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1. Introduction

Immersions and submersions play crucial roles in differential geometry, with slant submersions
being a particularly intriguing subject in the fields of differential, complex and contact geometry.
The study of Riemannian submersions between Riemannian manifolds was first explored by
O’Neill [23] and Gray [14], independently, and subsequently led to investigations of Riemannian
submersions between almost Hermitian manifolds, known as almost Hermitian submersions, by
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Watson in 1976 [34]. Riemannian submersions have many applications in mathematics and physics,
especially in Yang-Mills theory [8,35] and in Kaluza-Klein theory [18,21].

Semi-invariant submersions, a generalization of holomorphic submersions and anti-invariant
submersions, were introduced by Sahin in 2013 [30]. In 2016, Tatsan, Sahin, and Yanan studied
hemi-slant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds,
and presented several decomposition theorems for them [33]. R. Prasad et al. further examined
quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds [25],
as well as from Kenmotsu manifolds [26], which represents a step forward in the study of Riemannian
submersions.

Since then, many authors have explored different types of Riemannian submersions, including anti-
invariant submersions [4, 29], slant submersions [11,31], semi-slant submersions [17,24] and hemi-
slant submersions [1,20], from both almost Hermitian manifolds and almost contact metric manifolds.
These studies have greatly expanded our understanding of the geometrical structures of Riemannian
manifolds.

The concept of almost contact Riemannian submersions from almost contact manifold was
introduced by Chinea in [9]. Chinea also examined the fibre space, base space and total space using
a differential geometric perspective. To generalize Riemannian submersions, Gundmundsson and
Wood [15, 16] presented horizontally conformal submersion, defined as: Let (M, g) and (M>, g»)
be two Riemannian manifolds of dimension m; and m,, respectively. A smooth map ¥ : (M, g) —
(M, g,) is called a horizontally conformal submersion, if there is a positive function A such that

Pg1(X1,Xs) = g2(P.X), V. Xo), (1.1)

for all X|,X, € I'(ker¥.)*. Thus, Riemannian submersion is a particular horizontally conformal
submersion with 4 = 1. Later on, Fuglede [13] and Ishihara [19] separately studied horizontally
conformal submersions. Additionally, various other kind of submersions, such as conformal slant
submersions [3], conformal anti-invariant submersions [6], conformal semi-slant submersions [2],
conformal semi-invariant submersions [5] and conformal anti-invariant submersions [27] have
been studied by Akyol and Sahin and R. Prasad et al. [27]. Furthermore, Shuaib and Fatima
recently explored conformal hemi-slant Riemannian submersions from almost product manifolds onto
Riemannian manifolds [32].

In this paper, we study quasi bi-slant conformal &*-submersions from Sasakian manifold onto a
Riemannian manifold considering the Reeb vector field & horizontal. This paper is divided into six
sections. Section 2 contains definitions of almost contact metric manifolds and, in particular, Sasakian
manifolds. In section 3, fundamental results for quasi bi-slant conformal submersion are investigated,
which are necessary for our main results. The conditions of integrability and total geodesicness of
distributions are explored in Section 4. Section 5 provides some condition under which a Riemannian
submersion becomes totally geodesic as well as some decomposition theorems for quasi bi-slant
conformal submersion are obtained. The last section discusses ¢-pluriharmonicity of quasi bi-slant
conformal &*+-submersions.
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2. Preliminaries

Let M be a (2n + 1)-dimensional almost contact manifold with almost contact structures (¢, &, 1),
where a (1, 1) tensor field ¢, a vector field £ and a 1-form 7 satisfying

¢ =-1+n®& ¢6=0, nop=0, n&) =1, (2.1)

where [ is the identity tensor. The almost contact structure is said to be normal if N +dn®¢& = 0, where
N is the Nijenhuis tensor of ¢. Suppose that a Riemannian metric tensor g is given in M and satisfies
the condition

g(@U, ¢V) = (U, V) = n(U)n(V), nU) = g(U, &), 2.2)

Then (¢, &, 1, g)-structure is called an almost contact metric structure. Define a tensor field @ of
type (0,2) by dD(X Y ) = g(¢X Y ) If dn = ®, then an almost contact metric structure is said to be
normal contact metric structure. Let @ be the fundamental 2-form on M, i.e, (D(U , V) = g(U , ¢V). If
® = dn, M is said to be a contact manifold. A normal contact metric structure is called a Sasakian
structure, which satisfies

(Vgo)V = g(U,V)é - n(V)U, (2.3)
where V is the Levi-Civita connection of g. From above formula, we have for Sasakian manifold
V5é = —¢U. (2.4)
The covariant derivative of ¢ is defined by

(Vg,#)Vi = V5,6V — ¢V5 Vi, (2.5)

for any vector fields ﬁl,?/l € I'(TM). Now, we provide a definition for conformal submersion and
discuss some useful results that help us to achieve our main results.

Definition 2.1. Let ¥ be a Riemannian submersion (RS) from an ACM manifold (Q1, ¢, &,1, g1) onto a
Riemannian manifold (RM) (Q,, g»). Then ¥ is called a horizontally conformal submersion, if there is
a positive function A such that

S 1 S
gi(U,Vy) = ﬁgZ(T*UI’\P*VI)a (2.6)

for any ﬁﬁl € T(ker¥,)*. It is obvious that every RS is a particularly horizontally conformal
submersion with 1 = 1.

Let W : (01,0,6,1n,81) — (01,8) be aRS. A vector field X on 0, is called a basic vector field if
Xe I'(ker ¥,)* and W-related with a vector field X on 0,ie Y, (X(q)) X‘I’(q) forg € Q.
The formulas provide the two (1, 2) tensor fields 7~ and A by O’Neill are

ﬂEI Fi= WV(]—{EI(VFl + (VV(HElq’(Fl, (27)
TE] F1 = WV‘VEl(VFl + (VV(VElﬂFl, (28)
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for any E, F; € I(TQ,) and V is Levi-Civita connection of g;. Note thata RS ¥ : (Q;,¢,&,1,81) —
(0», g») has totally geodesic fibers if and only if 7~ vanishes identically. From Eqgs (2.7) and (2.8), we
can deduce

Vg Vi =T5 Vi +VVg Vi, (2.9)
Vg X = T3, X + HVz X, (2.10)
Vi Ui = Az Uy + ViV, U, (2.11)
V3 Y1 = HV3 Y, + Az Y), (2.12)

for any vector fields 61,171 € I'(ker?,) and Yl, ?1 € I'(ker?,)* [12].
It is easily seen that 7~ and A are skew-symmetric, that is
g(ﬂX\El’Fl) = _g(El’ﬂX\Fl%g(TVElaFl) = _g(Ela TVFI)’ (213)
for any vector fields E,, Fy € I'(T,0)).

