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Abstract: The virus mutation can increase the complexity of the infectious disease. In this paper, the
dynamical characteristics of the virus mutation model are discussed. First, we built a stochastic virus
mutation model with time delay. Second, the existence and uniqueness of global positive solutions for
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the model, we discuss the influence mechanism between the different factors. Finally, the numerical
simulation verifies the theoretical results.
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1. Introduction

Different mathematical models have been used to study the dynamical behavior of infectious
diseases by many researchers. Stone et al. [1] analyzed classical models of seasonal forced SIR
epidemics and to further understand the nonlinear dynamics of recurrent disease. A cutaneous
leishmaniasis disease model was proposed by Sinan et al. [2], who investigated the basic properties
of the model. Sheergojri et al. [3] built a mathematical model of tumor development using a fuzzy
logic method. Sabbar [4] studied the conditions for asymptotic extinction and sustained survival in
a stochastic infectious disease model with different intervention measures. The dynamical behavior
of the fractional-order models for infectious disease was studied in [5–7]. Ahmadet et al. [8] built
a fractional-order model about COVID-19 to predict the second wave of COVID-19 transmission in
Pakistan in the next 50 days.

In recent years, during the environmental change, the virus will mutate due to the influence
of various factors in the transmission process, which is expected to lead to a large-scale outbreak
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of diseases [9–11]. With the normalization of COVID-19 prevention and control, the researchers
paid more attention to the virus mutation models [12–14]. Cacciapaglia et al. [15] used a
modified SIR model to simulate the interplay and competition of COVID-19 virus variants within
a given population. Dobie [16] discussed the stability of a model based on horizontal and vertical
transmissions, size variation and virus mutation. Avila-Ponce de León et al. [17] applied mathematical
models to simulate the potential effects of the Omicron variant on the USA population. A study with
multiple vaccinations and virus mutations found that early vaccination is the key to reducing disease
mutations [18]. Meanwhile, utilizing the principle of epidemic dynamics, Liu et al. [19] established
an SEIR model with a mutated virus in wireless sensor networks, which had guiding significance to
control the spread of a mutated virus. Xu et al. [20] proposed a complex network model with virus
variation and considered the influence of virus variation factors on network transmission.

Due to the pathogenesis and epidemic law of infectious diseases, some scholars considered
stochastic and time delays for an infectious disease model. Liu et al. [21] studied the
dynamics of a stochastic delayed SIR epidemic model with dual diseases and vaccination
driven by Lévy jumps. Zhang and Liu [22] analyzed the sufficient conditions for extinction and
persistence of a stochastic delayed model with vertical transmission and vaccination. The stochastic
delayed SIRS model was investigated by Xu and Li [23] found that the immunity period of vaccination
would affect the threshold of extinction or persistence. In [24, 25], stochastic delayed models with
Markov switching was discussed. A delayed differential model of the tumor and immune system
with noise was investigated by Alsakaji et al. [26]. Ali and Khan [27] proposed a stochastic
delayed SIRS model with exponential birth and saturated incidence rates, and they found that a large
amount of noise would lead to the extinction of the disease. In order to further study the persistent
effects of stochastic disturbance on models with time delays, many scholars considered the ergodic
stationary distribution of stochastic delayed models [28]. Khan et al. [29] proposed an epidemic model
of SEIQ with stochastic disturbance and time delay, they used the Lyapunov function to analyze
the ergodic stability. In [30], the ergodic stationary distribution of a hepatitis B virus system with
a higher-order stochastic delayed differential model is investigated. Ikram et al. [31] built a stochastic
delayed COVID-19 model with cross-immune class and transmission terms to study the effects of white
noise on disease extinction. Liu et al. [32] used Markov semigroup theory to obtain the existence and
uniqueness of ergodic stationary distribution. Sun et al. [33] studied the ergodic stationary distribution
of a stochastic viral model with cytotoxic T lymphocyte responsiveness and time delay. By analyzing
the threshold conditions for the persistence of ergodic stationary distribution, the effects of time delay
and noise on disease were obtained [34]. Although the scholars have studied a lot on ergodic stability
analysis for infectious disease models with noise and time delay, there are few studies on ergodic
stability analysis of mutation models. In this paper, by considering the time delay from pre-mutation
to post-mutation in the stochastic mutation model, we study the influence of different factors on the
persistence and extinction for a model based on analyzing the ergodic stationary distribution.

This paper is presented as follows. In Section 2, we set up a stochastic virus mutation model
with time delay. The existence and uniqueness of global positive solutions for the model are given
in Section 3. In Section 4, we obtain the ergodic stationary distribution of the stochastic model with
time delay. In the last section, the theoretical results are verified by numerical simulations.
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2. Model building

After the virus infects the susceptible individuals and goes through an incubation period, some
of the latent individuals will transform into infected individuals. During this period, the virus will
mutate due to environmental factors and the infected individuals are either pre-mutation individuals
or post-mutation individuals. Both groups of infected individuals are infectious during this period of
treatment. Considering that the virus will mutate within a certain period of time τ, the SEIR model
with virus variation and time delay is established. Besides, the following assumptions were taken into
consideration while formulating the model:

