b < ∞.

Then there is a constant c0 = c0(p, b, α) such that if∫ ∞

−∞

ϕ(s)pds ≤ 1, for ϕ ≥ 0,

then ∫ ∞

0
e−Fα(t)dt ≤ c0, where Fα(t) = αt − α

(∫ ∞

−∞

a(s, t)ϕ(s)ds
)p
′

. (2.1)

Proof. The integral in (2.1) can be written as∫ ∞

−∞

|Eαλ|e−λdλ =
∫ ∞

0
e−Fα(t)dt,

where Fα(t) ≤ λ and Eαλ =
∫
Ω

eαλ|u|
n

n−1 dx.
We first show that there is a constant C = C(p, b, α) > 0 such that Fα(t) ≥ −C for all t ≥ 0. To

do so, we claim that if Eαλ , ∅, then λ ≥ −C, and furthermore that if t ∈ Eαλ, then there are A1 > 0
and B1 > 0 such that

(bp′ + t)
1
p

(∫ ∞

t
ϕ(s)pds

) 1
p

≤ A1 + B1|λ|
1
p .

In fact, if Eαλ , ∅, and t ∈ Eαλ, then

t −
λ

α
≤ t −

Fα(t)
α
≤

(∫ ∞

−∞

a(s, t)ϕ(s)ds
)p
′

.

Hence the desired result can be obtained by repeating the argument as in the proof of [1, Lemma 1].
The second is to prove that |Eαλ| ≤ A|λ| + B for constants A and B depending only on p, b and α,

which is straightforward via modifying the argument of [1, Lemma 1]. Thus, we complete the proof of
Lemma 2.1.

Lemma 2.2. [15] There exists a constant Kn,m depending only on m and n such that

u∗(t) ≤ Kn,m min
{

(log(e +
1
t
))

1
q′ , t−

m
n

}
∥u∥Wα

n
m ,q(Rn)

for all u ∈ Wα
n
m ,q

(Rn) and 1 < q ≤ +∞.

Having disposed of the above lemmas, we can now turn to the proofs of Theorems 1 and 2.

2.1. Proof of Theorem 1

Since u ∈ Wm
n
m ,q

(Rn), there exists a function f ∈ L n
m ,q(Rn) with u = (I − ∆)−

m
2 f and ∥ f ∥ n

m ,q ≤ 1.
Then u = Gm ∗ f , where

Gm(x) =
1

(4π)m/2Γ(m/2)

∫ +∞

0
e−π

|x|2
t −

t
4π t

m−n
2

dt
t
.
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It follows from O’Neil’s lemma [21] that for all t ≥ 0,

u∗(t) ≤ u∗∗(t) ≤ tG∗∗m (t) f ∗∗(t) +
∫ +∞

t
f ∗(r)G∗r(r)dr =

1
t

∫ t

0
f ∗(r)dr

∫ t

0
G∗m(r)dr +

∫ +∞

t
f ∗(r)G∗m(r)dr.

Since Gm is radial and decreasing, G∗m(r) = Gm(v
1
n
n r

1
n ). Therefore, by takingϕ(t) = |Ω|

m
n e−

m
n t f ∗(|Ω|e−t),

ψ(t) = (βn,m,q)
q−1

q |Ω|1−
m
n e−(1−m

n )tG∗m(|Ω|e−t),

and using the Hardy-Littlewood inequality, we find

1
|Ω|

∫
Ω

exp
[
βn,m,q|u|

q
q−1

]
dx ≤

1
|Ω|

∫
Ω

exp
[
βn,m,q(u∗(t))

