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Abstract: The concept of k-foldedN-structures (k-FNSs) is an essential concept to be considered for
tackling intricate and tricky data. In this study, we want to broaden the notion of k-FNS by providing a
general algebraic structure for tackling k-folded N-data by fusing the conception of semigroup and
k-FNS. First, we introduce and study some algebraic properties of k-FNSs, for instance, subset,
characteristic function, union, intersection, complement and product of k-FNSs, and support them
by illustrative examples. We also propose k-folded N-subsemigroups (k-FNSBs) and ζ̃-k-folded
N-subsemigroups (̃ζ-k-FNSBs) in the structure of semigroups and explore some attributes of these
concepts. Characterizations of subsemigroups are considered based on these concepts. Using the
notion of k-folded N-product, characterizations of k-FNSBs are also discussed. Further, we obtain a
necessary condition of a k-FNSB to be a k-folded N-idempotent. Finally, relations between k-folded
N-intersection and k-folded N-product are displayed, and how the image and inverse image of a k-
FNSB become a k-FNSB is studied.
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1. Introduction

The field of algebra, which concentrates on the fundamental set-theoretic conceptions and
procedures utilized in algebra, is known as general algebra. It is the foundation of other fields of
algebra, including differential algebra, algebraic graph theory and algebraic geometry. As a type of
algebra, semigroups are quite helpful in numerous domains containing control problems, sociology,

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.20231125


22082

biology, dynamical systems, stochastic differential equations, etc. The term “semigroup” was used to
give a title for some structures that weren’t groups but emerged through the growth of outcomes.

Obscurity, uncertainty and imprecision are typical aspects of real-world situations. The
conventional mathematical techniques for handling ambiguity and doubtfulness fall short in dealing
with these features. Some of the innovative methods utilized to address these restrictions include
multipolar (fuzzy) sets, N-structures, etc. In 1965, Zadeh [1] adopted the idea of fuzzy structures and
created a grade of membership that is a positive fuzzy value in the interval [0, 1] for each ordinary
item. In 2009, Jun et al. [2] proposed N-structures and created a grade of membership for each
ordinary item that is a negative fuzzy value in the range [-1, 0]. To deal with polarity, Chen and
colleagues [3] suggested the grade of membership, which is a k-tuple positive fuzzy value for each
item, to offer the notion of polarity fuzziness structures. In the context of multipolar (fuzzy) sets,
Bashir et al. [4] presented and studied subsemigroups and several types of ideals of semigroups under
polarity of fuzziness structures. In N-structures, Abdullah and Fawad Ali [5] formulated the idea of
N-fuzziness filters in BE-algebras and investigated some connected assets. Rattana and Chinram [6],
Khan et al. [7] and Rangsuk et al. [8] explored neutrosophicN-structures and their uses in semigroups,
UP-algebras and n-ary groupoids, respectively. In [9], Jana et al. discussed several aspects related to
fuzziness algebraic structures. In addition, some extensions of fuzziness structures like bipolar and
Intuitionistic fuzziness structures were linked to BCK(BCI/G)-algebras (see [10–16]). Following that,
polarity of fuzziness models andN-structures were linked to algebraic structures and real-life domains
(see [17–23]).

Although the previous mathematical methods can deal with informational ambiguities and
uncertainties, none of them is capable of handling the negative form of multi-polarity that frequently
appears in real-world situations. In addition, since the multi-polar fuzziness structure, presented by
Chen et al. [3], deals primarily with multi-positive data, we believe that we need a scientific approach
to handle multi-negative data. If multi-positive data reflects the data of the current world, it may be
thought that multi-negative data represents the afterlife. As a generalization of N-structure and as a
tool for dealing with data from the hereafter, Gon Lee et al. devised the so-called k-FNS, which is
suitable for processing multi-negative data, and applied it to the BCH-algebras (see [24]). A k-FNS

∏̃
over K is an object having the form Π̃ = {⟨α, (q j ◦ Π̃)(α) | α ∈ K}, where the function Π̃ : K → [−1, 0]k

represents the degree of multi-positive membership for all α ∈ K. The concept of k-FNSs was first
presented by Gon Lee et al. [24] in 2021, which is a combination betweenN-structures and multi-polar
fuzziness structures. Since no negative version of multipolar fuzziness semigroups has been proposed
thus far, we now feel compelled to address multipolar fuzziness negative versions in the context of
semigroups.

In this paper, we study k-FNSs of semigroups. Some fundamental definitions and conceptions,
such as semigroups, N-structures and k-polar fuzziness structures, are provided in Section 2. These
definitions will aid us to discuss our study. In Section 3, we study and discuss some algebraic properties
of k-FNSs, for instance, subset, characteristic function, union, intersection, complement and product
of k-FNSs, and support them using illustrative examples. In Section 4, we propose the concept of
k-FNSBs and explore some attributes and characterizations of this concept. Also, we study how the
image and inverse image of a k-FNSB become a k-FNSB. We discuss the characterizations of k-
FNSBs through the idea of k-folded N-product. Further, we obtain a necessary condition of a k-
FNSB to be a k-folded N-idempotent. We display the relation between k-folded N-intersection and
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k-folded N-product. In Section 5, we propose the idea of ζ̃-k-FNSBs in the structure of semigroups
and explore some related properties and characterizations of it. At last, the finding and some future
research directions of this study are offered in Section 6.

2. Preliminaries and basic definitions

This section collects some fundamental notations and definitions of semigroups, N-structures and
k-FNSs needed later. Throughout the current manuscript.

• We use the semigroup K as the domain of discourse (universe set).
• We use the symbols In, Ik

n and j ∈ k instead of [−1, 0], [−1, 0]k and j = 1, 2, ..., k, respectively.