Definition 2.2. A horizontally conformally submersion ¥ : O, — Q- is called horizontally homothetic
if the gradient (G) of its dilation A is vertical, i.e.,

H(GA) =0, (2.14)
at p € TM,, where H is the complement orthogonal distribution to v = ker ¥, in I'(T,M).
The second fundamental form of smooth map Y is given by the formula

(VYU V) = VWV =WV Vi, 2.15)

and the map be totally geodesic if (V¥,)(Uy,V)) = 0 for all U,,V, € [(T,M) where V and V¥ are
Levi-Civita and pullback connections.

Lemma 2.1. Let ¥ : QO — Q, be a horizontal conformal submersion. Then, we have
(i) (VEIX 1) = Xi ()P (Y1) + Vi(In)¥.(X) - 61X, Y)Y (grad Ind),

(ii) (V¥ )(U1, Vi) = =Y. (T, V),

(iii) (V¥)(X;,Uy) = —‘I’*(V;(1 U) = —‘P*(&ZlgI U,

for any horizontal vector fields X 1s ?1 and vertical vector fields ﬁl , Vl [7].

Definition 2.3. Suppose © is a k-dimensional smooth distribution on M. Then An immersed
submanifold i : N — M is called an integral manifold for © if for every x € N, the image of
diN : T,N — T,M is D,. We say the distribution D, is integrable if through each point of M there
exists an integral manifold of .

Further, A distribution D is involutive if it satisfies the Frobenius condition such that if X, Y € I'(T M)
belongs to D, so [X, Y] € . Frobenius theorem state that an involutive distribution is integrable.

Definition 2.4. Let M be n-dimensional smooth manifold. A foliation § of M is a decomposition of
M into a union of disjoint connected submanifolds M = Uz L, called the leaves of the foliation, such
that for each m € M, there is a neighborhood U of M and a smooth submersion fy : U — R* with
f&l(x) a leaf of F|y the restriction of the foliation to U, for each x € R*.

Definition 2.5. Let M be a Riemannian manifold, and let § be a foliation on M. ¥ is totally geodesic
if each leaf L is a totally geodesic submanifold of M; that is, any geodesic tangent to L at some point
must lie within L.
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3. Quasi bi-slant conformal £+ -submersions

Definition 3.1. Let (0, ¢,&,1,81) be a ACM manifold and (Q-, g,) a Riemannian manifold. A RS
¥ : Q) > QO where & € T'(ker¥,)* is called quasi bi-slant conformal &*--submersion (QBSC &*-
submersion) if there exists three mutually orthogonal distributions ©, Dg, and D, such that

(i) ker'V, =D ® Dy, @ Dy,
(ii) D is invariant. i.e., D =D,
(iii) Dy, L Dy, and pDgy, L Dy,
(iv) for any non-zero vector field Vl € (Dg,)p>p € O, the angle 0, between (Dg,)p and ¢V1 is constant
and independent of the choice of the point p and Ve (®a,) ps
(v) for any non-zero vector field Vl € (Dg,)q»q € O, the angle 6, between (Dg,)q and ¢V1 is constant
and independent of the choice of the point q and Ve (®g,)gs

where 6, and 0, are called the slant angles of submersion.

If we suppose m;, m, and mj are the dimensions of D, Dgg and Dgy respectively, then we have the
following:

(1) If m; # 0, my, = 0 and m3 = 0, then V¥ is an invariant submersion.

(1) Ifm; #0,my £0,0 < 6; < g and m3 = 0, then ¥ is a proper semi-slant submersion.

(iii) If my = 0, my = 0 and m3 # 0,0 < 7, then ¥ is a slant submersion with slant angle 6,.

(iv) If m; =0,my # 0,0 < 6; < 7 and m3 # 0,6, = 7, then ¥ proper hemi-slant submersion.

V) Ifm; =0,m, #0,0 < 6, < ’—; andmz # 0,0 <, 6, < g, then W is proper bi-slant submersion with
slant angles 6, and 6,.

(vi) If my # 0,my # 0,0 < 6; <5 and mz # 0,0 < 6, < 7, then ¥ is proper quasi bi-slant submersion
with slant angles 6, and 6,.

We construct an example of QBSC ¢&*-submersions from Sasakian manifold. Let
(R2k+1, &u+1> P, &, 7]) denote the manifold with its usual Sasakian structure given by

Zk: +Y— +Za Zk:Y-i—X-i+Y< ﬁ
ayl Gz 1 14 8)6,' 14 ay, iYi (9z H

i= i=

where xi,..., X, V1 .. .., V&, 2 are the cartesian coordinates. Its Riemannian metric g is defined as g = n®
77+i (Zf.‘zl [dx; ® dx; + dy; ® dy,-]), where 7 is its usual contact form and given as n:% (dz - Z?:l Y,-dx,-).

0 0 0
The characteristic vector field £ is given by 2(9_ The vector fields E; = 2— 3 JE i =2 (6_
Xi

i
¢ form a ¢-basis for the Sasakian structure and (R”‘”, 0, é,n,8 ) is a Sasakian manifold. Throughout
this section we will use the notation.

Example. Let (R15, #, &, g) be Sasakian manifold. Let ¥ : R'> — R’ be map defined by
W (Xlyeoos X7, V15 7,2) = VI (cosBix3+ sin x4, X5, X7, V3,08 Brys + sin bryg, y7,z), which is a

+ yi@%) and
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quasi bi-slant conformal submersion with dilation A = +/z such that

0 0 0 0
Vi=2|— — |, Vo =2— i
1 o, +)’15Z) 2 (axz +y25z)

[ 0 0 0 0
V=2l (5 o) -oost (7o)
0 0 0 0
Vi=2—+ye—|, Vs =2—, Vg =2—,
t o yé@Z) YT oy Tow

0 0 0
Vi=2— Vg = Z(Sinez— — Ccos 92—).
dys dys

kerV. = D ® Dy, ® Dy,, where

0 0 0 0 0 0
D:<V1 :2(—+y]—),V2:2(—+y2—),V5 :2—,V6:2—>,

0x; 0z ox; 0z 0y, 0y,
0 0 0 0 0
Dy ={V3=2]|sinb; | — — |- 6, | — — ||,V =2—),
o, < 3 [sm 1(8x3 +)’36Z) cos 1(8)64 +y48z)] 7 6y4>
0 0 0 0
Dy ={V4a=2|—+y6—,Vg =2|siné— —cosé,—|),
6, < 4 ( Oxe Y6 6z) 8 ( 2 By p) Bye )>

and

0 0 0 0 0 0 0 o .0
ker¥,)*" = (2 ¢— +sinf—|,2—,2—,2—,2 0p— +sinf,—|,2—,2—.),
(ker ¥,) < (cos 1 e + sin 6; 8x4) o 2 ox 2oy (cos > s + sin 6, 0y6) o 25z >

where 6, and 6, are the slant angles of the submersion for the distribution Dy, and Dy, respectively.