q
q−1

]
dx

≤
1
|Ω|

∫ +∞

0
exp

[
βn,m,q|u∗(e−s|Ω|)|

q
q−1

]
e−s|Ω|ds

≤

∫ +∞

0
exp[βn,m,q|u∗(e−s|Ω|)|

q
q−1 ]e−sds

≤

∫ +∞

0
exp

{
βn,m,q[

es

|Ω|

∫ |Ω|e−s

0
f ∗(r)dr

∫ |Ω|e−s

0
G∗m(r)dr +

∫ +∞

|Ω|
es

f ∗(r)G∗m(r)dr]
q

q−1
}
e−sds

≤

∫ +∞

0
exp

{
βn,m,q[|Ω|es

∫ +∞

s
f ∗(|Ω|e−t)e−tdt

∫ +∞

s
G∗m(|Ω|e−t)e−tdt

+ |Ω|

∫ s

−∞

f ∗(|Ω|e−t)G∗m(|Ω|e−t)e−tdt]
q

q−1
}
e−sds

=

∫ +∞

0
exp

{[
es

∫ +∞

s
ϕ(t)e( m

n −1)tdt
∫ +∞

s
ψ(t)e−

m
n tdt +

∫ s

−∞

ϕ(t)ψ(t)dt
] q

q−1
}
e−sds

≤

∫ +∞

0
exp(−F(s))ds,

where

F(s) = s −
[
es

∫ +∞

s
ϕ(t)e( m

n −1)tdt
∫ +∞

s
ψ(t)e−

m
n tdt +

∫ s

−∞

ϕ(t)ψ(t)dt
] q

q−1

.

Hence,∫ +∞

−∞

Φq(t)dt =
∫ +∞

−∞

(|Ω|
m
n e−

m
n t f ∗(|Ω|e−t))qdr =

∫ +∞

0
( f ∗(s)

1
s

n
m

)q ds
s
= ∥(I − △)

m
2 u∥qn

m ,q
≤ 1.

Set

a(t, s) =

ψ(t), if t ≤ s,

e( m
n −1)t(

∫ +∞
s

ψ(r)e−
m
n rdr)es, if s < t.

Since

Gm(x) ≈

|x|−n+m, if |x| ≤ 2,
e−|x|, if |x| > 2,
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and |Ω| > A > 0, we get∫ 0

−∞

a(t, s)q′dt =
∫ 0

−∞

ψ(t)q′dt = Cn

∫ 0

−∞

(|Ω|1−
m
n e−(1−m

n )tG∗m(|Ω|e−t))q′dt

= Cn

∫ ∞

|Ω|

(s1−m
n Gm(v−1/n

n s1/n))q′ds
s

= Cn

∫ ∞

v
− 1

n
n |Ω|

1
n

((tnvn)1−m
n Gm(t))q′tnv−1

n v
1
n
n n(tnvn)1− 1

n dt

= Cn

∫ ∞

v
− 1

n
n |Ω|

1
n

n
t
(tn−mv

n−m
n

n Gm(t))q′dt

= Cn

( ∫ 2

v
− 1

n
n |Ω|

1
n

n
t
(tn−mv

n−m
n

n tm−n)q′dt +
∫ +∞

2

n
t
(tn−mv

n−m
n

n e−t)q′dt
)

≤ Cn,m,q,A < +∞,

and ∫ +∞

s
a(t, s)q′dt = esq′

∫ +∞

s
e( m

n −1)tq′dt(
∫ +∞

s
ψ(t)e−

m
n tdt)q′

= Cn,m,qesq′( m
n )(

∫ ∞

s
|Ω|1−

m
n e−tG∗m(|Ω|e−t)dt)q′

≤ Cn,m,qesq′( m
n )e−sq′( m

n ) = Cn,m,q < ∞.

It’s easy to check that when 0 < s < t, a(s, t) ≤ 1. This, along with Lemma 2.1
gives

∫ +∞
0

exp[−F(s)]ds ≤ C0. Therefore, we have obtained

1
|Ω|

∫
Ω

exp[βn,m,q|u|
q

q−1 ]dx ≤ C.

Next, we show the sharpness of βn,m,q according to Adams method in [1]. The equivalent form of
Theorem 1(1) is

1
|Ω|

∫
Ω

exp(β

∣∣∣∣∣∣Gm ∗ f (x)
∥ f ∥ n

m ,q

∣∣∣∣∣∣q
′

)dx ≤ Cm,n,q.

We need to prove that
(

n
ωn−1

)q′ (n−m)
n is the best one for Ω = B (the unit ball centered at the origin).

