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1. Introduction

The Banach contraction principle plays the fundamental role in the development of metric fixed
point theory since this theory is integrated with the Banach contraction principle due to S. Banach [8]
in the year 1922. This principle confirms that a mapping T defined on a metric space (S , d) into itself
admits a unique fixed point, i.e., there is a exactly one s ∈ S such that T s = s provided that

d(T s,Tt) ≤ c d(s, t) (1.1)

for all s, t ∈ S with 0 ≤ c < 1, and the metric space (S , d) is complete.
A self-mapping T satisfying (1.1) is known as a Banach contraction mapping. After this

fundamental result, metric fixed point theory has become a research field of extensive interest in the
literature. Consequently, this theory has encouraged a number of renowned mathematicians to
contribute to it. As a result, we have witnessed a large number of fixed point results. Some
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remarkable results of these are due to Kannan [22], Chatterjea [14], Reich [30], Ćirić [15, 16],
Bianchini [13], Khan [23] etc. (see [31] for more contractions of this type). For some recent items in
this field of study, one can consult [17].

On the other hand, fixed point theory is also attractive for its vast applications in different fields
of mathematics and engineering. This theory is an indispensable tool for obtaining existence and/or
uniqueness criteria of solutions of several types of differential equations, integral equations, matrix
equations etc. Also, this theory has wide applications in nonlinear optimization problems, variational
inequality problems, split feasibility problems, equilibrium problems etc. (for example see [3,5,20,21]
and references therein).

If we go through all the aforementioned results and also some other related results, we can notice
one similarity among the results. The similarity is that all the results deal with the affirmation of a
unique fixed point of a self-mapping if the space under consideration is complete. This similarity
compels us to think about the affirmation of fixed points of self-mappings if the space under
consideration is not necessarily complete. It can be shown easily that if the underlying space is
incomplete, then a self-map may not have a fixed point. In these circumstances, a question arises
about what modifications can be made to guarantee that a self-map on an incomplete metric space
admits a fixed point. It was Maia [24] who came up with a positive answer to this question in 1968.
The author obtained the following interesting modification to the Banach contraction principle:

Theorem 1.1. Let S be a non-empty set endowed with two metrics d1 and d2. Let

d1(s, t) ≤ d2(s, t)

for all s, t ∈ S and let T be a self-map on S . Suppose that

(i) the metric space (S , d1) is complete;
(ii) T is continuous with respect to d1;

(iii) T is a contraction mapping with respect to d2, i.e.,

d2(T s,Tt) ≤ k d2(s, t)

for all s, t ∈ S with 0 ≤ k < 1. Then T has a unique fixed point.

After such an interesting result by Maia, many authors have generalized this result in a variety of
ways. Most of them were constituted by changing the contraction condition, see for example Albu [2],
Ansari et al. [4], Balazs [6,7], Sadiq Basha [9], Berinde [10], Dhage [18], Dhage and Dhobale [19], V.
Mureşan [26], A.S. Mureşan [27, 28], Pathak and Dubey [29], Rus [32, 33], Rzepecki [34, 35], Shukla
and Radenović [36], Trif [37]. As a result, we received several well-known contractions with Maia type
modifications. However, in order to earn all such modifications, the authors have to compose separate
results for every contraction which is very laborious. Thus, it becomes legitimate to think about some
contractions whose Maia type modifications will award us most of the aforementioned modifications
without formulating separate results for every contraction. These facts motivate us to introduce A-
contraction and A′-contraction using two different implicit classes of functions and obtain the Maia
type modifications of these two contractions. With the help of these contractions and their Maia type
results, we obtain the Maia type results of many well-known contractions as special cases. After that,
we come up with some non-trivial examples to endorse our established results. Furthermore, we study
some extensions of Maia type theorems for enriched contractions using implicit relations. Finally, we
conclude the paper with an application of one of our established results.
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2. Maia type results ofA-contractions andA′-contractions

Throughout the paper, R+ refers to the set of all non-negative real numbers. For any two non-empty
sets U and V , let us denote by VU the collection of all mappings f : U → V . We use the notation
Fix(T ) to denote the set of all fixed points of a mapping T and N0 to denote the set N ∪ {0}.