Let ¥ be a QBSC £*-submersion from an ACM manifold (O, ¢, &, 7, g1) onto a RM (0, g»). Then,
for any U € (kerV.), we have
U=%,U+B,U+B,U, (3.1

where B, B, and P, are the projections morphism onto D, Dy, and Dy,. Now, for any U e (ker'.),
we have
oU = aU + BU, (3.2)

where aU € T(ker'V,) and BU € T'(ker'¥,)*. From Eqs (3.1) and (3.2), we have
$U =p(B,U) + ¢(B,U) + ¢(B,U) = a(B,U) + BPB,U) + (B, V) + BB, V) + (B, U) + BB, 0).
Since ¢® = D and B(P,U) = 0, we have
¢U = a(PB,U) + a(B,U) + BB, U) + (B, U) + BB, U).
Hence we have the decomposition as
p(ker?.) = @D ® aDy, ® @Dy, ® Dy, ® By, (3.3)
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From Eq (3.3), we have the following decomposition:
(ker?.)" = BDg, ® Dy, @ u, (3.4)

where y is the orthogonal complement to Dy, ® fDg, in (ker'?.)* such that u = (fu)® < £ > and p is
invariant with respect to ¢. Now, for any X € ['(ker'V,)*, we have

¢X = CX + BX, (3.5)
where CX € T'(ker'V,) and BX € [(ker'V,)*.

Lemma 3.1. Let (01, ¢,&,1,81) be an ACM manifold and (Q»,g,) be a RM. If ¥ : O, — O, isa
QBSC &F-submersion, then we have

~U = U + CBU, BaU +BBU =0,
—X + n(X)¢é = BCX + B2X, aCX + CBX = 0,
for U € T'(ker'V,) and X € T'(ker¥,)*.
Proof. On using Eqgs (2.1), (3.2) and (3.5), we get the desired results. O

Since ¥ : Q) — Q- is a QBSC &*-submersion, Then let us provide some helpful findings that will
be utilise throughout the paper.

Lemma 3.2. Let ¥ be a QBSC &*-submersion from an ACM manifold (O, ¢,€,1,8,) onto a RM
(02, 82), then we have

(i) U = —cos*0, U,
(i) g1(aU,aV) = cos’ 6, g1(U, V),
(iii) g(BU,BV) = sin’* 6, g,(U, V),

for any vector fields UV e ['(Dg,).

Lemma 3.3. Let ¥ be a QBSC &*-submersion from an ACM manifold (Qy, $,&,1, g1) onto a RM
(02, 8>), then we have

(i) @*Z = - cos’6, Z, L
(ii) g1(@Z,aW) = cos® 6, 81(Z, W),
(iii) g1(BZ,BW) = sin’ 6, g,(Z, W),

for any vector fields Z,We ['(Dg,).

Proof. The proof of above Lemmas is similar to the proof of the Theorem 2.2 of [10]. O

Let (O,, g») be a Riemannian manifold and (Q;, ¢, &, 17, g1) be a Sasakian manifold. We now consider
how the Sasakian structure on Q; affects the tensor fields 7~ and A of a QBSCE*-submersion ¥ :

(01,8,6,1m,81) = (02, 82).
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Lemma 3.4. Let ¥ be a QBSC &*+-submersion from Sasakian manifold (Q, ¢,&,1,81) onto a RM
(02, &2), then we have

ASCY + HVBY = BHVY +BAY + g1(X, Y)é — n(Y)X, (3.6)
VVLCY + ABY = CHVY + aAsY, (3.7)

VVzaV + ABV = CALV + aVV5V, (3.8)

AgaV + HYZBV = BAZV + VLV, (3.9)

VVCX + T5BX = aT7BX + CHVX — n(X)V, (3.10)
THCX + HV;BX = BT5X + BHV;X, (3.11)

VVgaV + T8V = CT5V + aVV5V, (3.12)

TaV + HYGBV = BTGV + BVVGV + g,(U, V), (3.13)

for any vector fields ﬁ, Ve I'(ker ¥,) and X, , Ye I'(ker ¥,)*.

Proof. From (2.5), (2.12) and (3.5), we obtained the conditions (3.6) and (3.7). Again using Eqgs (3.2),
(3.5), (2.9)—(2.12) and (2.5), finish he result. O

Now we will go through some fundamental results that can be used to investigate the geometry of
QBSC &+-submersion ¥ : Q; — Q,. For this, define the following:

(Vza)V = VVgzaV - aVVgV, (3.14)
(VB)V = HV BV — VYV, (3.15)
(V3C)Y = VV;CY - CHV5Y, (3.16)
(V¢B)Y = HVBY — BHVY, (3.17)

for any vector fields UVe I'(ker¥,) and X,Y € I'(ker ¥,)*.

Lemma 3.5. Let (Q,,¢,&,1, 1) be a Sasakian manifold and (Q,,g,) be a RM. If ¥ : O, — Qs isa
QBSC &F-submersion, then we have

(Vga)V = CT5V - T8V,
(ViB)V =BTV — TgaV,
(V3O)Y = aAgY — A;BY,
(VzB)Y = BAZY — ALY,
for all vector fields Z]\,/\; € I'(kerY.,) and 5(\,? € I'(ker?.,)*.
Proof. On using Eqs (2.5), (2.9)—(2.12) and (3.14)—(3.17), we get the desired result. O
If & and 3, the tensor fields, are parallel with respect to the connection V of Q; then, we have
CT;V = TgBY, BTV = TgaV,
for any vector fields U,V € (T Q).
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4. Integrability and totally geodesicness of distributions

Since ¥ : 0; — 0, is a QBSC &*-submersion, where (0, ¢,&,1,g1) represents a Kenmotsu
manifold and (Q», g») a Riemannian manifold. The definition of QBSC &*-submersion ensures the
existence of three mutually orthogonal distributions, which include an invariant distribution D, a pair
of slant distributions ©% and ©%. We start the discussion on the integrability of distributions by
determining the integrability of the slant distribution in the manner described below:

Theorem 4.1. Let ¥ be a QBSC &*-submersion from Sasakian manifold (Q1, ¢,&,1,g1) onto a RM
(02, 82). Then slant distribution Dy, is integrable if and only if

1 — — —~
5182V W.BV1 + V5 WBUL W B%.2))

1 —_ —_ —

= 5l&(VENULAV) + (VE)(V1. BT, ¥.BB.Z)) 1)
- g1(Vy Bal, - Vg BaVy,Z) - gi(T5 8V — T3 BUL, ¢B,Z + aB,Z),

for any U,, V, € T(Dy,) and Z € T(D & D).