1) All initial population sizes are non-negative.
2) Variables and parameters are non-negative.
3) All groups of individuals experienced natural death.
4) τ is the time delay before and after virus mutation.
Considering the above assumptions, the deterministic virus mutation model with time delay can be

expressed by the following differential equations in Eq (2.1):

dS (t)
dt
= A − dS (t) − β1S (t)I1(t) − β2S (t)I2(t),

dE(t)
dt
= β1S (t)I1(t) + β2S (t)I2(t) − (ε + d)E(t),

dI1(t)
dt
= εE(t) − (d + r1)I1(t) − uI1(t − τ),

dI2(t)
dt
= uI1(t − τ) − (d + r2)I2(t),

dR(t)
dt
= r1I1(t) + r2I2(t) − dR(t),

(2.1)

where S (t), E(t), I1(t), I2(t), R(t) denote the sizes of susceptible (S ), latent (E), pre-mutation patient
(I1), post-mutation patient (I2) and recovered individuals (R), respectively, which satisfy N(t) =
S (t) + E(t) + I1(t) + I2(t) + R(t). The parameters in Eq (2.1) have the following meanings: A is
the birth rate, β1 and β2 represent the coefficients of patient infection rate before and after virus
mutation respectively, u is the rate at which the pre-mutation patient becomes the post-mutation
patient, ε represents the rate at which the latent person becomes the pre-mutation patient, r1 and r2 are
the patient recovery rate before and after virus mutation respectively, τ is the time delay before and after
virus mutation and d is the death rate. All parameters are positive. The recovered population R(t) has
no effect on the dynamics of S (t), E(t), I1(t) I2(t), so the following simplified model can be obtained:

dS (t)
dt
= A − dS (t) − β1S (t)I1(t) − β2S (t)I2(t),

dE(t)
dt
= β1S (t)I1(t) + β2S (t)I2(t) − (ε + d)E(t),

dI1(t)
dt
= εE(t) − (d + r1)I1(t) − uI1(t − τ),

dI2(t)
dt
= uI1(t − τ) − (d + r2)I2(t),

(2.2)
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set Ω = {S (t), E(t), I1(t), I2(t)|S (t) ≥ 0, E(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥ 0} , and the basic reproductive
number of Eq (2.2) is

R0 =
Aβ1ε(d + r2) + Aβ2εu

(ε + d)(d + r1 + u)(d + r2)d
.

The dynamical behavior of Eq (2.2) is obtained as follows:
(i) If R0 ≤ 1, Eq (2.2) has the unique disease-free equilibrium

E0 = (S 0, 0, 0, 0) = (
A
d
, 0, 0, 0),

which is globally asymptotically stable.
(ii) If R0 > 1, disease-free equilibrium E0 is unstable and Eq (2.2) has a unique positive endemic

equilibrium E1 = (S ∗, E∗, I∗1, I
∗
2), which is globally asymptotically stable, where

S ∗ =
d

d + β1I1
∗ + β2

uI1
∗

d+r2

, E∗ =
(d + r1 + u)I1

∗

ε
,

I1
∗ =

d(R0 − 1)

β1 +
β2u

d+r2

, I2
∗ =

uI1
∗

d + r2
.

(a) (b)

Figure 1. The effects of related parameters on R0.

The sensitivity analysis of R0 in Figure 1 shows that the related parameters β1 and β2 each have a
great effect on disease transmission. Considering that biological systems are inevitably disturbed by
uncertain environmental factors, we use white noise to represent stochastic interference, which can be
represented by external interventions, policy interventions, drug therapy, media reports, vaccination
and so on. In this paper, Gaussian white noise represents stochastic disturbance and the stochastic
model with time delay is proposed as follows:

dS (t) = [A − dS (t) − β1S (t)I1(t) − β2S (t)I2(t)]dt + σ1S (t)dB1(t),
dE(t) = [β1S (t)I1(t) + β2S (t)I2(t) − (ε + d)E(t)]dt + σ2E(t)dB2(t),
dI1(t) = [εE(t) − (d + r1)I1(t) − uI1(t − τ)]dt + σ3I1(t)dB3(t),
dI2(t) = [uI1(t − τ) − (d + r2)I2(t)]dt + σ4I2(t)dB4(t),

(2.3)
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where Bi(t) (i = 1, 2, 3, 4) denotes independent standard Brownian motions and σi > 0 (i = 1, 2, 3, 4)
represents the intensities of Bi(t). The variables in Eq (2.3) are constrained by the following initial
conditions: {

S (θ) = ψ1(θ), E(θ) = ψ2(θ), I1(θ) = ψ3(θ), I2(θ) = ψ4(θ), θ ∈ [−τ, 0], (2.4)

where ψi(θ) ∈ C (i = 1, 2, 3, 4) such that C is a family of Lebesgue integrable functions from [−τ, 0] to
R4
+.

3. Existence and uniqueness of global positive solutions

To study the dynamical behavior of a stochastic infectious model with time delay, it is necessary to
verify that the solution of Eq (2.3) is non-negative and has a unique global positive solution (that is no
explosion in finite time), so we have the following theorem.

Theorem 1. For the any given initial value (2.4), the system (2.3) has a unique positive
solution (S (t), E(t), I1(t), I2(t)) on t ≥ −τ, and the solution remains in R4

+ with a probability of 1.

Proof: For the given initial approximation {S (0), E(0), I1(0), I2(0)}, the coefficients of Eq (2.3)
are locally Lipschitz continuous, so there is a unique local solution {S (t), E(t), I1(t), I2(t)} on t ∈
[−τ, τe], where τe refers the explosion time. In order to show that this solution is global, we need to
show that τe = ∞ is true. Assume that ξ0 ≥ 1 is so large that S (θ) ∈ [ 1

ξ0
, ξ0], E(θ) ∈ [ 1

ξ0
, ξ0], I1(θ) ∈

[ 1
ξ0
, ξ0], I2(θ) ∈ [ 1

ξ0
, ξ0] and θ ∈ [−τ, 0] are all satisfied. For each integer ξ > ξ0 (ξ > 0), define the

stopping time as follows:

τξ = inf
{

t ∈ [−τ, τe) : min {S (t), E(t), I1(t), I2(t)} ≤
1
ξ
,

or max {S (t), E(t), I1(t), I2(t)} ≥ ξ} .