Before going to establish our main results, we now introduce A-contraction and A′-contraction,
first one is very similar to Akram et al. [1].

Let us first define two subsets A and A′ of RR
3
+ . Let A be the collection of all mappings f ∈ RR

3
+

satisfying the following conditions:

(A1) there exists a real number µ with 0 ≤ µ < 1 such that if u ≤ f (v, u, v) or u ≤ f (u, v, v), then u ≤ µv
for all u, v ∈ R+;

(A2) for k > 0 and for all u, v ∈ R+, k f (u, v,w) ≤ f (ku, kv, kw).

LetA′ be the collection of all mappings f ∈ RR
3
+ satisfying the following conditions:

(A′1) there exists a real number µ with 0 ≤ µ < 1 such that if u ≤ f (v, 0, u + v), then u ≤ µv for all
u, v ∈ R+;

(A′2) if w ≤ w1, then f (u, v,w) ≤ f (u, v,w1);
(A′3) if u ≤ f (u, u, u), then u = 0.

As for example, the classA includes the following mappings:

(i) f (u, v,w) = α(v + w), where 0 ≤ α < 1
2 ;

(ii) f (u, v,w) = αmax{v,w}, where 0 ≤ α < 1;
(iii) f (u, v,w) = αmax{u, v,w}, where 0 ≤ α < 1;
(iv) f (u, v,w) = α1u + α2v + α3w, where 0 ≤ α1, α2, α3 < 1 and α1 + α2 + α3 < 1.

The following list includes some examples of mappings from the classA′:

(i) f (u, v,w) = α(v + w), where 0 ≤ α < 1
2 ;

(ii) f (u, v,w) = α(u + v + w), where 0 ≤ α < 1
3 ;

(iii) f (u, v,w) = αmax{v,w}, where 0 ≤ α < 1.

Both of the aforementioned lists are not all-inclusive.
We are now in a position to introduceA-contraction andA′-contraction.

Definition 2.1. Let (S , d) be a metric space and let T ∈ S S . Then T is said to be anA-contraction (with
respect to d) if there exists f ∈ A such that

d(T s,Tt) ≤ f (d(s, t), d(s,T s), d(t,Tt)) (2.1)

for all s, t ∈ S .

Definition 2.2. Let (S , d) be a metric space and let T ∈ S S . Then T is said to be an
A′-contraction (with respect to d) if there exists f ∈ A′ such that

d(T s,Tt) ≤ f (d(s, t), d(s,Tt), d(t,T s)) (2.2)

for all s, t ∈ S .
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Now we put in place our first result.

Theorem 2.1. Let S be a non-empty set endowed with two metrics d1 and d2 satisfying

d1(s, t) ≤ d2(s, t) (2.3)

for all s, t ∈ S and let T ∈ S S . Suppose that

(i) (S , d1) is complete;
(ii) T is continuous with respect to d1;

(iii) T is anA-contraction with respect to d2.

Then

(a) T is a Picard operator.
(b) There exists a real number µ with 0 ≤ µ < 1 such that

d1(sn, s) ≤
µn

1 − µ
d2(s1, s0)

and
d1(sn, s) ≤

µ

1 − µ
d2(sn, sn−1)

hold for all n ∈ N, where {sn} is a Picard sequence based at the point so ∈ S .

Proof. Let s0 ∈ S be arbitrary. For all n ∈ N0, we define sn+1 = T sn.
If sn+1 = sn for some n, then T sn = sn and therefore sn ∈ Fix(T ). So, we suppose that sn+1 , sn for

all n ∈ N0. Now

d2(sn+2, sn+1) = d2(T sn+1,T sn)
≤ f (d2(sn+1, sn), d2(sn+1, sn+2), d2(sn, sn+1)).