2.1. Fundamentals on semigroups

Here, we present a subsimigroup of semigroups and homomorphisms semigroups.
A semigroup K is a non-empty set together with an associative binary operation. If T, S ⊆ K, then

the multiplication of T and S is defined as:

TS = {ts ∈ K | t ∈ T and s ∈ S }.

A non-empty subset T of K is a subsemigroup of K if TT ⊆ T. That is, t1t2 ∈ T,∀t1, t2 ∈ T.

Definition 2.1. A mapping Ψ : K → H of semigroups K and H is a homomorphism if Ψ(αβ) =
Ψ(α)Ψ(β) ∀α, β ∈ K.

2.2. Fundamentals on N-structures and k-polar fuzziness structures

Let F(K, In) be the collection of functions from K to In.An element of F(K, In) is said to be a negative
valued function (N-function on K) from K to In. An ordered pair (K,Λ) of K is anN-structure, and Λ
is an N-function over K.

Chen and co-workers [24] propounded the conceptualization of a k-polar fuzziness structure as
follows:

Definition 2.2. Let k be a finite number, where k ≥ 1. By a k-polar fuzziness structure over K , ϕ, we
mean a mapping Π̃ : K → [0, 1]k.

That is, Π̃(α) =
(
(q1 ◦ Π̃)(α), (q2 ◦ Π̃)(α), ..., (qk ◦ Π̃)(α)

)
, where (q j ◦ Π̃)(α) ∈ [0, 1] for j ∈ k and

α ∈ K.

Example 2.1. Let K = {u, y, z,w} be a set. Define Λ : K → In as

Λ(α) =


−0.5, if α = u;
−0.8, if α = y;
−0.9, if α = z;
−0.9, if α = w.

Then,

Λ = {⟨u,−0.5⟩, ⟨y,−0.8⟩, ⟨z,−0.9⟩, ⟨w,−0.9⟩}
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is an N-structure over K. Also, if we define Π̃ : K → [0, 1]3 as

Π̃(α) =


(0.3, 0.4, 0.5), if α = u;
(0.6, 0.7, 0.8), if α = y;
(0.6, 0.8, 0.9), if α = z;
(0.8, 0.9, 0.9), if α = w.

Then,

Π̃ = {⟨u, (0.3, 0.4, 0.5)⟩, ⟨y, (0.6, 0.7, 0.8)⟩, ⟨z, (0.6, 0.8, 0.9)⟩, ⟨w, (0.8, 0.9, 0.9)⟩}

is a 3-polar fuzziness structure over K.

3. Operational properties of k-FNSs

Here, we define and study some operational properties of k-FNSs, for instance, subset,
characteristic function, union, intersection, complement and product of k-FNSs, and provide them
by illustrative examples.

Gon Lee and co-workers [24] propounded the conceptualization of k-FNSs as follows:

Definition 3.1. Let K be a non-empty set. By a k-FNS over K, we mean a function Π̃ : K → Ik
n, where

k ∈ N a finite number. If α ∈ K, then

Π̃(α) =
(
(q1 ◦ Π̃)(α), (q2 ◦ Π̃)(α), ..., (qk ◦ Π̃)(α)

)
,

where q j : Ik
n → In is the j-th projection ∀ j ∈ k.

A k-FNS Π̃ may be expressed as the following notation:

Π̃ = {⟨α, (q j ◦ Π̃)(α)⟩ | α ∈ K} = {⟨α,
(
(q1 ◦ Π̃)(α), (q2 ◦ Π̃)(α), ..., (qk ◦ Π̃)(α)

)
⟩ | α ∈ K}.

Let ω̃ = (ω1, ω2, ..., ωk), ϖ̃ = (ϖ1, ϖ2, ..., ϖk) ∈ Ik
n, we describe the orders ≾ and ⋨ on Ik

n as follows:
∀ j ∈ k,

• ω̃ ≾ ϖ̃⇔ ω j ≤ ϖ j,

• ω̃ ⋨ ϖ̃⇔ ω j ≩ ϖ j.

Example 3.1. Let K = {u, y, z,w} be a set. Define Π̃ : K → Ik
n as

Π̃(α) =


(−0.7,−0.6,−0.5), if α = u;
(−0.4,−0.3,−0.2), if α = y;
(−0.4,−0.2,−0.1), if α = z;
(−0.2,−0.1,−0.1), if α = w.

Then,

Π̃ = {⟨u, (−0.7,−0.6,−0.5)⟩, ⟨y, (−0.4,−0.3,−0.2)⟩, ⟨z, (−0.4,−0.2,−0.1)⟩, ⟨w, (−0.2,−0.1,−0.1)⟩}

is a 3-FNS over K.
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Definition 3.2. Let Π̃ be k-FNS in K. Then,

V(Π̃, η̃) = {α ∈ K | Π̃(α) ≤ η̃},

where η̃ = (η1, η2, ..., ηk) ∈ Ik
n, that is,

V(Π̃, η̃) = {α ∈ K | (q j ◦ Π̃)(α) ≤ η j∀ j ∈ k}

is called a k-folded N-level structure of Π̃. It is clear that V(Π̃, η̃) =
⋂k

j=1 V(Π̃, η̃) j, where V(Π̃, η̃) j =

{α ∈ K | (q j ◦ Π̃)(α) ≤ η j}.

Definition 3.3. Let Π̃ and Υ̃ be two k-FNSs over K. If for all α ∈ K, Π̃(α) ≥ Υ̃(α), that is, (q j ◦ Π̃)(α) ≥
(q j ◦ Υ̃)(α), then Π̃ is a k-folded N-substructure of Υ̃ and written as Π̃ ⊆ Υ̃.We say Π̃ = Υ̃⇔ Π̃ ⊆ Υ̃
and Υ̃ ⊆ Π̃.