Consider inf ϕ = ∞ (ϕ is void set). τξ is increasing as ξ → ∞. Assume that τ∞ = lim
n→∞

τn and let τ∞ ≤
τe a.s. Hence, we need to prove that τ∞ = ∞ a.s., then τe = ∞ a.s. and {S (0), E(0), I1(0), I2(0)} ∈
R4
+ a.s. Otherwise, there exist the constants T > 0 and δ ∈ (0, 1) which yield that P(τ∞ ≤ T ) > δ. Then

there exist the integers ξ1 > ξ0 which take

P
{
τξ ≤ T

}
≥ δ, ∀ξ > ξ1. (3.1)

Define a C2-function V : R4
+ → R+ as follows:

V(S , E, I1, I2) =(S − a − a ln
S
a

) + (E − 1 − ln E) + (I1 − 1 − ln I1)

+ (I2 − 1 − ln I2) +
∫ t+τ

t
auI1(s − τ)ds,

where a > 0 is a constant. According to Itô′s formula

dV(S , E, I1, I2) =LVdt + σ1(S − a)dB1(t) + σ2(E − 1)dB2(t)
+ σ3(I1 − 1)dB3(t) + σ4(I2 − 1)dB4(t),
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where
LV =(1 −

a
S

)[A − dS − β1S I1 − β2S I2] + (1 −
1
E

)[β1S I1 + β2S I2 − (ε + d)E]

+ (1 −
1
I1

)[εE − (d + r1)I1 − uI1(t − τ)] + (1 −
1
I2

)[uI1(t − τ) − (d + r2)I2]

+
aσ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ auI1 − auI1(t − τ)

≤A − dS − β1S I1 − β2S I2 −
Aa
S
+

a
S

dS +
a
S
β1S I1 +

a
S
β2S I2

+ β1S I1 + β2S I2 − (ε + d)E −
1
E
β1S I1 −

1
E
β2S I2

+ εE − (d + r1)I1 − uI1(t − τ) −
1
I1
εE + d + r1 +

u
I1

I1(t − τ)

+ uI1(t − τ) − (d + r2)I2(t) −
1
I2

uI1(t − τ) + d + r2

≤A + 3d + ε + r1 + r2 + ad + I1(au + aβ1 − d − r1)

+
aσ2

1 + σ
2
2 + σ

2
3 + σ

2
4

2
,

let a = d+r1
u+β1

, then we can obtain

LV ≤ A + ε + r1 + r2 + d(a + 3) +
aσ2

1 + σ
2
2 + σ

2
3 + σ

2
4

2
≤ K1, (3.2)

where K1 > 0, we can get

dV(S , E, I1, I2) ≤K1dt + σ1(S − a)dB1(t) + σ2(E − 1)dB2(t)
+ σ3(I1 − 1)dB3(t) + σ4(I2 − 1)dB4(t),

(3.3)

integrate both sides of Eq (3.3) from 0 to τξ ∧ T , and then obtain∫ τξ∧T

0
dV(S , E, I1, I2) ≤

∫ τξ∧T

0
K1dt +

∫ τξ∧T

0
σ1(S − a)dB1(t)

+

∫ τξ∧T

0
σ2(E − 1)dB2(t) +

∫ τξ∧T

0
σ3(I1 − 1)dB3(t)

+

∫ τξ∧T

0
σ4(I2 − 1)dB4(t),

(3.4)

take the expectation of both sides of Eq (3.4)

EV[S (τξ ∧ T ), E(τξ ∧ T ), I1(τξ ∧ T ), I2(τξ ∧ T )]
≤ EV(S (0), E(0), I1(0), I2(0)) + K1T.

Let Ωξ =
{
τξ ≤ T

}
, for ξ > ξ1 and in view of Eq (3.1), we obtain P(Ωξ) ≥ δ such that for each w ∈

Ωξ there is at least one among S (τξ,w), E(τξ,w), I1(τξ,w) and I2(τξ,w) that is equal either ξ or 1
ξ
. Then

V[S (τξ ∧ T ), E(τξ ∧ T ), I1(τξ ∧ T ), I2(τξ ∧ T )]

≥ min
{
ξ − 1 − ln ξ,

1
ξ
− 1 − ln

1
ξ

}
,
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it follows that

EV(S (0), E(0), I1(0), I2(0)) + K1T

≥ E[1ΩξV(S (τξ ∧ T ), E(τξ ∧ T ), I1(τξ ∧ T ), I2(τξ ∧ T ))]

≥ δ(ξ − 1 − ln ξ) ∧ (
1
ξ
− 1 − ln

1
ξ

),

where 1Ωξ is the indicative function of Ωξ. Taking ξ → ∞ gives

∞ > EV(S (0), E(0), I1(0), I2(0)) + K1T = ∞.

This contradicts the initial condition, so τ∞ = ∞ holds almost everywhere. Therefore, Theorem 1
is proved.