Proof. For all Uy, V, € T(Dy,) and Z € T(D & Dy,) with using Egs (2.2), (2.5), (2.14) and (3.2), we get
g1([U1, V11.2) = g1(Vg,aV1,6Z) + 81(V5 V1. ¢Z) — g1(Vy,aU,, ¢Z) — 81(Vy BUL ¢2).
By using Egs (2.5), (2.14) and (3.2), we have
21U, V11.2) = -g1(Vy,0*V1.Z) - g1(Vy, BV, Z) + g1(Vy, U, Z)

+ 81(V5,8aU1, Z) + 81(V5 V1, 6B, Z + @B, Z + fB,Z)
— 81(V3,BUL, ¢B,Z + aB,Z + B, 2).

Taking account the fact of Lemma 3.2 with Eq (2.10), we get
(U, V11, 2) = cos*01g1([U1, V11, Z) + g1(Vy, BaU, — Vg BaV1, Z)

+81(T5,8V — T5.8U,, ¢B,Z + aB,Z)
+ 81((HV g Vi = HVy BU. fB.2).

On using Eq (2.6), formula (2.15) with Lemma 2.1, we finally get
Sin29181([ﬁl,vl],2)

1 — — —~
=&V WAV, - VE W50 ¥.%.2)

1 - _ - _
+ ﬁ{gz((V‘P*)(U 1BV, V.BB.2) + g2(VY.)(V1, UL, V.6%,.2)}
+81(T5,8V) — T5.8U1, 6B, Z + aB.Z) + g1(Vy BalU, — Vg faVy, Z).

O
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In a same manner, we can obained the condition of integrability for Dy, as follows:

Theorem 4.2. Let ¥ : (01,0,E1n,81) — (0s2,8) be a QBSC &*-submersion, where
(01, 0,€,1,81) a Sasakian manifold and (Q, g,) a RM. Then slant distribution Dy, is integrable if
and only if

— S & (TN B75) ~ (V)T BT), W58, 7)
=81(T3,paUz — T, faV2, Z) + g1(T, Vs — T5,8Us, ¢B,Z + aB,Z)
b 5 8oV W Vs — VA W50, W58, 7).
for any Uy, V> € T(Dy,) and Z € T(D & D).
Proof. On using Egs (2.2), (2.5), (2.14) and (3.2), we have
21([U2. V21.Z) = g1(Vy,0*Us. Z) + 81(Vy,BaUs, Z) — g1(Vy,a* V2. Z)
~ 81(Vg,BaV, Z) + /(Y. Vs — V5, 8Us, ¢2),
for any Us, V; € T(Dy,) and Z € T(D & Dy,). From Eq (2.10) and Lemma 3.3, we get
sin*0,81([Us, V21, Z) = g1(T5,BaUs — T30V, Z) + g1(T5,8V2 — T5,8U2, ¢B,Z + aB,Z)
+ 81(HV Vs — HY3. BU. %, 2).

Since ¥ is QBSC &*+-submersion, using conformality condition with Eqs (2.6) and (2.15), we finally
get

sin*0,81([U, V21, Z) = g1(T5,BaUs — T30V, Z) + g1(T5,8V2 — T5,8U2, ¢B,Z + aB,Z)
1 —_ —~ —_ o~ —
+ 2 {8(VEI(U2. 8V2) = (VE.)(V2, BU2), ¥.5%, 2)}
1 _ _ _
+ 3 {ea(V WBV: = VG WU, .59, 2)).
This completes the proof of the theorem. O

Since, the invariant distribution is mutually orthogonal to the slant distributions in accordance with
the concept of QBSC &+-submersion, this led us to investigate the necessary and sufficient condition
for the invariant distribution to be integrable.

Theorem 4.3. Let ¥ : (01,¢0,,n,8) — (02,8) be a QBSC &*-submersion, where
(01, 0,€,1, 81) a Sasakian manifold and (Q», g») a RM. Then the invariant distribution D is integrable
if and only if

81(T5aB,V — T5aB,U, BB,Z + BB,W) — g1(VV5aB,V — VVsaB,U,aB,Z + aB,Z) = 0, (4.2)
forany U,V € [(D) and Z € T(Dy, ® Dy).
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Proof. For all U,V € T[(D) and Z € T(D,, & Dy) with using Eqs (2.2), (2.9), (2.14) and
decomposition (3.1), we have

21([U,V1,Z) = g1(V5aB,V,¢B,Z + ¢B,Z) — g1(V5aB,U, ¢B,Z + ¢B,2).
On using Eq (3.2), we finally have
21U, V1,2) = g1(TzaB,V — ToaB,U, BB, Z + BB,Z) + g1(VV;aB,V - VAzaB,U, aB,Z + aB,Z).

This completes the proof of theorem. O

The necessary and sufficient prerequisites that must also exist in order for distributions to be totally
geodesic will now be discussed after the necessary conditions for distributions integrability. We start
with investigating the necessary and sufficient conditions for distributions to be totally geodesic.

Theorem 4.4. Let ¥ : (01,¢0,E,n,8) — (02,8) be a QBSC &*-submersion, where
(01, 0,&,1,81) a Sasakian manifold and (Q-, g») a RM. Then invariant distribution D defines totally
geodesic foliation on Q, if and only if

(i) 120 (VEIU, ¢V), ¥.B2)} = 1(VV oV, aZ), L
(i) A7 {g2((V)(T, ¢V), ¥.BX)) = g1(VVoV.,CX) + 810U, Vin(X),

forany U,V € T(D) and Z € T(Dy, ® D).

Proof. Forany U,V € I(D) and Z € T (D, ® Dy,) with using Egs (2.2), (2.5), (2.14) and (3.2), we may
write
81(V5V,2) = g1(VVzoV,aZ) + g1 (T 54V, BZ).

On using the conformality of ¥ with Eqgs (2.6) and (2.15), we get
§1(VgV.2) = g1(VV5¢V,aZ) - 12 g:(VE)(U, V), ¥.52).
On the other hand, using Eqgs (2.2), (2.5) and (2.14) with conformality of ¥, we finally have
g1(VgV,. X) = g1(VV5oV,CX) - 12g:(V¥)(U, ¢V), V. BX) + 210U, V(X),

from which we get the desired result. O
In same manner, we can examine the geometry of leaves of Dy, as follows:

Theorem 4.5. Let ¥ be a QBSC &*-submersion from Sasakian manifold (Q1, ¢,&,1,g1) onto a RM
(D2, 82). Then slant distribution Dy, defines totally geodesic foliation on 0, if and only if

1 — —
EgZ(V;lP*ﬁSByW, P.B,W)
=c05%0,8,(V;B,W, U) — g1(T58aB,W, U) + g1(T58aB,W, ¢B,U) (4.3)