Definition 3.4. Let ϕ , T ⊆ K. Then, the k-folded N-characteristic function of T is a function
C̃T = {⟨α, (q j ◦ C̃T )(α) | α ∈ T ⟩} defined as:

(q j ◦ C̃T )(α) =
{
−̃1, if α ∈ T,
0̃, if α < T,

for any α ∈ T and j ∈ k.

Definition 3.5. Let Π̃ and Υ̃ be two k-FNSs in K. Then, their union and intersection, respectively, are
also a k-FNS in K, defined as, for all α ∈ K,

Π̃ ∪ Υ̃ = {⟨α, (q j ◦ (Π̃ ∪ Υ̃))(α)⟩ | α ∈ K},

and
Π̃ ∩ Υ̃ = {⟨α, (q j ◦ (Π̃ ∩ Υ̃))(α)⟩ | α ∈ K},

where (q j ◦ (Π̃ ∪ Υ̃))(α) = inf{(q j ◦ Π̃)(α), (q j ◦ Υ̃)(α)} =
(
((q1 ◦ Π̃) ∧ (q1 ◦ Υ̃))(α), ((q2 ◦ Π̃) ∧ (q2 ◦

Υ̃))(α), ..., ((qk ◦ Π̃) ∧ (qk ◦ Υ̃))
)
(α), and (q j ◦ (Π̃ ∩ Υ̃))(α) = sup{(q j ◦ Π̃)(α), (q j ◦ Υ̃)(α) =

(
((q1 ◦ Π̃) ∨

(q1 ◦ Υ̃))(α), ((q2 ◦ Π̃) ∨ (q2 ◦ Υ̃))(α), ..., ((qk ◦ Π̃) ∨ (qk ◦ Υ̃))
)
(α).

Example 3.2. Let K = {u, y, z,w}. Then,

Π̃ =
{
⟨u, (−0.8,−0.6,−0.4,−0.2)⟩, ⟨y, (−0.3,−0.5,−0.4,−0.1)⟩

⟨z, (−0.2,−0.4,−0.6,−0.8)⟩, ⟨w, (−0.3,−0.5,−0.7,−0.9)⟩
}
,

and

Υ̃ =
{
⟨u, (−0.7,−0.5,−0.3,−0.1)⟩, ⟨y, (−0.4,−0.3,−0.2,−0.1)⟩

⟨z, (−0.8,−0.4,−0.1, 0.0)⟩, ⟨w, (−0.1,−0.2,−0.3,−0.4)⟩
}
,

are 4-FNSs in K. The union of Π̃ and Υ̃ is

Π̃ ∪ Υ̃ =
{
⟨u, (−0.8,−0.6,−0.4,−0.2)⟩, ⟨y, (−0.4,−0.5,−0.4,−0.1)⟩
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⟨z, (−0.8,−0.4,−0.6,−0.8)⟩, ⟨w, (−0.3,−0.5,−0.7,−0.9)⟩
}
,

and the intersection of Π̃ and Υ̃ is

Π̃ ∩ Υ̃ =
{
⟨u, (−0.7,−0.5,−0.3,−0.1)⟩, ⟨y, (−0.3,−0.3,−0.2,−0.1)⟩

⟨z, (−0.2,−0.4,−0.1,−0.8)⟩, ⟨w, (−0.1,−0.2,−0.3,−0.4)⟩
}
.

Obviously, Π̃ ∪ Υ̃ and Π̃ ∩ Υ̃ are 4-FNSs in K.

Definition 3.6. The complement Π̃c = {⟨α,
(
(q1 ◦ Π̃)c(α), (q2 ◦ Π̃)c(α), ..., (qk ◦ Π̃)c(α)

)
⟩ | α ∈ K} of a

k-FNS Π̃ = {⟨α,
(
(q1 ◦ Π̃)(α), (q2 ◦ Π̃)(α), ..., (qk ◦ Π̃)(α)

)
⟩ | α ∈ K} is defined by:

Π̃c = {⟨α,
(
− 1 − (q1 ◦ Π̃(α),−1 − (q2 ◦ Π̃)(α), ...,−1 − (qk ◦ Π̃)(α)

)
⟩ | α ∈ K}.

Example 3.3. In Example 3.2. The complement of a 4-FNS Π̃ is

Π̃c = {⟨u, (−0.2,−0.4,−0.6,−0.8)⟩, ⟨y, (−0.7,−0.5,−0.6,−0.9)⟩
⟨z, (−0.8,−0.6,−0.4,−0.2)⟩, ⟨w, (−0.7,−0.5,−0.3,−0.1)⟩}.

Definition 3.7. Let Π̃ and Υ̃ be two k-FNSs over K. Then, the k-folded N- product of Π̃ and Υ̃ is
defined to be a k-FNS over K,

Π̃ ⊛ η̃ = {⟨α, (q j ◦ (Π̃ ⊛ η̃))(α)⟩ | α ∈ K, j ∈ k⟩},

where

(q j ◦ (Π̃ ⊛ Υ̃))(α) =


∧
α=βδ

{
sup{(q j ◦ Π̃)(β), (q j ◦ Υ̃)(δ)}

}
, if ∃β, δ ∈ K such that α = βδ,

0̃, otherwise .

Theorem 3.8. For any k-FNSs Π̃, Υ̃ and Θ̃ over K, we have

1) Π̃ ∪ (Υ̃ ∩ Θ̃) = (Π̃ ∪ Υ̃) ∩ (Π̃ ∪ Θ̃).

2) Π̃ ∩ (Υ̃ ∪ Θ̃) = (Π̃ ∩ Υ̃) ∪ (Π̃ ∩ Θ̃).

3) Π̃ ⊛ (Υ̃ ∪ Θ̃) = (Π̃ ⊛ Υ̃) ∪ (Π̃ ⊛ Θ̃).