4. The existence of ergodic stationary distribution

In this section, we construct an appropriate random Lyapunov function to study the existence
and uniqueness of the ergodic stationary distribution of Eq (2.3). Taking X(t) as a regular time-
homogeneous Markov process defined in d dimensional Euclidean space Ed, which can be expressed
by the stochastic differential equation

dX(t) =
d∑

i=1

gr(t, X(t))dBr(t) + f (X(t − τ), X(t), t)dt,

the corresponding diffusion matrix is

A(X) = (ai j(x)), ai j(x) =
k∑

r=1

hi
r(x)h j

r(x).

Lemma 1. ( [35]) The Markov process of X(t) has one ergodic stationary distribution π(·) and a
bounded domain U ⊂ Rd with the regular boundary Γ, then the following is true:

(i) There is a positive number K such that
d∑

i, j=1
ai j(x)ξiξ j ≥ K|ξ|2, x ∈ U, ξ ∈ Rd.

(ii) There is a non negative C2 operator V such that LV is negative for any Rd\U.
Then Markov process X(t) has a unique ergodic stationary distribution π(·).
In order to get the conditions of the existence of ergodic stationary distribution, we set Theorem 2.

Theorem 2. Define

R∗ =
Auε

(d + σ2
1

2 )(d + ε + σ2
2

2 )(d + r1 +
σ2

3
2 )(d + r2 +

σ2
4

2 )
,

assuming R∗ > 1 and d − σ2
1∨σ

2
2∨σ

2
3∨σ

2
4

2 > 0, then, for any given initial value (S (0), E(0), I1(0), I2(0)) ∈
R4
+, the solution (S (t), E(t), I1(t), I2(t)) of Eq (2.3) is normal and has a unique ergodic stationary

distribution π(·).
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Proof: To prove Theorem 2, we need to verify that conditions (i) and (ii) in Lemma 1 are satisfied. First,
we verify (ii).

Define a C2-function V : R4
+ → R+ as follows:

V(S , E, I1,I2) =M(− ln S − a1 ln E − a2 ln I1 − a3 ln I2 + u
∫ t+τ

t
I1(S − τ)ds)

− ln S + u
∫ t+τ

t
I1(S − τ)ds − ln I1 − ln I2 +

1
m + 1

(S + E + I1 + I2)m+1

=MV1 + V2 + V3 + V4 + V5,

(4.1)

where ai (i = 1, 2, 3) is a positive constant. Notice that V(S , E, I1, I2) is not only continuous, but also
tends to ∞ as (S , E, I1, I2) approaches the boundary of R4

+. So it must be lower bounded and achieve
this lower bound at a point (S (0), E(0), I1(0), I2(0)) in the interior of R4

+. Thus the C2-function Ṽ can be
defined as follows:

Ṽ(S , E, I1, I2) =M(− ln S − a1 ln E − a2 ln I1 − a3 ln I2 + u
∫ t+τ

t
I1(S − τ)ds)

− ln S + u
∫ t+τ

t
I1(S − τ)ds − ln I1 − ln I2 +

1
m + 1

(S + E + I1 + I2)m+1

− V(S (0), E(0), I1(0), I2(0))
=MV1 + V2 + V3 + V4 + V5 − V(S (0), E(0), I1(0), I2(0)),

(4.2)

where (S , E, I1, I2) ∈ (1
n , n) × ( 1

n , n) × ( 1
n , n) × ( 1

n , n), n > 1 is a sufficiently large integer. According to
Eq (4.2), V1, V2, V3, V4, V5 are respectively defined as follows:

V1 = − ln S − a1 ln E − a2 ln I1 − a3 ln I2 + u
∫ t+τ

t
I1(S − τ)ds,

V2 = − ln S + u
∫ t+τ

t
I1(S − τ)ds,

V3 = − ln I1, V4 = − ln I2,

V5 =
1

m + 1
(S + E + I1 + I2)m+1.

Itô′s formula is applied to V1 as follows:

LV1 = −
A
S
+ d + β1I1 + β2I2 +

σ2
1

2
−

a1

E
β1S I1 −

a1

E
β2S I2 + a1(ε + d)

+
a1σ

2
2

2
−

a2

I1
εE + a2(d + r1) +

a2

I1
uI1(t − τ) +

a2σ
2
3

2

−
a3

I2
uI1(t − τ) + a3(d + r2) +

a3σ
2
4

2
+ uI1 − uI1(t − τ)

≤ − 3 3
√

Auεa1a2a3 + d +
σ2

1

2
+ a1(ε + d +

σ2
2

2
) + a2(d + r1 +

σ2
3

2
)

+ a3(d + r2 +
σ2

4

2
) + β1I1 + β2I2 + uI1

= − φ + I1(β1 + u),
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where

φ=
Auε

(ε + d + σ2
2

2 )(d + r2 +
σ2

4
2 )(d + r1 +

σ2
3

2 )
− (d +

σ2
1

2
) > 0,

a1 =
Auε

(d + ε + σ2
2

2 )
2
(d + r1 +

σ2
3

2 )(d + r2 +
σ2

4
2 )
,

a2 =
Auε

(d + ε + σ2
2

2 )(d + r1 +
σ2

3
2 )

2
(d + r2 +

σ2
4

2 )
,

a3 =
Auε

(d + ε + σ2
2

2 )(d + r1 +
σ2

3
2 )(d + r2 +

σ2
4

2 )
2 .