Then there exists a real number µ with 0 ≤ µ < 1 such that

d2(sn+2, sn+1) ≤ µd2(sn+1, sn)

for all n ∈ N0. Therefore,
d2(sn+1, sn) ≤ µd2(sn, sn−1). (2.4)

Continuing this process, we get
d2(sn+2, sn+1) ≤ µn+1d2(s1, s0)

for all n ∈ N0.
Now for all m, n ∈ N0, we have

d2(sm+n, sn) ≤ d2(sm+n, sm+n−1) + d2(sm+n−1, sm+n−2) + · · · + d2(sn+1, sn)
≤ (µm+n−1 + µm+n−2 + · · · + µn)d2(s1, s0)

= µn 1 − µm

1 − µ
d2(s1, s0).

(2.5)
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This implies that
d2(sm+n, sn)→ 0

as m, n → +∞ which indicates the Cauchyness of the sequence {sn} in (S , d2). Cauchyness of the
sequence {sn} in (S , d1) follows from the fact that

d1(sm+n, sn) ≤ d2(sm+n, sn)

for all m, n ∈ N0. Now, completeness of (S , d1) produces an element s ∈ S such that

sn → s as n→ +∞. (2.6)

Since sn+1 = T sn, applying continuity of T in the metric space (S , d1) we get s = T s which, in turn,
implies that s ∈ Fix(T ). To prove the uniqueness of s, let us take s′ ∈ Fix(T ) i.e., T s′ = s′. Then

d2(s, s′) = d2(T s,T s′)
≤ f (d2(s, s′), d2(s,T s), d2(s′,T s′))
= f (d2(s, s′), 0, 0)

which implies that d2(s, s′) = 0. Hence s = s′ and the uniqueness is confirmed.
Now, from (2.3) and (2.5), it follows that

d1(sm+n, sn) ≤ µn 1 − µm

1 − µ
d2(s1, s0).

Taking limit as m→ +∞, we see that

d1(sn, s) ≤
µn

1 − µ
d2(s1, s0).

Again, from (2.3) and (2.4), we find that

d1(sn+1, sn) ≤ d2(sn+1, sn) ≤ µd2(sn, sn−1)

which implies that

d1(sn+m, sn) ≤ d2(sn+m, sn)
≤ d2(sn+m, sn+m−1) + d2(sn+m−1, sn+m−2) + · · · + d2(sn+1, sn)
≤ (µm + µm−1 + · · · + µ)d2(sn, sn−1)

= µ
1 − µm

1 − µ
d2(sn, sn−1).

Taking limit as m→ +∞, we get

d1(sn, s) ≤
µ

1 − µ
d2(sn, sn−1).
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Next, we establish the analogous version of the above result in case ofA′-contraction.

Theorem 2.2. Let S be a non-empty set endowed with two metrics d1 and d2 satisfying

d1(s, t) ≤ d2(s, t) (2.7)

for all s, t ∈ S and let T ∈ S S . Suppose that

(i) (S , d1) is complete;
(ii) T is continuous with respect to d1;

(iii) T is anA′-contraction with respect to d2.

Then

(a) T is a Picard operator.
(b) There exists a real number µ with 0 ≤ µ < 1 such that

d1(sn, s) ≤
µn

1 − µ
d2(s1, s0)

and
d1(sn, s) ≤

µ

1 − µ
d2(sn, sn−1)

hold for all n ∈ N, where {sn} is a Picard sequence based at the point so ∈ S .

Proof. Let s0 ∈ S be arbitrary. Now, for all n ∈ N0, we define sn+1 = T sn.
If sn+1 = sn for some n, then T sn = sn and therefore sn ∈ Fix(T ).
Let us now suppose that sn+1 , sn for all n ∈ N0. Now

d2(sn+2, sn+1) = d2(T sn+1,T sn)
≤ f (d2(sn+1, sn), d2(sn+1, sn+1), d2(sn, sn+2))
≤ f (d2(sn, sn+1), 0, d2(sn, sn+1) + d2(sn+1, sn+2)).

Then there exists a real number µ with 0 ≤ µ < 1 such that

d2(sn+2, sn+1) ≤ µd2(sn+1, sn)

for all n ∈ N0.
Now, proceeding similarly as in the above theorem, we can draw a conclusion to the Cauchyness of

the sequence {sn} in (S , d2). Cauchyness of the sequence {sn} in (S , d1) can be obtained from

d1(sm+n, sn) ≤ d2(sm+n, sn).