4) Π̃ ⊛ (Υ̃ ∩ Θ̃) = (Π̃ ⊛ Υ̃) ∩ (Π̃ ⊛ Θ̃).

Proof. 1) and 2) are straightforward.
3) Let Π̃, Υ̃ and Θ̃ be any k-FNSs over K and let α ∈ K. If α , βδ, then,

(
(q j ◦ (Π̃⊛ (Υ̃∪ Θ̃))

)
(α) = 0̃ =(

(q j ◦ (Π̃ ⊛ Υ̃)) ∪ (q j ◦ (Π̃ ⊛ Θ̃))
)
(α) for j ∈ k. Therefore, Π̃ ⊛ (Υ̃ ∪ Θ̃) = (Π̃ ⊛ Υ̃) ∪ (Π̃ ⊛ Θ̃). Assume

that α = βδ for some β, δ ∈ K. Then,(
(q j ◦ (Π̃ ⊛ (Υ̃ ∪ Θ̃)))

)
(α)
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=
∧
α=βδ

{
sup{(q j ◦ Π̃)(β), (q j ◦ (Υ̃ ∪ Θ̃))(δ)}

}
=
∧
α=βδ

{
sup
{
(q j ◦ Π̃)(β), inf

{
(q j ◦ Υ̃)(δ), (q j ◦ Θ̃)(δ)

}}}
=
∧
α=βδ

{
sup inf

{
(q j ◦ Π̃)(β), (q j ◦ Υ̃)(δ)

}
, sup inf

{
(q j ◦ Π̃)(β), (q j ◦ Θ̃)(δ)

}}
=
∧
α=βδ

{
inf
{

sup
{
(q j ◦ Π̃)(β), (q j ◦ Υ̃)(δ)

}
, sup
{
(q j ◦ Π̃)(β), (q j ◦ Θ̃)(δ)

}}
= inf

{ ∧
α=βδ

{
sup
{
(q j ◦ Π̃)(β), (q j ◦ Υ̃)(δ)

}
, sup
{
(q j ◦ Π̃)(β), (q j ◦ Θ̃)(δ)

}}}
= inf

{
(q j ◦ (Π̃ ⊛ Υ̃))(α), (q j ◦ (Π̃ ⊛ Θ̃))(α)

}
= (Π̃ ⊛ Υ̃) ∪ (Π̃ ⊛ Θ̃).

4) Let Π̃, Υ̃ and Θ̃ be any k-FNSs over K and let α ∈ K. If α , βδ, then(
(q j ◦ (Π̃ ⊛ (Υ̃ ∩ Θ̃))

)
(α) = 0̃ =

(
(q j ◦ (Π̃ ⊛ Υ̃)) ∩ (q j ◦ (Π̃ ⊛ Θ̃))

)
(α)

for j ∈ k. Therefore, Π̃ ⊛ (Υ̃ ∩ Θ̃) = (Π̃ ⊛ Υ̃) ∩ (Π̃ ⊛ Θ̃). Assume that α , βδ for some β, δ ∈ K. Then,(
(q j ◦ (Π̃ ⊛ (Υ̃ ∩ Θ̃)))

)
(α)

=
∧
α=βδ

{
sup{(q j ◦ Π̃)(β), (q j ◦ (Υ̃ ∩ Θ̃))(δ)}

}
=
∧
α=βδ

{
sup
{
(q j ◦ Π̃)(β), sup

{
(q j ◦ Υ̃)(δ), (q j ◦ Θ̃)(δ)

}}}
=
∧
α=βδ

{
sup sup

{
(q j ◦ Π̃)(β), (q j ◦ Υ̃)(δ)

}
, sup sup

{
(q j ◦ Π̃)(β), (q j ◦ Θ̃)(δ)

}}
=
∧
α=βδ

{
sup
{

sup
{
(q j ◦ Π̃)(β), (q j ◦ Υ̃)(δ)

}
, sup
{
(q j ◦ Π̃)(β), (q j ◦ Θ̃)(δ)

}}
= sup

{ ∧
α=βδ

{
sup
{
(q j ◦ Π̃)(β), (q j ◦ Υ̃)(δ)

}
, sup
{
(q j ◦ Π̃)(β), (q j ◦ Θ̃)(δ)

}}}
= sup

{
(q j ◦ (Π̃ ⊛ Υ̃))(α), (q j ◦ (Π̃ ⊛ Θ̃))(α)

}
= (Π̃ ⊛ Υ̃) ∩ (Π̃ ⊛ Θ̃).

□

Theorem 3.9. If Π̃, Υ̃, Θ̃ and Λ̃ are k-FNSs over K, if Π̃ ⊆ Θ̃ and Υ̃ ⊆ Λ̃, then Π̃ ⊛ Υ̃ ⊆ Θ̃ ⊛ Λ̃.

Proof. Let α ∈ K. If α , βδ for β, δ ∈ K, then clearly Π̃ ⊛ Υ̃ ⊆ Θ̃ ⊛ Λ̃. Assume that α = βδ for some
β, δ ∈ K. Then, (

(q j ◦ (Π̃ ⊛ Υ̃))
)
(α) =

∧
α=βδ

{
sup{(q j ◦ Π̃)(β), (q j ◦ Υ̃)(δ)}

}
AIMS Mathematics Volume 8, Issue 9, 22081–22096.
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≥
∧
α=βδ

{
sup{(q j ◦ Θ̃)(β), (q j ◦ Λ̃)(δ)}

}
= (q j ◦ (Θ̃ ⊛ Λ̃))(α).

Therefore, Π̃ ⊛ Υ̃ ⊆ Θ̃ ⊛ Λ̃. □

Theorem 3.10. For any k-FNSs Π̃, Υ̃ and Θ̃ over K, if Π̃ ⊆ Υ̃, then Π̃⊛ Θ̃ ⊆ Υ̃⊛ Θ̃ and Θ̃⊛ Π̃ ⊆ Θ̃⊛ Υ̃.