— —~ 1 — —
+ gl(TﬁgByW’ a'gl;vU - ﬁgz((V‘P*)(ﬁ‘ByW, Z)’\P*gBUU)
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and
g (VY. LaB, W, W, X)) - g1(aB, W, Z)n(X)
=%gz((V‘P*)(Zﬂa‘Byﬁ7), ¥,X)) - %gz((v‘l’*)(Zﬁa‘ByW), ¥,BX)) (4.4)
+c05°0181(Vz%, W, X) + g1(T55aB,W,CX) — (VAW BaB, W, V.BX),
for any Z,W € T(Dy,), U € T(D & Dy,) and X € T(ker?.)*.
Proof. By using Eqs (2.2), (2.5), (2.14) and (3.2), we get
g1(VzW, U) = g1(Vz8%, W, ¢(B,U + B,0)) — g1(¢VzaB, W, U),

for Z,W € T(Dy,) and U € T(D & Dy,) . Again using Egs (2.2), (2.5), (2.10), (2.14) and (3.2) with
Lemma 3.2, we may write

g1(VzW, U) = cos*0,g,(V5B,W, U) — g1(Tz8aB,W, U) + g1(T58aB,W, ¢%B,U)
+ 81(TBB, W, aB,U) + g1 (HV %, W, 5B,0).
Since, ¥ is conformal, using Lemma 2.1 with Eqs (2.6) and (2.15), we have
21(VzW, U) = cos01g1(Vz B, W, U) = g1(TzB%8,W, U) + g1(T 5B, W, $B,U)
+ 1T, T, 00,0) - 5o VE B8, T, .65, ) 45)

| . _
— 2&((VEIEB, W, 2), ¥.8,0).

On the other hand, for Z, W € I(D;,) and X € ['(ker®,)*, with using Egs (2.2), (2.5), (2.14) and (3.2),
we get o P D
g1(VZzW, X) = g1(VzaB, W, ¢X) + g1(Vz88,W, ¢X).

From Lemma 3.2 with Egs (2.10) and (3.5), the above equation takes the form

g1(VzW, X) = cos*0,81(VzB, W, X) — g1(HV 82D, W, X) + g1(@B,W, Z)n(X)

+ g1(T5BaB, W, CX) + g (HV5aB, W, BX).

Since ¥ is conformal and from Eqgs (2.6) and (2.15), we have

21(VsW, X) = cos*6,8,(V5B, W, X) + g1(T5BaB,W,CX) + g,(aB, W, Z)n(X)

1 PO | o
+ 38((V)(BaB,W, 2), ¥, X) - Egz(vglp*ﬁaipyw, . X)

1 _ _
g2(V;‘I’*,Baﬂ3yW, ¥.BX),

1 — —
- ﬁgz((V‘P*)(ﬁa‘ByW, 7),¥.BX) + 7

from which we get the result. O

In the following theorem, we study the necessary and sufficient conditions for slant distribution Dy,
to be totally geodesic.
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Theorem 4.6. Let ¥ : (01,0,E1n,81) — (0s2,8) be a QBSC &t-submersion, where
(01, 0,&,1,81) a Sasakian manifold and (Q,, g>) a RM. Then slant distribution Dy, defines totally
geodesic foliation on Q, if and only if
1 -_ —_—
& (V7 VBB, W, W B W)
=cos°01g1(V;B, W, V) = g1(T;8a8, W, V) + g1(T;80%, W, $B,V) (4.6)
_ | . _
+ 81 (Tz8B,W, aB,V - ﬁgZ((V\P*)(ﬁsByW, Z2),¥Y.B,V)
and
I {g(VIW.LaB, W, .Y) — g2(VEW. BB, W, V. BY))
1 = — = 1 = — -
=ﬁgz((V‘I’*)(Z,,36¥‘BvW), Y.Y) - Egz((V‘P*)(Z,ﬁagﬁvW), ¥.BY) 4.7)
+ c05*0,81(VzB, W, Y) + g1(T 8B, W, CY),
for any Z,W € T(Dy,), V € (D @ Dy,) and Y € T(ker'?,)*.
Proof. The proof of above theorem is similar to the proof of Theorem 4.5. O

Since, ¥ is QBSC &+-submersion, its vertical and horizontal distribution are (kerV.,) and (ker'¥,)*,
respectively. Now, we examine the conditions under which distributions defines totally geodesic
foliation on Q;. With regards to the totally geodesicness of vertical distribution, we have

Theorem 4.7. Let ¥ : (Q01,¢,E1n,81) — (02,8) be a QBSC &t-submersion, where
(01, 0,€,1,81) a Sasakian manifold and (Q,, g,) a RM. Then ker¥, defines totally geodesic foliation
on Q, if and only if

1 _ S
S (&(VEVLaB,V + VI¥ Sap, V. ¥.X)
=21(T5B,V + cos?0,T5B,V + cos*,T5B,V, X) + g(TBV, CX)
1 — — - — —
+ E{gz((V‘P*)(U ,Ba’B, V) — (V¥ )(U,Ba®B,V),¥.X)} (4.8)

1 _ BN _
+ E{gz(Vé‘I’*ﬁV - (V¥)(WU,BV), ¥.BX)}
- n(X)g1(¢U + U,V - B,V),

for any U,V e T(ker?,) and X € T(ker®,)*.

Proof. For any U,V € T(ker?.) and X € TD(ker?.)* with using Egs (2.2), (2.5), (2.14) with
decomposition (3.1), we get

g1(V5V. X) = g1(V5oB, V. 6X) + g1(V50B, V., ¢X) + g1(V5oB,V, 6X) + g1(aU, V — B,V)n(X).
On using Eq (3.2) with Lemmas 3.2 and 3.3, we have
g1(VgV. X) = g1(VgB,V. X) + cos0181(VgB, V. X) + cos’021 (V5 B, V. X)
+ g1(VgBP, V. ¢X) — 1(VgBaP,V, X) — g1(VghaB,V, X)
+ g1(VgBB.V. 6X) = n(X)g1(¢U + U,V =B, V).
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From Eqgs (2.9), (2.10) and (3.5), we may yields
gl(vﬁ, 55) = gl(‘Tg‘BgV + cos2917'5‘13yv + coszezTg‘va, Y)
— g1(HVB8aB,V + HV8aB,V, X) + g((TBB,V + T58%,V,CX)
+ g1 (HVGBB,V + HVBB,V,BX) — n(X)gi(¢U + aU,V — B, V).
From decomposition (3.1), the above equation takes the form
21 (V5V, X) = g((TgB,V + cos’0, T8,V + cos?,T5B,V, X) + g1(T58V, CX)
— g1 (HV BB,V + HY:8aB,V, X) + g((HV 8V, BX)
- n(X)gi1 (U +al,V = B,V).
Using the conformality of ¥ with Egs (2.6) and (2.15), we have
21(V5V, X) =g1(T5B,V + cos’0, TP,V + cos*,T5B,V, X) + g((T58V, CX)
b 5 &a(TENT B, V) ~ (VENT, ok V), W)

1 _ S
— ﬁ&(%%ﬁa%ﬂ + VIV, BaP,V, V. X))

+ e VEV AV — (VT B7), ¥.5X)]
- n(X)g1(¢U +aU,V - B,V).