Using completeness of (S , d1), we find an element s ∈ S such that

sn → s as n→ +∞. (2.8)

Using sn+1 = T sn and continuity of T in the metric space (S , d1), we see that s = T s which shows
that s ∈ Fix(T ).
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To prove the uniqueness of s, let us take s′ ∈ Fix(T ) i.e., T s′ = s′. Then

d2(s, s′) = d2(T s,T s′)
≤ f (d2(s, s′), d2(s,T s′), d2(s′,T s))
= f (d2(s, s′), d2(s, s′), d2(s, s′)),

which implies that d2(s, s′) = 0. Hence s = s′ and the uniqueness is established.
The remaining parts follow from the same arguments as in the above theorem.

Below, we present a couple of examples in support of our proven results. The following one is in
support of Theorem 2.1.

Example 2.1. Let S = N0. Define d1, d2 : S × S → [0,+∞) as follows:
For m, n ∈ S ,

d1(m, n) =


0 if m = n,∣∣∣ 1
m2 −

1
n2

∣∣∣ if m , n , 0,
1
n2 if n , 0,m = 0,
1

m2 if m , 0, n = 0,

and

d2(m, n) =


0 if m = n,∣∣∣ 1
m −

1
n

∣∣∣ if m , n , 0,
1 if one of m, n is zero and the other is non-zero.

Then it is easy to verify that the metric space (S , d1) is complete whereas the metric space (S , d2) is
incomplete. It is also to be noted that

d1(m, n) ≤ d2(m, n)

for all m, n ∈ S .
Let us now define T ∈ S S by T s = 0 for all s ∈ S . Let us choose f ∈ Awhere f (u, v,w) = 1

4 (u+v+w)
for all u, v,w ∈ R+. Then it is an easy task to conclude that T is an A-contraction with respect to d2.
It is also to be noted that T is continuous with respect to the metric d1. Thus all the assumptions of the
Theorem 2.1 are met and as a result T admits a unique fixed point say, s = 0 i.e., Fix(T ) = {0}.

We now present the following example to support Theorem 2.2:

Example 2.2. Let S = {(s, t) ∈ R2 : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1}. Define following mappings on S :
For s = (s1, t1), t = (s2, t2) ∈ S ,

d1(s, t) = |s1 − s2| + |t1 − t2|,

and

d2(s, t) =
{

2 if exactly one of s, t is (0, 0),
|s1 − s2| + |t1 − t2| otherwise.

Then d1 and d2 define two metrics on S such that (S , d1) is complete whereas (S , d2) is incomplete and
also

d1(s, t) ≤ d2(s, t)

for all s, t ∈ S .
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We now define a map T ∈ S S as follows:

T (s1, t1) =
(

s1 + 1
2
,

1
2

)
for all (s1, t1) ∈ S . Let us choose f ∈ A′ given by f (u, v,w) = 4

5 max{u, v} for all u, v,w ∈ R+.
Let s = (s1, t1), t = (s2, t2) ∈ S be arbitrary. Now, let’s look at the following cases:

Case-1. Let us now assume that s, t are non-zero. i.e., s, t , (0, 0). Then

d2(T s,Tt) = d2

((
s1 + 1

2
,

1
2

)
,

(
s2 + 1

2
,

1
2

))
=

1
2
|s1 − s2|

≤
4
5

(|s1 − s2| + |t1 − t2|)

=
4
5

d2(s, t)

≤ f (d2(s, t), d2(s,Tt), d2(t,T s)).

Case-2. In this case, let s = (0, 0) and t , (0, 0). Then

d2(T s,Tt) = d2

((
1
2
,

1
2

)
,

(
s2 + 1

2
,

1
2

))
=

1
2

s2

≤
8
5

=
4
5

d2(s, t)

≤ f (d2(s, t), d2(s,Tt), d2(t,T s)).

Thus, in both the cases we find that

d2(T s,Tt) ≤ f (d2(s, t), d2(s,Tt), d2(t,T s))

for every s, t in S , i.e., T is an A′-contraction with respect to d2. Also T is continuous with respect
to the metric d1. Hence all the assumptions of Theorem 2.2 are met and so we conclude that there is
exactly one element s ∈ S such that T s = s say, s =

(
1, 1

2

)
.