Proof. Let α ∈ K. If α , βδ for β, δ ∈ K, then clearly Π̃ ⊛ Θ̃ ⊆ Υ̃ ⊛ Θ̃. Assume that α = βδ for some
β, δ ∈ K. Then, (

(q j ◦ (Π̃ ⊛ Θ̃))
)
(α) =

∧
α=βδ

{
sup{(q j ◦ Π̃)(β), (q j ◦ Θ̃)(δ)}

}
≥
∧
α=βδ

{
sup{(q j ◦ Υ̃)(β), (q j ◦ Θ̃)(δ)}

}
= (q j ◦ (Υ̃ ⊛ Θ̃))(α).

Therefore, Π̃ ⊛ Θ̃ ⊆ Υ̃ ⊛ Θ̃. Similarly, we can show that Θ̃ ⊛ Π̃ ⊆ Θ̃ ⊛ Υ̃. □

Theorem 3.11. For any non-empty subsets T and S of K, we have

1) C̃T ⊛ C̃S = C̃TS .

2) C̃T ∪ C̃S = C̃T∪S .

3) C̃T ∩ C̃S = C̃T∩S .

Proof. Let α ∈ K. If α ∈ TS , then (q j ◦ C̃T )(α) = −̃1 for j ∈ k and α = βδ for some β ∈ T and δ ∈ S .
Thus,

(
(q j ◦ (C̃T ⋇ C̃S ))

)
(α) =

∧
α=βδ

(
sup{(q j ◦ C̃T )(α), (q j ◦ C̃S )(β)}

)
≤ sup{(q j ◦ C̃T )(β), (q j ◦ C̃S )(δ)}
= (q j ◦ C̃TS )(α) = −̃1.

Therefore, C̃T ⊛ C̃S = C̃TS .

Assume that α < TS , then (q j ◦ C̃TS )(α) = 0̃ for j ∈ k. Let α, β ∈ K such that α = βδ, since if β < T
or δ < S . If β < T, then,(

(q j ◦ (C̃T ⋇ C̃S ))
)
(α) =

∧
α=βδ

(
sup (q j ◦ C̃T )(α), (q j ◦ C̃S )(β)

)
≤ sup{(q j ◦ C̃T )(β), (q j ◦ C̃S )(δ)}
= sup{̃0, (q j ◦ C̃S )(δ)}
= (q j ◦ C̃TS )(α) = 0̃.
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Similarly, if δ < S , then,(
(q j ◦ (C̃T ⋇ C̃S ))

)
(α) =

∧
α=βδ

(
sup{(q j ◦ C̃T )(α), (q j ◦ C̃S )(β)}

)
≤ sup{(q j ◦ C̃T )(β), (q j ◦ C̃S )(δ)}
= sup{(q j ◦ C̃T )(δ), 0̃}
= (q j ◦ C̃TS )(α) = 0̃.

In each case, we have
(
(q j◦(C̃T ⋇C̃S ))

)
(α) = (q j◦(C̃T ⋇C̃S ))(α) = 0̃. Therefore, C̃T ⊛C̃S = C̃TS . □

2) and 3) are straightforward, so the proof is omitted.

4. k-folded N-subsemigroups

Here, we apply the notion of a k-FNS to the subsemigroups of a semigroup and we will characterize
these subsemigroups in terms of k-FNSs.

Definition 4.1. A k-FNS Π̃ over K is a k-FNSB of K if the assertion (S1) is valid: ∀α, β ∈ K, where

(S 1) Π̃(αβ) ≤ sup{Π̃(α), Π̃(β)},

that is,
(q j ◦ Π̃)(αβ) ≤ sup{(q j ◦ Π̃)(α), (q j ◦ Π̃)(β)},

for each j ∈ k.

Theorem 4.2. A k-FNS Π̃ over K is a k-FNSB of K if and only if its non-empty k-folded N-level
structure V(Π̃, η̃) is a subsemigroup of K for all η̃ ∈ Ik

n.

Proof. Assume that Π̃ is a k-FNSB of K and V(Π̃, η̃) , ϕ for all η̃ ∈ Ik
n. Let α, β ∈ V(Π̃, η̃). Then,

(q j ◦ Π̃)(α) ≤ η̃ j and (q j ◦ Π̃)(β) ≤ η̃ j, for all j ∈ k. It follows that

(q j ◦ Π̃)(αβ) ≤ sup{(q j ◦ Π̃)(α), (q j ◦ Π̃)(β)} ≤ η̃ j

for j ∈ k. Hence, αβ ∈
⋂k

j=1 V(Π̃, η̃) j = V(Π̃, η̃). Therefore, V(Π̃, η̃) is a subsemigroup of K.
Conversely, let Π̃ be a k-FNS over K such that its non-empty k-folded N-level structure V(Π̃, η̃) is

a subsemigroup of K for all η̃ ∈ Ik
n. Assume that assertion (S1) is not valid, i.e., ∃α, β ∈ K such that

Π̃(αβ) > sup{Π̃(α), Π̃(β)}. Then,

(q j ◦ Π̃)(αβ) > sup{(q j ◦ Π̃)(α), (q j ◦ Π̃)(β)},

for j ∈ k. If we take
ζ j = sup{(q j ◦ Π̃)(α), (q j ◦ Π̃)(β)},

for j ∈ k, then α ∈ V(Π̃, ζ̃) j and β ∈ V(Π̃, ζ̃) j. Since V(Π̃, ζ̃) j is a subsemigroup of K for j ∈ k, it
follows that αβ ∈ V(Π̃, ζ̃) j and (q j ◦ Π̃)(αβ) ≤ ζ j. This is a contradiction and thus Π̃ is a k-FNSB of
K. □
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Theorem 4.3. The intersection of two k-FNSBs is also a k-FNSB.