Applying Itô′s formula to V2,V3,V4,V5, we can get

LV2 = −
A
S
+ d + β1I1 + β2I2 + uI1 − uI1(t − τ) +

σ2
1

2
,

LV3 = −
1
I1
εE − (d + r1) +

uI1(t − τ)
I1

+
σ2

3

2
,

LV4 = −
uI1(t − τ)

I2
+ d + r2 +

σ2
4

2
,

LV5 =(S + E + I1 + I2)m[A − d(S + E + I1 + I2)]

+
m
2

(S + E + I1 + I2)m−1 × [σ2
1S 2 + σ2

2E2 + σ2
3I1

2 + σ2
4I2

2]

≤(S + E + I1 + I2)m[A − d(S + E + I1 + I2)] +
m
2

(S + E + I1 + I2)m+1

× [σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4]

≤A(S + E + I1 + I2)m − (S + E + I1 + I2)m+1[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]

≤C −
1
2

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)](S m+1 + Em+1 + I1

m+1 + I2
m+1),

where

C = sup
(S ,E,I1,I2)∈R4

+

{
A(S + E + I1 + I2)m −

1
2

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]

(S + E + I1 + I2) m+1
}
< ∞.
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So, applying Itô′s formula to Ṽ , we can get

LṼ =M[−φ + I1(β1 + u)] + d −
A
S
+ β1I1 + β2I2 + uI1 − uI1(t − τ) +

σ2
1

2

−
1
I1
εE + d + r1 +

uI1(t − τ)
I1

+
σ2

3

2
−

uI1(t − τ)
I2

+ d + r2 +
σ2

4

2

+C −
1
2

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)](S m+1 + Em+1 + I1

m+1 + I2
m+1)

≤ − Mφ + I1M(β1 + u) −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)](S m+1 + Em+1

+ Im+1
1 + Im+1

2 ) −
A
S
−

1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1 + 3d + r1 + r2 +
σ2

1

2

+
σ2

3

2
+
σ2

4

2
+ β2I2 − uI1(t − τ) −

1
I1
εE +

uI1(t − τ)
I1

−
uI1(t − τ)

I2
+C,

m > 1 is a constant that satisfies

d >
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4),

M is a sufficiently large value satisfying the following condition

−Mφ + ξ ≤ −2,

where

ξ = sup
(S ,E,I1,I2)∈R4

+

(−
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1 + 3d + r1 + r2 +C

+
σ2

1

2
+
σ2

3

2
+
σ2

4

2
).

Now we construct compact subsets U such that condition (ii) in Lemma 1 is satisfied. We define
bounded closed sets as follows:

U = {(S , E, I1, I2) ∈ R4
+ : δ ≤ S ≤

1
δ
, δ ≤ E ≤

1
δ
, δ2 ≤ I1 ≤

1
δ2 , δ

3 ≤ I2 ≤
1
δ3

}
.

For δ > 0, in the set R4
+\U, we choose δ to satisfy the following conditions:

−
A
δ
+ D ≤ −1,

−Mφ + Mδ2(β1 + u) + ξ ≤ −1,

−
ε

δ
+ D ≤ −1,

−
u
δ
+ D ≤ −1,

−
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
δm+1 + D ≤ −1,

−
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
δ2(m+1) + D ≤ −1,

−
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
δ3(m+1) + D ≤ −1,

(4.3)
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where

D = sup
(S ,E,I1,I2)

{MI1(β1 + u) −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1

+3d + r1 + r2 +C +
σ2

1

2
+
σ2

3

2
+
σ2

4

2

}
.

Then, we prove that LṼ ≤ −1 holds for any (S , E, I1, I2) ∈ R4
+\U by dividing R4

+\U into eight
regions R4

+\U = U8
i=1Ui as follows:

U1 =
{
(S , E, I1, I2) ∈ R4

+; 0 < S < δ
}
,U2 =

{
(S , E, I1, I2) ∈ R4

+; 0 < E < δ
}
,

U3 =
{
(S , E, I1, I2) ∈ R4

+; 0 < I1 < δ
2, E ≥ δ

}
,

U4 =
{
(S , E, I1, I2) ∈ R4

+; 0 < I2 < δ
3, I1 ≥ δ

2
}
,

U5 =

{
(S , E, I1, I2) ∈ R4

+; S ≥
1
δ

}
,U6 =

{
(S , E, I1, I2) ∈ R4

+; E ≥
1
δ

}
,

U7 =

{
(S , E, I1, I2) ∈ R4

+; I1 ≥
1
δ2

}
,U8 =

{
(S , E, I1, I2) ∈ R4

+; I2 ≥
1
δ3

}
.

We prove that LṼ(S , E, I1, I2) ≤ −1 holds for any (S , E, I1, I2) ∈ R4
+\U. This is equivalent to proving

that it holds in each of the above right regions.
Case 4.1. If (S , E, I1, I2) ∈ U1, we get

LṼ ≤ −
A
S
+ MI1(u + β1) −

1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1

+ 3d + r1 + r2 +C +
σ2

1

2
+
σ2

3

2
+
σ2

4

2

≤ −
A
δ
+ D.

(4.4)

Case 4.2. If (S , E, I1, I2) ∈ U2, we get

LṼ ≤ − Mφ + MI1(β1 + u) −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1

+ 3d + r1 + r2 +C +
σ2

1

2
+
σ2

3

2
+
σ2

4

2
≤ − Mφ + Mδ2(β1 + u) + ξ.

(4.5)

Case 4.3. If (S , E, I1, I2) ∈ U3, we get

LṼ ≤ −
εE
I1
+ MI1(β1 + u) −

1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1

+C + 3d + r1 + r2

≤ −
ε

δ
+ D.