This completes the proof of the theorem.

O

We can now talk about the geometry of leaves of horizontal distribution. The following theorem
presents the necessary and sufficient condition under which horizontal distribution defines totally

geodesic foliation on Q;.

Theorem 4.8. Let ¥ be a QBSC &*-submersion from Sasakian manifold (Q, ¢, &,1, g1) onto a RM

(05, 82),. Then (ker¥.,)* defines totally geodesic foliation on Q, if and only if

1 = 1 ~
- &(VIV.BY, Y.BZ) + = &(VIL.Y, ¥.Ba,Z)

= cos? 0, {n(Y)g1(CX, B,Z) + g1(AgY, B, 2)} + cos’ b, {n(Y)g(CX, B,Z) + AzY,B,Z)
+ 81(VVCY, aB,Z) + g1(AgBY, aB,Z) + g1(ALCY, BZ) + n(Y)g\(¢Z, X)

+ % ¢(X(n )¥,BY + BY(In H)¥.X — g1(X, BY)V.(G In 1), ¥,82)
+ % SX(In DP.Y + Y(In )P.X — g,(X, Y)¥.(G In 2), ¥.BaB,Z)
+ % X HYP.Y + Y(In HP.X — g,(X, V)V.(G In 2), ¥,BaB,Z)
+ %gz(v;i\{f*?, ¥,LaP,2),

for any X,Y € T(ker?.)* and Z € T(ker'?,).
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Proof. For any X,Y € T(ker¥,)* and Z € T'(kerV.) with using Eqs (2.2), (2.5) and (2.14) with
decomposition (3.1), we get

21(V5Y,Z) = gi(VgY, ¢B,2) + g1(V50Y, ¢B,Z) + g1(V5Y, pB,2).
From Eqgs (2.11) and (3.2) with Lemma 3.2, we have

1(V5Y,Z)

=g1(VV5CY, aB,Z) + g1(ABY, aB,2) + g1(¢V4Y, paB,Z)
+ 81(V3CY, BB, 2) + g1(V5BY, BB, 2) + g1($Vz0Y, paB,2)
+ 81(VCY, BB,Z) + g1(VBY. BR,Z) + n(Y)g1 (X, ¢2).

Since BB, Z + B,Z = BZ and with using the Eqs (2.12) and (3.2), we get

g 1(V§?, Z)
=21(VVCY, aB,Z) + g1(ABY, aB,Z) + g1(AzCY, BZ) + n(Y)g1(¢Z. X)
+ g1(HV5BY, BZ) — g((HV5Y, BaB,Z) — g1(HV Y, BaB,Z)
+ cos? 6, {n(Y)g1(CX, B,2) + g1(AgY, B,2)}
+ cos? {n(Y)g1(CX, B,Z) + &1(AgY, B, 2)}.

From formula (2.6) and (2.15), we yields that

21(V5Y,Z)
=21 (VVCY, aB,Z) + g1 (AzBY, aB,Z) + g1 (ALCY, BZ) + n(Y)g\(¢Z, X)

1 — 1 o

+ ﬁ gz(V;I(i‘P*B Y,VY.67) - ? 2 (VY,)(X,BY),¥Y.82)
1 — 1 ——

- 5@ (VPP W o, 2) + e (VI Y), ¥.Ba B, 2)
1 — 1 —_—

- 38V V.Y, ¥.BaB.2) + (V)X V), ¥.fa.Z)

+ cos? 6,{n(Y)g1(CX, B,Z) + g1(AY, B,2)}
+ cos? 0,{n(Y)g1(CX, B,Z) + g1(AgY, B,Z)}.

AIMS Mathematics Volume 8, Issue 9, 21746-21768.



21761

Since W is conformal submersion, then we finally get
g1(VY.,2)
=cos” 6, (7(V)g1(CX, B,2) + &1(AgY, B,2)} + cos” 6:(n(V)g1(CX, B,2) + AgY, B,Z)
+ 21(VVCY,aB,2) + g1(ABY, aB,2) + g1(AZCY, BZ) + n(Y)g1($Z. X)
1 — B _ BN
+ EgQ(X(ln HY.BY + BY(In )¥. X — g1(X,BY)¥.(G In Q), ¥.BZ)
1~ - _ -
+ EgZ(X(ln DY.Y + Y(In HYY.X — g1(X, Y)¥.(G1n 1), ¥.5aB,Z)
1 — - _ -
+ - X(InHY.Y + Y(In HY¥Y.X — g1(X, Y)V.(GIn ), ¥Y.LaB,Z)
1 — 1 —
+ 52(VRH.BY, ¥.B7) — (Vg .Y, W.po¥, 2)
1 Yy =
+ ﬁgz(vg‘ﬂ Y, ¥.paB,2).
This completes the proof of theorem.

O

We currently have a few prerequisites that must be met in order for QBSC &*-submersion ¥ : Q; —
0, to be a totally geodesic map. In this regard, we offer the subsequent finding.

Theorem 4.9. Let ¥ be a QBSC &*+-submersion from Sasakian manifold (Q, ¢, &,1, g1) onto a RM
(05,8). Then¥ : (Q1,¢,&,1,81) — (01, g2) is totally geodesic map if and only if

‘I’*{coszelvﬁ‘ﬁyv + cos202V5ﬂ3UV - Vﬁ,é’a/‘liyv - Vﬁﬂa‘B,,V - gl(gbﬁ, ‘BQV)f}
=P (B(HV BB,V + HIGBB,V + T5aB, V) + PABT58%,V + ToB%8,V + VVgzaB,V)),

and

¥, (cos?0, VB, U + cos’6,VB,U — ViBaB,U — ViBaB,U)

=¥ {B(AgaP,U + HVLB,U + HVLPB,U)} - g1(PX, U)P.£

+ P AB(VVzaD,U + ABB,U + AzfB,U)},
for any U Ve I'(ker?.,) and X, Ye I'(ker¥,)*.
Proof. Now, using Eqgs (2.1), (2.5), (2.14) and (2.15). we can write

(VE)U, V) = Pu{-n(V5V)E + ¢V V),

for any ’U\,/\; € I'(ker¥.). From decomposition (3.1) and Eq (3.2), we have

(VYU V) = P i¢V5aB,V + oV5aB,V + ¢V8B,V + ¢VzaB,V + ¢V5B%B,V — g1(8U, V)E).
By using Eqs (2.9) and (2.10), the above equation takes the form
(V)T V) = VAdT 5B,V + ¢VV5aPB, V) + V.(VsdaB,V)
+ W($T BB,V + dHVBP,V) + . (Vyoa$,V)
+ W AT BBV + dHVGBD,V + g1(9U, B, V)EL
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Since W is conformal submersion, by using Lemmas 3.2 and 3.3 with Eq (3.2), we finally get
(VE)(U,V) =¥ % (BIHV BB,V + HV BB,V + T5aB,V)
+B(VVGaB,V + T5aB,V + TaB,V))
~ W, {cos’0, VB,V + cos?0,Y5B,V — VBB,V
= VB,V — g1(U, B, V)é).