Proof. Let Π̃ and Υ̃ be k-FNSBs of K. ∀α, β ∈ K and j ∈ k, we have(
(q j ◦ Π̃) ∩ (q j ◦ Υ̃)

)
(αβ)

= sup
{
(q j ◦ Π̃)(αβ), (q j ◦ Π̃)(αβ)

}
≤ sup

{
sup
{
(q j ◦ Π̃)(α), (q j ◦ Π̃)(β)

}
, sup
{
(q j ◦ Υ̃)(α), (q j ◦ Υ̃)(β)

}}
= sup

{
sup
{
(q j ◦ Π̃)(α), (q j ◦ Υ̃)(α)

}
, sup
{
(q j ◦ Π̃)(β), (q j ◦ Υ̃)(β)

}}
= sup

{(
(q j ◦ Π̃) ∩ (q j ◦ Υ̃)

)
(α),
(
(q j ◦ Π̃) ∩ (q j ◦ Υ̃)

)
(β)
}
.

Hence, Π̃ ∩ Υ̃ is a k-FNSB of K. □

Corollary 4.4. If {Π̃i | i ∈ N} = {(q j ◦ Π̃)i | i ∈ N} is a family of k-FNSBs of K, then so
⋂

i∈N(q j ◦ Π̃)i

for j ∈ k.

Theorem 4.5. A k-FNSs over K is a k-FNSB⇔ Π̃ ⊛ Π̃ ⊆ Π̃.

Proof. Suppose Π̃ is a k-FNSB of K and let α ∈ K. Consider that α is not an element in K, then
(q j ◦ (Π̃ ⊛ Π̃))(α) = (0, 0, ..., 0) = (q j ◦ Π̃)(α) for j ∈ k. Hence, Π̃ ⊛ Π̃ ⊆ Π̃. Otherwise, there exist
β, δ ∈ K such that α = βδ. Then,

((q j ◦ (Π̃ ⊛ Π̃)(α) =
∧
α=βδ

{
sup{(q j ◦ Π̃)(β), (q j ◦ Π̃)(δ)}

}
≥
∧
α=βδ

(q j ◦ Π̃)(βδ)

= (q j ◦ Π̃)(α),

for j ∈ k. Thus, Π̃ ⊛ Π̃ ⊆ Π̃.
Conversely, let Π̃ be a k-FNS over K such that Π̃ ⊛ Π̃ ⊆ Π̃. Let α, β ∈ K and δ = αβ. Then,

(q j ◦ Π̃)(αβ) = (q j ◦ Π̃)(δ)
≤ (q j ◦ (Π̃ ⊛ Π̃))(δ)

=
∧
α=βδ

{
sup{(q j ◦ Π̃)(α), (q j ◦ Π̃)(β)}

}
≤ sup{(q j ◦ Π̃)(α), (q j ◦ Π̃)(β)},

for j ∈ k. Thus, Π̃ is a k-FNSB of K. □

Theorem 4.6. Let K be a semigroups with identity e and let Π̃ be a k-FNS over K such that Π̃(e) ≤
Π̃(α)∀α ∈ K, that is, (q j ◦ Π̃)(e) ≤ (q j ◦ Π̃)(α) ∀α ∈ K, j ∈ k. If Π̃ is a k-FNSB of K, then Π̃ is a
k-folded N-idempotent, i.e., Π̃ ⊛ Π̃ = Π̃.

Proof. For every α ∈ K, we get

(q j ◦ (Π̃ ⊛ Π̃))(α) =
∧
α=βδ

{
sup{(q j ◦ Π̃)(β), (q j ◦ Π̃)(δ)}

}
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≤ sup{(q j ◦ Π̃)(α), (q j ◦ Π̃)(e)}
= (q j ◦ Π̃)(α),

for j ∈ k. Thus, Π̃ ⊆ Π̃⊛ Π̃. Since Π̃⊛ Π̃ ⊆ Π̃ by Theorem 4.5, we have Π̃⊛ Π̃ = Π̃, i.e., Π̃ is a k-folded
N-idempotent. □

Let Ψ : K → H be a function of sets. If Π̃H = {⟨β, (q j ◦ Π̃H)(β)⟩ | β ∈ H} is a k-FNS of H, then
the preimage of Π̃H under Ψ is defined to be a k-FNS Ψ−1(Π̃H) =

{
⟨α,Ψ−1(q j ◦ Π̃H)(α)⟩ | α ∈ K

}
of K,

where Ψ−1(q j ◦ Π̃H)(α) = (q j ◦ Π̃H)(Ψ(α)) for all α ∈ K.

Theorem 4.7. Let Ψ : K → H be a homomorphism of semigroups. If Π̃H is a k-FNSB of H, then
Ψ−1(Π̃H) is a k-FNSB of K.

Proof. Let α, β ∈ K. For any j ∈ k, we get

Ψ−1(q j ◦ Π̃H)(αβ) = (q j ◦ Π̃H)(Ψ(αβ))
= (q j ◦ Π̃H)(Ψ(α)Ψ(β))
≤ sup{(q j ◦ Π̃H)(Ψ(α)), (q j ◦ Π̃H)(Ψ(β))}
= sup{Ψ−1(q j ◦ Π̃H)(α),Ψ−1(q j ◦ Π̃H)(β)}.

Hence, Ψ−1(Π̃H) is a k-FNSB of K. □

Let Ψ : K → H be a function of sets. If Π̃K = {⟨α, (q j ◦ Π̃K)(α)⟩ | α ∈ K} is a k-FNS of K, then
the image of Π̃K under Ψ is defined to be a k-FNS Ψ(Π̃K) =

{
⟨β,Ψ(q j ◦ Π̃H)(β)⟩ | β ∈ H

}
of H, where

Ψ(q j ◦ Π̃K)(β) =
∧
α∈Ψ−1(β)

{
(q j ◦ Π̃K)(α) for all j ∈ k.