(4.6)
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Case 4.4. If (S , E, I1, I2) ∈ U4, we get

LṼ ≤ −
uI1

I2
+ MI1(β1 + u) −

1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1

+C + 3d + r1 + r2

≤ −
u
δ
+ D.

(4.7)

Case 4.5. If (S , E, I1, I2) ∈ U5, we get

LṼ ≤ −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]S m+1 + MI1(β1 + u)

−
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1

+C + 3d + r1 + r2 +
σ2

1

2
+
σ2

3

2
+
σ2

4

2

≤ −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
δm+1 + D.

(4.8)

Case 4.6. If (S , E, I1, I2) ∈ U6, we get

LṼ ≤ −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Em+1 + MI1(β1 + u)

−
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1

+C + 3d + r1 + r2 +
σ2

1

2
+
σ2

3

2
+
σ2

4

2

≤ −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
δm+1 + D.

(4.9)

Case 4.7. If (S , E, I1, I2) ∈ U7, we get

LṼ ≤ −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1 + MI1(β1 + u)

−
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1

+C + 3d + r1 + r2 +
σ2

1

2
+
σ2

3

2
+
σ2

4

2

≤ −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
δ2(m+1) + D.

(4.10)

Case 4.8. If (S , E, I1, I2) ∈ U8, we get

LṼ ≤ −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

2 + MI1(β1 + u)

−
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]Im+1

1

+C + 3d + r1 + r2 +
σ2

1

2
+
σ2

3

2
+
σ2

4

2

≤ −
1
4

[d −
m
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
δ3(m+1) + D.

(4.11)
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Obviously, from Eq (4.3) to Eq (4.11), we can obtain that LṼ(S , E, I1, I2) ≤ −1 is true for
any (S , E, I1, I2) ∈ R4

+\U. Therefore, condition (ii) in Lemma 1 is satisfied.
On the other hand, to verify condition (i) in Lemma 1, the diffusion matrix of Eq (2.3) can be given

as follows:

A =


σ2

1S 2 0 0 0
0 σ2

2E2 0 0
0 0 σ2

3I2
1

0
0 0 0 σ2

4I2
2

 .
Obviously, the matrix A is positive definite for any compact subset of R4

+, so condition (i) in
Theorem 2 is satisfied. From Theorem 2, we can know that Eq (2.3) has a unique ergodic stationary
distribution π(·).

5. Numerical simulation

In this section, we present numerical simulations to illustrate the influence of stochastic disturbance
on disease persistence and extinction. We used the Euler-Maruyama method [36,37] to solve Eq (2.3)
numerically. In order to apply the numerical method to Eq (2.3), we discretized the interval. Then, we
computed the discrete Brownian path and used it to generate the desired increment in Eq (2.3). The
discretization transformation takes the form as follows:

S n+1 = S n +
[
A − dS n − β1S nI1,n − β2S nI2,n

]
∆t + σ1S n

√
∆tε1,n,

En+1 = En + [β1S nI1,n + β2S nI2,n − (ε + d)En]∆t + σ2En

√
∆tε2,n,

I1,n+1 = I1,n + [εEn − (d + r1)I1,n − uI1,n−h]∆t + σ3I1,n

√
∆tε3,n,

I2,n+1 = I2,n + [uI1,n−h − (d + r2)I2,n]∆t + σ4I1,n

√
∆tε4,n,

(5.1)

where h is an integer and the time delay can be expressed by the step size as τ = h∆t. εi,n (i =
1, 2, 3, 4) denotes independent random variables and subject to Gaussian distribution N(0, 1). σi >

0 (i = 1, 2, 3, 4) represents the intensity of white noise.
The parameter values in Table 1 were derived.

Table 1. Values of parameters [38].

A ε d u r1 r2 β1 β2

0.1 0.4 0.005 0.005 0.0666 0.1428 0.7 0.6
0.0119 0.07 0.0005 0.04 0.31 0.51 0.51 0.25

5.1. Theoretical verification

We analyzed the ergodic stationary distribution of Eq (2.3) and selected the parameter values in
Figure 2 as follows:

A = 0.1, ε = 0.4, d = 0.005, u = 0.005, r1 = 0.0666, r2 = 0.1428,
τ = 1.5, β1 = 0.7, β2 = 0.6, σi = 0.08 (i = 1, 2, 3, 4).
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Figure 2. The trajectories of Eq (2.3) with σi = 0.08 (i = 1, 2, 3, 4) and τ = 1.5.

By direct calculation we have

R∗ =
Auε

(d + σ2
1

2 )(ε + d + σ2
2

2 )(r1 + d + σ2
3

2 )(r2 + d + σ2
4

2 )
> 1,

as well as

d −
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

2
= 0.0018 > 0.

The conditions in Theorem 2 are satisfied. According to the conclusion of Theorem 2, we can get
the trend of the Eq (2.3) with unique ergodic stationary distribution which is shown in Figure 2. From
the curves of the S , E, I1, I2, it can be found that susceptible, latent, pre-mutation and post-mutation
individuals are asymptotically stable and the disease is persistent. In a biological sense, it means that
the disease will not disappear under current conditions. If there is no intervention, the disease will
spread in local areas.

We selected the parameters in Figure 3 as follows:

A = 0.0119, ε = 0.07, d = 0.0005, u = 0.04, r1 = 0.31, r2 = 0.51, τ = 1.6,
β1 = 0.51, β2 = 0.25, σ1 = 0.08, σ2 = 0.05, σ3 = 0.09, σ4 = 0.08.