From this, the (i) part of theorem proved. On the other hand, for any Ue I'(ker¥,) and Xe I'(ker¥,)*
with using Eqs (2.1), (2.5), (2.14) and (2.15), we can write

(VE)X.U) = Y. (V50U ~ n(VzU)é).
On using decomposition (3.1) with Eq (3.2), we have
(V)X U) = ¥ Ad(VaB,U + VzaB,U + VeBB,U + VeaB,U + VeBB,U)} — g1(PX, U)V.£.
By taking account the fact from Eqs (2.11) and (2.12), we get
(VE)(X, U) = P {p(AzaB,U + VVzaB,U + VzpaP,U)
+ G(HVBP,U + AP, U) + VzpaB,U
+ G(HVBB,U + ApP,0)} — g1(PX, U)P.£.
Finally, from conformality of RS ¥ and Lemmas 3.2 and 3.3, we can write
(VEIX, U) = YABVVzaB, U + ABB,U + BygfB,0)) - 61(PX, U)¥.&
— ¥.(c05%6, V5B, U + cos’0,VeB,U — VBaB,U — ViBaB,U)
+ W AB(AzaB,U + HVBP,U + HVBP,U)).

From which we obtain (ii) part of theorem. This completes the proof of theorem. O
5. Decomposition theorems

In this section, we recall the following result from [28] and discuss some decomposition theorems
by using prior theorems. Let us suppose that g be a Riemannian metric on the manifold M = Q; x Q»,
then

(i) M = Q, x, O is a locally product if and only if Q; and Q, are totally geodesic foliations,

(ii) a warped product Q; X, O, if and only if Q; is a totally geodesic foliation and Q, is a spherics
foliation, i.e., it is umbilic and its mean curvature vector field is parallel,

(i) M = Q X, O, is a twisted product if and only if Q; is a totally geodesic foliation and Q, is a
totally umbilic foliation.

The presence of three orthogonal complementary distributions D, D%, and D%, which satisfy some
conditions of integrable and totally geodesic that we have stated previously, is ensured by the fact that
¥ :(01,0,6,1,81) — (02, 8) is QBSC &+-submersion. It makes sense to now look for the conditions
in which the total space Q; converts into locally twisted product manifolds. Now, we are giving the
following result.
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Theorem 5.1. Let ¥ be a QBSC &*+-submersion from Sasakian manifold (M, ¢,&,1,g1) onto a RM
(M, g>). Then Q is locally twisted product of the form Ql(ke,\y*) X Ql(ke,\y*y if and only if

1 —_ -~ — —_ o~ — — —_ o~
?gz((Vf*)(U,,BV), f:BX) = g1(TgaV,BX) + g1(VVgaV + T8V, CX)
(5.1)
1 _ - —
+ 58(ViV, ¥.BX) - 1(U, Vin(X)
and
g(X,Y)H = ~PAgPY - aV5CY — aABY - ¢¥.(VEV.BY) + X(In ) PBY 52
+BY(In )CX — P(G1n D)g(X,BY), '

where H is a mean curvature vector and for any ﬁ,T/ € I'tkerY.,) and 5(\1 , 5(\2 € I'(ker¥,)*.

Proof. For any X;,X, € [(ker?,)* and U € T(ker?,) and using Egs (2.2), (2.5), (2.11), (2.12)
and (2.14), we have

21(VV. X) = g((T5aV.BX) + g1(VVzaV + TpBY,CX) + g(¢U, VIn(X) — g1(HV BV, BX).

From using formula (2.6), (2.15) and with conformality of RS ¥, the above equation finally takes the
form

21(VgV,X) = g(TgaV,BX) + g1(VVzaV + TV, CX) + g1(¢U, VInX)
1 1
gz((Vf)(U BV), £.BX) + 2gz(V BV, ¥.BX).

It follows that the Eq (5.1) satisfies if and only if O\ kery,) 1s totally geodesic. On the other hand, for
Ue I'(ker¥,) and X Ye ['(ker¥,)* with using Egs (2.2), (2.5), (2.14) and (3.5), we get

g1(V5Y, U) = g1(VzPY, ¢U) + g1(ABY, aU) + g/ (HVzBY, BU).
By using the Eq (2.15) with definition of conformality of ¥, we deduce that
g1(VxY. U) = - 12g2<<w X, B7), ¥.50) + - 582V ¥.BY. ¥.5U)
+ 81(V5PY, ¢U) + g/ (ABY, a/U).
Considering the (i) part of Lemma 2.1, above equation turns in to
g1(VgY, U) = % g2(VEW,BY, W.8U) + g1(VxCY, ¢U) + g1(AzBY, al)

- 21(GIn 4, X)g1(BY, BU) - g1(G In 1, BY)g, (X, BU)

+g1(G1n A, BU)g (X, BY).
By direct calculation, finally we get

giX.Y)H = —PAPY - aV5CY — aAZBY - p¥.(VEW,BY) + X(In )PBY
+BY(In )CX — P(GIn A)g,(X,BY).

From the above equation we conclude that Ql(ke,\y*)l is totally umbilical if and only if Eq (5.2) satisfied.
O
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6. ¢-pluriharmonicity of quasi bi-slant conformal £+ -submersion

Y. Ohnita established J-pluriharminicity from a almost hermitian manifold in [22]. In this section,
we extend the concept of ¢-pluriharmonicity to almost contact metric manifolds.

Let ¥ be a QBSC &*+-submersion from Sasakian manifold (Q;,#,&,7,g1) onto a RM (0, g2)
with slant angles 6, and 6,. Then QBSC submersion is ¢-pluriharmonic, D-¢-pluriharmonic, D%-
¢-pluriharmonic, (D — D%)-¢ pluriharmonic (where i = 1,2), ker?,-¢-pluriharmonic, (ker',)*-¢-
pluriharmonic and ((kerV,)* — ker?.)-¢-pluriharmonic if

(V). V) + (VE)@U,¢V) =0, (6.1)
for any U,V € I(D), for any U,V e T(dD%, for any ij @),V e F(gef) (where i = 1,2), for any
U,V eT(ker?,), forany U,V € I'(ker?,)* and for any U € I'(ker?.)*,V € I'(ker?.,).