Theorem 4.8. Let Ψ : K → H be an onto homomorphism of semigroups and let Π̃K be a k-FNSB of
K such that (

∀Z ⊆ K
)(
∃α◦
)(

(q j ◦ Π̃K)(α◦) =
∧
z∈Z

(q j ◦ Π̃K)(z)
)
. (4.1)

If Π̃K is a k-FNSB of K, then Ψ(Π̃K) is a k-FNSB of H.

Proof. Let r, s ∈ H. Then, Ψ−1(r) , ϕ and Ψ−1(s) , ϕ in K, so from (4.1) ∃αr ∈ Ψ
−1(r) and αs ∈ Ψ

−1(s)
such that

(q j ◦ Π̃K)(αr) =
∧

z∈Ψ−1(r)

(q j ◦ Π̃K)(z),

and
(q j ◦ Π̃K)(αs) =

∧
w∈Ψ−1(s)

(q j ◦ Π̃K)(w).

Thus,

Ψ(q j ◦ Π̃K)(rs) =
∧

α∈Ψ−1(rs)

(q j ◦ Π̃K)(α)

≤ sup{(q j ◦ Π̃K)(αr), (q j ◦ Π̃K)(βs)}
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= sup
{ ∧

z∈Ψ−1(r)

(q j ◦ Π̃K)(z),
∧

w∈Ψ−1(s)

(q j ◦ Π̃K)(w)
}

= sup
{
Ψ(q j ◦ Π̃K)(r),Ψ(q j ◦ Π̃K)(s)

}
.

Hence, Ψ(Π̃K) is a k-FNSB of H. □

5. ζ̃-k-folded N-subsemigroups

Here, we present the concept of ζ̃-k-FNSBs and consider several results related to this concept.

Definition 5.1. A k-FNS over a universe K is a ζ̃-k-FNSB of K if the following assertion is valid: ∀
α, β ∈ K,

(S 2) Π̃(αβ) ≤ sup{Π̃(α), Π̃(β), ζ̃},

that is,
(q j ◦ Π̃)(αβ) ≤ sup{(q j ◦ Π̃)(α), (q j ◦ Π̃)(β), ζ j},

for j ∈ k and ζ̃ ∈ Ik
n.

Example 5.1. Let K be a semigroup of four elements {e, y, z,w} with the following multiplication table:

. e y z w
e e e e e
y e y e y
z e e z z
w e y z w

Let Π̃ be a 3-FNS over K which is given as:

Υ̃ =
{
⟨e, (−0.40,−0.25,−0.25)⟩, ⟨y, (−0.30,−0.25,−0.25)⟩,

⟨z, (−0.20,−0.20,−0.20)⟩, ⟨d, (−0.10,−0.10,−0.10)⟩
}
.

Then, Π̃ is a ζ̃-3-FNSBs over K with ζ̃ = (−0.40,−0.30,−0.30).

Theorem 5.2. Let Π̃ be a ζ̃-k-FNSB of K. If Π̃(α) ≥ ζ̃, that is, (q j ◦ (q j ◦ Π̃)(α) ≥ ζ j for all α ∈ K and
j ∈ k, then Π̃ is a k-FNSB over K.

Proof. Straightforward. □

Theorem 5.3. A k-FNS over K is a ζ̃-k-FNSB of K if and only if its non-empty k-folded N-level
structure V(Π̃, η̃) is a subsemigroup of K, for all η̃, ζ̃ ∈ Ik

n, whenever η̃ ≥ ζ̃, i.e., η j ≥ ζ j for j ∈ k.

Proof. Assume that Π̃ is a ζ̃-k-FNSB over K and V(Π̃, η̃) , ϕ for all η̃ ∈ Ik
n. Let α, β ∈ V(Π̃, η̃). Then,

(q j ◦ Π̃)(α) ≤ η̃ j and (q j ◦ Π̃)(β) ≤ η̃ j for all j ∈ k. Then,

q j ◦ Π̃(αβ) ≤ sup{q j ◦ Π̃(α), q j ◦ Π̃(β), ζ j} ≤ sup{η j, ζ j} = η j,

for all j ∈ k. Hence, αβ ∈
⋂k

j=1 V(Π̃, η̃) j = V(Π̃, η̃). Therefore, V(Π̃, η̃) is a subsemigroup of K.
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Conversely, let Π̃ be k-FNS over K such that its non-empty k-folded N-level structure V(Π̃, η̃) is
a subsemigroup of K for all η̃ ∈ Ik

n. Assume that assertion (S2) is not valid, i.e., ∃α, β ∈ K such that
Π̃(αβ) > sup{Π̃(α), Π̃(β), ζ̃}. Then,

q j ◦ Π̃(αβ) > sup{q j ◦ Π̃(α), q j ◦ Π̃(β), ζ j},

for j ∈ k. If we take
ϑ j = sup{q j ◦ Π̃(α), q j ◦ Π̃(β), ζ j},

for j ∈ k, then α ∈ V(Π̃, ϑ̃) j, β ∈ V(Π̃, ϑ̃) j and ϑ j ≥ ζ j. Since V(Π̃, ϑ̃) j is a subsemigroup of K for j ∈ k,
it follows that αβ ∈ V(Π̃, ϑ̃) j. Hence, q j ◦ Π̃(αβ) ≤ ϑ j. This is a contradiction and thus Π̃ is a ζ̃-k-FNSB
of K. □

Theorem 5.4. If Π̃ and Υ̃ are an ζ̃-k-FNSB and an ϱ̃-k-FNSB, respectively, of K for any ζ̃, ϱ̃ ∈ Ik
n,

then their intersection is an ϖ̃-k-FNSB of K for ϖ̃ = sup{̃ζ, ϱ̃}.