By direct calculation we have

R∗ =
Auε

(d + σ2
1

2 )(ε + d + σ2
2

2 )(r1 + d + σ2
3

2 )(r2 + d + σ2
4

2 )
< 1,

as well as

d −
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

2
= −0.0035 < 0.
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Figure 3. The trajectories of Eq (2.3) with σ1 = 0.08, σ2 = 0.05, σ3 = 0.09, σ4 = 0.08 and
τ = 1.6.

The conditions in Theorem 2 are not satisfied. That is, the condition for ergodic stationary
distribution is not satisfied. From Figure 3 we can see that the pre-mutation patient and post-mutation
patient gradually tended to zero with the increase of time and that the stochastic model Eq (2.3) is
extinct with a probability of 1. That is, the external conditions required for disease occurrence have
changed and there is a high possibility that the disease will disappear in local areas.

5.2. Influence of time delay on disease

We applied τ = 2.6, τ = 3.6 and τ = 4.6 while the other parameters in Figure 3 remained
unchanged. By direct calculation we have

R∗ =
Auε

(d + σ2
1

2 )(ε + d + σ2
2

2 )(r1 + d + σ2
3

2 )(r2 + d + σ2
4

2 )
< 1,

as well as

d −
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

2
= −0.0035 < 0.

It can be seen that the conditions for ergodic stationary distribution are not satisfied. When the time
delay τ is increased in Figure 4, the curves of I1 and I2 fluctuate and no longer tend to zero whereas the
curves of S and E continue to fluctuate. The disease will manifest as periodic outbreaks as shown in
Figure 4 and lead to the reinfection of susceptible, latent and infected individuals. Through the analysis
of Figure 4, it can be seen that with the increase of time delay, the disease will break out periodically
at higher frequencies.
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Figure 4. The trajectories of Eq (2.3) with τ = 2.6 (a), τ = 3.6 (b), τ = 4.6 (c) and
σ1 = 0.08, σ2 = 0.05, σ3 = 0.09, σ4 = 0.08.

In a biological sense, after a fairly regular interval, the disease will outbreak again locally and have
the necessary conditions for exogenous pathogens to cause disease. Therefore, during the spread of
an infectious disease, we can realize the periodic law of virus mutation through systematic scientific
research and take relevant protective measures. We can develop drugs and improve the effectiveness of
vaccines, so that they can adapt to different mutations of the virus antibodies.

5.3. Influence of noise on disease

As shown in Figure 5, we increased the intensities of the noise and applied σ1 = 0.09, σ2 =

0.08, σ3 = 0.1, σ4 = 0.09. As shown in Figure 6, we continued to increase the intensities of the
noise and applied σ1 = 0.2, σ2 = 0.1, σ3 = 0.2, σ4 = 0.1. For the results shown in Figures 5 and 6,
the other parameters were consistent with those in Figure 4, where the ergodic stationary distribution
of Theorem 2 is also not satisfied. We respectively studied the effect of increasing noise on disease
extinction when τ = 2.6, τ = 3.6 and τ = 4.6. It can be seen from Figures 5 and 6 that the curves
of I1 and I2 gradually approach zero as time goes on, and that the periodic outbreak of disease caused
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by time delay τ can be reduced by increasing the intensity of the noise. It means that diseases with
periodic outbreaks will become extinction again. Through the analysis of Figures 5 and 6, it can be
found that noise has a great influence on the persistence and extinction of a virus mutation model with
time delay.

On the basis of the above research, we can enhance noise interference in different measures to
promote the extinction of the disease, such as the government strengthening the early warning of the
disease to avoid wide spread, strengthening personal protection through the media for the public and
hospitals strengthening prevention and control measures against large-scale diseases.
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Figure 5. The trajectories of Eq (2.3) with τ = 2.6 (a), τ = 3.6 (b), τ = 4.6 (c) and
σ1 = 0.09, σ2 = 0.08, σ3 = 0.1, σ4 = 0.09.
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Figure 6. The trajectories of Eq (2.3) with τ = 2.6 (a), τ = 3.6 (b), τ = 4.6 (c) and
σ1 = 0.2, σ2 = 0.1, σ3 = 0.2, σ4 = 0.1.

6. Conclusions

In infectious disease models, the combination of white noise and time delay has great influence on
the spread and disappearance of an infectious disease, which makes the dynamic behavior of an the
system complicated. We considered the effects of stochastic disturbance on the persistence of virus
mutations in a model with time delay. First, the existence and uniqueness of the positive solution of
the proposed model was proved using stochastic inequalities. Second, by constructing an appropriate
stochastic Lyapunov function, if R∗ > 1 and d − σ2

1∨σ
2
2∨σ

2
3∨σ

2
4

2 > 0 are satisfied, the proposed model
has an ergodic stationary distribution which means that the disease is persistent; otherwise, the disease
will die out. Finally, numerical simulations were carried out to verify the theoretical results. The results
show that stochastic disturbance has great influence on the spread and persistence of infectious diseases
with time delay.