Choose f ≥ 0 such that Gm ∗ f ≥ 1 for x ∈ Br := {x ∈ R : |x| ≤ r} with 0 < r < 1. The equivalent form
gives

|Br|

|B|
× e

α∥ f ∥−q′

L
n
m ,q

(B)
≤ C,

and hence

α ≤ ∥ f ∥q
′

n
m ,q

(
log
|B|
|Br|
+ log C

)
,

thereby finding

α ≤ n lim
r→0

log
1
r

[CapWmL
n
m ,q(Br, B)]q′ ,
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with CapWmL
n
m ,q(Br, B) = inf ∥ f ∥q

′

L
n
m ,q(B). Here the infimum is taken over all f > 0 vanishing on the

complement of B, and Gm ∗ f (x) ≥ 1 on E. It follows from the proof of [1, Theorem 2] that for
any ε > 0, one can find 0 < r < 1 small enough such that

Gm ∗ fr(y) ≥ 1, on Br,

with

fr(y) =

 1
ωn−1(1−ε) (log 1

r )−1|y|−m, r < |y| < 1,

0, otherwise,

and

h(y) =

|y|−m, r < |y| < 1,
0, otherwise.

Then the domain of h∗(t) is (rn ωn−1
n , ∞), where

h∗(t) =

( tn
ωn−1

)−
m
n , rn ωn−1

n < t < ωn−1
n ,

0, otherwise.

Consequently,

∥ fr∥L
n
m ,q(B) = ∥t

m
n −

1
q f ∗r (t)∥Lq(0,|B|)

≤
1

ωn−1(1 − ε)

(
log

1
r

)−1 ∫ ωn−1
n

rn ωn−1
n

[
(

tn
ωn−1

)−
m
n t

m
n −

1
q

]q

dt


1
q

=
n

1
q

ωn−1(1 − ε)

(
ωn−1

n

)m
n
(
log

1
r

) 1−q
q

.

This gives

CapWmL
n
m ,q(Br; B) ≤ ∥ fr∥L

n
m ,q(B) =

n
1
q

ωn−1(1 − ε)

(
ωn−1

n

) s
n
(
log

1
r

) 1−q
q

.

Finally, a simple computation yields

α ≤ n lim
r→0

log
1
r

 n
1
q

ωn−1 (1 − ε)
(
ωn−1

n
)

m
n (log

1
r

)
1−q

q

q′

=

(
n

ωn−1

)q′ n−m
n

,

which complete the proof of (1).
The statement (2) can be proved similarly as that of (1), we only pay attention to the difference

arguments as follows. The Hardy-Littlewood inequality shows that

1
|Ω|1−

α
n

∫
Ω

exp[(1 − α
n )βn,m,q|u|

q
q−1 ]

|x|α
dx

≤
1
|Ω|1−

α
n

∫ |Ω|

0
exp

[
(1 −

α

n
)βn,m,q(u∗(t))

q
q−1 )

] ( t
vn

)− αn
dt
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=
1
|Ω|1−

α
n

∫ +∞

0
exp

[
(1 −

α

n
)βn,m,q|u∗(e−s|Ω|)|

q
q−1

] (e−s|Ω|

vn

)− αn
e−s|Ω|ds

= v
α
n
n

∫ +∞

0
exp

[
(1 −

α

n
)βn,m,q|u∗(e−s|Ω|)|

q
q−1

]
e−s(1− αn )ds

≤ v
α
n
n

∫ +∞

0
exp{(1 −

α

n
)βn,m,q[

es

|Ω|

∫ |Ω|e−s

0
f ∗(r)dr

∫ |Ω|e−s

0
G∗m(r)dr

+

∫ +∞

|Ω|
es

f ∗(r)G∗m(r)dr]
q

q−1 }e−(1− αn )sds

= v
α
n
n

∫ +∞

0
exp{(1 −

α

n
)βn,m,q[|Ω|es

∫ +∞

s
f ∗(|Ω|e−t)e−tdt

∫ +∞

s
G∗m(|Ω|e−t)e−tdt

+ |Ω|

∫ s

−∞

f ∗(|Ω|e−t)G∗m(|Ω|e−t)e−tdt]
q

q−1 }e−(1− αn )sds

= v
α
n
n

∫ +∞

0
exp

(1 −
α

n
)
[
es

∫ +∞

s
ϕ(t)e( m

n −1)tdt
∫ +∞

s
ψ(t)e−

m
n tdt +

∫ r

−∞

ϕ(t)ψ(t)dt
] q

q−1
×

e(1− αn )sds

≤ v
α
n
n

∫ +∞

0
exp

[
−F1− αn (s)

]
ds,

where

F1− αn (s) = (1 −
α

n
)s − (1 −

α

n
)
[
es

∫ +∞

s
ϕ(t)e( m

n −1)tdt
∫ +∞

s
ψ(t)e−

m
n tdt +

∫ s

−∞

ϕ(t)ψ(t)dt
] q

q−1

.