Proof. For every α, β ∈ K and j ∈ k, we have(
(q j ◦ Π̃) ∩ (q j ◦ Υ̃)

)
(αβ)

= sup
{
(q j ◦ Π̃)(αβ), (q j ◦ Π̃)(αβ)}

≤ sup
{

sup
{
(q j ◦ Π̃)(α), (q j ◦ Π̃)(β), ζ j

}
, sup
{
(q j ◦ Υ̃)(α), (q j ◦ Υ̃)(β), ϱ j

}}
≤ sup

{
sup
{
(q j ◦ Π̃)(α), (q j ◦ Π̃)(β), ϖ j

}
, sup
{
(q j ◦ Υ̃)(α), (q j ◦ Υ̃)(β), ϖ j

}}
= sup

{
sup
{
(q j ◦ Π̃)(α), (q j ◦ Υ̃)(α), ϖ j

}
, sup
{
(q j ◦ Π̃)(β), (q j ◦ Υ̃)(β), ϖ j

}}
= sup

{
sup
{
(q j ◦ Π̃)(α), (q j ◦ Υ̃)(α)

}
, sup
{
(q j ◦ Π̃)(β), (q j ◦ Υ̃)(β)

}
, ϖ j

}
.

Hence, Π̃ ∩ Υ̃ is a ζ̃-k-FNSB of K. □

Theorem 5.5. Let Π̃ be an ζ̃- k-FNSB of K. If ϖ̃ =
∨
α∈K

{
Π̃(α)
}
, i.e., ϖ j =

∨
α∈K

{
(q j ◦ Π̃)(α), for j ∈ k

}
,

then the set ∆ = {α ∈ K | Π̃(α) ≤ sup{ϖ̃, ζ̃}, that is, ∆ = {α ∈ K | (q j ◦ Π̃)(α) ≤ sup{ϖ j, ζ j} for j ∈ k} is
a subsemigroup of K.

Proof. Let α, β ∈ ∆∀α, β ∈ K. Then, for j ∈ k

(q j ◦ Π̃)(α) ≤ sup
{
ϖ j, ζ j

}
= sup

{∨
α∈K

{
(q j ◦ Π̃)(α)

}
, ζ j

}
,

and

(q j ◦ Π̃)(β) ≤ sup
{
ϖ j, ζ j

}
= sup

{∨
α∈K

{
(q j ◦ Π̃)(β)

}
, ζ j

}
.

Thus,

(q j ◦ Π̃)(αβ) ≤ sup
{
(q j ◦ Π̃)(α), (q j ◦ Π̃)(β), ζ j

}
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≤ sup
{

sup
{
ϖ j, ζ j

}
, sup
{
ϖ j, ζ j

}
, ζ j

}
= sup

{
ϖ j, ζ j

}
.

So αβ ∈ ∆. Hence, ∆ is a subsemigroup of K. □

For a map Ψ : K → H of semigroups and k-FNS Π̃ = {⟨α, (q j ◦ Π̃)(α)⟩ | α ∈ K} of H. Define a new
k-FNS Π̃ζ̃ = {⟨α, (q j ◦ Π̃)ζ̃(α)⟩ | α ∈ K} of K such that (q j ◦ Π̃)ζ̃(α) = sup{(q j ◦ Π̃)(Ψ(α)), ζ j}, where
(q j ◦ Π̃)ζ̃ : K → Ik

n and j ∈ k.

Theorem 5.6. Let Ψ : K → H be a homomorphism of semigroups. If a k-FNS Π̃ of H is a ζ̃-k-FNSB
of H, then Π̃ζ̃ is a ζ̃-k-FNSB of K.

Proof. Let α, β ∈ K and j = 1, 2, ..., k. Then,

(q j ◦ Π̃)ζ̃(αβ) = sup{(q j ◦ Π̃)(Ψ(αβ)), ζ j}

= sup{(q j ◦ Π̃)(Ψ(α)Ψ(β)), ζ j}

≤ sup
{

sup{(q j ◦ Π̃)(Ψ(α)), (q j ◦ Π̃)(Ψ(β))}, ζ j

}
= sup

{
sup{(q j ◦ Π̃)(Ψ(α)), ζ j}, sup{(q j ◦ Π̃)(Ψ(β)), ζ j}, ζ j

}
= sup{(q j ◦ Π̃)ζ̃(Ψ(α), (q j ◦ Π̃)ζ̃(Ψ(β), ζ j}.

Thus, Π̃ζ̃ is a ζ̃-k-FNSB of K. □

6. Conclusions

The idea of k-FNS being a new framework containing the negative data may be utilized to explain
and solve real-life challenges more easily like the multi polarity fuzziness structures andN-structures.
In this research, we studied some algebraic properties of k-FNSs, such as subset, characteristic
function, union, intersection, complement and product of k-FNSs, and supported them by illustrative
examples. We also originated k-FNSBs and ζ̃-k-FNSBs in the structure of semigroups and probed
some attributes and characteristics of these concepts. Based on k-folded N-product, we discussed
some characterizations of k-FNSBs. Further, we obtained a necessary condition of a k-FNSB to be
a k-folded N-idempotent. Finally, we displayed the relations between k-folded N-intersection and
k-folded N-product, and studied how the image and inverse image of a k-FNSB become a k-FNSB.
In our future study, we are planning to build some additional theories on this structure. We will apply
this principle to characterize some algebraic structures by their left and right ideals. Moreover, for the
applications of k-FNS, we will apply this platform to real-world issues and attempt to demonstrate
these issues in greater detail.
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