Through the above theoretical and numerical analyses, we found that with the increase of the
time delay from pre-mutation to post-mutation, the virus will undergo periodic outbreaks and
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susceptible, latent and infected people will be reinfected. When the noise intensity is large enough
under certain constraints, the periodic diseases caused by the time delay can become extinct
again. Therefore, the following measures can be taken to prevent and control the spread of mutated
infectious diseases. On the one hand, we can reduce the periodic outbreaks of disease by reducing the
time delay before and after the virus mutates. It is necessary to realize the periodicity of virus mutations
and carry out drug research according to the conditions of periodic outbreaks so as to strengthen
the resistance of vaccines to the mutated environment. On the other hand, we can promote disease
extinction by increasing stochastic perturbations. The government should strengthen early warnings
of the disease, increase personal protection and strengthen prevention and control measures against
large-scale diseases.
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https://doi.org/10.1016/j.physa.2017.11.116

22. X. Zhang, M. Liu, Dynamical analysis of a stochastic delayed SIR epidemic model
with vertical transmission and vaccination, Adv. Cont. Discr. Mod., 2022 (2022), 35.
https://doi.org/10.1186/s13662-022-03707-7

23. C. Xu, X. Li, The threshold of a stochastic delayed SIRS epidemic model with
temporary immunity and vaccination, Chaos Soliton. Fract., 111 (2018), 227–234.
https://doi.org/10.1016/j.chaos.2021.110772

24. A. E. Koufi, The power of delay on a stochastic epidemic model in a switching environment,
Complexity, 2022 (2022), 5121636. https://doi.org/10.1155/2022/5121636

25. B. Boukanjime, M. El-Fatini, A. Laaribi, R. Taki, K. Wang, A Markovian regime-switching
stochastic hybrid time-delayed epidemic model with vaccination, Automatica, 133 (2021), 109881.
https://doi.org/10.1016/j.automatica.2021.109881

26. H. J. Alsakaji, F. A. Rihan, S. Kundu, O. Mohamed, Dynamics of a time-delay differential
model for tumour-immune interactions with random noise, Alex. Eng. J., 61 (2022), 11913–11923.
https://doi.org/10.1016/j.aej.2022.05.027

27. I. Ali, S. U. Khan, Analysis of stochastic delayed SIRS model with exponential
birth and saturated incidence rate, Chaos Soliton. Fract., 138 (2022), 110008.
https://doi.org/10.1016/j.chaos.2020.110008

28. H. J. Alsakaji, F. A. Rihan, A. Hashish, Dynamics of a stochastic epidemic model with vaccination
and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 4247800.
https://doi.org/10.1155/2022/4247800

29. A. Khan, R. Ikram, A. Din, U. W. Humphries, A. Akgul, Stochastic COVID-
19 SEIQ epidemic model with time-delay, Results Phys., 30 (2021), 104775.
https://doi.org/10.1016/j.rinp.2021.104775

30. F. A. Rihan, H. J. Alsakaji, Analysis of a stochastic HBV infection model with delayed immune
response, Math. Biosci. Eng., 18 (2021), 5194–5220. https://doi.org/10.3934/mbe.2021264

31. R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuz, P. Kumam, Extinction and stationary distribution
of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Med., 141 (2022),
105115. https://doi.org/10.1016/j.compbiomed.2021.105115

32. Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic SIR epidemic model
with distributed delay and degenerate diffusion, J. Franklin I., 356 (2019), 7347–7370.
https://doi.org/10.1016/j.jfranklin.2019.06.030

33. J. Sun, M. Gao, D. Jiang, Threshold dynamics of a non-linear stochastic viral model with time
delay and CTL responsiveness, Life, 11 (2021), 766. https://doi.org/10.3390/life11080766

34. F. A. Rihan, H. J. Alsakaji, Dynamics of a stochastic delay differential model for COVID-19
infection with asymptomatic infected and interacting people: case study in the UAE, Results Phys.,
28 (2021), 104658. https://doi.org/10.1016/j.rinp.2021.104658

AIMS Mathematics Volume 8, Issue 9, 21371–21392.

http://dx.doi.org/https://doi.org/10.1016/j.physa.2017.11.116
http://dx.doi.org/https://doi.org/10.1186/s13662-022-03707-7
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110772
http://dx.doi.org/https://doi.org/10.1155/2022/5121636
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2021.109881
http://dx.doi.org/https://doi.org/10.1016/j.aej.2022.05.027
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110008
http://dx.doi.org/https://doi.org/10.1155/2022/4247800
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104775
http://dx.doi.org/https://doi.org/10.3934/mbe.2021264
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2021.105115
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2019.06.030
http://dx.doi.org/https://doi.org/10.3390/life11080766
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104658


21392

35. R. Khasminskii, Stochastic stability of differential equations, Berlin: Springer, 2011.
https://doi.org/10.1007/978-3-642-23280-0

36. E. Buckwar, Euler-Maruyama and Milstein approximations for stochastic functional
differential equations with distributed memory term, Berlin: Humboldt-Universität, 2005.
http://doi.org/10.18452/3583

37. D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential
equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302

38. J. Gao, T. Zhang, Analysis on an SEIR epidemic model with logistic death rate of
virus mutation, Journal of Mathematical Research with Applications, 39 (2019), 259–268.
https://doi.org/10.3770/j.issn:2095-2651.2019.03.005

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 9, 21371–21392.

http://dx.doi.org/https://doi.org/10.1007/978-3-642-23280-0
http://dx.doi.org/http://doi.org/10.18452/3583
http://dx.doi.org/https://doi.org/10.1137/S0036144500378302
http://dx.doi.org/https://doi.org/10.3770/j.issn:2095-2651.2019.03.005
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model building
	Existence and uniqueness of global positive solutions
	The existence of ergodic stationary distribution
	Numerical simulation
	Theoretical verification
	Influence of time delay on disease
	Influence of noise on disease

	Conclusions