Let

a(t, s) =

ψ(t), if t ≤ s,

e( m
n −1)t(

∫ +∞
s

ψ(r)e−
m
n rdr)es, if s < t.

Then ∫ 0

−∞

a(t, s)q′dt =
∫ 0

−∞

ψ(t)q′dt

= Cn

∫ 0

−∞

(|Ω|1−
m
n e−(1−m

n )tG∗m(|Ω|e−t))q′dt

= Cn

∫ ∞

|Ω|

(s1−m
n Gm(v−1/n

n s1/n))q′ds
s

≤ Cn,m,q < +∞,

and ∫ +∞

s
a(t, s)q′dt = esq′

∫ +∞

s
e( m

n −1)tq′dt(
∫ +∞

s
ψ(t)e−

m
n tdt)q′ ≤ Cn,m,q < ∞.

Since a(s, t) ≤ 1 for 0 < s < t, we have
∫ +∞

0
exp[−F1− βn

(s)]ds by Lemma 2.1. Hence

1
|Ω|1−

α
n

∫
Ω

exp[(1 − α
n )βn,m,q|u|

q
q−1 ]

|x|α
dx ≤ C.
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What is left is to show the sharpness of (1 − α
n )βn,m,q, which also inspired by [1]. Since the equivalent

form of (2) is ∫
Ω

exp
[
(1 − α

n )β
∣∣∣∣∣ Im∗ f (x)
∥ f ∥

L
n
m , q (Ω)

∣∣∣∣∣q′]
|x|α

dx ≤ Cn,p|Ω|
1− αn , β ≤

(
n

ωn−1

)q′ n−m
n

, (2.2)

we only need to prove that
(

n
ωn−1

)q′ n−m
n is the best one for Ω = B. Similarly analysis as that of (1), we

choose f ≥ 0 such that Gm ∗ f ≥ 1 for x ∈ Br with 0 < r < 1, it follows from (1) that

∣∣∣∣∣Br

B

∣∣∣∣∣1− αn |Br|
α
n

1
rα

e

(1− αn )β

∥ f ∥q
′

L
n
s ,q ≤

∣∣∣∣∣Br

B

∣∣∣∣∣1− αn 1
|Br|

1− αn

∫
Br

e

(1− αn )β

∥ f ∥q
′

L
n
m ,q

|x|α
dx

≤

∣∣∣∣∣Br

B

∣∣∣∣∣1− αn 1
|Br|

1− αn

∫
Br

e

(1− αn )βGm∗ f (x)

∥ f ∥q
′

L
n
m ,q

|x|α
dx

≤
1

|Br|
1− αn

∫
B

e

(1− αn )βGm∗ f (x)

∥ f ∥q
′

L
n
m ,q

|x|α
dx

≤ C,

and

(1 −
α

n
)β ≤ ∥ f ∥q

′

L
n
s ,q(B)

(
(1 −

α

n
) log

∣∣∣∣∣ B
Br

∣∣∣∣∣ + log(rα|Br|
− αn ) + log C

)
≤ ∥ f ∥q

′

L
n
s ,q(B)

(
(1 −

α

n
) log

∣∣∣∣∣ B
Br

∣∣∣∣∣ + log |B|
α
n + log C

)
.

Hence, β ≤ n limr→0(log 1
r )[CapẇL

n
m ,q(Br; B)]q′ , with CapẇL

n
m ,q(E; B) = inf ∥ f ∥L n

s ,q(B), and E is a compact
subset of B, where the infimum is taken over all f ≥ 0 vanishing on the complement of B, and Gm ∗

f (x) ≥ 1 on E. Analysis similar as that of (1), for any ε > 0, we can choose 0 < r < 1 small enough
such that

Gm ∗ fr(y) ≥ 1, on Br,

with

fr(y) =

 1
ωn−1(1−ε) (log 1

r )−1|y|−m, r < |y| < 1,

0, otherwise.
& h(y) =

|y|−m, r < |y| < 1,
0, otherwise.