It is now natural to ask, if we flip the roles of d1 and d2 in Theorem 2.1 and in Theorem 2.2, then
does there exist a fixed point of the mapping under consideration? The following example shows that
the answer is negative.

Example 2.3. Let S = (0, 1). Let d1 be the usual metric of R and d2 be the trivial metric on S . Then it
is clear that

d1(s, t) ≤ d2(s, t)
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for every s, t in S . It is well known that (S , d1) is an incomplete metric space whereas (S , d2) is a
complete metric space.

Let us define T ∈ S S by T s = s+1
2 for all s ∈ S . Let us choose f ∈ A given by f (u, v,w) =

4
5 max{u, v,w} for all u, v,w ∈ R+. Then for all s, t ∈ S , we have

d1(T s,Tt) = d1

(
s + 1

2
,

t + 1
2

)
=

1
2
|s − t|

≤
4
5
|s − t| =

4
5

d1(s, t)

≤ f (d1(s, t), d1(s,T s), d1(t,Tt)).

This implies that T is anA-contraction with respect to the metric d1. Hence we have

(i) (S , d2) is complete.
(ii) T is continuous with respect to d2.

(iii) T is anA-contraction with respect to the metric d1.

However, it is to be noted that T admits no fixed point in S .

Remark 2.1. However, if we replace the completeness of (S , d2) in (i) with compactness or boundedly
compactness, it is a simple exercise to establish that T ∈ S S is a Picard operator and the other
conclusions remain true. Therefore, it is natural to ask, what weaker condition(s) might be imposed on
the space under discussion in addition to the other conditions to ensure that the results are valid?

3. Maia type results of enriched contractions

Recently in 2020, Berinde and Păcurar [11] introduced an interesting type of contractions, known
as enriched contractions. Berinde and Păcurar again extend such enriched contractions in various ways
in the next two years, see [12]. Following such introduction and extensions, enriched contractions are
further studied extensively by Mondal et al., see [25]. After this, Berinde [10] demonstrates the Maia
type results of such enriched contractions. However, it should be noted that in order to demonstrate
such results he has to compose separate results for every such enriched type contractions. So it again
becomes legitimate to establish a Maia type result for an enriched contraction which will give us all
the Maia type results of enriched contractions due to Berinde. We now discuss such creations in brief
without giving detailed proofs.

Let (S , ∥ · ∥) be a Banach space. Let d be the metric defined on S induced via ∥ · ∥, i.e.,

d(s, t) = ∥s − t∥

for all s, t ∈ S .
Let T ∈ S S be a mapping such that there is b ∈ [0,+∞) and an f ∈ A with

∥b(s − t) + T s − Tt∥ ≤ f ((b + 1)∥s − t∥, ∥s − T s∥, ∥t − Tt∥) (3.1)

for all s, t ∈ S , i.e., T is an enrichedA-contraction due to Mondal et al. [25].
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Let us put λ = 1
b+1 so that λ ∈ (0, 1). Then with the help of the average mapping Tλ defined by

Tλs = (1 − λ)s + λT s for all s ∈ S , (3.1) becomes

∥Tλs − Tλt∥ ≤ f (∥s − t∥, ∥s − Tλs∥, ∥t − Tλt∥),

i.e.,
d(Tλs,Tλt) ≤ f (d(s, t), d(s,Tλs), d(t,Tλt))

for every s, t in S . This implies that the mapping Tλ is an A-contraction. Hence we get the implicit
version of Maia type theorems for enriched contractions. Henceforth Maia type fixed point theorems
for enriched contractions [10, p. 37, Theorem 2.4], Maia type fixed point theorems for enriched
Kannan contractions [10, p. 39, Theorem 3.6] and Maia type fixed point theorems for enriched Ćirić-
Reich-Rus contractions [10, p. 42, Theorem 4.8] can be derived as particular cases of our proven
results. More specifically, if we take f (u, v,w) = θ

b+1u with θ ∈ [0, b+1), then [10, p. 37, Theorem 2.4]
follows; if we take f (u, v,w) = α(v + w) with α ∈

[
0, 1

2

)
, then we get [10, p. 39, Theorem 3.6] and

if we take f (u, v,w) = αu + β(v + w) with α, β ≥ 0 such that α + 2β ∈ [0, 1), then we get [10, p. 42,
Theorem 4.8].