Theorem 6.1. Let ¥ be a QBSC &*-submersion from Sasakian manifold (Q1, ¢,&,1,g1) onto a RM
(05, g) with slant angles 6, and 6,. Suppose that ¥ is Dy,-¢-pluriharmonic. Then Dy, defines totally
geodesic foliation Q, if and only if
¥, (BT ,gBaV + BHY 5haV) — ¥.(AgaV + HV,55V)
=cos” V(BT 5V + BVV,5V) + VW0V + gi(aU,aV)V.£
— BU(n HW.BV - BV(In YW.BU + &1(BU, BV)¥.(G In 1),

for any UVe ['(Dg,).

Proof. For any UVe ['(Dy,) and since, ¥ is Dy, -¢-pluriharmonic, then by using Eqs (2.9) and (2.15),
we have

0= (VE)U. V) + (VLI@U.$V),
P.(VgV) = —E(V,58V) + VP (4V)
= VY. AV + VVgaV + T 5BV + HV 58V)
+ (V.)(BU,BV) - V;’U\P*ﬁi? + V:ﬁ‘ﬂqﬁ;
+W.(¢V, goaV — (VY gaV)o).
On using Egs (3.2) and (3.5) with Lemmas 2.1 and 3.2, the above equation finally takes the form
Y.(V5V) = —cos? 0, ¥.(PT 5V + BT,V + aVV 5V + BVV_5V)
+ W, (aT 5BV + BT, ;B8aV + PHY gBaV + BHV ;BaV)
— P, (AgaV + VVgaV + T g8V + HY,56V)
+BU(An HY.BV + BV (In HYVY.BU — gu(BU,BV)Y.(gradIn A)
+ g1(@U, aV)¥.& - Vgﬁ‘P*ﬁV + v;}’ﬁlp*qsv

from which we get the desired result. O
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Theorem 6.2. Let f be a QBSC &*-submersion from Sasakian manifold (Q1,$,€,1,g1) onto a RM
(05, g>) with slant angles 6, and 6,. Suppose that ¥ is Dy, -¢-pluriharmonic. Then Dy, defines totally

geodesic foliation Q, if and only if
W,(BT 78 W + BHV ZBaW) — V. (AgzaW + HYV ;6W)
=cos’ ,Y.(BT > W +ﬁWV W) + V ‘I’ W + g1(aZ, aW)W.&
— BZ(In )Y, BW — BW(In VWY.BZ + gu(BZ, BW)¥.(grad In A),

for any Z,We ['(Dg, ).
Proof. The proof of the theorem is similar to the proof of Theorem 6.1. O

Theorem 6.3. Let f be a QBSC &*+-submersion from Sasakian manifold (O, ¢,&,1,g1) onto a RM

(Q», g>) with slant angles 0, and 6,. Suppose that ¥ is ((ker¥,)* — ker¥,)-¢-pluriharmonic. Then the
following assertion are equivalent.

(i) The horizontal distribution (ker‘I’ )* defines totally geodesic folzatlon on Q.

(ii) (cos*0, + coszez)‘l’ (BT Xa/iigU +ﬂ(VV©?a/‘BgU +BA Xa‘BgU +BVVzaB,U }
+ P, {BﬂBXﬁa‘ByU + BA BB, U- WVCX,BU} + V‘PA‘I’ ﬁa‘ByU + VLPA‘I’ ﬁa‘BU
=Y, {BTCXQ‘BQU +,8(VVCXa§BgU + B&"{BX&%U +ﬁ7—(VBXa‘J3g }

,BTCX,BOJ‘ByU + BHV X,Ba‘ByU +,8‘TCX,BQ‘B U +BHV cxPaB,U U}
+ BX(ln DY ﬂa‘ByU +ﬁa‘ByU(ln DY, BX gl(BX ﬁa‘ByU)‘I’ (gradn A)
- BX(ln DY ﬁa‘BUU +ﬁa‘I§UU(ln VY. BX — gl(BX Ba’B, U)Y, (gradln Q)
+Y.(Vy U)+V ‘I‘,8U+g1(PX aU)‘Pf

for any X € T'(ker?.,)* and U e I'(ker¥.,).

Proof. For any Xe I'(ker¥,)* and Ue ['(ker?,), since ¥ is ((kerV,)* — ker?.)-¢-pluriharmonic, then
by using (2.15), (3.2) and (3.5), we get

¥, (Voe8U) = —¥.(VegaU + VgBU + VygaU) + . (V5U) + V:YT*ﬁﬁ.
Taking account the fact from (2.1) and (2.10), we have
v, (VBX,BU) =-¥ (TCX,BU + 7—(VCX/3U) +W.(Vg U) + V ‘I’,BU

+ P ¢V zpaU — (Y ,zaU)E)
+ W, ¢V z0aU — n(VegaU)E).
Now on using decomposition (3.1), Lemmas 3.2 and 3.3 with Eq (3.2), we may yields
¥, (VezBU) = W.(¢V 5B, U — cos® 6,6V zaU — cos® 6,9V zalU + g,(PX, aU)¢
+ W, (¢V. 5B, U — cos’ 6,¢VyzalU — cos® 0,4V U + g (BX, aU)é
+ W ¢V BaB, U + ¢V BB, U + ¢V cBaB,U + ¢V, zBaB,U)
— W (HV 8U) + ¥.(V5U) + V;glp*ﬁﬁ.
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From Eqgs (2.9)—(2.12) and after simple calculation, we may write

¥, (VocBU) = —(cos*6, + cos*0) Y. (BT ozaB,U + BVV zaB,U + BAzaB,U
+ BVVzaB,U) - Y. (BABaB,U + BAyBaB,U — HV 58U}
+ W (BT aB,U + BV 5aB,U + BAzaB,U + BHY,zaB,U)
— (BT BB, U + BHV 80P, U + BT oxBaP,U + BHY zBaB,U)
— Y.(BHV,zBaP,U + BHV,BaB,U) + ¥, (V5U)
+ V;}?‘P*ﬁfj\ + 21(PX, aU)Y.&.

Since ¥ is conformal Riemannian submersion, the by using Eq (2.15) and from Lemma 2.1, we finally
have

Y.(V;580)
= — (050 + cos*0y) V(BT -zaB,U + BVVzaB,U + BA,zaB,U + BVVyzaB,U)
+ W (BT 5B, U + BV zaB,U + BAzaB,U + BHV zzaB,U)
— W ABT BB, U + BHV BaB,U + BT -BaB,U + BHV aB,U)
+ BX(In )Y.8aP,U + BaP,U(In )¥,BX — g,(BX, BaB,U)¥.(grad In 2)
+BX(In )¥,B8¢B,U + BaP,U(In H¥.BX — g,(BX, faP,U)V.(grad In 2)
— Y. {BA BB, U + BABaB,U — HY 58U} + g/(PX, aU)¥.£.
+W.(VgU) + v:)?\y*ﬁU -V ¥.BaB,U - V. W¥.BaB,U,
which completes the proof of theorem. O
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