Consequently, we get

∥ fr∥L
n
m ,q(B) = ∥t

m
n −

1
q f ∗r (t)∥Lq(0,|B|) ≤

n
1
q

ωn−1(1 − ε)
(
ωn−1

n
)

s
n (log

1
r

)
1−q

q .

This shows

CapẇL
n
m ,q(Br; B) ≤ ∥ fr∥L

n
m ,q(B) =

n
1
q

ωn−1(1 − ε)

(
ωn−1

n

) s
n
(
log

1
r

) 1−q
q

,
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which gives

β ≤ n lim
r→0

log
1
r

 n
1
q

ωn−1 (1 − ε)
(
ωn−1

n
)

m
n (log

1
r

)
1−q

q

q′

=

(
n

ωn−1

)q′ n−m
n

as desired.

2.2. Proof of Theorem 2

For any u ∈ Wm
n
m ,q

(Rn) with ∥(I − ∆)
m
2 u∥ n

m ,q ≤ 1, set A(u) = ∥u∥w n
m ,q

and Ω = {x ∈ Rn : |u| > A(u)}.
Then it is clear that A(u) ≤ 1. By the property of the rearrangement, we know that for any t ∈ [0, |Ω|),

u∗(t) > ∥u∥w n
m ,q
. (2.3)

At the same time, Lemma 2.2 shows

u∗(t) ≤ Kn,mt−
m
n ∥u∥w n

m ,q
. (2.4)

Combining (2.3) with (2.4), we have t ≤ K
n
m
n,m for any t ∈ [0, |Ω|). Therefore |Ω| ≤ K

n
m
n,m. Write∫

Rn
Φ[βn,m,q|u|

q
q−1 ]dx = I1 + I2,

where
I1 =

∫
Ω

Φ[βn,m,q|u|
q

q−1 ]dx, I2 =

∫
Rn\Ω

Φ[βn,m,q|u|
q

q−1 ]dx.

Choose Ω′ such that Ω ⊂ Ω′ and |Ω′| = K
n
m
n,m. Then by Theorem B, we have∫

Ω′
exp(βn,m,q|u|

q
q−1 ) ≤ Cn,m,q|Ω

′| ≤ Cn,m,q,

thereby finding

I1 =

∫
Ω

Φ(βn,m,q|u|
q

q−1 )dx ≤ Cn,m,q.

For the term I2, since Rn \Ω ⊂ {|u(x)| < 1} and (k0+1) q
q−1 = ([ q

q−1
n
m ]+1) q

q−1 >
n
m , the Hardy-Littlewood

inequality and Lemma 2.2 shows that

I2 ≤

∫
{|u|≤1}

∞∑
j=k0+1

β
j
n,m,q

j!
|u| j

q
q−1 dx ≤

∞∑
j=k0+1

β
j
n,m,q

j!

∫
{|u|≤1}

|u|(k0+1) q
q−1 dx

≤ Cn,m,q

∫ +∞

0
[u′(t)](k0+1) q

q−1 dt = Cn,m,q

(∫ 1

0
[u′(t)](k0+1) q

q−1 dt +
∫ +∞

1
[u′(t)](k0+1) q

q−1 dt
)

≤ Cn,m,q(
∫ 1

0
[ln(e +

1
t
)](k0+1)∥u∥mW n

m ,q
dt +

∫ +∞

1
t−

n
m (k0+1) q

q−1 ∥u∥mW n
m ,q

dt)

≤ Cn,m,q.

This is the first desired result.
The second inequality of Theorem 2 can be proved similarly via Theorem 1 and the above

arguments, we omit its proof here.
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3. Conclusions

We deal mainly with several sharp weighted Adams type inequalities in Lorentz-Sobolev spaces. In
particular, the sharpness of these inequalities were also obtained by constructing a proper test sequence.
Moreover, we discuss the boundedness of partial fractional integral operators.
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