4. An Application

In this section, we deal with an application of one of our obtained results. To be more specific, we
deal with the existence of unique solution of the following boundary value problem:

d2x
dt2 + g(t, x(t)) = 0, t ∈ [0, 1], x(0) = x(1) = 0, (4.1)

where g : [0, 1] × R→ R is a continuous function.
The above boundary value problem is equivalent to the integral equation

x(t) =
∫ 1

0
G(t, s)g(s, x(s))ds, (4.2)

where the Green’s function G(t, s) is defined by

G(t, s) =

t(1 − s), if 0 ≤ t ≤ s ≤ 1,
s(1 − t), if 0 ≤ s ≤ t ≤ 1.

We have the following properties of the Green’s function G:

(a) G(t, s) ≥ 0 for all t, s ∈ [0, 1];

(b) sup
0≤t≤1

∫ 1

0
G(t, s)ds =

1
8

.

Theorem 4.1. If the function ‘g’ be such that |g(s, a) − g(s, b)| ≤ M|a − b| for all s ∈ [0, 1] and
for all a, b ∈ R where M is a non-negative real constant such that M < 8, then the boundary value
problem (4.1) has a unique solution.
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Proof. Let us consider the set S = C[0, 1] of all real-valued continuous functions defined on [0, 1]
equipped with the metrics d2, d1 defined by

d2(x, y) = sup
0≤t≤1
|x(t) − y(t)|

and
d1(x, y) =

d2(x, y)
1 + d2(x, y)

for all x, y ∈ S . Then we have

(i) d1(x, y) ≤ d2(x, y) for all x, y ∈ S ;
(ii) (S , d1) is a complete metric space.

We now consider a mapping T defined on S by

T x(t) =
∫ 1

0
G(t, s)g(s, x(s))ds for all x ∈ S and for all t ∈ [0, 1].

Then, T ∈ S S . Now, for all x, y ∈ S and for all t ∈ [0, 1], we have

|T x(t) − Ty(t)| =

∣∣∣∣∣∣
∫ 1

0
G(t, s)g(s, x(s))ds −

∫ 1

0
G(t, s)g(s, y(s))ds

∣∣∣∣∣∣
≤

∫ 1

0
G(t, s)|g(s, x(s)) − g(s, y(s))|ds

≤ M
∫ 1

0
G(t, s)|x(s) − y(s)|ds

≤ Md2(x, y)
∫ 1

0
G(t, s)ds

≤ Md2(x, y) sup
0≤t≤1

∫ 1

0
G(t, s)ds

=
M
8

d2(x, y).

Taking supremum over all t ∈ [0, 1], we get

sup
0≤t≤1
|T x(t) − Ty(t)| ≤

M
8

d2(x, y)

=⇒ d2(T x,Ty) ≤
M
8

d2(x, y) (4.3)

=⇒ d2(T x,Ty) ≤
M
8

max{d2(x, y), d2(x,Ty), d2(y,T x)}.

Thus
d2(T x,Ty) ≤ f (d2(x, y), d2(x,Ty), d2(y,T x)),

where f ∈ A′ is defined by f (u, v,w) = αmax{u, v,w} with α = M
8 < 1. This shows that

AIMS Mathematics Volume 8, Issue 9, 22067–22080.
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(iii) T is anA′-contraction with respect to d2.

Again, from (4.3), we have

(iv) T is continuous with respect to d1.

Hence it follows from Theorem 2.2 that T has a unique fixed point, which is the unique solution of the
boundary value problem (4.1) also.

5. Conclusions

We introduced two contractions using implicit relation of mappings and proved fixed point theorems
of Maia type. As a result, we don’t need to remember many more results of Maia type at once. Also, we
constructed suitable examples to authenticate our established results. Finally, we give an application
to one of our proven results.
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